Supplemental for Spectral Algorithm For Latent Tree Graphical Models
Ankur P. Parikh, Le Song, Eric P. Xing

The supplemental contains 3 main things.

1. The first is network plots of the latent variable tree learned by [1] for the stock market data, and the Chow Liu tree to give
a more intuitive explanation why latent variable trees can lead to better performance.

2. The second is a more detailed representation of the tensor representation where internal nodes are allowed to be evidence variables.

3. The third is the proof of Theorem 1.

1 Latent Tree Structure for Stock Data

The latent tree structure learned by the algorithm by [1] is shown in Figure 1. The blue nodes are hidden nodes and the red nodes
are observed. Note how integrating out some of these hidden nodes could lead to very large cliques. Thus it is not surprising why
both our spectral method and EM perform better than Chow Liu. The Chow Liu Tree is shown in Figure 1. Note how it is forced
to pick some of the observed variables as hubs even if latent variables may be more natural.
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Figure 1: Latent variable tree learned by [1]. The hidden variables are in blue while the observed variables are in red. As one
can see the hidden variables can model significantly more complex relationships among the observed variables.

2 More Detailed Information about Tensor Representation for LTMs

The computation of the marginal distribution of the observed variables can be expressed in terms of tensor multiplications. Basically,
the information contained in each tensor will correspond to the information in a conditional probability table (CPT) of the model
and the tensor multiplications implement the summations. However, there are multiple ways of rewriting the marginal distribution
of the observed variables using tensor notation, and not all of them provide intuition or easy derivation to a spectral algorithm.
In this section, we will derive a specific representation of the latent tree models which requires only tensors up to 3rd order and
provides us a basis for deriving a spectral algorithm.

More specifically, we first select a latent or observed variable as the root node and sort the nodes in the tree in topological order.
Then we associate the root node X, with a vector r related to the marginal probability of X,. Depending on whether the root
node is latent or observed, its entries are defined as

X, latent X, observed
r(k) PIX, = k] Ok, Play]

where i, is an indicator variable defined as dg,, =1 if k = x, and 0 otherwise. Effectively, i, sets all entries of r to zero except
the one corresponding to P[z,].

Next, we associate each internal node X; with a 3rd order tensor T; related the conditional probabilty table between X; and
its parent X,. This tensor is diagonal in its 2nd and 3rd mode, and hence its nonzero entries can be accessed by two indices k& and
l. Depending on whether the internal node and its parent are latent or observed variables, the nonzero entries of T; are defined as



Figure 2: Tree learned by chow liu algorithm over only observed variables. Note how it is forced to pick some of the observed
variables as hubs even if latent variables may be more natural.

Ti(k,1,1) | Xy, latent X, observed
X; latent  |P[X; = k| Xz, = ]|01z, P[X; = k|2g,]
X; observed |0k, Plws| X7, = 1] |0k, 01, Plvi|vr,]

where Jx,, and 519% are also indicator variables. Effectively, the indicator variables zero out further entries in T7; for those values

that are not equal to the actual observation.
Last, we associate each leaf node x;, which is always observed, with a diagonal matrix M; related to the likelihood of z;.
Depending on whether the parent of x; is latent of observed, the diagonal entries of M, are defined as

X, latent X, observed

Let M; defined above be the messages passed from the leaf nodes to their parents. We can show that the marginal probability of the

observed variables can be computed recursively using a message passing algorithm: each node in the tree sends a message to its parent

according to the reverse topological order of the nodes, and the final messages are aggregated in the root to give the desired quantity.
More formally, the outgoing message from an internal node X; to its parent can be computed as

M, = Tl >21 (MlejQ ...MjJ ]-i) (1)

where j1,j2,...,j7 € xi range over all children of X; (J = |x;|). The 1; is a vector of all ones with suitable size, and it is used
to reduce the incoming messages (all are diagonal matrices) to a single vector. The computation in (1) essentially implements
the message update we often see in an ordinary message passing algorithm ([5]), i.e.,

miler] = PlaileJmy, (] .. mj, [, (2)

where mj[x;] represents incoming messages to X; (or intermediate results of the marginalization operation by summing out all
latent variables in subtree 7). The M;, Mj, ... M, 1; corresponds to aggregating all incoming messages m;, [x;] ... m;, [z;], and
the T X1 * corresponds to >, Plw|xs,] *.

At the root node, all incoming messages are combined to produce the final joint probability, i.e.,

Plzy,...,z0] =7 (Mj,Mj,...Mj, 1,). (3)

Here 7" basically implements the operation ) Plz,]*, whid% sums out the root variable.



3 Notation for Proof of Theorem 1

We now proceed to prove Theorem 1. || - |2 refers to spectral norm for matrices and tensors (but normal euclidean norm for vectors).
|| - |1 refers to induced 1 norm for matrices and tensors (max column sum), (but normal 11 norm for vectors). || - || refers to
Frobenius norm.

The tensor spectral norm (for 3 dimensions) is defined in [4]:

[Ty = sup T Xzwvz X2 v2 X1 11 (4)
llvill,<1

We will define the induced 1-norm of a tensor as

[Tl = sup [T 1 vl (®)

lloll, <1

using the ¢1 norm of a matrix (i.e., [|All; = supy, <1 [|Av]];).

For more information about matrix norms see [2].

In general, we suppress the actual subscripts/superscripts on U and O. It is implied that U and O can often be different depending
on the transform being considered. However, this makes the notation very messy. It will generally be clear from context which
U and O are being referred to. When it is not we will arbitrarily index them 1,2, ..., so that it is clear which corresponds to which.

In general, for simplicity of exposition, we assume that all internal nodes in the tree are unobserved, and all leaves are observed
(since this is the hardest case).

The proof generally follows the technique of HKZ [3], but has key differences due to the tree topology instead of the HMM.

We define M; = (OTU)"'M;(O"U). Then as long as (OU) is invertible, (OTU) ' M;(O"U) = M;. (We admit this is a
slight abuse of notation, since M; was previously defined to be (U O)~'M;(U " O), but as long as (O TU) is invertible it doesn’t
really matter whether it equals (U " O) or not for the purposes of this proof). The other quantities are defined similarly.

We seek to prove the following theorem:

Theorem 1 Pick any e > 0,6 < 1. Let

1 Ao Se) S, o
N20( 4 [ dmaBi) S0 tog 171 (6)
€ \ min; og, (0;)" min;»; g, (P; ;)* d
Then with probability 1 — §
Z ’@[zl,...,xo]fIP’[:cl,...,xo]‘§e (1)
T1yeeeyLO

In many cases, if the frequency of the observation symbols follow certain distributions, than the dependence on Sp can be removed
as showed in HKZ [3]. That observation can easily be incorporated into our theorem if desired.

4 Concentration Bounds

¢ = |P.—Pjr ®)
&; = |Py—Piylr )
€oij = |Prij— Puijllr (10)
cijk = 1Pk — Pijxllr (11)

(x denotes a fixed element while 7, j, k are over indices).
As the number of samples N gets large, we expect these quantities to be small.

Lemma 1 (variant of HKZ [3] ) If the algorithm independently samples N observation triples from the tree, then with probability
at least 1 — 9.

o< Joml /o (12)

€; < \/%ln@+ % (13)

T (14)

Max€; < \/%ln@—&— % (15)

maxeg;; < Sﬁoln@—&— SWO (16)
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where C' is some constant (from the union bound over O(V?)). (V is the total number of observed variables in the tree). The
proof is the same as that of HKZ [3] except the union bound is larger. The last bound can be made tighter, identical to HKZ,
but for simplicity we do not pursue that approach here.

5 Eigenvalue Bounds

Basically this is Lemma 9 in HKZ [3], which is stated below for completeness:

Lemma 2 Suppose €; j < € X 0, (P; ;) for some e <1/2. Let eg = €;;/((1 — €)os,, (Pi; ))>. Then:

1. g < /1\ R

2. 05, (U Py;) > (1-¢€)os, (P,;)

3. 05, (U Pi;j) > V1 —co0sy, (P, ;)

4. Oy (OTU) >+V1—¢eog,(0)

The proof is in HKZ [3].

6 Bounding the Transformed Quantities

If Lemma 2 holds then (O T U) is invertible. Thus, if we define M; = (OTU) ' M;(OTU). Then clearly, (UTO)~* M, (OTU )=

(We admit this is a slight abuse of notation, since M; is previously defined to be (U T Q)L M;(U T O), but as long as (0T U) is 1nvert—

ible it doesn’t really matter whether it equals (U " O) or not for the purposes of this proof). The other quantities are defined similarly.
We seek to bound the following four quantities:

Sine = OTT) - 1)l (17)
v o= (T =T 1 (0] T1) " x2 (05 TUs) x5 (03 T) |l (18)
Srot = NF = #)7(05,05) lloo (19)
A= 3OO - M)O5Ta) [y (20)

Here x; denotes all observations that are in the subtree of node 4 (since 4 may be hidden or observed). Sometimes we like to
distinguish between when when i is observed and when i is hidden.Thus, we sometimes refer to the quantity A% and Aidden
for when 7 is observed or hidden respectively.

Again note that the numbering in (Ofﬁl) and (O ﬁg) is just there to avoid confusion in the same equation (In reality there
are many U’s and O’s).

Lemma 3 Assume €, ; < 0g,(P;;)/3 for all i # j. Then

2¢,

6TOO S - =
' V305, (0j:r)

4“57’<asﬂ<’ T Vo, (P, >> .

] 4\/5 €m,j €m,j,k
(o) <asH< 7 Vo, (P, >> )

61’

one

IN

IN

hidden
A

IN

J
<1+7’L H1+A]k one+(1+7’b)mH(1+AJk)_m> (24)
k=1

k=1

obs \/7 €i,j Zwl €m,z;,j
N ><<asH< P " Voo, (P, >> )

The main challenge in this part is A, and /4", The rest are similar to HKZ. However, we go through the other bounds
to be more explicit about some of the properties used, since sometimes we have used different norms etc.

6.1 67’oot
We note that 7 = IADEI} and similarly # = P]TIA]

. ~ -1 =~ ~ ~ -1
Oroot = H(T*T’)T(OITU*) loo < 1B = Py [2llUs; 121105, Us) - lo (26)
~ A €
< |BY - BIlaIOF,T;) < —— 2 (27)
J1 4 USH(O;E‘TUjf)



The first inequality follows from the relationship between £, and £ norm and submultiplicativity. The second follows from a matrix

perturbation bound given in Lemma 91. We also use the fact that since U is orthonormal it has spectral norm 1.
Assuming that €;; < g, (P;;)/3 gives droor < \/07(0) by Lemma 2.
S \Mifr

6.2 ¢

one

Oe = (OTO)Xi = L)l < V/SullO|l5||T 2] T = 1|2 (28)

V81l — 1ill2 = /S |1 — Lill (29)

Here we have converted ¢; norm to £o norm, used submultiplicativity, the fact that U is orthonormal so has spectral norm 1, and
that O is a conditional probability matrix and therefore also has spectral norm 1.

~ -~ ~ + ~ ~ ~ +
We note that 1; = P, j(U") P, and similarly 1, = (P, ;U ") P, where i and j are a particular pair of observations described
in the main paper.

T~ 1l = I(BL,0) B~ (PLTT) Py (30)
= (B}, 0) B~ (P}, U) B+ (P ,U) P, — (P} ,0) P (31)
< |(BLO) B~ (PLO) Billa+ |(P),0) B — (P),0) Pl (32)
< @O —(BLO) B + (B, 0) — (BL,0) 2B - P2 (33)
c BB ew 9 (34)
min(os, (Pn,j), 05y (P, ;U)) 05 (P, ;U)

where we have used the triangle inequality in the first inequality and the submultiplicative property of matrix norms in the second.
The last inequality follows by matrix perturbation bounds. Thus using the assumption that €; ; < os,, (P;,j)/3, we get that

Sone < 4/Su (JSH(’) Tion (P, ) (35)

6.3 Tensor

Recall that 7'2 = Tz X1 (O;—ﬁl) X9 (62—'—02)—1 (O;Ug) m,j.k X1 Ul X9 (_PlJUQ) X3 ﬁ?:r Similarly, '7\'2 = Pm7j,k X1

~ ~ + ~
UlT X9 (-Pl,jUZ) X3 UJ

VSu
USH( )

This is because both U and O have spectral norm one and the /Sy factor is the cost of converting from 1 norm to spectral norm.

(75 =T %1 (070 %2 (0] 02) x4 (07T s <

1T = Tllz (36)

~ ~ ~ ~ ~ o~ + ~ ~ ~ + ~
ITi=Tillz = |1Pnjrx1 U x2 (P;Uz) x3Us — Pk x1 U %3 (PUs) x3Uj |2 (37)
= P U Xz(ﬁ,kﬁﬁ x3 Uy — Py x1 0 ><2(PzaU3) ><3 Uy |2 (38)
HPrse x1 OF %2 (PTR) " %307 — P x1 O x2 (Py0)" x5 U4 |1 (39)
= o o~ o+ ~ 4 PN
= Py <1 Ul x2 (PU2) = (PUz) ) x3 Uy || (40)
4
HI(Prjs x1 U x50y = Pyjg x1 U x3Uy) x2 (Pi0%) |2 (41)
1 —|— V5 €15 €Em.i
= 1Pl Y e (42)
min (o5, (Pj), 05, (P;U))? 05, (P;U)
It is clear that Hf’m,j,k”g < ||f’mjk|\p <1.
Using the fact that €;; < g, (P;;)/3 gives us the following bound:
4./
Yo S SH €5 + €i,5.k (43)
0Sy (O) USH< ) fUSH( )
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6.4 Bounding A;

e~ -1 . . o
We now seck to bound A; = Y [|[(0] Uy)(M; — M;)(Uy Oz) ||1. There are two cases: either i is a leaf or it is not.
6.4.1 ¢ is leaf node

In this case our proof simply follows from HKZ [3] and is repeated here for convenience.

IOTT)(M — M)(OJTs) "1 < /SullOr|h|(M; — M) (O Ta) [l (44)
M, — M| .
< VSpr——t2 > O7D) (45)

—~ ~ o~ =1~ ~ ~ ~ =1 ~
Note that Mi = (.PJJUl) Pm’wi)jUQ and Mi = (.PJJUl) Pm’mi)jUQ .

_ - o 1~ N 1 PN
|M; — M;lla = [|[(P;iU1) P, jUs — (PjiUi)  Ppy, iUs|l2 (46)
o1 . PR ~ PR . N —1
= |(PU1) P, jUs — (PjiUy)  Poa, jUs+ (PyiUy)  Paa, Uy —U Py, j(US Piy) |l (47)
o1 PN . PN . .
< (PyaUy) = (PjiUr) )P, Uzl + (PiiUr) (P, iUz — Pra, jUS) |2 (48)
1+ f €5, €m,z;,j
S Pl - + I (49)
min (s, (Py:),05,(PU) 05, (PU
< Pl =« 5 - G o Cmand (50)
2 min (USH (I)j,i)v 0Sy (‘P]’ZU))z 0Sy (‘F,JJU)

where the first inequality follows from the triangle inequality, and the second uses matrix perturbation bounds (and the fact that
spectral norm of U is 1).
The final inequality follows from the fact that spectral norm is less than frobenius norm which is less than 11 norm:

1Pl < D Prwiil; <D [Prijlmy < Plai = 2] (51)

m,j m,j

The first inequality follows from relation between 1 operator norm and 2 operator norm. Because O is a conditional probability
matrix ||O|; =1 (i.e. the max column sum is 1).
Using the fact that ¢; ; < o, (P, ;)/3 gives us the following bound:

Ai,mgﬁl \/g (P[mzzm]( €m,z;,j €m,x;,j )) (52)

75, (0) o5 (P | V3 305, (P

Summing over v would give

. \/@ €5, Ezl €m,z;,j
pisd <<asH< 2 os, (P, )) o



6.4.2 ¢ is not a leaf node

Let mJ;l = .Z/\ZJ.Z/\Zli\l and my.q = MJMl]N_l

~ s ~ -1

Z (03 Uz)(M; — M;)(O3 Us) |1 (54)

= Y O Us)(Ti %1 My My1; — T %3 M,..NL1)(070s) | (55)
= Z OFT) (T %1 Mg — T %1 01)(0FUs) |l (56)
= ZH (’r To) %1t + (Ti = o) 51 (g — i) + Ti %1 (s — ) (05 0s) - (57)

T -1 T Tyt T s

< ZHT T2) %1 (0] 01) " %2 (05 02) x5 (0 Ty) v |[(O Oy | (58)
+ Zn(ol )@ — )| [(Ti = T3) %1 (O] T) ' x2 (TF 02) x5 (0] T3) 1 (59)
+ YT (070 %2 (05 02) x5 (05 03) [l [(OF O) i — singa) | (60)

First term is bounded by:

H(7A' T:) x1 (0] Uy) - o (Uy O2) x3 (037[}3)_1“171 Sa < Suvi (61)

Second term is bounded by:
S IOTT) @ra — )T~ T2) %1 (07T xz (U7 02) x5 (03 Ts) 1. (62)
S/%‘Z (0] Ty) (s — 1i2.0) 14 (63)

Xi

Third Term is bounded by:

17551070 2 (07 02) 3 (030) a3 (07 O) s = 1) |, <3 [0 sa —rivs)|| (69

In the next section, we will see that 1(OTU) s — 14| < (H,‘Cjzl(l )+ ST, L+ A,) - SH).
So the overall bound is

J J
<1+% TTO+ 25080 + 1 +7:)Sa [T 1+ 245) SH>. (65)
k=1 k=1

(where j1, ..., j; are children of node 7).
6.5 Bounding ) ||(OTI7)(7/R\J;1 —my.1)|h

Lemma 4

J J
DO U@ ya — i)y < T[4 25000 + Su [[ 1+ 25,) — Su (66)
Xi k=1 k=1

(where jy, ..., js are children of node ).
The proof is by induction. Base case: [(OTU)(1; — 1;)||1 < &

one’

by definition of §¢ ...

Inductive step: Let us say claim holds up until u — 1. We show it holds for u. Thus

u—1

u—1
> IO TO) -1y — )l < [0+ 25080 + S [ 1+ 2j,) — Su (67)
i k=1 k=1
7



We now decompose the sum over x as

Y IO )@ Wur — i) (68)
Xzl

> ll0TD) ( (M, — M) 1y + (M, — M) (M1 — M—1y1) + -1y —ﬁl(uq):l)) 1

Xu:l

Using the triangle inequality, we get

~ o~ ~ ~ -1 ~
> IO U) (M, — M,)(O] L) [1[[(0] Ur)rivy -1yl (69)
+ ZII(OgTﬁz)(J\A/Iu—Mu)(OlTﬁl) 1O Ty) a1y — Pru—1ya)n (70)
1 o . - )
+ Y IOTU)M,OTT) |L(0TU) w11 — Wu-1a)lh (71)

Again we are just numbering the U’s and O’s for clarity to see which corresponds with which. They are omitted in the actual
theorem statements since we will take minimums etc. at the end.
We now must bound these terms. First term:

Y05 o) (M, — M )05 TU) I Y IO Ui nyali < A0 D @120 O)1 < Sul, (72)

Xy Tl:u—1 X(u—1):1

L~ _ PO
since A, = [|(Og Us)(M,, — M,,)(O{ U;) 1. Second term can be bounded by inductive hypothesis:

u—1 u—1
> II(05 Ta)(M,, — M,)(O] Uy) "uliof U1) (M- — M)l < Ay (H(l + D)o + S [ (14 2,) — 5H> (73)
k=1 k=1

Ku:l

-1
The third term is bounded by observing that (OTU)M,(OTU) ~ = diag(Pr|x,|Parent]). Thus it is diagonal, and Pr(x|Parent]
has max row or column sum as 1. This means that the third term is bounded by the inductive hypothesis as well:

u—1 u—1
~ o~ ~ —1 ~ .
Y IOTO)MLOTT) Wll(OTU) 1)1 = irgu-1y) 1 < <H(1 + D )Gome + S [ (14 2,) — 5H> (74)
Koyl k=1 k=1

7 Bounding the propagation of error in tree
We now wrap up the proof based on the approach of HKZ[3].

Lemma 5
~ J 4
Z ‘]P)[.’Eh . ,IL‘O} — ]P)[Zl,'l,. . ,xo]’ S SH(Sraot + (]- + 57"0015) (H(l + Ajk,)(sgne + SH H (]' + Aﬂk) - SH) (75)
L1,y LO k=1 k=1
Z ‘I@[xl, ce ,QCO} — P[l’l,. .. ,.’EO]’ = Z ?Tﬁjl...ﬁjJi\r - %TMjl...MjJi (76)
L1y XO L1y, LO
< Y |E-#70T0) O ) d.I) (77)
L1yeeyTO
~ -1 ~ o~ o~ - ~
+ > |EF-»T(0'U) (0TU) (M1, — M;ai,) (78)
T1,..O
T AT Y AT . T r
+ Z 7 (0O'U) (O U)(Mleli_MJ:ll)‘ (79)
LYyeeny ro

The first sum is bounded using Holder inequality and noting that the first term is a conditional probability (of all observed
variables conditioned on the root)

S |E-T©70) 070341 (50)
< S NE-HT0T0) O TN M)l < Srbroct (81)

8



The second sum is bounded by another application of Holder’s inequality (and the previous lemma):

PN o~ -
3 ](? —HTOT0) (OTU) Ml — Myii,) (82)
L1y O
~ o~ ~ —1 ~ o~ o~ ~ -
< Z ”(r - T)T(OTU) ”oo”(OTU)(MJ:l]-T - MJ:llr)Hl (83)
L1y XO
J J
< Oroot (H(l + Ajk)agne + Su H (1+ Ajk) - SH) (84)
k=1 k=1
The third sum is also bounded by Holder’s Inequality and previous lemmas and noting that #' (UTO)~! =P[R = r]:
3 (ﬂ(oTﬁ)‘l(oTﬁ)(ﬁML - Mﬂi)‘ (85)
LY yenny o
. 1 A~ L
< Z ”TT(OTU) ||00||(OTU)(MJ:117’ — Mjal)lh (86)
L1,y LO
J J
< <H(1 + 85,)00, + S [T+ 25, - SH> (87)
k=1 k=1
Combining these bounds gives us the desired solution.
8 Putting it all together
We seek for
> [P, w0] ~Pla,. w0l < € (88)
L1y O
Using the fact that for a < .5, (1+a/t)" <1+ 2a, we get that A, <O(e/(SuJ)). However, A\; is defined recursively, and
thus the error accumulates exponential in the longest path of hidden nodes. For example, A% < O(m) where £ is the
longest path of hidden nodes. Tracing this back through will gives the result:
Pick any € > 0,6 < 1. Let
1 drnaeSe) > 'S, %
N>0| . ( QH? o log — (89)
€ \ min; og, (0;)" min;»; og,, (P; ;)* 4
Then with probability 1 —
> [Blen,-...w0] Bl w0 < € (90)
L1yeeeyLO

In many cases, if the frequency of the observation symbols follow certain distributions, than the dependence on Sp can be removed
as showed in HKZ [3].

9 Appendix
9.1 Matrix Perturbation Bounds

This is Theorem 3.8 from pg. 143 in Stewart and Sun, 1990 [6]. Let A € R™ ", with m >n and let A= A+ E. Then

1+5

A% — At < =

max(|| AT 3, | A3 El2 (91)
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