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Abstract. Uniform substitution of function, predicate, program or game
symbols is the core operation in parsimonious provers for hybrid systems
and hybrid games. By postponing soundness-critical admissibility checks,
this paper introduces a uniform substitution mechanism that proceeds
in a linear pass homomorphically along the formula. Soundness is recov-
ered using a simple variable condition at the replacements performed by
the substitution. The setting in this paper is that of differential hybrid
games, in which discrete, continuous, and adversarial dynamics interact
in differential game logic dGL. This paper proves soundness and com-
pleteness of one-pass uniform substitutions for dGL.

1 Introduction

After a number of false starts on substitution [11,12,22], even by prominent
logicians, did Church’s uniform substitution [5, §35,40] provide a mechanism for
substituting function and predicate symbols with terms and formulas in first-
order logic. Given a mechanism for applying a uniform substitution σ to formulas
φ with result denoted σφ uniform substitutions are used with Church’s proof rule:

(US)
φ

σφ

Contrary to casual belief, quite some care is needed in the substitution process,
even of only function symbols [23], in order to prevent replacing functions with
terms that denote incompatible values in different places depending on which
variables are being used in the replacements and in which formula contexts. Due
to their subtleties, there have even been passionate calls for banishing substitu-
tions [10] and using more schemata. This paper moves in the opposite direction,
making substitutions even more subtle, but also faster and, nevertheless, sound.

The biggest theoretical advantage of uniform substitutions is that they make
instantiation explicit, so that proof calculi can use axioms (concrete object-
level formulas) instead of axiom schemata (meta-level concepts standing for in-
finitely many formulas). Their biggest practical advantage is that this avoidance

? In Shakespeare’s Macbeth, “at one fell swoop” was likened to the suddenness with
which a bird of prey fiercely attacks a whole nest at once. The idiom has since re-
tained only its meaning of suddenly doing all at once, although the connotation of
fierceness is also befitting of the ignorance with which one-pass uniform substitu-
tion trespasses operator scopes. This research is supported by the Alexander von
Humboldt Foundation and by the AFOSR under grant number FA9550-16-1-0288.
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of schemata enables parsimonious theorem prover implementations that only
consist of copies of concrete formulas as axioms together with one algorithm
implementing the application of uniform substitutions (plus renaming). Similar
advantages exist for concrete axiomatic proof rules instead of rule schemata [16].
This design obviates the need for algorithms that recognize all of the infinitely
many instances of schemata and check all of their (sometimes pretty subtle) side
conditions to soundly reject improper reasoning. These practical advantages have
first been demonstrated for hybrid systems [8] and for hybrid games [18] prov-
ing, where uniform substitution led to significant reductions in soundness-critical
size (down from 66000 to 1700 lines of code) or implementation time (down from
months to minutes) compared to conventional prover implementations.

These uses of the uniform substitution principle required generalizations from
first-order logic [5] to differential dynamic logic dL for hybrid systems [16] and
differential game logic dGL for hybrid games [18], including substitutions of pro-
grams or games, respectively. The presence of variables whose values change
imperatively over time, and of differential equations x′ = θ that cause intrinsic
links of variables x and their time-derivatives x′, significantly complicate affairs
compared to the simplicity of first-order logic [5,23] and λ-calculus [4]. Pure
λ-calculus has a single binder and rests on the three pillars of α-conversions
(for bound variables), β-reductions (by capture-avoiding substitutions), and η-
conversions (versus free variables), which provide an elegant, deep, but solid
foundation for functional programs (with similar observations for first-order
logic). Despite significant additional challenges,3 just two elementary operations,
nevertheless, suffice as a foundation for imperative programs and even hybrid
games: bound renaming and uniform substitution (based on suitably generalized
notions of free and bound variables). Uniform substitutions generalize elegantly
and in highly modular ways [16,18]. Much of the conceptual simplicity in the
correctness arguments in these cases, however, came from the fact that Church-
style uniform substitutions are applied by checking at each operator admissibil-
ity, i.e., that no free variable be introduced into a context in which it is bound.
Such checks simplify correctness proofs, because they check each admissibility
condition at every operator where they are necessary for soundness. The result-
ing substitution mechanism is elegant but computationally suboptimal, because
it repeatedly checks admissibility recursively again and again at every operator.
For example, applying a uniform substitution σ checks at every sequential com-
position α;β again that the entire substitution σ is admissible for the remainder
β compared to the bound variables of the result of having applied σ to α:

σ(α;β) = (σ(α);σ(β)) if σ is BV(σ(α))-admissible for β (1)

3 The area of effect that an assignment to a variable has is non-computable and even
a single occurrence of a variable may have to be both free and bound to ensure
correctness. Such overlap is an inherent consequence of change, which is an intrinsic
feature of dynamical systems theory (the mathematics of change) and game theory
(the mathematics of effects resulting from strategic interaction by player decisions).
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where σ is U -admissible for β iff the free variables of the replacements for the part
of σ having function/predicate symbols that occur in β do not intersect U , which,
here, are the bound variables BV(σ(α)) computed from the result of applying the
substitution σ to α [18]. This mechanism is sound [16,18], even verified sound
for hybrid systems in Isabelle/HOL and Coq [2], but computationally redundant
due to its repeated substitution application and admissibility computations.

The point of this paper is to introduce a more liberal form of uniform substi-
tution that substitutes at one fell swoop, forgoing admissibility checks during the
operators where they would be needed with a monadic computation of taboo sets
to make up for that negligence by checking cumulative admissibility conditions
locally only once at each replacement that the uniform substitution applica-
tion performs. This one-pass uniform substitution is computationally attractive,
because it operates linearly in the output, which matters because uniform substi-
tution is the dominant logical inference in uniform substitution provers [8]. The
biggest challenge is, precisely, that correctness of substitution can no longer be
justified for all operators where it is needed (because admissibility is no longer
recursively checked at every operator). The most important technical insight of
this paper is that modularity of correctness arguments can be recovered, regard-
less, using a neighborhood semantics for taboos. Another value of this paper is
its straightforward completeness proof based on [15,16]. Overall, the findings of
this paper make it possible to verify hybrid games (and systems) with faster
small soundness-critical prover cores than before [21,18], which, owing to their
challenges, are the only two verification tools for hybrid games. Uniform substi-
tutions extend to differential games [6,7], where soundness is challenging [13],
leading to the first basis for a small prover core for differential hybrid games [17].
The accelerated proving primitives are of interest for other dynamic logics [9,1].

All proofs are in [20] and those till Theorem 19 were then formalized [19].

2 Preliminaries: Differential Game Logic

This section recalls the basics of differential game logic [15,18], the logic for
specifying and verifying hybrid games of two players with differential equations.

2.1 Syntax

The set of all variables is V, including for each variable x a differential variable x′

(e.g., for an ODE for x). Higher-order differential variables x′′ etc. are not used
in this paper, so a finite set V suffices. The terms θ of (differential-form) dGL are
polynomial terms with real-valued function symbols and differential terms (θ)′

that are used to reduce reasoning about differential equations to reasoning about
equations of differentials [16]. Hybrid games α describe the permitted discrete
and continuous actions by player Angel and player Demon. Besides the operators
of first-order logic of real arithmetic, dGL formulas φ can be built using 〈α〉φ,
which expresses that Angel has a winning strategy in the hybrid game α to reach
the region satisfying dGL formula φ. Likewise, [α]φ expresses that Demon has a
winning strategy in the hybrid game α to reach the region satisfying φ.
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Definition 1 (Terms). Terms are defined by the following grammar (with θ,η,
θ1,. . . ,θk as terms, x ∈ V as variable, and f as function symbol of arity k):

θ, η ::= x | f(θ1, . . . , θk) | θ + η | θ · η | (θ)′

Definition 2 (dGL formulas). The formulas of differential game logic dGL are
defined by the following grammar (with φ, ψ as dGL formulas, p as predicate
symbol of arity k, θ, η, θi as terms, x as variable, and α as hybrid game):

φ, ψ ::= θ ≥ η | p(θ1, . . . , θk) | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ

The usual operators can be derived, e.g., ∀xφ is ¬∃x¬φ and similarly for
→,↔ and truth >. Existence of Demon’s winning strategy in hybrid game α to
achieve φ is expressed by the dGL formula [α]φ, which can be expressed indirectly
as ¬〈α〉¬φ, thanks to the hybrid game determinacy theorem [15, Thm. 3.1].

Definition 3 (Hybrid games). The hybrid games of differential game logic
dGL are defined by the following grammar (with α, β as hybrid games, a as game
symbol, x as variable, θ as term, and ψ as dGL formula):

α, β ::= a | x := θ | x′ = θ&ψ | ?ψ | α ∪ β | α;β | α∗ | αd

The operator precedences make all unary operators, including modalities
and quantifiers, bind stronger. Just like the meaning of function and predicate
symbols is subject to interpretation, the effect of game symbol a is up to in-
terpretation. In contrast, the assignment game x := θ has the specific effect of
changing the value of variable x to that of term θ. The differential equation game
x′ = θ&ψ allows Angel to choose how long she wants to follow the (vectorial)
differential equation x′ = θ for any real duration within the set of states where
evolution domain constraint ψ is true. Differential equation games with trivial
ψ = > are just written x′ = θ. The test game ?ψ challenges Angel to satisfy for-
mula ψ, for if ψ is not true in the present state she loses the game prematurely.
The choice game α ∪ β allows Angel to choose if she wants to play game α or
game β. The sequential game α;β will play game β after game α terminates (un-
less a player prematurely lost the game while playing α). The repetition game α∗

allows Angel to decide, after having played any number of α repetitions, whether
she wants to play another round (but she cannot play forever). Finally, the dual
game αd will have both players switch sides: every choice that Angel had in α
will go to Demon in αd, and vice versa, while every condition that Angel needs
to meet in α will be Demon’s responsibility in αd, and vice versa.

Substitutions are fundamental but subtle. For example, a substitution σ that
has the effect of replacing f(x) with x2 and a(x) with zy is unsound for the
following formula while a substitution that replaces a(x) with zx2 would be fine:

clash 
〈x′ = f(x), y′ = a(x)y〉x ≥ 1↔ 〈x′ = f(x)〉x ≥ 1

〈x′ = x2, y′ = zyy〉x ≥ 1↔ 〈x′ = x2〉x ≥ 1
(2)

The introduction of a new variable z by the substitution σ is acceptable, but,
even if y was already present previously, its introduction by σ makes the inference
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unsound (e.g., when x = y = 1/z = 1/2), because this equates a system with
a solution that is exponential in y with a hyperbolic solution of more limited
duration, even if both solutions are already hyperbolic of limited time from x. By
contrast, the use of the previously present variable x to form x′ = x2 is fine. The
difference is that, unlike z, variable y has a differential equation that changes
the value of y and, while x also does, f(x) and a(x) may explicitly depend on x.
It is crucial to distinguish correct and incorrect substitutions in all cases.

2.2 Semantics

A state ω is a mapping from the set of all variables V to the reals R. The state
ωrx agrees with state ω except for variable x whose value is r ∈ R in ωrx. The set
of all states is denoted S and the set of all its subsets is denoted ℘(S).

The semantics of function, predicate, and game symbols is independent from
the state. They are interpreted by an interpretation I that maps each arity k
function symbol f to a k-ary smooth function I(f) : Rk → R, each arity k
predicate symbol p to a k-ary relation I(p) ⊆ Rk, and each game symbol a to
a monotone I(a) : ℘(S) → ℘(S) where I(a)(X) ⊆ S are the states from which
Angel has a winning strategy to achieve X ⊆ S in game a. Differentials (θ)′ have
a differential-form semantics [16]: the sum of partial derivatives by all variables
x ∈ V multiplied by the values of their associated differential variable x′.

Definition 4 (Semantics of terms). The semantics of a term θ in interpre-
tation I and state ω ∈ S is its value Iω[[θ]] in R. It is defined inductively as
1. Iω[[x]] = ω(x) for variable x ∈ V
2. Iω[[f(θ1, . . . , θk)]] = I(f)

(
Iω[[θ1]], . . . , Iω[[θk]]

)
for function symbol f

3. Iω[[θ + η]] = Iω[[θ]] + Iω[[η]]
4. Iω[[θ · η]] = Iω[[θ]] · Iω[[η]]

5. Iω[[(θ)′]] =
∑
x∈V ω(x′)∂Iω[[θ]]

∂x for the differential (θ)′ of θ

The semantics of differential game logic in interpretation I defines, for each
formula φ, the set of all states I[[φ]], in which φ is true. Since hybrid games
appear in dGL formulas and vice versa, the semantics I[[α]]

(
X
)

of hybrid game
α in interpretation I is defined by simultaneous induction as the set of all states
from which Angel has a winning strategy in hybrid game α to achieve X ⊆ S.

Definition 5 (dGL semantics). The semantics of a dGL formula φ for each
interpretation I with a corresponding set of states S is the subset I[[φ]] ⊆ S of
states in which φ is true. It is defined inductively as follows

1. I[[θ ≥ η]] = {ω ∈ S : Iω[[θ]] ≥ Iω[[η]]}
2. I[[p(θ1, . . . , θk)]] = {ω ∈ S : (Iω[[θ1]], . . . , Iω[[θk]]) ∈ I(p)}
3. I[[¬φ]] = (I[[φ]]){ = S \ I[[φ]] is the complement of I[[φ]]
4. I[[φ ∧ ψ]] = I[[φ]] ∩ I[[ψ]]
5. I[[∃xφ]] = {ω ∈ S : ωrx ∈ I[[φ]] for some r ∈ R}
6. I[[〈α〉φ]] = I[[α]]

(
I[[φ]]

)
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A dGL formula φ is valid in I, written I |= φ, iff it is true in all states, i.e.,
I[[φ]] = S. Formula φ is valid, written � φ, iff I |= φ for all interpretations I.

Definition 6 (Semantics of hybrid games). The semantics of a hybrid game
α for each interpretation I is a function I[[α]]

(
·
)

that, for each set of states
X ⊆ S as Angel’s winning condition, gives the winning region, i.e., the set of
states I[[α]]

(
X
)
⊆ S from which Angel has a winning strategy to achieve X in α

(whatever strategy Demon chooses). It is defined inductively as follows

1. I[[a]]
(
X
)

= I(a)(X)

2. I[[x := θ]]
(
X
)

= {ω ∈ S : ω
Iω[[θ]]
x ∈ X}

3. I[[x′ = θ&ψ]]
(
X
)

= {ω ∈ S : ω = ϕ(0) on {x′}{ and ϕ(r) ∈ X for some
function ϕ : [0, r]→ S of some duration r ∈ R satisfying I, ϕ |= x′ = θ ∧ ψ}
where I, ϕ |= x′ = θ ∧ ψ iff ϕ(ζ) ∈ I[[x′ = θ ∧ ψ]] and ϕ(0) = ϕ(ζ) on {x, x′}{

for all 0≤ζ≤r and dϕ(t)(x)
dt (ζ) exists and equals ϕ(ζ)(x′) for all 0≤ζ≤r if r>0.

4. I[[?ψ]]
(
X
)

= I[[ψ]] ∩X
5. I[[α ∪ β]]

(
X
)

= I[[α]]
(
X
)
∪ I[[β]]

(
X
)

6. I[[α;β]]
(
X
)

= I[[α]]
(
I[[β]]

(
X
))

7. I[[α∗]]
(
X
)

=
⋂
{Z ⊆ S : X ∪ I[[α]]

(
Z
)
⊆ Z} which is a least fixpoint [15]

8. I[[αd]]
(
X
)

= (I[[α]]
(
X{
)
){

Along x′ = θ&ψ, variables x and x′ enjoy an intrinsic link since they co-evolve.

2.3 Static Semantics

Sound uniform substitutions check free and bound occurrences of variables to
prevent unsound replacements of expressions that might have incorrect values
in the respective replacement contexts. The whole point of this paper is to skip
admissibility checks such as that in (1). Free (and, indirectly, bound) variables
will still have to be consulted to tell apart acceptable from unsound occurrences.

Hybrid games even make it challenging to characterize free and bound vari-
ables. Both are definable based on whether or not their values affect the existence
of winning strategies under variations of the winning conditions [18]. The upward
projection X↑V increases the winning condition X ⊆ S from variables V ⊆ V to
all states that are “on V like X”, i.e., similar on V to states in X. The downward
projection X↓ω(V ) shrinks the winning condition X, fixing the values of state ω
on variables V ⊆ V to keep just those states of X that agree with ω on V .

Definition 7. The set X↑V = {ν ∈ S : ∃ω ∈ X ω = ν on V } ⊇ X extends
X ⊆ S to the states that agree on V ⊆ V with some state in X (written ∃). The
set X↓ω(V ) = {ν ∈ X : ω = ν on V } ⊆ X selects state ω on V ⊆ V in X ⊆ S.

Projections make it possible to (semantically! ) define free and bound vari-
ables of hybrid games by expressing variable dependence and ignorance. Such
semantic characterizations increase modularity and are used for the correctness
of syntactic analyzes that compute supersets [16, Sect. 2.4]. Variable x is free in
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hybrid game α iff two states that only differ in the value of x differ in member-
ship in the winning region of α for some winning condition X↑{x}{ that does
not distinguish values of x. Variable x is bound in hybrid game α iff it is in
the winning region of α for some winning condition X but not for the winning
condition X↓ω({x}) that limits the new value of x to stay at its initial value ω(x).

Definition 8 (Static semantics). The static semantics defines the free vari-
ables, which are all variables that the value of an expression depends on, as well
as bound variables, BV(α), which can change their value during game α, as:

FV(θ) =
{
x ∈ V : ∃I, ω, ω̃ such that ω = ω̃ on {x}{ and Iω[[θ]] 6= Iω̃[[θ]]

}
FV(φ) =

{
x ∈ V : ∃I, ω, ω̃ such that ω = ω̃ on {x}{ and ω ∈ I[[φ]] 63 ω̃

}
FV(α) =

{
x ∈ V : ∃I, ω, ω̃,X with ω = ω̃ on {x}{ and ω ∈ I[[α]]

(
X↑{x}{

)
63 ω̃

}
BV(α) =

{
x ∈ V : ∃I, ω,X such that I[[α]]

(
X
)
3 ω 6∈ I[[α]]

(
X↓ω({x})

)}
Beyond assignments, note complications with ODEs such as (2), where, due

to their nature as the solution of a fixpoint condition, the same occurrences
of variables are free, because they depend on their initial values, but they are
also bound, because their values change along the ODE. All occurrences of x
and y but not z on the right-hand side of x′ = x2, y′ = zx2y and occurrences of
x, y, x′, y′ also after this ODE are bound, since they are affected by this change.
Variables x, y, z but not x′, y′ are free in this ODE. The crucial need for overlap
of free and bound variables is most obvious for ODEs, but also arises for loops,
e.g., (x := x+ 1;x′ = −x)

∗
. If x were not classified as free, its initial value could

be overwritten incorrectly. If x were not classified as bound, its initial value
could be incorrectly copy-propagated across the loop. This also applies to the
same occurrence of x in x + 1 and −x, respectively. If it were not classified as
a bound but a free occurrence, it could be incorrectly replaced by a term of the
same initial value. If it were not classified as a free but a bound occurrence, it
could, e.g., be boundly renamed, incorrectly losing its initial link.4

Coincidence lemmas [18] show truth-values of dGL formulas only depend on
their free variables (likewise for terms and hybrid games). The bound effect
lemma [18] shows only bound variables change their value when playing games.
Supersets satisfy the same lemmas, so corresponding syntactic free and bound
variable computations can be used correctly and are defined accordingly [16,18].
Since FV() and BV() are the smallest such sets, no smaller sets can be correct, in-
cluding, e.g., the usual definitions that classify occurrences mutually exclusively.

Lemma 9 (Coincidence for terms [18]). FV(θ) is the smallest set with the
coincidence property for θ: If ω = ω̃ on FV(θ), then Iω[[θ]] = Iω̃[[θ]].

Lemma 10 (Coincidence for formulas [18]). FV(φ) is the smallest set with
the coincidence property for φ: If ω = ω̃ on FV(φ), then ω ∈ I[[φ]] iff ω̃ ∈ I[[φ]].

4 These intricate variable relationships in games and the intrinsic link of x and x′ from
ODEs significantly complicate substitutions beyond what is supported for first-order
logic [5,23], λ-calculi [4], de Bruijn indices [3], or higher-order abstract syntax [14].
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X↑V

X
I[[α]]

(
X
)ω

ω̃

on V ⊇ FV(α)

α

α

X

X↓ω

I[[α]]
(
X↓ω(BV(α) {

)
)

ω
α

α

Fig. 1. Illustration of coincidence and bound effect properties of hybrid games

Lemma 11 (Coincidence for games [18]). FV(α) is the smallest set with the
coincidence property for α: If ω = ω̃ on V ⊇ FV(α), then ω ∈ I[[α]]

(
X↑V

)
iff

ω̃ ∈ I[[α]]
(
X↑V

)
; see Fig. 1(left).

Lemma 12 (Bound effect [18]). BV(α) is the smallest set with the bound
effect property for α: ω ∈ I[[α]]

(
X
)

iff ω ∈ I[[α]]
(
X↓ω(BV(α){)

)
; see Fig. 1(right).

The correctness of one-pass uniform substitution will become more transpar-
ent after defining when one state is a variation of another on a set of variables.
For a set U ⊆ V, state ω̃ is called a U -variation of state ω iff ω̃ = ω on comple-
ment U{. Variations satisfy properties of monotonicity and transitivity. If ω̃ is a
U -variation of ω, then ω̃ is a V -variation of ω for all V ⊇ U . If ω̃ is a U -variation
of ω and ω is a V -variation of µ, then ω̃ is a (U ∪V )-variation of µ. Coincidence
lemmas say that the semantics is insensitive to variations of nonfree variables.
If ω̃ is a U -variation of ω and FV(φ) ∩ U = ∅, then ω ∈ I[[φ]] iff ω̃ ∈ I[[φ]].

3 Uniform Substitution

Uniform substitutions for dGL affect terms, formulas, and games [18]. A uniform
substitution σ is a mapping from expressions of the form f(·) to terms σf(·),
from p(·) to formulas σp(·), and from game symbols a to hybrid games σa. Here ·
is a reserved function symbol of arity 0 marking the position where the argument,
e.g., argument θ to p(·) in formula p(θ), will end up in the replacement σp(·)
used for p(θ). Vectorial extensions would be accordingly for other arities k ≥ 0.

The key idea behind the new recursive one-pass application of uniform sub-
stitutions is that it simply applies σ by näıve homomorphic recursion without
checking any admissibility conditions along the way. But the mechanism makes
up for that soundness-defying negligence by passing a cumulative set U of taboo
variables along the recursion that are then forbidden from being introduced free
by σ at the respective replacement of function f(·) and predicate symbols p(·),
respectively. No corresponding condition is required at substitutions of game
symbols a, since games already have unlimited access to and effect on the state.

The result σUφ of applying uniform substitution σ for taboo set U ⊆ V to a
dGL formula φ (or term θ or hybrid game α, respectively) is defined in Fig. 2.
For proof rule US, the expression σφ is, then, defined to be σ∅φ without taboos.

The case for ∃xφ in Fig. 2 conjoins the variable x to the taboo set in the
homomorphic application of σ to φ, because any newly introduced free uses of



Uniform Substitution At One Fell Swoop 433

σU (x) = x for variable x ∈ V

σU (f(θ)) = (σUf)(σUθ)
def
= {· 7→ σUθ}∅σf(·) if FV(σf(·)) ∩ U = ∅

σU (θ + η) = σUθ + σUη
σU (θ · η) = σUθ · σUη
σU ((θ)′) = (σVθ)′

σU (θ ≥ η) = σUθ ≥ σUη
σU (p(θ)) = (σUp)(σUθ)

def
= {· 7→ σUθ}∅σp(·) if FV(σp(·)) ∩ U = ∅

σU (¬φ) = ¬σUφ
σU (φ ∧ ψ) = σUφ ∧ σUψ
σU (∃xφ) = ∃xσU∪{x}φ
σU (〈α〉φ) = 〈σUV α〉σV φ

σUU∪BV(σa)(a) = σa for game symbol a

σUU∪{x}(x := θ) = x := σUθ

σUU∪{x,x′}(x
′ = θ&ψ) = (x′ = σU∪{x,x

′}θ&σU∪{x,x
′}ψ)

σUU (?ψ) = ?σUψ
σUV ∪W (α ∪ β) = σUV α ∪ σUWβ

σUW (α;β) = σUV α;σVWβ

σUV (α∗) = (σVV α)
∗

where σUV α is defined

σUV (αd) = (σUV α)d

Fig. 2. Recursive application of one-pass uniform substitution σ for taboo U ⊆ V

x within that scope would refer to a different semantic value than outside that
scope. In addition to computing the substituted hybrid game σUV α, the recursive
application of one-pass uniform substitution σ to hybrid game α under taboo set
U also performs an analysis that results in a new output taboo set V , written
in subscript notation, that will be tabooed after this hybrid game. Superscripts
as inputs and subscripts as outputs follows static analysis notation and makes
the α;β case reminiscent of Einstein’s summation: the output taboos V of σUV α
become the input taboos V for σVWβ, whose output W is that of σUW (α;β).
Similarly, the output taboos V resulting from the uniform substitute σUV α of
a hybrid game α become taboo during the uniform substitution application
forming σV φ in the postcondition of a modality to build σU (〈α〉φ).

Repetitions σUV (α∗) are the only complication in Fig. 2, where taboo U would
be too lax during the recursion, because earlier repetitions of α bind variables
of α itself, so only the taboos V obtained after one round σUV α are correct input
taboos for the loop body. These two passes per loop are linear in the output
when considering repetitions α∗ as their equivalent ?> ∪ α;α∗ of double size.

Unlike in Church-style uniform substitution [5,16,18], attention is needed at
the replacement sites of function and predicate symbols in order to make up for
the neglected admissibility checks during all other operators. The result σU (p(θ))
of applying uniform substitution σ with taboo U to a predicate application p(θ)
is only defined if the replacement σp(·) for p does not introduce free any tabooed
variable, i.e., FV(σp(·))∩U = ∅. Arguments are put in for placeholder · recursively
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by the taboo-free use of uniform substitution {· 7→ σUθ}, which replaces arity
0 function symbol · by σUθ. Taboos U are respected when forming (once! ) the
uniform substitution to be used for argument ·, but empty taboos ∅ suffice when
substituting the resulting σUθ for · in the replacement σp(·) for p.

All variables V become taboos during uniform substitutions into differen-
tials (θ)′, because any newly introduced occurrence of a variable x would cause
additional dependencies on its respective associated differential variable x′.

If the conditions in Fig. 2 are not met, the substitution σ is said to clash for
taboo U and its result σUφ is not defined and cannot be used. All subsequent
applications of uniform substitutions are required to be defined (no clash).

Whether a substitution clashes is only checked once at each replacement,
instead of also once per operator around it as in Church style from equation (1).
The free variables FV(σp(·)) of each (function and) predicate symbol replacement
are best stored with σ to avoid repeated computation of free variables.

This inference would unsoundly equate linear solutions with exponential ones:

clash 
〈v := f〉p(v)↔ p(f)

〈v :=−x〉[x′ = v]x ≥ 0↔ [x′ = −x]x ≥ 0

Indeed, σ = {p(·) 7→ [x′ = ·]x ≥ 0, f 7→ −x} clashes so rejects the above infer-
ence since the substitute −x for f has free variable x that is taboo in the context
[x′ = ·]x ≥ 0. By contrast, a sound use of rule US, despite its change in multiple
binding contexts with σ = {p(·) 7→ [(x := x+ ·;x′ = ·)∗]x+ · ≥ 0, f 7→ −v}, is:

US
〈v := f〉p(v)↔ p(f)

〈v :=−v〉[(x := x+ v;x′ = v)
∗
]x+ v ≥ 0↔ [(x := x− v;x′ = −v)

∗
]x− v ≥ 0

Uniform substitution accurately distinguishes such sound inferences from un-
sound ones even if the substitutions take effect deep down within a dGL formula.
Uniform substitutions enable other syntactic transformations that require a solid
understanding of variable occurrence patterns such as common subexpression
elimination, for example, by using the above inference from right to left.

3.1 Taboo Lemmas

The only soundness-critical property of output taboos is that they correctly add
bound variables and never forget variables that were already input taboos.

Lemma 13 (Taboo set computation). One-pass uniform substitution appli-
cation monotonously computes taboos with correct bound variables for games:

if σUV α is defined, then V ⊇ U ∪ BV(σUV α)

Any superset of such taboo computations (or the free variable sets used in
Fig. 2) remains correct, just more conservative. The change from input taboo U
to output taboo V is a function of the hybrid game α, justifying the construction
of σUV (α∗): if σUV α and σVWα are defined, then σVV α is defined and equal to σVWα.
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By Lemma 13, no implementation of bound variables is needed when defining

game symbols via σUU∪V (a) = σa where {}∅V (σa) with identity substitution {}.
But bound variable computations speed up loops via σUV (α∗) = (σU∪BV α)

∗
since

B = BV(σ∅Mα) can be computed and used correctly in one pass when U ∪B = V .

3.2 Uniform Substitution Lemmas

Uniform substitutions are syntactic transformations on syntactic expressions.
Their semantic counterpart is the semantic transformation that maps an inter-
pretation I and a state ω to the adjoint interpretation σ∗ωI that changes the
meaning of all symbols according to the syntactic substitution σ. The interpre-
tation Id· agrees with I except that function symbol · is interpreted as d ∈ R.

Definition 14 (Substitution adjoints). The adjoint to substitution σ is the
operation that maps I, ω to the adjoint interpretation σ∗ωI in which the inter-
pretation of each function symbol f , predicate symbol p, and game symbol a are
modified according to σ (it is enough to consider those that σ changes):

σ∗ωI(f) : R→ R; d 7→ Id·ω[[σf(·)]]
σ∗ωI(p) = {d ∈ R : ω ∈ Id· [[σp(·)]]}
σ∗ωI(a) : ℘(S)→ ℘(S); X 7→ I[[σa]]

(
X
)

The uniform substitution lemmas below are key to the soundness and equate
the syntactic effect that a uniform substitution σ has on a syntactic expression
in I, ω with the semantic effect that the switch to the adjoint interpretation σ∗ωI
has on the original expression. The technical challenge compared to Church-style
uniform substitution [16,18] is that no admissibility conditions are checked at
the game operators that need them, because the whole point of one-pass uniform
substitution is that it homomorphically recurses in a linear complexity sweep by
postponing admissibility checks. All that happens during the substitution is that
different taboo sets are passed along. Yet, still, there is a crucial interplay of the
particular taboos imposed henceforth at binding operators and the retroactive
checking at function and predicate symbol replacement sites.

In order to soundly deal with the negligence in admissibility checking of
one-pass uniform substitutions in a modular way, the main insight is that it is
imperative to generalize the range of applicability of uniform substitution lem-
mas beyond the state ω of original interest where the adjoint σ∗ωI was formed,
and make them cover all variations of states that are so similar that they might
arise during soundness justifications. By demanding more comprehensive care
at replacement sites, soundness arguments make up for the temporary lapses in
attention during all other operators. This gives the uniform substitution algo-
rithm broader liberties at binding operators, while simultaneously demanding
broader compatibility in semantic neighborhoods on its parts. Due to the recur-
sive nature of function substitutions, the proof [20] of the following result is by
structural induction lexicographically on the structure of σ and θ, for all U, ν, ω.
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Lemma 15 (Uniform substitution for terms). The uniform substitution
σ for taboo U ⊆ V and its adjoint interpretation σ∗ωI for I, ω have the same
semantics on U -variations for all terms θ:

for all U -variations ν of ω: Iν[[σUθ]] = σ∗ωIν[[θ]]

Recall that all uniform substitutions are only defined when they meet the side
conditions from Fig. 2. A mention such as σUθ in Lemma 15 implies that its side
conditions during the application of σ to θ with taboos U are met. Substitutions
are antimonotone in taboos: If σUθ is defined, then σV θ is defined and equal to
σUθ for all V ⊆ U (accordingly for φ, α). The more taboos a use of a substitution
tolerates, the more broadly its adjoint generalizes to state variations.

The corresponding results for formulas and games are proved by simultane-
ous induction since formulas and games are defined by simultaneous induction,
as games may occur in formulas and, vice versa. The inductive proof [20] is lex-
icographic over the structure of σ and φ or α, with a nested induction over the
closure ordinals of the loop fixpoints, simultaneously for all ν, ω, U,X.

Lemma 16 (Uniform substitution for formulas). The uniform substitution
σ for taboo U ⊆ V and its adjoint interpretation σ∗ωI for I, ω have the same
semantics on U -variations for all formulas φ:

for all U -variations ν of ω: ν ∈ I[[σUφ]] iff ν ∈ σ∗ωI[[φ]]

Lemma 17 (Uniform substitution for games). The uniform substitution
σ for taboo U ⊆ V and its adjoint interpretation σ∗ωI for I, ω have the same
semantics on U -variations for all games α:

for all U -variations ν of ω: ν ∈ I[[σUV α]]
(
X
)

iff ν ∈ σ∗ωI[[α]]
(
X
)

3.3 Soundness

With the uniform substitution lemmas having established the crucial equivalence
of syntactic substitution and adjoint interpretation, the soundness of uniform
substitution uses in proofs is now immediate. The notation σφ in proof rule US
is short for σ∅φ, so the result of applying σ to φ without taboos (more taboos
may still arise during the substitution application), and only defined if σ∅φ is.
A proof rule is sound when its conclusion is valid if all its premises are valid.

Theorem 18 (Soundness of uniform substitution). Proof rule US is sound.

(US)
φ

σφ

Proof. Let the premise φ of US be valid, i.e., ω ∈ I[[φ]] for all interpretations I
and states ω. To show that the conclusion is valid, consider any I and state ω
and show ω ∈ I[[σφ]] = I[[σ∅φ]]. By Lemma 16, ω ∈ I[[σ∅φ]] iff ω ∈ σ∗ωI[[φ]]. Now
ω ∈ σ∗ωI[[φ]] holds, because ω ∈ I[[φ]] for all I, ω, including σ∗ωI, ω, by premise.
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Theorem 18 is all it takes to soundly instantiate concrete axioms. Uniform
substitutions can instantiate whole inferences [16], which makes it possible to
avoid proof rule schemata by instantiating axiomatic proof rules consisting of
pairs of concrete formulas. This enables uniformly substituting premises and con-
clusions of entire proofs of locally sound inferences, i.e., those whose conclusion
is valid in any interpretation that all their premises are valid in.

Theorem 19 (Soundness of uniform substitution of rules). All uniform
substitution instances for taboo V of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σVφ1 . . . σVφn

σVψ
locally sound

Proof. Fix any state ω. Let D be the locally sound inference on the left and σD
the substituted inference on the right. To prove σD locally sound, consider any
interpretation I in which all premises of σD are valid, i.e., I |= σVφj for all
j, i.e., ν ∈ I[[σVφj ]] for all ν and j. By Lemma 16, ν ∈ I[[σVφj ]] is equivalent to
ν ∈ σ∗ωI[[φj ]] (since ν is a V-variation of ω), which also holds for all ν and j.

Consequently, all premises of D are valid in the same interpretation σ∗ωI, i.e.
σ∗ωI |= φj for all j. Thus, σ∗ωI |= ψ by local soundness of D. That is, ν ∈ σ∗ωI[[ψ]]
for all ν. By Lemma 16, ν ∈ σ∗ωI[[ψ]] is equivalent to ν ∈ I[[σVψ]] (since ν trivially
is a V-variation of ω), which continues to hold for all ν. Thus, I |= σVψ, i.e.,
the conclusion of σD is valid in I, hence σD is locally sound.

USR marks the use of Theorem 19 in proofs. If n = 0 (so ψ has a proof), USR
preserves local soundness for taboo-free σ∅ψ instead of σVψ, as US proves σ∅ψ
from the provable ψ and soundness is equivalent to local soundness for n = 0.

3.4 Completeness

Soundness is the property that every formula with a proof is valid. This is the
most important consideration for something as fundamental as a uniform sub-
stitution mechanism. But the converse question of completeness, i.e., that every
valid formula has a proof, is of interest as well, especially given the fact that
one-pass uniform substitutions check differently for soundness during the sub-
stitution application, which had better not lose otherwise perfectly valid proofs.

Completeness is proved in an easy modular style based on all the non-
trivial findings summarized in schematic relative completeness results, first for
schematic dGL [15, Thm. 4.5], and then for a uniform substitution formulation of
dL [16, Thm. 40]. The combination of both schematic completeness results makes
it fairly easy to lift completeness to the setting in this paper. The challenge is
to show that all instances of axiom schemata that are used for dGL’s schematic
relative completeness result are provable by one-pass uniform substitution.

A dGL formula φ is called surjective iff rule US can instantiate φ to any of its
axiom schema instances, i.e., those formulas that are obtained by just replacing
game symbols a uniformly by any game, etc. An axiomatic rule is called surjective
iff USR of Theorem 19 can instantiate it to any of its proof rule schema instances.
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[·] [a]〈c〉> ↔ ¬〈a〉¬〈c〉>
〈:=〉= 〈x := f〉〈c〉> ↔ ∃x (x = f ∧ 〈c〉>)

DS 〈x′ = f〉〈c〉> ↔ ∃t≥0 〈x := x+ft〉〈x′ := f〉〈c〉>
〈?〉 〈?q〉p↔ q ∧ p
〈∪〉 〈a ∪ b〉〈c〉> ↔ 〈a〉〈c〉> ∨ 〈b〉〈c〉>
〈;〉 〈a; b〉〈c〉> ↔ 〈a〉〈b〉〈c〉>
〈∗〉 〈a∗〉〈c〉> ↔ 〈c〉> ∨ 〈a〉〈a∗〉〈c〉>
〈d〉 〈ad〉〈c〉> ↔ ¬〈a〉¬〈c〉>

M
〈c〉> → 〈d〉>

〈a〉〈c〉> → 〈a〉〈d〉>

FP
〈c〉> ∨ 〈a〉〈d〉> → 〈d〉>
〈a∗〉〈c〉> → 〈d〉>

MP
p p→ q

q

∀
〈c〉>
∀x 〈c〉>

Fig. 3. Differential game logic axioms and axiomatic proof rules

Lemma 20 (Surjective axioms). If φ is a dGL formula that is built only
from game symbols but no function or predicate symbols, then φ is surjective.
Axiomatic rules consisting of surjective dGL formulas are surjective.

Instead of following previous completeness arguments for uniform substitu-
tion [18], this paper presents a pure game-style uniform substitution formulation
in Fig. 3 of a dGL axiomatization that makes the overall completeness proof most
straightforward. For that purpose, the dGL axiomatization in Fig. 3 uses proper-
ties 〈c〉> of a game symbol c, which, as a game, can impose arbitrary conditions
on the state even for a trivial postcondition (the formula > is always true).

All axioms of Fig. 3, except test 〈?〉, equational assignment 〈:=〉=, and con-
stant solution DS, are surjective by Lemma 20. The US requirement that no sub-
stitute of f may depend on x is important for the soundness of DS and 〈:=〉=.
Axiom 〈?〉 is surjective, as it has no bound variables, so generates no taboos and
none of its instances clash: σ∅(〈?q〉p↔ q ∧ p) = (〈σ∅∅q〉σ

∅p ↔ σ∅q ∧ σ∅p). Simi-
larly, rule MP is surjective [16], and the other rules are surjective by Lemma 20.
Other differential equation axioms are elided but work as previously [16].

Besides rule US, bound variable renaming (rule BR) is the only schematic
principle, mostly for generalizing assignment axiom 〈:=〉= to other variables.

Lemma 21 (Bound renaming). Rule BR is locally sound, where ψ yx is the
result of uniformly renaming x to y in ψ (also x′ to y′ but no x′′, x′′′ etc. or
game symbols occur in ψ, where the rule BR for [x := θ]ψ is accordingly):

(BR)
φ→ 〈y := θ〉〈y′ := x′〉ψ yx

φ→ 〈x := θ〉ψ
(y, y′ 6∈ ψ)

Theorem 22 (Relative completeness). The dGL calculus is a sound and
complete axiomatization of hybrid games relative to any differentially expressive
logic L, i.e., every valid dGL formula is provable in dGL from L tautologies.

This completeness result assumes that no game symbols occur, because uni-
form renaming otherwise needs to become a syntactic operator. A logic L closed
under first-order connectives is differentially expressive (for dGL) if every dGL
formula φ has an equivalent φ[ in L and all differential equation equivalences of
the form 〈x′ = θ〉G↔ (〈x′ = θ〉G)[ for G in L are provable in its calculus.
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4 Differential Hybrid Games

Uniform substitution generalizes from dGL for hybrid games [15] to dGL for dif-
ferential hybrid games [17], which add differential games as a new atomic game.
A differential game x′ = θ&dy ∈ Y&z ∈ Z allows Angel to control how long to
follow the differential equation x′ = θ (in which variables x, y, z may occur) while
Demon provides a measurable input for y over time satisfying the formula y ∈ Y
always and Angel, knowing Demon’s current input, provides a measurable input
for z satisfying the formula z ∈ Z. All occurrences of y, z in x′ = θ&dy ∈ Y&z ∈ Z
are bound, and y ∈ Y and z ∈ Z are formulas in the free variables y or z, re-
spectively. It has been a long-standing challenge to give mathematical meaning
[6,7] and sound reasoning principles [17] for differential games. Both outcomes
can simply be adopted here under the usual well-definedness assumptions [17].

Uniform substitution application in Fig. 2 lifts to differential games by adding:

σUŪ (x′ = θ&dy ∈ Y&z ∈ Z) = (x′ = σŪθ&dy ∈ σŪY&z ∈ σŪZ)

where Ū is U ∪ {x, x′, y, y′, z, z′}. Well-definedness assumptions on differential
games [17] need to hold, e.g., only first-order logic formulas denoting compact
sets are allowed for controls and the differential equations need to be bounded.

As terms are unaffected by adding differential games to the syntax, Lemma 9
and 15 do not change. The proofs of the coincidence lemmas 10 and 11 and bound
effect lemma 12 [18] transfer to dGL with differential hybrid games in verbatim
thanks to their use of semantically defined free and bound variables, which carry
over to differential hybrid games. The proof of Lemma 13 generalizes easily by
adding a case for differential games with the above Ū . The uniform substitution
lemmas 16 and 17 inductively generalize to differential hybrid games because of:

Lemma 23 (Uniform substitution for differential games). Let U ⊆ V.
For all U -variations ν of ω:

ν ∈ I[[σUŪ (x′ = θ&dy ∈ Y&z ∈ Z)]]
(
X
)

iff ν ∈ σ∗ωI[[x′ = θ&dy ∈ Y&z ∈ Z]]
(
X
)

The proof [20] makes clever use of differential game refinements [17] to avoid
the significant complexities and semantic subtleties of differential games.

5 Conclusion

This paper introduced significantly faster uniform substitution mechanisms, the
dominant logical inference in axiomatic small core hybrid systems/games provers.
It is also first in proving soundness of uniform substitution for differential games.

Implementations exhibit a linear runtime complexity compared to the expo-
nential complexity that direct implementations [8] of prior Church-style uniform
substitutions exhibit, except when applying aggressive space/time optimization
tradeoffs where that drops down to a quadratic runtime in practice.

Acknowledgment. I thank Frank Pfenning for useful discussions and the anony-
mous reviewers for their helpful feedback. I appreciate the kind advice of the
Isabelle group at TU Munich for the subsequent formalization [19] of the proofs.
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2. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and
Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, January 16-17,
2017. pp. 208–221. ACM, New York (2017). doi:10.1145/3018610.3018616

3. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Inda-
gationes Mathematicae 75(5), 381 – 392 (1972). doi:10.1016/1385-7258(72)90034-0

4. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940). doi:10.2307/2266170

5. Church, A.: Introduction to Mathematical Logic. Princeton University Press,
Princeton (1956)

6. Elliott, R.J., Kalton, N.J.: Cauchy problems for certain Isaacs-Bellman equations
and games of survival. Trans. Amer. Math. Soc. 198, 45–72 (1974). doi:10.1090/
S0002-9947-1974-0347383-8

7. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for
solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math. J. 33(5), 773–
797 (1984). doi:10.1512/iumj.1984.33.33040

8. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An
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A Proofs

This appendix provides all proofs that are not cited or shown inline.

Proof of Lemma 13. The proof is by direct structural induction on α:
1. σUU∪BV(σa)(a) = σa, then V = U ∪ BV(σa) = U ∪ BV(σUV a)

2. σUU∪{x}(x := θ) = (x := σUθ), then U ∪ {x} ⊇ U ∪ BV(x := σUθ).

3. σUU∪{x,x′}(x
′ = θ&ψ) = (x′ = σU∪{x,x

′}θ&σU∪{x,x
′}ψ), then it is, indeed,

the case that U ∪ {x, x′} ⊇ U ∪ BV(x′ = σU∪{x,x
′}θ&σU∪{x,x

′}ψ).
4. σUU (?ψ) = ?σUψ, then output U is correct as BV(?σUψ) = ∅.
5. σUV ∪W (α ∪ β) = σUV α ∪ σUWβ, then, by IH, V ⊇ U ∪ BV(σUV α) and W ⊇ U ∪

BV(σUWβ). Thus, V ∪W ⊇ U∪BV(σUV α)∪U∪BV(σUWβ) ⊇ U∪BV(σUV α∪σUWβ).
6. σUW (α;β) = σUV α;σVWβ then, by IH, V ⊇ U ∪ BV(σUV α) and W ⊇ V ∪

BV(σVWβ). Hence, W ⊇ U ∪ BV(σUV α) ∪ BV(σVWβ) ⊇ U ∪ BV(σUV α;σVWβ).
7. σUV (α∗) = (σVV α)

∗
if σUV α is defined. By IH on σUV α, V ⊇ U ∪ BV(σUV α). By

IH on σVV α, V ⊇ BV(σVV α). Hence, V ⊇ U ∪ BV((σVV α)
∗
) as BV(α) ⊇ BV(α∗)

for all games α.
8. σUV (αd) = (σUV α)d, then, by IH, V ⊇ U∪BV(σUV α). So, V ⊇ U∪BV((σUV α)d) ⊇
U ∪ BV(σUV α).

Proof of Lemma 15. The proof is by structural induction lexicographically on
the structure of σ and of θ, for all U, ν, ω. Fix any U -variation ν of ω.
1. Iν[[σUx]] = Iν[[x]] = ν(x) = σ∗ωIν[[x]] since σ changes no variables x ∈ V
2. Consider the arity zero case of function application, written f() for emphasis:
Iν[[σU (f())]] = Iν[[σf()]], which, by Lemma 9, equals Iω[[σf()]] = σ∗ωI(f) =
σ∗ωIν[[f()]], because ν is a U -variation of ω and FV(σf()) ∩ U = ∅.

3. Let d
def
= Iν[[σUθ]]

IH
= σ∗ωIν[[θ]] by IH. Iν[[σU (f(θ))]] = Iν[[(σUf)

(
σUθ

)
]] =

Iν[[{· 7→ σUθ}∅σf(·)]] IH
= Id·ν[[σf(·)]], which equals Id·ω[[σf(·)]] = (σ∗ωI(f))(d)

by Lemma 9 since ν is a U -variation of ω and FV(σf(·))∩U = ∅. Continuing,
(σ∗ωI(f))(d) = (σ∗ωI(f))(σ∗ωIν[[θ]]) = σ∗ωIν[[f(θ)]].
This proof used the induction hypothesis twice: once for σUθ on the smaller

θ and once for {· 7→ σUθ}∅σf(·) on the possibly bigger term σf(·) but the
structurally simpler uniform substitution {· 7→ σUθ} that substitutes arity
0 symbol · instead of arity 1 function symbol f . For well-foundedness of the
induction note that the · substitution only happens for function symbols

http://arxiv.org/abs/1902.07230
https://doi.org/10.1007/978-3-642-31365-3_34
https://doi.org/10.1305/ndjfl/1093882937
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f with at least one argument θ so not for · itself, which, as an arity zero
function, is covered in case 2.

4. Iν[[σU (θ + η)]] = Iν[[σUθ + σUη]] = Iν[[σUθ]]+Iν[[σUη]]
IH
= σ∗ωIν[[θ]]+σ∗ωIν[[η]]

= σ∗ωIν[[θ + η]]. The proof for multiplication θ · η is accordingly.

5. Iν[[σU ((θ)′)]] = Iν[[(σVθ)′]] =
∑
x ν(x′)∂Iν[[σVθ]]

∂x

IH
=
∑
x ν(x′)

∂σ∗ωIν[[θ]]
∂x which

is σ∗ωIν[[(θ)′]] since IH yields Iν[[σVθ]] = σ∗ωIν[[θ]] for all states ν, ω (which
are trivially V-variations), including states used for partial derivatives.

Proof of Lemma 16. The proof is by structural induction lexicographically on
the structure of σ and of φ, with a simultaneous induction with the subsequent
proof of Lemma 17, simultaneously for all U, ν, ω. Fix any U -variation ν of ω.
1. ν ∈ I[[σU (θ ≥ η)]] = I[[σUθ ≥ σUη]] iff Iν[[σUθ]] ≥ Iν[[σUη]], by Lemma 15, iff
σ∗ωIν[[θ]] ≥ σ∗ωIν[[η]] iff ν ∈ σ∗ωI[[θ ≥ η]].

2. Consider a predicate symbol q that is not substituted to anything else
by σ: ν ∈ I[[σU (q(θ))]] = I[[q(σUθ)]] iff Iν[[σUθ]] ∈ I(q) iff, by Lemma 15,
σ∗ωIν[[σUθ]] ∈ I(q) iff σ∗ωIν[[σUθ]] ∈ σ∗ωI(q) iff ν ∈ σ∗ωI[[q(θ)]]

3. Let d
def
= Iν[[σUθ]] = σ∗ωIν[[θ]] by Lemma 15 since ν is a U -variation of ω.

ν ∈ I[[σU (p(θ))]] = I[[(σUp)
(
σUθ

)
]] = I[[{· 7→ σUθ}∅σp(·)]] iff ν ∈ Id· [[σp(·)]]

by IH, iff ω ∈ Id· [[σp(·)]] by Lemma 10 as ν is a U -variation of ω and FV(σp(·))∩
U = ∅, iff d ∈ σ∗ωI(p) iff (σ∗ωIν[[θ]]) ∈ σ∗ωI(p) iff ν ∈ σ∗ωI[[p(θ)]]. The IH for

{· 7→ σUθ}∅σp(·) is used on the possibly bigger formula σp(·) but the struc-
turally simpler uniform substitution {· 7→ σUθ} only substitutes function
symbol · of arity zero, not predicates, thus is covered by case 2.

4. ν ∈ I[[σU (¬φ)]] = I[[¬σUφ]] iff ν 6∈ I[[σUφ]] by IH iff ν 6∈ σ∗ωI[[φ]] iff ν ∈ σ∗ωI[[¬φ]]
5. ν ∈ I[[σU (φ ∧ ψ)]] = I[[σUφ ∧ σUψ]] = I[[σUφ]] ∩ I[[σUψ]], by induction hy-

pothesis, iff ν ∈ σ∗ωI[[φ]] ∩ σ∗ωI[[ψ]] = σ∗ωI[[φ ∧ ψ]]
6. ν ∈ I[[σU (∃xφ)]] = I[[∃xσU∪{x}φ]] iff for some d νdx ∈ I[[σU∪{x}φ]], so, by IH,

iff (for some d for any (U ∪ {x})-variation νdx of ω: νdx ∈ σ∗ωI[[φ]]), iff (for
some d for any U -variation ν of ω: νdx ∈ σ∗ωI[[φ]]), Thus, this is equivalent to
ν ∈ σ∗ωI[[∃xφ]], because ν, indeed, is a U -variation of ω.

7. ν ∈ I[[σU (〈α〉φ)]] = I[[〈σUV α〉σV φ]] = I[[σUV α]]
(
I[[σV φ]]

)
iff (by Lemma 12) ν ∈

I[[σUV α]]
(
I[[σV φ]]↓ν(BV(σU

V α){)
)
. Conversely: ν ∈ σ∗ωI[[〈α〉φ]] = σ∗ωI[[α]]

(
σ∗ωI[[φ]]

)
iff (by Lemma 17) ν ∈ I[[σUV α]]

(
σ∗ωI[[φ]]

)
as σUV α is defined and ν a U -variation

of ω, iff (Lemma 12) ν ∈ I[[σUV α]]
(
σ∗ωI[[φ]]↓ν(BV(σU

V α){)
)
. The conditions equate

I[[σV φ]]↓ν(BV(σU
V α){) = σ∗ωI[[φ]]↓ν(BV(σU

V α){)

For this, consider any BV(σUV α)-variation µ of ν and show: µ ∈ σ∗ωI[[φ]] iff
µ ∈ I[[σV φ]]. By induction hypothesis, the latter is equivalent to µ ∈ σ∗ωI[[φ]]
when µ is a V -variation of ω, which it is, because µ is a BV(σUV α)-variation
of ν, which is, in turn, a U -variation of ω, so µ is a (U ∪BV(σUV α))-variation
of ω, hence also a V -variation, because V ⊇ U ∪BV(σUV α) by Lemma 13.

Proof of Lemma 17. The proof is by lexicographic structural induction on σ and
α, simultaneously with Lemma 16, for all U, ν, ω and X. Fix any U -variation ν
of ω.
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1. ν ∈ I[[σUU∪BV(σa)(a)]]
(
X
)

= I[[σa]]
(
X
)

= σ∗ωI(a)(X) = σ∗ωI[[a]]
(
X
)

for game a

2. ν ∈ I[[σUU∪{x}(x := θ)]]
(
X
)

= I[[x := σUθ]]
(
X
)

iff X 3 νIν[[σUθ]]
x = ν

σ∗ωIν[[θ]]
x by

Lemma 15, which is, thus, equivalent to ν ∈ σ∗ωI[[x := θ]]
(
X
)
.

3. ν ∈ I[[σUU∪{x,x′}(x
′ = θ&ψ)]]

(
X
)

= I[[x′ = σU∪{x,x
′}θ&σU∪{x,x

′}ψ]]
(
X
)

iff

∃ϕ : [0, T ] → S such that ϕ(0) = ν on {x′}{, ϕ(T ) ∈ X and for all t ≥ 0:
dϕ(s)(x)

ds (t) = Iϕ(t)[[σU∪{x,x
′}θ]] = σ∗ωIϕ(t)[[θ]] by Lemma 15 and it also holds

that ϕ(t) ∈ I[[σU∪{x,x
′}ψ]], which, by Lemma 16, holds iff ϕ(t) ∈ σ∗ωI[[ψ]].

Here, Lemma 15 and 16 are applicable, because ϕ(t) is a (U ∪ {x, x′})-
variation of ω, since ϕ(t) is a {x, x′}-variation of ν, which is a U -variation
of ω. The latter two conditions are equivalent to ν ∈ σ∗ωI[[x′ = θ&ψ]]

(
X
)
.

4. ν ∈ I[[σUU (?ψ)]]
(
X
)

= I[[?σUψ]]
(
X
)

= I[[σUψ]] ∩ X iff, by Lemma 16, ν ∈
σ∗ωI[[ψ]] ∩X = σ∗ωI[[?ψ]]

(
X
)
.

5. ν ∈ I[[σUV ∪W (α ∪ β)]]
(
X
)

= I[[σUV α ∪ σUWβ]]
(
X
)

= I[[σUV α]]
(
X
)
∪I[[σUWβ]]

(
X
)
,

which, by IH, is equivalent to ν ∈ σ∗ωI[[α]]
(
X
)
∪σ∗ωI[[β]]

(
X
)

= σ∗ωI[[α ∪ β]]
(
X
)
.

6. ν ∈ I[[σUW (α;β)]]
(
X
)

= I[[σUV α;σVWβ]]
(
X
)

= I[[σUV α]]
(
I[[σVWβ]]

(
X
))

iff, by

Lemma 12, ν ∈ I[[σUV α]]
(
I[[σVWβ]]

(
X
)
↓ν(BV(σU

V α){)
)
. Starting conversely: ν ∈

σ∗ωI[[α;β]]
(
X
)

= σ∗ωI[[α]]
(
σ∗ωI[[β]]

(
X
))

, iff, by IH, ν ∈ I[[σUV α]]
(
σ∗ωI[[β]]

(
X
))

iff, by Lem. 12, ν ∈ I[[σUV α]]
(
σ∗ωI[[β]]

(
X
)
↓ν(BV(σU

V α){)
)
. Both conditions equate:

I[[σVWβ]]
(
X
)
↓ν(BV(σU

V α){) = σ∗ωI[[β]]
(
X
)
↓ν(BV(σU

V α){)

Consider any BV(σUV α)-variation µ of ν to show: µ ∈ I[[σVWβ]]
(
X
)

iff µ ∈
σ∗ωI[[β]]

(
X
)
. This holds by IH, because µ is a V -variation of ω: µ is a

BV(σUV α)-variation of ν, which, in turn, is a U -variation of ω, so µ is a
(U ∪ BV(σUV α))-variation of ω, hence a V -variation by Lemma 13.

7. The case ν ∈ I[[σUV (α∗)]]
(
X
)

= I[[(σVV α)
∗
]]
(
X
)

(when σVUα is defined) uses
an equivalent inflationary fixpoint formulation [15, Thm. 3.5]:

τ0(X)
def
= X

τκ+1(X)
def
= X ∪ I[[σVV α]]

(
τκ(X)

)
κ+ 1 a successor ordinal

τλ(X)
def
=
⋃
κ<λ

τκ(X) λ 6= 0 a limit ordinal

where the union τ∞(X) =
⋃
κ<∞ τκ(X) over all ordinals is I[[(σVV α)

∗
]]
(
X
)
.

A similar fixpoint works for the other side σ∗ωI[[α∗]]
(
X
)

= %∞(X) where:

%κ+1(X)
def
= X ∪ σ∗ωI[[α]]

(
%κ(X)

)
κ+ 1 a successor ordinal

The equivalence ν ∈ I[[σVV (α∗)]]
(
X
)

= τ∞(X) iff ν ∈ σ∗ωI[[α∗]]
(
X
)

= %∞(X)
for all U -variations ν of ω follows, with V ⊇ U by Lemma 13, from proving:

for all κ and all X and all V -variations ν of ω : ν ∈ τκ(X) iff ν ∈ %κ(X)

This is proved by induction on ordinal κ (0, limit ordinal λ 6= 0, or successor):



444 André Platzer

κ = 0: ν ∈ τ0(X) iff ν ∈ %0(X), because both sets equal X.
λ: ν ∈ τλ(X) =

⋃
κ<λ τ

κ(X) iff there is a κ < λ such that ν ∈ τκ(X) iff,

by IH, ν ∈ %κ(X) for some κ < λ, iff ν ∈
⋃
κ<λ %

κ(X) = %λ(X).

κ+ 1: ν ∈ τκ+1(X) = X ∪ I[[σVV α]]
(
τκ(X)

)
, is equivalent, by Lemma 12,

to ν ∈ X ∪ I[[σVV α]]
(
τκ(X)↓ν(BV(σV

V α){)
)
. Conversely, ν ∈ %κ+1(X) =

X ∪ σ∗ωI[[α]]
(
%κ(X)

)
iff, by IH on α, ν ∈ X ∪ I[[σVV α]]

(
%κ(X)

)
for any V -

variations ν of ω, iff, by Lemma 12, ν ∈ X∪I[[σVV α]]
(
%κ(X)↓ν(BV(σV

V α){)
)
.

Now τκ(X)↓ν(BV(σV
V α){) = %κ(X)↓ν(BV(σV

V α){) holds as follows. Consider
any BV(σVV α)-variation µ of ν and show: µ ∈ τκ(X) iff µ ∈ %κ(X), which
is by IH on κ < κ+1, as µ is a V -variation of ω: µ is a BV(σVV α)-variation
of ν, so by V ⊇ BV(σVV α) from Lemma 13, µ is a V -variation of ν, which,
in turn, is a U -variation of ω, hence, by V ⊇ U from Lemma 13 as σUV α
is defined, also a V -variation of ω, so µ itself is a V -variation of ω.

8. ν ∈ I[[σUV (αd)]]
(
X
)

= I[[(σUV α)d]]
(
X
)

=
(
I[[σUV α]]

(
X{
)){

iff ν 6∈ I[[σUV α]]
(
X{
)
,

iff, by IH, ν 6∈ σ∗ωI[[α]]
(
X{
)
, iff ν ∈

(
σ∗ωI[[α]]

(
X{
)){

= σ∗ωI[[αd]]
(
X
)
.

Proof of Lemma 20. Let φ̃ be the desired instance of schema φ. So, φ̃ is obtained
from φ by uniformly replacing each game symbol a by some hybrid game, näıvely
but consistently (same replacement for a in all places). A straightforward struc-
tural induction on φ proves that there is a uniform substitution σ such that
σVφ = φ̃ simultaneously with showing for games α with desired instance α̃ that
there is a uniform substitution σ such that σV

Vα = α̃. The output taboo W of
σV
Wα equals V by Lemma 13, because all variables V are already input taboos.

Nothing needs to be shown for terms as game symbols cannot occur in terms.

1. Case φ∧ψ with desired instance φ̃∧ψ̃ (which has to have this shape to qualify
as a schema instance). By IH, there are substitutions σ, τ such that σVφ = φ̃
and τVψ = ψ̃. The union φ ∪ ψ is defined, because the same replacements
have been used consistently in all occurrences of the instantiation. Thus,
(σ ∪ τ)

V
(φ ∧ ψ) = (σ ∪ τ)

V
φ∧ (σ ∪ τ)

V
ψ = σVφ∧ τVψ = φ̃∧ ψ̃ as desired.

The proof is accordingly for ¬ etc.
2. Case ∃xφ with desired instance ∃x φ̃. By IH, there is a substitution σ such

that σVφ = φ̃. Thus, σV(∃xφ) = ∃xσV∪{x}φ = ∃xσVφ = ∃x φ̃ as desired.
3. Case 〈α〉φ with desired instance 〈α̃〉φ̃. By IH, there are substitutions σ, τ

such that σV
Vα = α̃ and τVφ = φ̃. Thus, the union σ ∪ τ is defined and

(σ ∪ τ)
V

(〈α〉ψ) = 〈(σ ∪ τ)
V
Vα〉(σ ∪ τ)

V
φ = 〈σV

Vα〉τVφ = 〈α̃〉φ̃ as desired.
4. Case a of a game symbol with desired instance α̃ is handled with the sub-

stitution σ = {a 7→ α̃}, which satisfies σV
Va = σa = α̃ as desired.

5. Case x′ = θ&ψ with desired instance x′ = θ̃& ψ̃. By IH, there are substi-
tutions σ, τ such that σVθ = θ̃ and τVψ = ψ̃. Thus, the union σ ∪ τ is
defined and (σ ∪ τ)

V
θ = σVθ = θ̃ and (σ ∪ τ)

V
ψ = τVψ = ψ̃, hence,

(σ ∪ τ)
V

(x′ = θ&ψ) = (x′ = θ̃& ψ̃) as desired.
6. Case α ∪ β with desired instance α̃ ∪ β̃. By IH there are substitutions σ, τ

such that σV
Vα = α̃ and τVV β = β̃. Thus, the union σ ∪ τ is defined and
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(σ ∪ τ)
V

(α ∪ β) = (σ ∪ τ)
V
Vα ∪ (σ ∪ τ)

V
Vβ = σV

Vα ∪ τVV β = α̃ ∪ β̃ using that
V = V ∪V.

7. Case α;β with desired instance α̃; β̃. By IH there are substitutions σ, τ
such that σV

Vα = α̃ and τVV β = β̃. Thus, the union σ ∪ τ is defined and

(σ ∪ τ)
V

(α;β) = (σ ∪ τ)
V
Vα; (σ ∪ τ)

V
Vβ = σV

Vα; τVV β = α̃; β̃ as desired.
8. Case α∗ with desired instance α̃∗. By IH there is a substitution σ such that
σV
Vα = α̃. Thus, σV(α∗) = (σV

Vα)
∗

= α̃∗ as desired, because σV
Vα is defined.

Case αd is accordingly. Axiomatic proof rules built from surjective formulas are
surjective, because USR can instantiate the rule to any instance as long as US
can instantiate all premises and the conclusion to any instance.

Proof of Lemma 21. This proof is the only one using that no higher-order dif-
ferential variables x(i) for i ≥ 2 occur. It also assumes that no game symbols a
occur, because a yx has no syntactic representation. Local soundness follows from:

〈x := θ〉ψ ↔ 〈y := θ〉〈y′ := x′〉ψ yx (y, y′ 6∈ ψ)

Consider any state ω in which to show this equivalence. Then ω ∈ I[[〈x := θ〉ψ]] iff

ω
Iω[[θ]]
x ∈ I[[ψ]] iff, by (∗) below, ω

Iω[[θ]]
y

ω(x′)
y′ ∈ I[[ψ yx ]] iff ω ∈ I[[〈y := θ〉〈y′ := x′〉ψ yx ]].

The values of x, x′ are irrelevant for ψ yx by Lemma 10. No y(i) for i ≥ 2 occur.

It uses a fact about uniform renaming of x(i) to y(i) and vice versa, for all i:

ω ∈ I[[ψ]] iff ω
ω(y(i))

x(i)

ω(x(i))

y(i)
∈ I[[ψ yx ]] where the state is modified for all i (∗)

Property (∗) is proved by straightforward induction on the structure of ψ using
that x and x′ etc. are consistently swapped with y and y′ etc. syntactically in
the uniformly renamed formula ψ yx as well as semantically in the state.

Proof of Theorem 22. The axioms and axiomatic rules in Fig. 3 are concrete in-
stances of sound schemata or rules from prior work [15,16] except for a slight
modification in axiom DS, which is sound, because the effect of a differential
equation x′ = f on x′ is that its value equals f while following the ODE.

The completeness proof is by induction on a well-founded partial order ≺
induced by the lexicographic ordering of the overall structural complexity of
the hybrid games in the formula and the structural complexity of the formula
itself, with the logic L placed at the bottom of the partial order [15]. Even if all
axioms and rules in Fig. 3 except 〈:=〉=,DS are surjective by Lemma 20, most
do not have the form used in the schematic completeness result for dGL [15,
Thm. 4.5]. All required schematic instances of all axioms (except assignments)
for that completeness result can, nevertheless, be obtained by instantiating game
symbol c to the test game ?ψ for the desired instance ψ, which is possible by
Lemma 20. Uniform substitution then turns each respective occurrence of 〈c〉>
into 〈?ψ〉>, which an additional use of surjective axiom 〈?〉 turns into ψ ∧ >,
which first-order logic equivalences in L simplify to the desired ψ.

For example, consider the representative case � F → 〈βd〉G, which implies
� F → ¬〈β〉¬G, which implies � F → [β]G. Since [β]G ≺ 〈βd〉G, because βd is
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more complex than β even if the modality changed, `L F → [β]G can be derived
by IH. Axiom [·], thus, derives `L F → ¬〈β〉¬G, from which, with Lemma 20 and
the above observations about axiom 〈?〉, axiom 〈d〉 derives `L F → 〈βd〉G.

Thus, Lemma 20 makes the previous completeness proof [15, Thm. 4.5] with
the uniform substitution relative completeness refinements [16, Thm. 40] transfer
to Fig. 3, but only if all uses of the assignment axiom, which is not surjective, can
be patched. The only such case is in the proof that � F → 〈x := θ〉G implies that
this formula can be proved in the dGL calculus from L, which, because of the dif-
ferent axioms, works differently than the corresponding case of � F → [x := θ]G
in the completeness proof for dL [16, Thm. 40].

If � F → 〈y := θ〉G, then this formula can be proved, using a fresh variable x
not occurring in θ or G, with the following derivation by renaming (Lemma 21)

F →∃x (x = θ ∧ ∃x′ (x′ = y′ ∧Gx
y ))

〈:=〉=F →∃x (x = θ ∧ 〈x′ := y′〉Gx
y )

〈:=〉=F →〈x := θ〉〈x′ := y′〉Gx
y

BR F →〈y := θ〉G

In the above proof, the two instantiations of axiom 〈:=〉= succeed, because x
and x′ are fresh, so do not occur in either θ or y′. The above proof only used
equivalence transformations, so its premise is valid iff its conclusion is, which
it is by assumption, so implies � F → ∃x (x = θ ∧ ∃x′ (x′ = y′ ∧ Gx

y )). Since(
F → ∃x (x = θ ∧ ∃x′ (x′ = y′ ∧ Gx

y ))
)
≺ (F → 〈y := θ〉G), because there are

less hybrid games, `L F → ∃x (x = θ ∧ ∃x′ (x′ = y′ ∧ Gx
y )) by IH. The above

proof, thus, derives `L F → 〈y := θ〉G. For later, also note the derivability of:

G↔ 〈x := x〉G (3)

Since it is valid, this stuttering identity derives with an additional derivation of
the converse 〈x := x〉G→ G. That follows from similarly deriving 〈x := x〉G→ F
by contraposition like above with a fresh x if � 〈x := x〉G→ F :

¬F →¬∃x (x = θ ∧ ∃x′ (x′ = y′ ∧Gx
y ))

〈:=〉= ¬F →¬∃x (x = θ ∧ 〈x′ := y′〉Gx
y )

〈:=〉= ¬F →¬〈x := θ〉〈x′ := y′〉Gx
y

[·] ¬F →[x := θ][x′ := y′]¬Gx
y

BR ¬F →[y := θ]¬G
[·] ¬F →¬〈y := θ〉G
〈y := θ〉G →F

A final subtlety arises in the case of diamond properties of loops [16]. Let
� F → 〈β∗〉G. Let x be the (finite! ) vector of free variables FV(〈β∗〉G). Since
〈β∗〉G is a least pre-fixpoint [15], for all dGL formulas ψ with FV(ψ) ⊆ FV(〈β∗〉G):

� ∀x (G ∨ 〈β〉ψ → ψ)→ (〈β∗〉G→ ψ)
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In particular, this holds for a fresh predicate symbol p with arguments x:

� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (〈β∗〉G→ p(x))

Using � F → 〈β∗〉G, this implies

� ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))

As (∀x (G ∨ 〈β〉p(x) → p(x)) → (F → p(x))) ≺ φ, because, even if the formula
complexity increased, the structural complexity of the games decreased, since φ
has one more repetition, this fact is derivable by IH:

`L ∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))

The uniform substitution σ = {p(·) 7→ 〈x := ·〉〈β∗〉G} does not clash since
FV(〈β∗〉G) ⊆ {x}. Since p does not occur in F , G or β, rule US derives:

∀x (G ∨ 〈β〉p(x)→ p(x))→ (F → p(x))
US ∀x (G ∨ 〈β〉〈x := x〉〈β∗〉G→ 〈x := x〉〈β∗〉G)→ (F → 〈x := x〉〈β∗〉G)
∀x (G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G)→ (F → 〈β∗〉G)

where the last inference used the derivable stuttering identity (3) three times.
The iteration axiom 〈∗〉 with Lemma 20 completes this derivation:

∀x (G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G)→ (F → 〈β∗〉G)

∗
〈∗〉 G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G
∀ ∀x (G ∨ 〈β〉〈β∗〉G→ 〈β∗〉G)

MP F →〈β∗〉G
Observe that rules ∀ and MP instantiate as needed with USR by Lemma 20.

Proof of Lemma 23. The left side is ν ∈ I[[σU
Ū

(x′ = θ&dy ∈ Y&z ∈ Z)]]
(
X
)

=

I[[x′=σŪθ&dy ∈ σŪY&z ∈ σŪZ]]
(
X
)

= I[[x′=σŪθ vy
w
z &dv ∈ σŪY&w ∈ σŪZ]]

(
X
)

by uniform renaming of y to v and z to w (proof of Lemma 21), which are fresh.
Here σŪθ vy

w
z is the result of uniformly renaming y to v and z to w in the term σŪθ

and v ∈ σŪY the result of uniformly renaming y to v in y ∈ σŪY (no z occurs),
and w ∈ σŪZ the result of uniformly renaming z to w in z ∈ σŪZ, where y does
not occur. Without loss of generality (by performing two subsequent uniform
substitutions), no symbol that is being replaced by σ occurs in any of σ’s replace-
ments. Hence, σ is idempotent and I[[x′ = σŪθ vy

w
z &dv ∈ σŪY&w ∈ σŪZ]]

(
X
)

=

σ∗ωI[[x′ = σŪθ vy
w
z &dv ∈ σŪY&w ∈ σŪZ]]

(
X
)
. Now that both are phrased in the

same interpretation, the equivalence ν ∈ σ∗ωI[[x′ = θ&dy ∈ Y&z ∈ Z]]
(
X
)

iff ν ∈
σ∗ωI[[x′ = σŪθ vy

w
z &dv ∈ σŪY&w ∈ σŪZ]]

(
X
)

follows provided that the following

dGL formula is true in σ∗ωI, ν for a fresh game symbol c with σ∗ωI[[〈c〉>]] = X:

〈x′ = σŪθ vy
w
z &dv ∈ σŪY&w ∈ σŪZ〉〈c〉> ↔ 〈x′ = θ&dy ∈ Y&z ∈ Z〉〈c〉> (4)

Without loss of generality, replace free occurrences of variables {x, x′, y, y′, z, z′}{
by their respective real values in ν. Now (4) is true in σ∗ωI, ν by the (locally
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sound) differential game refinement proof schema [17] for 〈〉 once per implication:

(DGR)
∀y ∈ Y ∃v ∈ V ∀w ∈W ∃z ∈ Z ∀x (η = θ)

〈x′ = η&dv ∈ V&w ∈W 〉F → 〈x′ = θ&dy ∈ Y&z ∈ Z〉F

By rule DGR for both implications of (4), it suffices to show validity in σ∗ωI of:

∀y ∈ Y ∃v ∈ σŪY ∀w ∈ σŪZ ∃z ∈ Z ∀x (σŪθ vy
w
z = θ)

∀v ∈ σŪY ∃y ∈ Y ∀z ∈ Z ∃w ∈ σŪZ ∀x (σŪθ vy
w
z = θ)

(5)

Both formulas are shown with v = y and w = z as witnesses. By Lemma 16
all Ū -variations µ of ω satisfy µ ∈ σ∗ωI[[Y ]] iff µ ∈ I[[σŪY ]] iff, as σ idempotent,
µ ∈ σ∗ωI[[σŪY ]] iff, by uniform renaming and Lemma 10 as y′ is not in σŪY ,

µ vy ∈ σ
∗
ωI[[(σŪY ) vy ]] = σ∗ωI[[v ∈ σŪY ]]. Here, µ vy is the state µ

µ(y)
v as in (∗)

of Lemma 21, where y, y′, v′ do not occur in (σŪY ) vy . By a similar argument:

µ ∈ σ∗ωI[[Z]] iff µwz ∈ σ
∗
ωI[[(σŪZ)wz ]] = σ∗ωI[[w ∈ σŪZ]]. When v = y and w = z,

the constraints of (5) are met in a state of σ∗ωI for y, z iff they are met for v, w.
Finally, by Lemma 15 when µ is a Ū -variation of ω: σ∗ωIµ[[θ]] = Iµ[[σŪθ]]

which by uniform renaming and Lemma 9 as y′ and z′ are not in σŪθ equals
Iµ vy

w
z [[(σŪθ) vy

w
z ]], which by idempotence of σ equals σ∗ωIµ

v
y
w
z [[(σŪθ) vy

w
z ]]. Thus,

the states µ that are {x, y, z, v, w}-variations of ν so Ū -variation of ω satis-
fying µ ∈ σ∗ωI[[v = y ∧ w = z]] witness (5), because µ ∈ σ∗ωI[[(σŪθ) vy

w
z = θ]] by

Lemma 9 as v, w are not in θ, for all values of y, w, x (with v := y, z := w), or
for all values of v, z, x (y := v, w := z), respectively.
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