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Preliminaries: Systems of ODEs

An autonomous n-dimensional system of ODEs has the general form:

x′1 = f1(x1, . . . , xn),
...

x′n = fn(x1, . . . , xn),

where x′i denotes the time derivative dxi
dt

and fi are continuous functions.

We write x′ = f(x). The vector field f : Rn → Rn gives the direction of
motion at each point in space.

A solution x(x0, t) : Rn × R→ Rn exactly describes the motion of a particle
x0 under the influence of the vector field.
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Example: Van der Pol oscillator

The Van der Pol system oscillator evolves according to the following ODEs:

x′1 = x2,

x′2 = (1− x2
1)x2 − x1

x0

x(x0, t)
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Barrier certificates

Lyapunov-like safety verification method, due to Prajna & Jadbabaie (2004).

MAIN IDEA: Find a differentiable function B : Rn → R such that

B(x) > 0 holds for every x ∈ Unsafe,

For all x0 ∈ Init, B(x(x0, t)) ≤ 0 holds for all future t.

x1

x
2 Init

Unsafe

B ≤ 0

B > 0

B > 0
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Barrier certificates (more formally)

Lemma (Safety with semantic barrier certificates)

Given :

a system of n first-order ODEs x′ = f(x),

possibly an evolution constraint Q ⊆ Rn,

a set of initial states Init ⊆ Rn,

and a set of unsafe states Unsafe ⊆ Rn,

if a differentiable (barrier) function B : Rn → R satisfies the following
conditions, then the system is safe:

1 ∀x ∈ Unsafe. B(x) > 0,

2 ∀x0 ∈ Init. ∀ t ≥ 0.
(

(∀ τ ∈ [0, t]. x(x0, τ) ∈ Q)⇒ B(x(x0, t)) ≤ 0
)

.
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Kinds of barrier certificates

Recall the (semantic) conditions:

1 ∀x ∈ Unsafe. B(x) > 0,

2 ∀x0 ∈ Init. ∀ t ≥ 0.
(

(∀ τ ∈ [0, t]. x(x0, τ) ∈ Q)⇒ B(x(x0, t)) ≤ 0
)

.

Several direct sufficient conditions have been proposed to ensure the last
requirement. Observe that the solutions x(x0, t) are not explicit.

Convex
(Prajna & Jadbabaie, 2004)

Q→ B′ ≤ 0.

Exponential-type
(Kong et al., 2013)

Q→ B′ ≤ λB.

‘General’
(Dai et al., 2017)

Q→ B′ ≤ ω(B),
∀t ≥ 0. b(t) ≤ 0,
b is the solution to b′ = ω(b).

All these conditions are instantiations of the comparison principle.
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Comparison principle

Used by R. Conti (1956), F. Brauer, C. Corduneanu (1960s), many others.
Not a new idea in applied mathematics; used in stability theory.

MAIN IDEA: Given x′ = f(x), if a positive definite differentiable function
V : Rn → R satisfies the differential inequality

V ′ ≤ ω(V ),

where ω : R→ R is an appropriate scalar function, one may infer the
stability of x′ = f(x) from the stability of the one-dimensional system

v′ = ω(v).

One obtains an abstraction of the system by another one-dimensional system.
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Comparison theorem (scalar majorization)

The comparison principle hinges on an appropriate comparison theorem.

Theorem (Scalar comparison theorem)

Let V (t) and v(t) be real valued functions differentiable on [0, T ]. If

V ′ ≤ ω(V ) and v′ = ω(v)

holds on [0, T ] for some locally Lipschitz continuous function ω and if
V (0) = v(0), then for all t ∈ [0, T ] one has

V (t) ≤ v(t).

Informally, Solutions to the ODE v′ = ω(v) act as upper bounds (i.e. majorize)

solutions to V ′ ≤ ω(V ) .
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Comparison principle

1. Introduce a fresh variable v (really a function of time v(t)),

2. Replace the scalar differential inequality V ′ ≤ ω(V ) by an equality.

V ′ ≤ ω(V ) −−−−−−−−−−−→ v′ = ω(v)

Obtain one-dimensional abstraction; 1-d systems are easy to study.

v

ω(v)
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Convex barrier certificates (Prajna & Jadbabaie, 2004)

B

ω(B)

0

b0

Differential inequality B′ ≤ 0

Comparison system b′ = 0
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Exponential-type barrier certificates (Kong et al., 2013)

B

ω(B) λB

b0

Differential inequality B′ ≤ λB

Comparison system b′ = λb
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General barrier certificates (Dai, et al., 2017)

B

ω(B)

r1 r2

ω(B)

br1 r2

Differential inequality B′ ≤ ω(B)

Comparison system b′ = ω(b)
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Scalar barrier certificates as comparison systems

B

ω(B)

0

b0

(a) Constant (zero)
Convex

B

ω(B) λB

b0

(b) Linear
Exponential

B

ω(B)

r1 r2

ω(B)

br1 r2

(c) Non-linear
General

Can we leverage the comparison principle to go beyond the scalar case?
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Vector comparison systems

R.E. Bellman introduced vector Lyapunov functions in 1962.

MAIN IDEA: Given x′ = f(x), if a positive definite differentiable function
V : Rn → Rm satisfies the differential inequality

V ′ ≤ ω(V ),

where ω : Rm → Rm is an appropriate vector function, one may infer the
stability of x′ = f(x) from the stability of the m-dimensional system

v′ = ω(v).

One obtains an abstraction of the system by another m-dimensional system.

!!! CAVEAT: The vector function ω needs to be quasi-monotone increasing.
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Quasi-monotone increasing functions

Definition

A function ω : Rm → Rm is said to be quasi-monotone increasing if

ωi(x) ≤ ωi(y)

for all i = 1, . . . , m and all x, y such that xi = yi, and xk ≤ yk for all
k 6= i.

Every scalar function is (trivially) quasi-monotone increasing.

A linear function ω(x) = Ax is quasi-monotone increasing if and only if A is
essentially non-negative, i.e. all off-diagonal entries of A are non-negative.

Matrices with this property are also known as Metzler matrices.
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Vector comparison principle

1. Introduce a fresh vector of variables v (vector function of time v(t)),

2. Replace the vector differential inequality V ′ ≤ ω(V ) by an equality.

V ′ ≤ ω(V ) −−−−−−−−−−−→ v′ = ω(v)

Obtain an m-dimensional abstraction. More general than the scalar principle.

v

v
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Vector comparison principle

Theorem (Linear vector comparison theorem)

For a given system of ODEs x′ = f(x) and a Metzler matrix, A ∈ Rm×m,
if V = (V1, V2, . . . , Vm) satisfies the system of differential inequalities

V ′ ≤ AV ,

then for all t ≥ 0 the inequality V (t) ≤ v(t) holds component-wise, where
v(t) is the solution to the comparison system v′ = Av, and v(0) = V (0).

Metzler matrices have another important property:

Lemma

If A ∈ Rm×m is a Metzler matrix, then for any v0 ≤ 0, the solution v(t) to
the linear system v′ = Av is such that v(t) ≤ 0 for all t ≥ 0.
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Vector barrier certificates

Theorem

Given an m-vector of functions B = (B1, B2, . . . , Bm) and some
essentially non-negative m×m matrix A, if the following conditions hold,
then the system is safe:

VBC∧1. ∀x ∈ Rn. (Init→
∧m

i=1 Bi ≤ 0),

VBC∧2. ∀x ∈ Rn. (Unsafe→
∨m

i=1 Bi > 0),

VBC∧3. ∀x ∈ Rn. (Q→ B′ ≤ AB).

Generation?
Unfortunately VBC∧2 leads to non-convexity.

Convexity enables the use of efficient semidefinite solvers.



19/26

Vector barrier certificates

Theorem

Given an m-vector of functions B = (B1, B2, . . . , Bm) and some
essentially non-negative m×m matrix A, if the following conditions hold,
then the system is safe:

VBC∧1. ∀x ∈ Rn. (Init→
∧m

i=1 Bi ≤ 0),

VBC∧2. ∀x ∈ Rn. (Unsafe→
∨m

i=1 Bi > 0),

VBC∧3. ∀x ∈ Rn. (Q→ B′ ≤ AB).

Generation?

Unfortunately VBC∧2 leads to non-convexity.

Convexity enables the use of efficient semidefinite solvers.



19/26

Vector barrier certificates

Theorem

Given an m-vector of functions B = (B1, B2, . . . , Bm) and some
essentially non-negative m×m matrix A, if the following conditions hold,
then the system is safe:

VBC∧1. ∀x ∈ Rn. (Init→
∧m

i=1 Bi ≤ 0),

VBC∧2. ∀x ∈ Rn. (Unsafe→
∨m

i=1 Bi > 0),

VBC∧3. ∀x ∈ Rn. (Q→ B′ ≤ AB).

Generation?
Unfortunately VBC∧2 leads to non-convexity.

Convexity enables the use of efficient semidefinite solvers.



20/26

Vector barrier certificate (convex)

Theorem

Given an m-vector of functions B = (B1, B2, . . . , Bm) and some
essentially non-negative m×m matrix A, if for some i∗ ∈ {1, . . . , m} the
following conditions hold, then the system is safe:

VBC 1. ∀x ∈ Rn. (Init→
∧m

i=1 Bi ≤ 0),

VBC 2. ∀x ∈ Rn. (Unsafe→ Bi∗ > 0),

VBC 3. ∀x ∈ Rn. (Q→ B′ ≤ AB).

The above conditions define a convex set.
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Generating vector barrier certificates using SDP

Solve a sum-of-squares optimization problem for size m vector barrier
certificates B1, B2, . . . , Bm, with i∗ ∈ {1, . . . ,m}:

−Bi − Σa
j=1σIi,j Ij ≥ 0 for all i = 1, 2, . . . ,m (VBC 1)

Bi∗ − Σb
j=1σUjUj − ε ≥ 0 (VBC 2)

Σm
j=1AijBj −B′i − Σc

j=1σQi,jQj ≥ 0 for all i = 1, 2, . . . ,m (VBC 3)

Possible using e.g. SOSTOOLS toolbox in Matlab, together with a
semidefinite solve (e.g. SeDuMi).
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Vector barrier certificates (deductive power)

Theorem

Polynomial convex or ‘exponential-type’ barrier certificates (trivially)
satisfy the conditions VBC∧1-3 (or VBC 1-3). The converse is false.

There are vector barrier certificates for some safety properties where scalar
barrier certificates do not exist.

Vector barrier certificates can also exist with lower polynomial degrees than is
possible with scalar barrier certificates!
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Vector barrier certificates can also exist with lower polynomial degrees than is
possible with scalar barrier certificates!
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Vector barrier certificates (example)

x′1 = x2,

x′2 = x1,

Vector barrier certificate (B1, B2) = (x1, x2) satisfies
(

B′1
B′2

)
≤
(

0 1
1 0

)(
B1
B2

)
and has polynomial degree 1. No scalar barrier certificate of degree 1 exists.
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Summary

The comparison principle is a powerful and fundamental abstraction
mechanism for ODEs.

Existing (scalar) notions of barrier certificates follow easily from this
principle.

A generalization of existing notions of barrier certificates is achieved,
following Bellman’s use of the vector comparison principle.

Also possible to use time-dependent Metzler matrices, i.e. A(t). Work
on this ongoing.
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Limitations

Choosing an appropriate Metzler matrix A for the comparison system is
generally non-trivial.

Numerical inaccuracies in the results (to be expected with existing
solvers).

Trade-off: dimension of the comparison system vs degree of the barrier
functions.
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End

Questions?

Acknowledgments

This work was supported by the National Science Foundation under NSF CPS Award
CNS-1739629 and by the AFOSR under grant number FA9550-16-1-0288; the third
author was supported by the National Science Scholarship from A*STAR, Singapore.


	Preliminaries

