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Abstract. In this paper, we analyze limits of approximation techniques
for (non-linear) continuous image computation in model checking hy-
brid systems. In particular, we show that even a single step of continu-
ous image computation is not semidecidable numerically even for a very
restricted class of functions. Moreover, we show that symbolic insight
about derivative bounds provides sufficient additional information for
approximation refinement model checking. Finally, we prove that purely
numerical algorithms can perform continuous image computation with
arbitrarily high probability. Using these results, we analyze the prereq-
uisites for a safe operation of the roundabout maneuver in air traffic
collision avoidance.
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1 Introduction

The fundamental operation in model checking [1] is image computation, i.e., de-
termining the set of states reachable from some (initial) set of states by following
all transitions of the system. Verifying safety amounts to checking whether a bad
state can be reached by repeating image computation from the initial states until
convergence or a bound is reached. Today, the primary challenge for verification
of industrial hybrid systems is to improve (a) scalability by building model check-
ers that are able to deal with higher-dimensional continuous state-spaces, and
(b) modeling capabilities by providing verification techniques for systems having
richer continuous dynamics. In this paper, we focus on (b) using approximation
techniques and delineate the borderline of decidability of the image computation
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problem for hybrid systems model checking. In particular, we show that even a
single step of continuous image computation is not semidecidable.

In this paper we analyze techniques for approximating image computation for
hybrid systems having non-linear continuous flows. First-order real arithmetic
is among the most expressive theories for continuous values that is known to
be decidable [2]. It is used successfully in hybrid system verification [3–6]. We
thus investigate approximations of system flows using real arithmetic, including
polynomial and spline approximations. For verification, we argue that uniform
approximations, i.e., approximations with a uniform global error bound, are cru-
cial, since verification is about making sure that the system is well-behaved even
in worst-case scenarios. For this, we analyze the conditions required to guaran-
tee that uniform approximations of flows can be constructed computationally. In
addition, we study approximation-based model checking for hybrid systems with
flows that are given implicitly as numerical solutions of differential equations.

Throughout the paper, we observe that numerical algorithms need additional
knowledge about the system behavior to be successful in model checking. We
show a strong undecidability result about the purely numerical treatment of
even the basic operation of image computation in hybrid systems to support
this observation.

The distinguishing feature of numerical algorithms in this context is that
they compute their output with specific real values or rational approximations
like 1.421. In contrast, symbolic algorithms are capable of computing with sym-
bolic terms like x2 +2xy that involve variable symbols to obtain results that are
valid for all instantiations of x and y with real values. However, all terms that
occur during the symbolic computation need to have a common representation
that is effective. Further, numerical computations are generally more scalable to
higher dimensions. See [7] for details on machine models for numerical compu-
tations; see [8] for symbolic computation and symbolic representations.

Model checking depends on image computation of sets of states. As they
operate on concrete values, numerical algorithms can only compute images at a
finite number of individual points in bounded time. Thus, the primary challenge
in using numerical methods for verification is caused by the need for such a fi-
nite mesh of points on which solutions are computed numerically. This imposes
two primary causes for errors: (a) there is only limited knowledge about the
behavior in between the finite mesh, and (b) the numerical computations them-
selves introduce errors. For proper verification, these errors have to be controlled
computationally to make sure the system is safe under all circumstances.

While the certainty required for verification is impossible to obtain by nu-
merical means alone, we additionally show that numerical methods can provide
a stochastic understanding of system safety. The probability of a wrong verifi-
cation result can be made arbitrarily small under fairly mild assumptions.

We use our techniques to obtain results about roundabout maneuvers for col-
lision avoidance in air traffic management (ATM) [9,10]. We show that a classical
collision avoidance maneuver is unsafe for more realistic model assumptions. To
overcome this limitation, we propose a modified roundabout maneuver that uses
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adaptive flight paths following a tangential geometric construction. Since the
image computation techniques presented in this paper are suitable for automa-
tion, they have impact on improving verification tools like HyTech [11], Check-
Mate [12], or PHAVer [13] to cover more complicated dynamics. Supporting
more general dynamics is important for verifying hybrid systems, for instance,
in ATM [9,10,14] and for systems biology [6].

Structure of this Paper. After giving the basics of model checking in Sect. 2, we
present the roundabout maneuver in Sect. 3. In Sect. 4, we present the framework
for approximation refinement model checking. We analyze flow approximation
techniques in Sect. 5. In addition, we cover flows that are specified implicitly as
solutions of differential equations in Sect. 6. Experimental results of our prelim-
inary model checker for roundabout maneuvers are presented in Sect. 7. Related
work is discussed in Sect. 8.

2 Preliminaries

For model checking to be effective, both representing sets of states and computing
images of sets of states under transitions have to be computable. Hybrid systems
have two kinds of transitions: discrete jumps in the state space caused by mode
switches, and continuous evolution along flows within a mode; see [6, 11].

Definition 1 (Hybrid Automata). A hybrid automaton A consists of

– a continuous state space Rn;
– a directed graph with vertices Q (as modes) and edges E (control switches);
– flows ϕv, where ϕv(t;x) ∈ Rn is the state reached after staying in mode v

for time t ≥ 0 when continuous evolution starts in state x ∈ Rn;
– invariant conditions invv ⊆ Rn for v ∈ Q;
– jump relations jumpe ⊆ Rn ×Rn for edges e ∈ E;

where jumpe and invv are definable in first-order real arithmetic [2]. Typically,
the jump relation jumpe contains transition guards and variable resets as in [6].

To simplify the formal machinery, we define the semantics of hybrid automata
in terms of image computation (see, e.g. [6,11,15] for details on the relationship to
trace semantics). Numerical algorithms typically work within a compact domain.
For simplicity, we assume that all flows share the same domain of relevance D ⊆
R × Rn, which comprises all relevant states and observation times. In (1) of
Fig. 1, the post-image for automaton A is defined in terms of its discrete and
continuous transitions: PostA(Y ) is the set of states reachable from Y ⊆ Q×Rn

in one step. The post-image under the continuous flow ϕv restricted to D is
defined in (2). For discrete jumps along edge e ∈ E from v ∈ Q to w ∈ Q,
the post-image is defined in (3). Reachability in an arbitrary number of steps
is defined by the least fixpoint equation (4). The pre-image PreA(Y ) is defined
accordingly. Model checking reachability of bad states B ⊆ Q × Rn from the
initial set of states I ⊆ Q×Rn amounts to checking emptiness of Post∗A(I)∩B.
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PostA(Y ) :=
[

v∈Q

Postϕv|D (Y ) ∪
[
e∈E

Postjumpe
(Y ) (1)

Postϕv|D (Y ) := {(v, ϕv(t; x)) ∈ Q×Rn : (v, x) ∈ Y, (t, x) ∈ D for some t ≥ 0

and ϕv(t′; x) ∈ invv for all 0 ≤ t′ ≤ t} (2)

Postjumpe
(Y ) := {(w, y) ∈ Q×Rn : (x, y) ∈ jumpe for some (v, x) ∈ Y

and y ∈ invw where e = (v, w)} (3)

Post∗A(Y ) := µZ.(Y ∪ Z ∪ PostA(Z)) (4)

Fig. 1: Image computation semantics of hybrid automata.

3 Air Traffic Management

Tomlin et al. [9] presented conflict resolution protocols for air traffic manage-
ment, which direct two airplanes flying too close to each other to perform collision
avoidance maneuvers. Assuming, for simplicity, aircraft remain at the same alti-
tude, a configuration can be described in the special Euclidean group of R2 [9]
and relative coordinates can be used to reduce the state-space dimension. The
relative position of aircraft 2 with aircraft 1 at the origin is represented by its
(planar) position x, y and orientation φ; see Fig. 2a. With linear velocities vi and
angular velocities ωi (in radians per time unit) of the respective aircraft i, the
in-flight dynamics in relative coordinates are as follows (see [9] for details):

ẋ =− v1 + v2 cos φ + ω1y ẏ =v2 sinφ− ω1x φ̇ =ω2 − ω1 . (5)

A configuration is unsafe if there is another aircraft within a 5mi-radius protected
zone, i.e., x2 + y2 < 52.

Straight line protocols [9,10] for collision avoidance are unrealistic. Between
straight lines, they assume instant turns, which are impossible in mid-flight. As
a more realistic model, we investigate roundabout maneuvers [9], which also
contain proper flight curves with ωi 6= 0, see Fig. 2b. The roundabout maneuver
refines several instant turns to realistic curves with more complicated dynamics.
For this refinement, we show that the standard maneuvers are unsafe.

Fig. 2c contains the hybrid automaton for roundabout collision avoidance,
which generalizes the protocols in [9, 10, 14]. This protocol initiates evasive ac-
tions when the distance drops to α. The clock c determines when it is safe to
turn back into the original direction after a half turn of duration π

ω . For a concise
presentation, (5)[ωi := s] is an abbreviation for the dynamics of equation (5),
with ω1 and ω2 replaced by s. Further, rot[θ1, θ2] denotes the action of the first
aircraft turning by θ1 and the second by θ2, simultaneously. Typically, the θi are
chosen as fixed values like θ = π/2 [14]. We use [−r, r]2 × [0, 2π] with r = α + 8
as the relevant domain for states (x, y, φ) and choose observation times in [0, 400].
By continuity, other safety-relevant trajectories trespass a point in D.



The Image Computation Problem in Hybrid Systems Model Checking 477

x

y
Φ

protected
zone

v1
Ω1

2a: Configuration. 2b: Maneuver.

Cruise
(5)[ωi := 0]
x2 + y2 ≥ α2

LCircle
(5)[ωi := ω]

ċ = 1

x2 + y2 ≤ α2 ∧ y ≥ 0

rot[-θ, -θ]
c := 0

c ≥ π
ω

rot[-θ, -θ]

RCircle
(5)[ωi :=−ω]

ċ = 1

x2 + y2 ≤ α2 ∧ y < 0

rot[θ, θ]
c := 0

c ≥ π
ω

rot[θ, θ]

2c: Roundabout maneuver automaton.

Fig. 2: Roundabout collision avoidance maneuver.

4 Approximation in Hybrid Systems Model Checking

In this section, we provide the theoretical foundations for flow approximation in
model checking hybrid systems and outline the approximation refinement model
checking algorithm. Model checking depends on image computation of sets of
states, which is particularly crucial for infinite-state systems. Yet, computing
the image of a set under complicated flows is not possible in general. Hence, our
guiding principle is to first approximate complicated dynamics using simpler
flows (Sect. 4.2) and then compute images of sets under simple flows (Sect. 4.3).

4.1 Approximation Refinement Model Checking

For approximate set operations, we define the distance between sets X ⊆ Rn

and Y ⊆ Rn as d(X, Y ) := infx∈X,y∈Y ‖x− y‖, and d(x, Y ) := d({x}, Y ) for
a point x ∈ Rn. Further, for an ε > 0, let Uε(Y ) := {x ∈ Rn : d(x, Y ) < ε} be
the ε-neighborhood of Y ⊆ Rn. For convenience, we define U0(Y ) := Y . Finally,
let S[x, y] ⊆ Rn be the line segment connecting x ∈ Rn and y ∈ Rn.

Image computation for discrete transitions is as usual in model checking [1].
Hence, we focus on a treatment of continuous evolutions that combines well with
techniques for handling discrete image computation. Since the mode does not
change during a continuous flow, we drop modes from Postϕ|D (Y ).

We handle complicated dynamics by approximating flows and we conserva-
tively over-approximate the resulting images. For an approximation of error ≤ε,
safety proofs require that all states reachable in this approximation have a dis-
tance >ε to B. This is captured formally in the following decision problem.

Problem 1 (Approximate reachability in image computation). Given an arbitrar-
ily effective function ϕ ∈ Ck(D ⊆ Rn,Rm), i.e., for rational input x, the
value ϕ(x) can be computed up to arbitrary precision, and given effective rep-
resentations of B ⊆ Rm and of a compact closure D of an open set, decide the
following problem with tolerance ε ≥ 0: “Uε(Postϕ|D (Y )) ∩B = ∅ ?”

Exact image computation is retained with ε = 0. Extensions to Post∗A(Y ) are
defined inductively using approximate flow images Uε(Postϕ|D (Y )) in Fig. 1.

Safety of an approximation with tolerance ε implies safety of the actual sys-
tem by monotonicity of image computation. If the over-approximation is unsafe,
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choose i n i t i a l δ > 0
whi le t rue do

Ã := approx (δ ,A ) ; ε := e r r o rbound (Ã)
r e a c h ab l e := check (Uε(Post∗

Ã
(I)) ∩B 6= ∅)

i f not r e a c h ab l e then
return ’A i s s a f e ’

e l s e i f ε � 1
re tu rn ’A i s un s a f e w i th f r a g i l i t y ε ’

e l s e δ := δ/2

Fig. 3: Approximation Refinement Model Checking (AMC).

however, counterexamples can be spurious. This happens if the approximation
is too coarse because the current guaranteed error bound, ε, is still too large and
permits behavior that is impossible in reality. Hence, refining the approximation
tolerance is necessary [16] until the system is (a) proven safe after closer analysis,
or (b) the system is considered fragile [3,14] because it is unsafe for a sufficiently
small value of ε (below the stability advised by general engineering principles).
An approximation refinement algorithm (AMC) exploiting those circumstances
for Problem 1 is depicted in Fig. 3. It is parametric in a procedure approx for
approximating the flows of the hybrid automaton A with a means to determine a
uniform error bound. Techniques for this will be examined in Sect. 5–6 using the
theory in Sect. 4.2. AMC further depends on the ability to check reachability by
image computation in the approximation Ã, which we investigate in Sect. 4.3.

In order to support approximations with posterior error bound reporting,
our algorithm distinguishes the refinement tolerance δ from the resulting error
bound ε. The required assumption to ensure convergence is that ε decreases
with δ and converges to zero when δ does. Modes can be split into modes that
apply for different subregions by partitioning D (using the techniques in [13])
to keep refinements of δ local to smaller parts of the state space. As a further
improvement, it is simple to extend AMC to stop if a counterexample has been
found that reaches a bad state with a distance >ε to good states (beyond the ap-
proximation error). In that case, the concrete system is unsafe without fragility.

4.2 Image Approximation

As a theoretical framework for flow approximations in approx to solve Problem 1
with AMC, we present the following result. It shows that continuous flows sup-
port uniform approximation of images with polynomials on compact domains.

Proposition 1 (Weierstraßian flows). Let ϕ ∈ C (D,Rn) on a compact clo-
sure D ⊂ R×Rn of an open set. Then, ∀ε > 0 ∃p ∈ R[t, x1, . . . , xn]n ∀Y ⊆ Rn

Postϕ|D (Y ) ⊆ Uε(Postp|D (Y )) (6)

Preϕ|D (Y ) ⊆ Prep|D (Uε(Y )) . (7)
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Proof. For any ε > 0, let p be a vector of polynomials approximating ϕ on D
with uniform error <ε according to the generalized Weierstraß theorem [17].
Equation (6) is a consequence of the following representation (case (7) is similar):

Uε(Postp|D (Y )) = {z ∈ Rn : ∃x ∈ Y ∃t (t, x) ∈ D , ‖z − p(t, x)‖ < ε} .

Let z ∈ Postϕ|D (Y ), i.e., let (t, x) ∈ D,x ∈ Y with z = ϕ(t;x). The Weierstraß
theorem implies z ∈ Uε(Postp|D (Y )), as ‖z − p(t, x)‖ = ‖ϕ(t;x)− p(t, x)‖ < ε.

This result shows that image computation can be split into approx, i.e., finding
a uniform approximation p of ϕ that satisfies (7), and check, i.e., computing the
right-hand side of (7). Further, it proves the existence of an approximation p.

4.3 Polynomial Image Computation and Beyond

In this section, we present classes of flows that support exact image computation
of sets of states for the procedure check. These are adequate choices for functions
with which approx can approximate more complicated dynamics. Beyond poly-
nomial flows, we generalize exact image computation to piecewise polynomials
and rational functions—in particular to multivariate rational splines.

Proposition 2 (Decidability of polynomial image computation). Given
definable Y and D, the right-hand sides of (6) and (7) in Proposition 1 are
definable in first-order real arithmetic, hence decidable by Tarski’s theorem [2].

Proof. Let FD and FY define D and Y , respectively. Then, z ∈ Uε(Postp|D (Y )) is
definable by: ∃x∃t (FY (x) ∧ FD(t, x) ∧ ‖z − p(t, x)‖ < ε). As the square function
increases strictly monotonically on [0,∞) and ε ≥ 0, the Euclidean norm can in
turn be defined by: ‖z‖ < ε ≡

∑n
i=1 z2

i < ε2. With this, we can implement check.

Proposition 3. Piecewise polynomials are definable in first-order arithmetic.

Proof. Let s : D → R be a function consisting of polynomial pieces Pi : Di → R
for disjoint domains Di with D = D1 ∪ · · · ∪Dn that are definable in first-order
real arithmetic. Then, the following equivalence defines the piecewise function s:

s(x) = t ≡
n∨

i=1

(x ∈ Di ∧ pi(x) = t) .

The image computation corresponding to (6) follows from the decomposition

Posts|D (Y ) =
n⋃

i=1

Postpi|Di
(Y ) and Uε(X ∪ Y ) = Uε(X) ∪ Uε(Y ) . (8)

Due to their piecewise definitions, splines provide a better approximation with
lower degree than polynomials do. Hence, we propose to use splines for image
computation, and solve a multitude of simpler polynomial problems as opposed
to using a single high-degree polynomial problem. For this, splines in (8) split
into a disjoint set of polynomial reachability problems of lower degree. For a
result on uniform approximation with multivariate splines, we refer to [18, 19].
Even rational approximations can be used, but AMC does not yet apply them:
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Proposition 4. Tarski’s theorem [2] can be extended from semialgebraic sets
formed with polynomials over real-closed fields to rational functions.

Proof. In first-order formulas of real arithmetic with rational expressions, the
following equivalences reduce rational (in-)equalities to polynomial formulas:

p(x)/q(x) = 0 ≡ p(x) = 0 ∧ q(x) 6= 0
p(x)/q(x) > 0 ≡ (p(x) > 0 ∧ q(x) > 0) ∨ (p(x) < 0 ∧ q(x) < 0) .

By using the fact that the field of fractions of Q[X1, . . . , Xn] is a field, all atomic
formulas can be reduced to one of the above forms.

5 Flow Approximation

In this section, we analyze which flows can be approximated effectively. In addi-
tion to giving an approximation result for bounded flows, we identify the limits
of numerical methods for approximating hybrid systems with the certainty that
is needed for verification. Further, we show that numerical methods can give suf-
ficient justification of verification in stochastic terms up to arbitrary probability.
Throughout the section we assume ϕ is a flow of a mode of a hybrid system.

Using the results presented so far, we can reduce Problem 1 to the following
problem for approx, for which Proposition 1 guarantees the existence of solutions.

Problem 2 (Uniform approximation). Given an arbitrarily effective continuous
function ϕ ∈ C (D,Rn) on a compact closure D ⊂ R×Rn of an open set, with
an effective representation of D, find an approximation of ϕ with multivariate
splines of uniform error <ε.

5.1 Bounded Flow Approximation

In order to turn the theoretical existence result of Proposition 1 into an algorithm
approx that solves Problem 2, we need an effective form of Weierstraß approxi-
mation. The following result shows that solutions of Problem 2 can be computed
effectively when derivatives ϕ̇ are continuous and have a known bound.

Proposition 5 (Effective Weierstraß approximation). If ϕ ∈ C1(D,Rn)
and b := maxx∈D ‖ϕ̇(x)‖ are given, then Problem 2 is computable.

Proof. Using component-wise approximation and norm properties, we can as-
sume the range of ϕ is in R1 rather than Rn . Let ε > 0, x ∈ D. Further, we can
assume D is connected (otherwise the problem can be treated separately on each
connected component). By premise, ϕ is arbitrarily effective, i.e., for each δc > 0
there is an effective function fδc such that for all y ∈ D: ‖ϕ(y)− fδc(y)‖ < δc.
Let xi be a point on a δg-grid with distance ‖x−xi‖ < δg. We assume that xi ∈ D
and D is convex on the grid cell around xi. Due to convexity, the mean-value
theorem applies and yields a ξ ∈ S[x, xi] such that

‖ϕ(x)− ϕ(xi)‖ = ‖ϕ̇(ξ)(x− xi)‖ = ‖ϕ̇(ξ)‖ · ‖(x− xi)‖ < bδg .
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As ϕ is arbitrarily effective at the grid point xi, this inequality implies

‖ϕ(x)− fδc(xi)‖ ≤‖ϕ(x)− ϕ(xi)‖ + ‖ϕ(xi)− fδc(xi)‖ < bδg + δc .

Thus, ϕ can be approximated by step functions up to precision bδg + δc, which
can be chosen <ε. Such step functions are defined as fδc(xi) on the ±δg/2 hyper-
cube around xi (or sufficiently close rational approximations thereof). As step
functions are piecewise polynomials there is no need to prove that step functions
can be approximated by polynomials (cf. Proposition 3).

5.2 Continuous Image Computation

In this section, we demonstrate a fundamental limitation of numerical approaches
to verification of hybrid systems. Despite the fact that Proposition 1 guarantees
the existence of a uniform polynomial approximation, effectively constructing
such an approximation using numerical computations is impossible without ad-
ditional symbolic techniques. More generally, we show that even a single step of
continuous image computation is not semidecidable using numerical evaluations.

As they require concrete values, numerical algorithms can only evaluate the
input function ϕ at individual points but do not have access to its symbolic
representation. Even evaluating derivatives of ϕ at points is not sufficient to
obtain decidability:

Proposition 6 (Undecidability of image computation). Problem 1 is not
semidecidable using numerical evaluation of derivatives ϕ(j)(x) for j ≥ 0 at
individual points, even for arbitrarily large tolerable errors ε > 0 and arbitrary
high degrees of derivatives. This remains true even for smooth functions where
all derivatives are effectively known, and when functions are restricted to one-
dimensional (effective) smooth polynomial functions with rational coefficients.

Proof. In Problem 1, choose n = m = 1, D = [0, 1], B = [ε,∞) for the tolerable
error ε > 0. Assume there is an algorithm A, which solves Problem 1 for this
case. Choose a function ϕ with ϕ(D)∩B = ∅, say ϕ = 0. Running A with input ϕ
yields correct output “=∅”, since ϕ(x) = 0 < ε. Tracing the run identifies the set
of all points xi at which A evaluates at least one of the ϕ(j). Although the set of
all xi is unbounded, it is finite after termination, since A can only make a finite
number of computation steps in a bounded interval of time. After termination,
the maximum j where a ϕ(j)(xi) has been evaluated by A is finite as well.

x1 x2 x3

B

j

g

Fig. 4: Indistinguishable.

Now let 0 < δ < mini 6=j ‖xi − xj‖, and as-
sume x2 is not the right-most point, hence x2 +
δ ∈ D (otherwise reorder). However, by Hermite in-
terpolation, there is an (effective) polynomial func-
tion g ∈ Ck(D,R) with g(j)(xi) = ϕ(j)(xi) = 0
and g(x2 + δ) = 2ε > ε but g(D) ∩ B 6= ∅. Since ϕ
and g are indistinguishable by the ϕ(j)(xi) that A
asked about ϕ, the hypothetical algorithm A would
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yield the same output for ϕ and g, one of which is wrong. Fig. 4 depicts this situ-
ation with a more general choice of ϕ and B that gives better graphics. Moreover,
Turing machines choose xi ∈ Q, from which g ∈ Q[X] can be concluded.

The proof principles of Proposition 6 are highly general and apply for all
machine models that only allow a finite number of evaluations of input func-
tion ϕ (and derivatives) at individual points in bounded time. This includes the
generalization of “numerical” Turing machines for real values by Blum et al. [7].

As a simple corollary, the same undecidability results apply for Problem 2
using the reduction in Sect. 4. In particular, this shows that the mere presence
of a bound is not sufficient if the bound b is not known for Problem 2.

5.3 Probabilistic Model Checking

While Proposition 6 shows that image computation is not semidecidable even
in quite robust scenarios with large tolerable errors, increasing the number of
points xi where ϕ (or its derivatives) are evaluated increases the constraints
on the counterexample g, hence—intuitively speaking—increases the likelihood
of the reachability problem being answered correctly (when assuming a non-
degenerate probability distribution P ). If arbitrarily large derivatives are un-
likely by system design, model checking algorithms based on purely numerical
information can provide stochastic certainty of verification. In that case, the fol-
lowing result shows that such algorithms can perform image computation with
arbitrarily high probability by evaluating ϕ on a sufficiently dense grid.

Proposition 7 (Stochastic model checking). If P (‖ϕ̇‖∞ > b) → 0 when the
bound b →∞, and if D is an open set, then any evaluation of ϕ on a finite set of
points G ⊆ D obtains sufficient information to decide Problem 1 correctly with
probability p → 1 as ‖d(·, G)‖∞ → 0.3

Proof. Let (ϕ, D, B) be a problem instance with tolerance ε > 0. Let G ⊆ D
be the set of points where ϕ is evaluated and ν := ‖d(·, G)‖∞. If ϕ(xi) ∈ Uε(B)
for some xi ∈ G, the output “6=∅” is correct with tolerance ε. Otherwise, we
show that the probability of the output “=∅” being wrong converges to zero
for ν → 0. Suppose there is an x ∈ D with ϕ(x) ∈ B. Let xi ∈ G have smallest
distance to x. Then we can assume S[x, xi] ⊆ D (otherwise use a ν > 0 such
that Uν(x) ⊆ D, which exists since D is open). Thus, by mean-value theorem,
there is a ξ ∈ S[x, xi] such that

ε ≤ ‖ϕ(x)− ϕ(xi)‖ = ‖ϕ̇(ξ)(x− xi)‖ = ‖ϕ̇(ξ)‖ · ‖x− xi‖ . (9)

The first inequality holds since ϕ(x) ∈ B but ϕ(xi) 6∈ Uε(B). Yet, ν ≥ ‖x− xi‖.
Thus, dividing (9) by ν > 0 leads to ε

ν ≤ ‖ϕ̇(ξ)‖ ≤ ‖ϕ̇‖∞. But this becomes
arbitrarily improbable when refining ν, because P (‖ϕ̇‖∞ ≥ ε

ν ) → 0 for ν → 0 by
premise, as ε is a constant independent of ν and ε

ν →∞ as ν → 0.

3 This result also applies for a compact D by working (separately) on a finite open
subcover. ‖d(·, G)‖∞ = maxx∈D d(x, G) corresponds to the “density” of G in D.
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6 Differential Flow Approximation

In this section, we investigate how the results of the previous sections can be
extended when the flow ϕ of a mode in a hybrid system is not given to the
model checker, but implicitly generated as a numerical solution of a differential
equation. For verification, we have to control several sources of errors: (a) initial
conditions between the points of the numerical mesh can lead to different be-
havior of the solutions, (b) observation times t off the mesh lead to interpolation
errors, and (c) numerical computations introduce errors. Proposition 6 shows
that we have to assume additional knowledge, e.g., a Lipschitz-constant. Note
that the undecidability proof of Proposition 6 shows that it is not sufficient to
assume Lipschitz-continuity without knowledge of the actual Lipschitz-constant.

Proposition 8. Let f ∈ C ([a, b]×Rn,Rn)be `-Lipschitz-continuous in x, i.e.,
‖f(t, x1)− f(t, x2)‖ ≤ `‖x1 − x2‖ for all t, x1, x2. Then there is a computable
set of points sufficient for solving Problem 1 numerically, where ϕ is a solution
of the differential equation ẋ(t) = f(t, x).

Proof. Let ε > 0. For t, x0 let t2, x2 be the closest points on a mesh. Then the
solution flow ϕ(t;x0) after time t, with initial value ϕ(t0;x0) = x0, is arbitrarily
close to the mesh values ϕ(t2;x2), which can be approximated numerically:

‖ϕ(t;x0)− ϕ(t2;x2)‖ ≤ ‖ϕ(t;x0)− ϕ(t;x2)‖ + ‖ϕ(t;x2)− ϕ(t2;x2)‖
≤ e`|t−t0|‖x0 − x2‖ + ‖ϕ̇(ξ;x2)‖ · |t− t2|
= e`|t−t0|‖x0 − x2‖ + ‖f(ξ, ϕ(ξ;x2))‖ · |t− t2| (10)

by a consequence of Picard-Lindelöf [20, theorem 7.1.4] and mean-value theorem
with a ξ between t and t2. Further, (10) can be bounded by any ε

2 > 0 by
refining the mesh such that ‖x0 − x2‖ and |t− t2| are sufficiently small, since
the remaining factors are bounded on a compact domain in bounded time and f
is Lipschitz-continuous. Moreover, by [20, theorem 7.2.2.3] there are “Lipschitz-
continuous one-step methods of order p” (see [20]) that approximate the mesh
quantity ϕ(t2;x2) with a global discretization error that is bounded by ε

2 when
refining the mesh. The rate of convergence can be computed from the Lipschitz-
constants and p (see [20] for details). Hence, the overall error is bounded by ε.

The most crucial influence on the error bound analysis comes from the ex-
ponential term in the proof of Proposition 8. Yet, this bound is tight in general:
ẋ = `x is `-Lipschitz-continuous with unique global solution ϕ(t;x0) = x0e

`t

for t0 = 0, hence ϕ(t;x0)− ϕ(t;x2) = e`t(x0 − x2).

7 Experimental Results

Using the results presented in this paper, we have implemented a preliminary
approximation refinement model checker for a class of hybrid systems. For a rea-
sonable range of parameter choices (in particular for α, ω, θ), it always produces
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5a: Relative CEX. 5b: Absolute CEX.

0

p

m

0

p

m

5c: Tangential ATM.

Fig. 5: Counterexample flight and adaptive tangential construction.

a counterexample to the safety property in Sect. 3 (with distances of ≈0.0016mi,
the first after 3 mesh refinements). Fig. 5a contains a counterexample flight in
relative coordinates with aircraft 1 fixed at the origin, 5b in absolute coordinates.
This counterexample shows that the verification results in [10,14] for roundabout
maneuvers starting from orthogonal flight paths do not extend to non-orthogonal
initial flight paths. To maintain safe operation for general free flight, we propose
the following modified roundabout maneuver with adaptive tangential rotation.

Instead of choosing a fixed rotation angle θ as in Sect. 3, we choose rotation
angles θi for the individual aircraft depending on the current relative position p =
(x, y). Let m be the center of any circle of radius α through the plane positions 0
and p (cf. construction in Fig. 5c). Those (gray) circles correspond to worst-case
evasive flight curves at maximum angular speed ω = v/α. Actual evasive actions
use smaller ω (dark curves). Let γ1 and γ2 be the angles of the plane positions 0
and p, respectively, to m according to the following equation system:

α2 =‖m− 0‖2 α2 =‖m− p‖2 γ1 =∠(m− 0) γ2 =∠(m− p) . (11)

We define the angle ∠(u) as the argument of the complex number u1 + u2ı. Then,
we choose rotation angles (θ1, θ2) as (γ1 − π/2, γ2 − π/2) or (γ1 + π/2, γ2 + π/2)
with all solutions of (11) for γj . This rotates the aircraft tangentially to the gray
circles such that the aircraft follow the dark curves in circle mode. Among the
resulting choices for θj , we choose minimal turning angles. Thus, the primary
change for the automaton in Fig. 2c is a position-dependent rotation rot[θ1, θ2]
due to our construction (which happens before the check on y ≥ 0).

8 Related Work

Several approaches [3–6] emphasize the importance of quantifier elimination in
first-order real arithmetic for hybrid system verification. Our results thus use
first-order real arithmetic for approximating more general dynamics.

Piazza et al. [6] propose Taylor series approximation of known flows. For
applications in systems biology, they do not handle approximation errors.

Lanotte and Tini [15] propose a syntactic Taylor approximation of hybrid
automata with known flows, modified by the maximum error. They use a com-
plicated computation of error bounds from given Lipschitz-constants. Taylor
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approximations, though, have a non-uniform and more complicated error distri-
bution, which makes them less useful for verification.

Tomlin et al. [9] derive results for the straight line ATM scenario using
Hamilton-Jacobi-Isaacs partial differential equations. Our techniques avoid com-
plicated PDEs and are thus more suitable for automatic model checking.

Massink and Francesco [10] investigate ATM using purely discrete linearized
or untimed models. They primarily focus on the straight line protocol but also
use coarse over-relaxations to investigate the roundabout maneuver. Massink
and Francesco do not investigate the resulting error bounds.

Damm et al. [14] investigate model checking of LTL properties for discrete
time robust hybrid systems using interval-constraint solving. They emphasize the
importance of robustness in safety-critical control applications and show safety
only for a discrete roundabout maneuver with orthogonal trajectories.

Asarin et al. [21] approximate non-linear differential equations by piecewise
linear differential equations using interpolation. We propose non-linear polyno-
mial and spline approximations of flows and investigate hybrid dynamics.

9 Conclusions and Future Work

We analyzed the image computation problem in hybrid systems model checking
with a focus on approximation techniques for continuous dynamics. We presented
a model checking algorithm that successively refines flow approximations. It ap-
proximates complicated dynamics using simpler flows (approx), and then com-
putes images of sets of states under simple flows (check) taking into account error
bounds. Flow approximations are refined when counterexamples are spurious.

Uniform polynomial approximations always exist for continuous functions
on compact domains. Despite that, we have shown that the image computation
problem for continuous flows is not semidecidable with numerical evaluations
even for very restricted dynamics. With a priori knowledge about the system
behavior, uniform approximation is effective. We have illustrated that such ad-
ditional knowledge can either be obtained from information on bounds of flows or
differential equations, or from stochastic information about likely system behav-
ior. Definitely, numerical computations are invaluable for verification speed-up.
Yet, for the mathematical rigor and certainty that is required in verification,
they always have to be accompanied by symbolic analysis.

Additionally, we gave results for the roundabout maneuver in air traffic man-
agement using our preliminary model checker implementation. For free flight,
we show that a classical maneuver is unsafe and propose a solution.

Future work includes improvements of our model checker. For the roundabout
maneuver, we want to analyze situations arising from discrepancies in relative
position recording of the aircraft, and extend our collision avoidance protocol to
full curve dynamics using compositional verification. Finally, we want to investi-
gate the impact of rational spline approximations for hybrid system verification.
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CSL. Volume 1683 of LNCS., Springer (1999) 126–140
4. Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems.

In Vaandrager, F.W., van Schuppen, J.H., eds.: HSCC. Volume 1569 of LNCS.,
Springer (1999) 137–151

5. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimina-
tion. In Benedetto, M.D.D., Sangiovanni-Vincentelli, A.L., eds.: HSCC. Volume
2034 of LNCS., Springer (2001) 63–76

6. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algo-
rithmic algebraic model checking I: Challenges from systems biology. In Etessami,
K., Rajamani, S.K., eds.: CAV. Volume 3576 of LNCS., Springer (2005)

7. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation.
Springer New York, Inc., Secaucus, NJ, USA (1998)

8. Mora, T.: Solving Polynomial Equation Systems II. Cambridge Univ. Press (2005)
9. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management.

IEEE Transactions on Automatic Control 43(4) (1998) 509–521
10. Massink, M., Francesco, N.D.: Modelling free flight with collision avoidance. In:

ICECCS, IEEE Computer Society (2001) 270–280
11. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded

systems. IEEE Trans. Software Eng. 22(3) (1996) 181–201
12. Silva, B.I., Richeson, K., Krogh, B.H., Chutinan, A.: Modeling and verification of

hybrid dynamical system using CheckMate. In: ADPM. (2000)
13. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. [22]
14. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification

of LTL properties of non-linear robust discrete time hybrid systems. In Peled, D.,
Tsay, Y.K., eds.: ATVA. Volume 3707 of LNCS., Springer (2005)

15. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. [22] 402–416
16. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In Emerson, E.A., Sistla, A.P., eds.: CAV. Volume 1855 of
LNCS., Springer (2000) 154–169

17. Stone, M.H.: The generalised Weierstrass approximation theorem. Math Mag 21
(1948) 167–184 and 237–254

18. Bejancu, A.: The uniform convergence of multivariate natural splines. Technical
Report NA1997/07, Applied Mathematics, Cambridge, UK (1997)

19. Wang, R.H.: Multivariate Spline Functions and Their Applications. Kluwer (2001)
20. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, NY (2002)
21. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using

conservative approximation. In Maler, O., Pnueli, A., eds.: HSCC. Volume 2623
of LNCS., Springer (2003) 20–35

22. Morari, M., Thiele, L., eds.: HSCC. In Morari, M., Thiele, L., eds.: HSCC. Volume
3414 of LNCS., Springer (2005)


