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The supplemental contains 3 main things.

1. The first is network plots of the latent variable tree learned by [1] for the stock market data, and the Chow Liu tree to give
a more intuitive explanation why latent variable trees can lead to better performance.

2. The second is a more detailed representation of the tensor representation where internal nodes are allowed to be evidence variables.
3. The third is the proof of Theorem 1.

1 Latent Tree Structure for Stock Data

The latent tree structure learned by the algorithm by [1] is shown in Figure 1. The blue nodes are hidden nodes and the red nodes
are observed. Note how integrating out some of these hidden nodes could lead to very large cliques. Thus it is not surprising why
both our spectral method and EM perform better than Chow Liu. The Chow Liu Tree is shown in Figure 1. Note how it is forced
to pick some of the observed variables as hubs even if latent variables may be more natural.

Figure 1: Latent variable tree learned by [1]. The hidden variables are in blue while the observed variables are in red. As one
can see the hidden variables can model significantly more complex relationships among the observed variables.

2 More Detailed Information about Tensor Representation for LTMs

The computation of the marginal distribution of the observed variables can be expressed in terms of tensor multiplications. Basically,
the information contained in each tensor will correspond to the information in a conditional probability table (CPT) of the model
and the tensor multiplications implement the summations. However, there are multiple ways of rewriting the marginal distribution
of the observed variables using tensor notation, and not all of them provide intuition or easy derivation to a spectral algorithm.
In this section, we will derive a specific representation of the latent tree models which requires only tensors up to 3rd order and
provides us a basis for deriving a spectral algorithm.

More specifically, we first select a latent or observed variable as the root node and sort the nodes in the tree in topological order.
Then we associate the root node Xr with a vector r related to the marginal probability of Xr. Depending on whether the root
node is latent or observed, its entries are defined as

Xr latent Xr observed

r(k) P[Xr = k] δkxrP[xr]

where δkxr is an indicator variable defined as δkxr = 1 if k = xr and 0 otherwise. Effectively, δkxr sets all entries of r to zero except
the one corresponding to P[xr].

Next, we associate each internal node Xi with a 3rd order tensor T i related the conditional probabilty table between Xi and
its parent Xπi. This tensor is diagonal in its 2nd and 3rd mode, and hence its nonzero entries can be accessed by two indices k and
l. Depending on whether the internal node and its parent are latent or observed variables, the nonzero entries of T i are defined as
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Figure 2: Tree learned by chow liu algorithm over only observed variables. Note how it is forced to pick some of the observed
variables as hubs even if latent variables may be more natural.

T i(k, l, l) Xπi latent Xπi observed

Xi latent P[Xi = k|Xπi = l] δlxπiP[Xi = k|xπi]
Xi observed δkxiP[xi|Xπi = l] δkxiδlxπiP[xi|xπi]

where δkxi and δlxπi are also indicator variables. Effectively, the indicator variables zero out further entries in T i for those values
that are not equal to the actual observation.

Last, we associate each leaf node xi, which is always observed, with a diagonal matrix Mi related to the likelihood of xi.
Depending on whether the parent of xi is latent of observed, the diagonal entries of Mi are defined as

Xπi latent Xπi observed

Mi(k, k) P[xi|Xπi = k] δkxπiP[xi|xπi]

Let Mi defined above be the messages passed from the leaf nodes to their parents. We can show that the marginal probability of the
observed variables can be computed recursively using a message passing algorithm: each node in the tree sends a message to its parent
according to the reverse topological order of the nodes, and the final messages are aggregated in the root to give the desired quantity.

More formally, the outgoing message from an internal node Xi to its parent can be computed as

Mi = T i ×̄1 (Mj1Mj2 . . .MjJ 1i) (1)

where j1, j2, . . . , jJ ∈ χi range over all children of Xi (J = |χi|). The 1i is a vector of all ones with suitable size, and it is used
to reduce the incoming messages (all are diagonal matrices) to a single vector. The computation in (1) essentially implements
the message update we often see in an ordinary message passing algorithm ([5]), i.e.,

mi[xπi] =
∑
xi

P[xi|xπi]mj1[xi] . . .mjJ [xi], (2)

where mj[xi] represents incoming messages to Xi (or intermediate results of the marginalization operation by summing out all
latent variables in subtree Tj). The Mj1Mj2 . . .MjJ 1i corresponds to aggregating all incoming messages mj1[xi] . . .mjJ [xi], and
the T i ×̄1 ∗ corresponds to

∑
xi
P[xi|xπi] ∗.

At the root node, all incoming messages are combined to produce the final joint probability, i.e.,

P[x1, . . . , xO] = r> (Mj1Mj2 . . .MjJ 1r) . (3)

Here r>∗ basically implements the operation
∑
xr

P[xr]∗, which sums out the root variable.
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3 Notation for Proof of Theorem 1

We now proceed to prove Theorem 1. ‖ · ‖2 refers to spectral norm for matrices and tensors (but normal euclidean norm for vectors).
‖ · ‖1 refers to induced 1 norm for matrices and tensors (max column sum), (but normal l1 norm for vectors). ‖ · ‖F refers to
Frobenius norm.

The tensor spectral norm (for 3 dimensions) is defined in [4]:

‖T ‖2 = sup
‖vi‖2≤1

T ×̄3 v3 ×̄2 v2 ×̄1 v1 (4)

We will define the induced 1-norm of a tensor as

‖T ‖1,1 = sup
‖v‖1≤1

‖T ×̄1 v‖1 (5)

using the `1 norm of a matrix (i.e., ‖A‖1 = sup‖v‖1≤1 ‖Av‖1).
For more information about matrix norms see [2].
In general, we suppress the actual subscripts/superscripts on U and O. It is implied that U and O can often be different depending

on the transform being considered. However, this makes the notation very messy. It will generally be clear from context which
U and O are being referred to. When it is not we will arbitrarily index them 1,2, ..., so that it is clear which corresponds to which.

In general, for simplicity of exposition, we assume that all internal nodes in the tree are unobserved, and all leaves are observed
(since this is the hardest case).

The proof generally follows the technique of HKZ [3], but has key differences due to the tree topology instead of the HMM.

We define M̃i = (O>Û)−1Mi(O
>Û). Then as long as (O>Û) is invertible, (O>Û)−1M̃i(O

>Û) = Mi. (We admit this is a

slight abuse of notation, since M̃i was previously defined to be (U>O)−1Mi(U
>O), but as long as (O>Û) is invertible it doesn’t

really matter whether it equals (U>O) or not for the purposes of this proof). The other quantities are defined similarly.
We seek to prove the following theorem:

Theorem 1 Pick any ε > 0, δ < 1. Let

N ≥ O

(
1

ε2

(
(dmaxSH)

2`+1
SO

mini σSH(Oi)
2

mini6=j σSH(Pi,j)4

))
log
|O|
δ

(6)

Then with probability 1− δ ∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ ≤ ε (7)

In many cases, if the frequency of the observation symbols follow certain distributions, than the dependence on SO can be removed
as showed in HKZ [3]. That observation can easily be incorporated into our theorem if desired.

4 Concentration Bounds

εi = ‖P̂i −Pi‖F (8)

εi,j = ‖P̂i,j −Pi,j‖F (9)

εx,i,j = ‖P̂x,i,j −Px,i,j‖F (10)

εi,j,k = ‖P̂i,j,k −Pi,j,k‖F (11)

(x denotes a fixed element while i, j, k are over indices).
As the number of samples N gets large, we expect these quantities to be small.

Lemma 1 (variant of HKZ [3] ) If the algorithm independently samples N observation triples from the tree, then with probability
at least 1− δ.

εi ≤
√
C

N
ln
|O|
δ

+

√
1

N
(12)

εi,j ≤
√
C

N
ln
|O|
δ

+

√
1

N
(13)

εi,j,k ≤
√
C

N
ln
|O|
δ

+

√
1

N
(14)

max
x
εi,x,j ≤

√
C

N
ln
|O|
δ

+

√
1

N
(15)

max
x
εx,i,j ≤

√
SO
N

ln
|O|
δ

+

√
SO
N

(16)
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where C is some constant (from the union bound over O(V 3)). (V is the total number of observed variables in the tree). The
proof is the same as that of HKZ [3] except the union bound is larger. The last bound can be made tighter, identical to HKZ,
but for simplicity we do not pursue that approach here.

5 Eigenvalue Bounds

Basically this is Lemma 9 in HKZ [3], which is stated below for completeness:

Lemma 2 Suppose εi,j ≤ ε× σSH(Pi,j) for some ε < 1/2. Let ε0 = ε2i,j/((1− ε)σSH(Pi,j))
2
. Then:

1. ε0 < 1
2. σSH(Û>P̂i,j) ≥ (1− ε)σSH(Pi,j)

3. σSH(Û>Pi,j) ≥
√

1− ε0σSH(Pi,j)

4. σSH(O>Û) ≥
√

1− εσSH(O)

The proof is in HKZ [3].

6 Bounding the Transformed Quantities

If Lemma 2 holds then (O>Û) is invertible. Thus, if we define M̃i = (O>Û)−1Mi(O
>Û). Then clearly, (Û>O)−1M̃i(O

>Û) = Mi.

(We admit this is a slight abuse of notation, since M̃i is previously defined to be (U>O)−1Mi(U
>O), but as long as (O>Û) is invert-

ible it doesn’t really matter whether it equals (U>O) or not for the purposes of this proof). The other quantities are defined similarly.
We seek to bound the following four quantities:

δione = ‖(O>Û)(1̂i − 1̃i)‖1 (17)

γi = ‖(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (O>2 Û2)×3 (O>3 Û3)

−1
‖2 (18)

δroot = ‖(r̂− r̃)
T

(O>j∗1rÛj
∗
1
)
−1
‖∞ (19)

4i =
∑
xi

‖(O>1 Û1)(M̂i − M̃i)(O
>
2 Û2)

−1
‖1 (20)

Here xi denotes all observations that are in the subtree of node i (since i may be hidden or observed). Sometimes we like to
distinguish between when when i is observed and when i is hidden.Thus, we sometimes refer to the quantity 4obsi and 4hiddeni
for when i is observed or hidden respectively.

Again note that the numbering in (O>1 Û1) and (O>2 Û2) is just there to avoid confusion in the same equation (In reality there
are many U ’s and O’s).

Lemma 3 Assume εi,j ≤ σSH(Pi,j)/3 for all i 6= j. Then

δroot ≤
2εr√

3σSH(Oj∗1r
)

(21)

δione ≤ 4
√
SH

(
εi,j

σSH(Pi,j)2
+

εi√
3σSH(Pi,j)

)
(22)

γi ≤
4
√
SH

σSH(O)

(
εm,j

σSH(Pi,j)2
+

εm,j,k√
3σSH(Pi,j)

)
(23)

4hiddeni ≤

(
(1 + γi)

J∏
k=1

(1 +4jk)δione + (1 + γi)m

J∏
k=1

(1 +4jk)−m

)
(24)

4obsi ≤ ≤ 4

√
SH

σSH(O)

(
εi,j

(σSH(Pj,i))2
+

∑
xi
εm,xi,j√

3σSH(Pi,j)

)
(25)

The main challenge in this part is 4v and γhiddenv . The rest are similar to HKZ. However, we go through the other bounds
to be more explicit about some of the properties used, since sometimes we have used different norms etc.

6.1 δroot

We note that r̂ = P̂>j∗1 Û and similarly r̃ = P>j∗1 Û .

δroot = ‖(r̂− r̃)
>

(O>j∗1rÛj
∗
1
)
−1
‖∞ ≤ ‖P̂>j∗1 −P>j∗1 ‖2‖Ûj∗1‖2‖(O

>
j∗1r

Ûj∗1 )
−1
‖2 (26)

≤ ‖P̂>j∗1 −P>j∗1 ‖2‖(O
>
j∗1r

Ûj∗1 )
−1
‖2 ≤

εr

σSH(O>j∗1r
Ûj∗1 )

(27)
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The first inequality follows from the relationship between `∞ and `2 norm and submultiplicativity. The second follows from a matrix

perturbation bound given in Lemma 91. We also use the fact that since Û is orthonormal it has spectral norm 1.
Assuming that εi,j ≤ σSH(Pi,j)/3 gives δroot ≤ 2εr√

3σSH (Oj∗1r
)

by Lemma 2.

6.2 δione

δione = ‖(O>Û)(1̂i − 1̃i)‖1 ≤
√
SH‖O‖2‖Û‖2‖1̂i − 1̃‖2 (28)

=
√
SH‖1̂i − 1̃i‖2 =

√
SH‖1̂i − 1̃i‖2 (29)

Here we have converted `1 norm to `2 norm, used submultiplicativity, the fact that Û is orthonormal so has spectral norm 1, and
that O is a conditional probability matrix and therefore also has spectral norm 1.

We note that 1̂i = P̂i,j(Û
>)

+
P̂i and similarly 1̃i = (Pi,jÛ

>)
+
Pi, where i and j are a particular pair of observations described

in the main paper.

‖1̂i − 1̃i‖2 = ‖(P̂T
m,jÛ)

+
P̂j − (PT

m,jÛ
>)

+
Pj‖2 (30)

= ‖(P̂>m,jÛ)
+
P̂j − (P>m,jÛ)

+
P̂j + (P>m,jÛ)

+
P̂j − (P>m,jÛ)

+
Pj‖2 (31)

≤ ‖(P̂>m,jÛ)
+
P̂j − (P>m,jÛ)

+
P̂j‖2 + ‖(P̂>m,jÛ)

+
P̂j − (P>m,jÛ)

+
Pj‖2 (32)

≤ ‖(P̂>m,jÛ)
+
− (P>m,jÛ)

+
‖2‖P̂j‖1 + ‖(P̂>m,jÛ)

+
− (P>m,jÛ)

+
‖2‖P̂j −Pj‖2 (33)

≤ 1 +
√

5

2
× εm,j

min(σSH(P̂m,j), σSH(P>m,jÛ))
2 +

εj

σSH(P>m,jÛ)
(34)

where we have used the triangle inequality in the first inequality and the submultiplicative property of matrix norms in the second.
The last inequality follows by matrix perturbation bounds. Thus using the assumption that εi,j ≤ σSH(Pi, j)/3, we get that

δone ≤ 4
√
SH

(
εi,j

σSH(Pi,j)2
+

εi√
3σSH(Pi,j)

)
(35)

6.3 Tensor

Recall that T̃ i = T i ×1 (O>1 Û1)×2 (Û>2 O2)
−1
×3 (O>3 Û3) = Pm,j,k ×1 Û

>
1 ×2 (Pl,jÛ2)

+
×3 Û

>
3 . Similarly, T̂ i = Pm,j,k ×1

Û>1 ×2 (Pl,jÛ2)
+
×3 Û

>
3 .

‖(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (O>2 Û2)×3 (O>3 Û3)

−1
‖1,1 ≤

√
SH

σSH(O)
‖T̂ i − T̃ i‖2 (36)

This is because both Û and O have spectral norm one and the
√
SH factor is the cost of converting from 1 norm to spectral norm.

‖T̂ i − T̃ i‖2 = ‖P̂m,j,k ×1 Û
>
1 ×2 (P̂l,jÛ2)

+
×3 Û

>
3 −Pm,j,k ×1 Û

>
1 ×2 (Pl,jÛ2)

+
×3 Û

>
3 ‖2 (37)

= ‖P̂m,j,k ×1 Û
>
1 ×2 (P̂i,kÛ2)

+
×3 Û

>
3 − P̂m,j,k ×1 Û

>
1 ×2 (Pl,jÛ3)

+
×3 Û

>
3 ‖2 (38)

+‖P̂m,j,k ×1 Û
>
1 ×2 (Pl,jÛ2)

+
×3 Û

>
3 −Pm,j,k ×1 Û

>
1 ×2 (Pl,jÛ2)

+
×3 Û

>
3 ‖2 (39)

= ‖P̂m,j,k ×1 Û
>
1 ×2 ((P̂l,jÛ2)

+
− (Pl,jÛ2)

+
)×3 Û

>
3 ‖2 (40)

+‖(P̂i,j,k ×1 Û
>
1 ×3 Û

>
3 −Pi,j,k ×1 Û

>
1 ×3 Û

>
3 )×2 (Pl,jÛ2)

+
‖2 (41)

= ‖P̂m,j,k‖2
1 +
√

5

2

εl,j

min (σSH(P̂l,j), σSH(Pl,jÛ))2
+

εm,j,k

σSH(Pl,jÛ)
(42)

It is clear that ‖P̂m,j,k‖2 ≤ ‖P̂m,j,k‖F ≤ 1.
Using the fact that εi,j ≤ σSH(Pi,j)/3 gives us the following bound:

γv ≤
4
√
SH

σSH(O)

(
εi,j

σSH(Pi,j)
+

εi,j,k√
3σSH(Pi,j)

)
(43)
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6.4 Bounding 4i

We now seek to bound 4i =
∑

xi
‖(O>1 Û1)(M̂i − M̃i)(Û

>
2 O2)

−1
‖1. There are two cases: either i is a leaf or it is not.

6.4.1 i is leaf node

In this case our proof simply follows from HKZ [3] and is repeated here for convenience.

‖(O>1 Û1)(M̂ − M̃)(O>2 Û2)
−1
‖1 ≤

√
SH‖O1‖1‖(M̂i − M̃i)(O

>
2 Û2)

−1
‖2 (44)

≤
√
SH
‖M̂i − M̃i‖2
σSH(O>Û)

(45)

Note that M̂i = (P̂j,iÛ1)
−1

P̂m,xi,jÛ2 and M̃i = (Pj,iÛ1)
−1

Pm,xi,jÛ2 .

‖M̂i − M̃i‖2 = ‖(P̂j,iÛ1)
−1

P̂m,xi,jÛ2 − (Pj,iÛ1)
−1

Pm,xi,jÛ2‖2 (46)

= ‖(P̂j,iÛ1)
−1

P̂m,xi,jÛ2 − (Pj,iÛ1)
−1

P̂m,xi,jÛ2 + (Pj,iÛ1)
−1

P̂m,xi,jÛ2 − Û>1 Px,i,j(Û
>
2 Pi,j)

−1
‖2 (47)

≤ ‖((P̂j,iÛ1)
−1
− (Pj,iÛ1)

−1
)P̂m,xi,jÛ2‖2 + ‖(Pj,iÛ1)

−1
(P̂m,xi,jÛ2 −Pm,xi,jÛ2)‖2 (48)

≤ ‖P̂m,xi,j‖2
1 +
√

5

2

εj,i

min (σSH(P̂j,i), σSH(Pj,iÛ)
+

εm,xi,j

σSH(Pj,iÛ
(49)

≤ P[xi = x]
1 +
√

5

2

εj,i

min (σSH(P̂j,i), σSH(Pj,iÛ))2
+

εm,xi,j

σSH(Pj,iÛ)
(50)

where the first inequality follows from the triangle inequality, and the second uses matrix perturbation bounds (and the fact that

spectral norm of Û is 1).
The final inequality follows from the fact that spectral norm is less than frobenius norm which is less than l1 norm:

‖P̂m,xi,j‖ ≤
√∑

m,j

[P̂m,xi,j]
2
m,j ≤

∑
m,j

[Pm,xi,j]m,j ≤ P[xi = x] (51)

The first inequality follows from relation between 1 operator norm and 2 operator norm. Because O is a conditional probability
matrix ‖O‖1 = 1 (i.e. the max column sum is 1).

Using the fact that εi,j ≤ σSH(Pi,j)/3 gives us the following bound:

4i,x ≤ 4

√
SH

σSH(O)

(
P[xi = x]

εm,xi,j
(σSH(Pj,i))2

+
εm,xi,j√

3σSH(Pj,i)

)
(52)

Summing over v would give

4i ≤ 4

√
SH

σSH(O)

(
εj,i

(σSH(Pj,i))2
+

∑
xi
εm,xi,j√

3σSH(Pj,i)

)
(53)
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6.4.2 i is not a leaf node

Let m̂J:1 = M̂J ...M̂11̂i and m̃J:1 = M̃J ...M̃11̃i∑
xi

‖(O>2 Û2)(M̂i − M̃i)(O
>
3 Û3)

−1
‖1 (54)

=
∑
xi

‖(O>2 Û2)(T̂ i ×1 M̂u...M̂11̂i − T̃ i ×1 M̃u...M̃11̃i)(O
>
3 Û3)

−1
‖1 (55)

=
∑
xi

‖(O>2 Û2)(T̂ i ×̄1 m̂J:1 − T̃ i ×̄1 m̃J:1)(O
>
3 Û3)

−1
‖1 (56)

=
∑
xi

‖(O>Û)
(

(T̂ i − T̃ i) ×̄1 m̃J:1 + (T̂ i − T̃ i) ×̄1 (m̂J:1 − m̃J:1) + T̃ i ×̄1 (m̂J:1 − m̃J:1)
)

(O>3 Û3)
−1
‖1 (57)

≤
∑
xi

‖(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1
‖1,1

∥∥∥(O>1 Û1)m̃J:1

∥∥∥
1

(58)

+
∑
xi

‖(O>1 Û1)(m̂J:1 − m̃J:1)‖1‖(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1
‖1,1 (59)

+
∑
xi

‖T̃ i ×1 (O>Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1
‖1,1

∥∥∥(O>1 Û1)(m̂J:1 − m̃J:1)
∥∥∥
1

(60)

First term is bounded by: ∥∥∥(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1∥∥∥
1,1
SH ≤ SHγi (61)

Second term is bounded by:∑
xi

‖(O>1 Û1)(m̂J:1 − m̃J:1)‖1‖(T̂ i − T̃ i)×1 (O>1 Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1
‖1,1 (62)

≤ γi
∑
xi

‖(O>1 Û1)(m̂J:1 − m̃J:1)‖1 (63)

Third Term is bounded by:

‖T̃ i ×1 (O>1 Û1)
−1
×2 (Û>2 O2)×3 (O>3 Û3)

−1
‖1,1

∑
xi

∥∥∥(O>1 Û1)(m̂J:1 − m̃J:1)
∥∥∥
1
≤
∑
xi

∥∥∥(O>1 Û1)(m̂J:1 − m̃J:1)
∥∥∥
1

(64)

In the next section, we will see that
∑

xi
‖(O>Û)(m̂J:1 − m̃J:1)‖1 ≤

(∏J
k=1(1 + ∆jk)δione + SH

∏J
k=1 (1 +4jk)− SH

)
.

So the overall bound is

4i ≤

(
(1 + γi)

J∏
k=1

(1 + ∆jk)δione + (1 + γi)SH

J∏
k=1

(1 + ∆jk)− SH

)
. (65)

(where j1, ..., jJ are children of node i).

6.5 Bounding
∑

xi
‖(O>Û)(m̂J:1 − m̃J:1)‖1

Lemma 4

∑
xi

‖(O>Û)(m̂J:1 − m̃J:1)‖1 ≤
J∏
k=1

(1 +4jk)δione + SH

J∏
k=1

(1 +4jk)− SH (66)

(where j1, ..., jJ are children of node i).

The proof is by induction. Base case: ‖(O>Û)(1̂i − 1̃i)‖1 ≤ δione, by definition of δione.

Inductive step: Let us say claim holds up until u− 1. We show it holds for u. Thus

∑
xi

‖(O>Û)(m̂(u−1):1 − m̃(u−1):1)‖1 ≤
u−1∏
k=1

(1 +4jk)δione + SH

u−1∏
k=1

(1 +4jk)− SH (67)
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We now decompose the sum over x as∑
xu:1

‖(O>Û)(m̂u:1 − m̃u:1)‖1 (68)

=
∑
xu:1

‖(O>Û)
(

(M̂u − M̃u)m̃(u−1):1 + (M̂u − M̃u)(m̂(u−1):1 − m̃(u−1):1) + (m̂(u−1):1 − m̃(u−1):1)
)
‖1

Using the triangle inequality, we get∑
xu:1

‖(O>2 Û2)(M̂u − M̃u)(O>1 Û1)
−1
‖1‖(O>1 Û1)m̃(u−1):1‖1 (69)

+
∑
xu:1

‖(O>2 Û2)(M̂u − M̃u)(O>1 Û1)
−1
‖1‖(O>1 Û1)(m̂(u−1):1 − m̃(u−1):1)‖1 (70)

+
∑
xu:1

‖(O>Û)M̃u(O>Û)
−1
‖1‖(O>Û)(m̂(u−1):1 − m̃(u−1):1)‖1 (71)

Again we are just numbering the U ’s and O’s for clarity to see which corresponds with which. They are omitted in the actual
theorem statements since we will take minimums etc. at the end.

We now must bound these terms. First term:∑
xu

‖(O>2 Û2)(M̂u − M̃u)(O>2 Û2)
−1
‖1
∑
x1:u−1

‖(O>1 Û1)m̃(u−1):1‖1 ≤ 4u
∑

x(u−1):1

‖m̃(u−1):1(O
>Û)‖1 ≤ SH4u (72)

since 4u = ‖(O>2 Û2)(M̂u − M̃u)(O>1 Û1)
−1
‖1. Second term can be bounded by inductive hypothesis:

∑
xu:1

‖(O>2 Û2)(M̂u − M̃u)(O>1 Û1)
−1
‖1‖(O>1 Û1)(m̂(u−1):1 − m̃(u−1):1)‖1 ≤ 4u

(
u−1∏
k=1

(1 +4jk)δione + SH

u−1∏
k=1

(1 +4jk)− SH

)
(73)

The third term is bounded by observing that (O>Û)M̃u(O>Û)
−1

= diag(Pr[xu|Parent]). Thus it is diagonal, and Pr[x|Parent]
has max row or column sum as 1. This means that the third term is bounded by the inductive hypothesis as well:∑

xu:1

‖(O>Û)M̃u(O>Û)
−1
‖1‖(O>Û)(m̂(u−1):1 − m̃(u−1):1)‖1 ≤

(
u−1∏
k=1

(1 +4jk)δione + SH

u−1∏
k=1

(1 +4jk)− SH

)
(74)

7 Bounding the propagation of error in tree

We now wrap up the proof based on the approach of HKZ[3].

Lemma 5∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ ≤ SHδroot + (1 + δroot)

(
J∏
k=1

(1 +4jk)δrone + SH

J∏
k=1

(1 +4jk)− SH

)
(75)

∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ =

∑
x1,...,xO

∣∣∣r̂>M̂j1...M̂jJ 1̂r − r̃>M̃j1...M̃jJ 1̃r

∣∣∣ (76)

≤
∑

x1,...,xO

∣∣∣(r̂− r̃)
>

(O>Û)
−1

(O>Û)(M̃J:11̃)
∣∣∣ (77)

+
∑

x1,...,xO

∣∣∣(r̂− r̃)
>

(O>Û)
−1

(O>Û)(M̂J:11̂r − M̃J:11̃r)
∣∣∣ (78)

+
∑

x1,...,xO

∣∣∣r̃>(O>Û)
−1

(O>Û)(M̂J:11̂i − M̃J:11̃)
∣∣∣ (79)

The first sum is bounded using Holder inequality and noting that the first term is a conditional probability (of all observed
variables conditioned on the root) ∑

x1,...,xO

∣∣∣(r̂− r̃)
>

(O>Û)
−1

(O>Û)(M̃J:11̃)
∣∣∣ (80)

≤
∑

x1,...,xO

‖(r̂− r̃)
>

(O>Û)
−1
‖∞‖(O>Û)(M̃J:11̃)‖1 ≤ SHδroot (81)
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The second sum is bounded by another application of Holder’s inequality (and the previous lemma):∑
x1,...,xO

∣∣∣(r̂− r̃)
>

(O>Û)
−1

(O>Û)(M̂J:11̂r − M̃J:11̃r)
∣∣∣ (82)

≤
∑

x1,...,xO

‖(r̂− r̃)
>

(O>Û)
−1
‖∞‖(O>Û)(M̂J:11̂r − M̃J:11̃r)‖1 (83)

≤ δroot

(
J∏
k=1

(1 +4jk)δrone + SH

J∏
k=1

(1 +4jk)− SH

)
(84)

The third sum is also bounded by Holder’s Inequality and previous lemmas and noting that r̃>(U>O)−1 = P[R = r]:∑
x1,...,xO

∣∣∣r̃>(O>Û)
−1

(O>Û)(M̂J:11̂i − M̃J:11̃)
∣∣∣ (85)

≤
∑

x1,...,xO

‖r̃>(O>Û)
−1
‖∞‖(O>Û)(M̂J:11̂r − M̃J:11̃r)‖1 (86)

≤

(
J∏
k=1

(1 +4jk)δrone + SH

J∏
k=1

(1 +4jk)− SH

)
(87)

Combining these bounds gives us the desired solution.

8 Putting it all together

We seek for ∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ ≤ ε (88)

Using the fact that for a < .5, (1 + a/t)
> ≤ 1 + 2a, we get that 4jk ≤ O(ε/(SHJ)). However, 4j is defined recursively, and

thus the error accumulates exponential in the longest path of hidden nodes. For example, 4obsi ≤ O( ε
(dmaxSH)`

) where ` is the

longest path of hidden nodes. Tracing this back through will gives the result:
Pick any ε > 0, δ < 1. Let

N ≥ O

(
1

ε2

(
(dmaxSH)

2`+1
SO

mini σSH(Oi)
2

mini6=j σSH(Pi,j)4

))
log

O

δ
(89)

Then with probability 1− δ ∑
x1,...,xO

∣∣∣P̂[x1, . . . , xO]− P[x1, . . . , xO]
∣∣∣ ≤ ε (90)

In many cases, if the frequency of the observation symbols follow certain distributions, than the dependence on SO can be removed
as showed in HKZ [3].

9 Appendix

9.1 Matrix Perturbation Bounds

This is Theorem 3.8 from pg. 143 in Stewart and Sun, 1990 [6]. Let A ∈Rm×n, with m ≥ n and let Ã = A+E. Then

‖Ã+ −A+‖2 ≤
1 +
√

5

2
max(‖A+‖22,‖Ã‖22)‖E‖2 (91)
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