THE CHOICE NUMBER OF SPARSE GRAPHS

ANDERS JOHANSSON

1. INTRODUGTION -
1.1. Definitions and notations. '
1.1.1. Ceneral All graphs considered are, unless stated otherwise, simple and fi-
nite. For a graph G, we often write » € G and uv € G instead of v € V(@) and

uy € E(G), when no confusion may result. For a vértex v € G we write G, for the
graphs spanned by the neighbourhood to v, i.e. G, := G[N (v, G)].

112, Colourings. For a graph G = (V, E) and a set I' of “colours”, let P = V x T

be the set of pairs. For & C P we write 15 for the characteristic function of & and

S, =80P, =8N {v} xT.

A colouring ¢ of G is a map ¢ : V ~— I" and a partial colouring is a colouring of
an induced subgra.ph G[I], ICV of G. The “graph” G, of a partml colouring o is
the get of pairs

. Go ={(v,7) : o(v) =}.
A colounng o is proper if, for each edge uv, o(u) # o(v). The set of proper

colourings of a graph G is denoted by L and the set of proper partial colourings
are denoted by 2.

1.1.3. The choice number. 1 S C P, a (pa.rtlal) colouring & of G is said to be
S-legal if it is proper, i.e. a(u) # o(v) for all edges uv € G, and
Go CS.

The choice number X,(G) of G is the smallest integer ¢ such that there exists an
8-legal colouring whenever

IS.] >t Vveg.

If we restrict attention to the case when & = P, the same definition gives the
chromatic number X(G) of G.

Let 4+ denote a probability distribution generating a random independent subset
S of V(G). Then the fractional chromatic number of G is given by

X'(G) = rr:‘inma.x{l/Pr,.[v €8] :veG).
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1.1.4. Asymplotic notation. We will use standard asymptotic notation. For a rel-
evant limit taken, we write f = O(g) for limsup|f/g| < oo, f = £2(g) for
liminf|f/g| > 0 and f = ©(g) for 2(g) < f < O(g), and also f = o(g) for
{f/gl— 0 and f =w(g) for | f/g{ — oo. Implicitly, it will ofter be assumed, that
the limit taken will be the maximum degree A tending to infinity.

If an asymptotic expression is given for some local quantity, say, defined for some
vertex in the graph or a pair, it should be understood that the implied constants
and convergence-rates are independent of the individual vertex or pair.

1.1.5. Probabilistic notation and terminology. For a random variable X defined on
some probability space ({2, F, Pr[.]), we write E[X ] for the expectation. For the
purposes of this paper it will not matter if we assume tha.t 2 is always ﬁmte
Moreover, 2 is often implicit in the discussion.

A filtration is a sequence of increasing sub-sigma~algebras of F. The algebra -
generated by some set {X;, X»;...} of random variables is written (X1, Xa,.. ) '

For an event A € F we write I(4) for the corresponding indicator. We also use
the notation M(A) for the mean-one indicator of 4, defined by

M(4) := I(4‘1)/1‘?[-'4], ,
the value bemg ZEro when probablhty is, For a sub-algehra. M we define smla.nly
M(4 | M) := (4) /P[4 | M]. |

1.2. Present result. The main purpose of this paper is to relate some a.symptotlc
Brook’s type bound, i.e. bounds on the choice number in terms of the maximimum .
degree. The graphs considered will have certain conditions on their first neigh-
bourhood, Gy for v € G. These include K,-free graphs and graphs with low local
chromatic number, i.e. the maximum chromatic number of any neighbourhood. We

do this by proving a fairly general theorem, using a variant of the mbble method
See [Kah93]. :

1.3. K,-free graphs. With a K, -ﬁ'ee graph is understood one that contains no
complete graph on r vertices or more as a subgraph
This paper is closely related to [?] where the main theorem is the followmg

Theorem 1. For o triangle free graphs G the choice number satisfies
A
@ <ol -
x(G)<0 (_'"_log A)

where A denotes the mazimum degree

Constructionsby,e.g. Kostochka.a.ndMazurovmn 71, showsthattheboundistightwithina
multiplicative constant.

~ The present results on K -graphs extends thls resultandxt is perhapsthema.mthe—
oremofthispaper. _

Theorem 2. There is a C > 0 such that if G is a Ky-free graph then the choice
number

A
x,(G) < Cm (14 (r — 3)loglogA)

provided the mazimum degree A is large enough.
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Remark 1.1. The value of the constant obtained is of the order 200, although this
can certainly be improved. '

It should also be pointed out that the bound in Theorem 2, in contrast with
Theorem 1, is not known to be tight. Perhaps the 1/loglogA factor can be removed.

The previous best known Brooks’-type bound for the chromatic number of K,-
free graphs is by Borodin and Kostochka [?], Catlin [?] and Lawrence [?] who all
independently proved the following theorem, - -

Theorem 3. If Gisa K -free graph where r > 4 then
X(G) < "—;—1(4 +2).

Let G be a K,-free graph with average degree . By removing at most n/3 vertices
we can obtain a graph with maximum degree smaller than 3¢. Hence, Theorem 2
implies the following. o :

Corollary 4. For every r for éome constant ¢, > 0
- o n logh
: > ep—
_ *(G) 2 & t loglogt
for every K, -free graph G on n vertices with average degree £, :
Incidenfally, this is the same result as J. Shearer recently obtained in {She95],

using quite different (and much slicker) methods. The previously best known bound
was, '

a(G) _2 Ck %loglogt,

by Ajtai, Erdds, Komlés and Szemerédi in [AEKS81). They also conjectﬁfe that
the loglogt-factor could be replaced by a logt-factor.

1.4. Graphs with small local chromatic number, Triangle free graphs can,
besides being graphs with no K3, also be thought of as graphs where each indiiced .
neighbourhood G, has chromatic number 1. The following theorem is thus a gen-
eralization of Theorem 1 iz a somewhat different direction. _

Theorem 5. For any G be a graph with the property that
X (G)<k Vveaq,

then A
%(G) <0 (log/_'\ log(k + 1)) .

Actually, the bound holds under slightly more general assumptions. For a graph
H let the number X™*(H) denote the following relaxation of the fractional chromatic
number: Let x denote a probability distribution generating a random subset S of
V(H) satisfying for every edge uv

Pru[{,5} C 51 < 5Pry[ue S] Pr[v e S]

and let - '
X"(H):= mﬂinmf.x{l/_Pr,, [veS]).

Then obvicusly, x"(H )< ).”(‘H ) < X(H), so the previous theorem follows from
the one below. e o i , o

I\
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Theorem 6. Given a graph G. Let k = max, x**(Gy). Then

x,(6) =0 (10“ —log(k +'1)).

Both theorems Theorem 6 and Theorem 2 will follow from a more general the-
orem: Theorem 7 in section §3. This is proved in section §4. But before stating
this we give an heuristic outline of the the method of proof. This has some bear-
ing on the formulation of Theorem 7, which has a rather unpleasing “operational”
formulation.

2. AN HEURISTIC OUTLINE

A “greedy colouring” means constructing an S-legal colouring of a graph by
assigning colours to vertices sequentially, and never backtrack to change any as-
signment. Assuming that the number of colours prescribed by S to any vertex
exceeds the degree, we see that this works, since we always have at least one colour
left to assign. This is fundamental argument behind e.g. Brook’s theorem. If
the graph is locally sparse and far from being a complete graph, one may suspect
that this worst case analysis could be improved. In particular, randomizing the
procedure may help.

2.1. Colouring processes. Given a graph G = (V, E) and a colouring scheme 8,
it is therefore natural to consider a stochastic process o* € XY, is a-8—legal partial
colouring of G. We thus assume a probability space (£, F, Pr[-]) with filtration
Ft. '

We also assume the process is greedy in the sense that, the value of an assigned
colour is never changed. That is, for s > ¢, o’ is S-legal that extension of o*. Take
o? to be the empty colouring. The set of vertices coloured at time ¢ is denoted by
I', The graph that remains to be coloured at time ¢ is thus G" G[V\ . Denote
by o the final colouring o*

Such a process can be thought of as generalizing the greedy colouring algonthm
and it is “successful” if it with high probability colours all vertices. In the real
proof we will truncate the process at a time 7', when the rest of the graph can be
coloured greedily.

A base example can be defined as follows in continuous time: For each vertex
v pick an exponentially distributed colouring time ¢, ~ Ezp(1). Choose the value
of o*(v) for s > t, uniformly at random from the set 8! of colours not previously
assigned to any neighbour of v. That is, from the set

(2'1) -=8\{(‘U,7)€'P : Ju~w, cr'(u)_—_'y}_
We will refer to this process as the uniform greedy process.

Remark 2.1. For the heuristic treatment in this section we will let £ be a continuous
time parameter. The author feels that using a fake continuous process simplifies
the understanding of the overall dynamics. Se Spencer [?] or Kim [?] for more
information on related continuous time processes. However, the actual proof will,
for reason explained below, be carried out in a discrete time.

Moreover, the heuristic character of the treatment in this section should be
stressed: we will naively use concepts not properly defined and propertles thereof
not necessarily true if they were.
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2.2. Intensities and states. We call generally a mapping p:P —[0,00] a state
1. An important example is the following state

¢'(v,7) = Pr[o(v) =9 | 7],
giving the marginal state of the final colouring at each time.

Furthermore, we assume that the process has a well-defined state of intensitics,
meaning that for all uncoloured vertices v € G* -

(2.) 2'(0,7) =l Pr[ 0B (o) =y | 7]

holds for some state of intensities {p*(v,v) >0 : (v, ¥) € P}.
The state of intensities defined in {2.2) above must thus satisfy

suppp’ C S*.
The process is intensity-governed if the colouring-process ¢* is defined by the

relation (2.2) above. As an example: the uniform greedy process defined above
may be also defined as the process governed by the intensities :

(2.3) P'(v,7) = 151/183], forve G,

whenever S} # {. _
We will generally assume the intensity-state P to be almost normalized in the
sense that for v € G* we have ' ' :

(P =) 1) =1,
¥

provided (supp p), is non-empty.
The colouring times

to:=inf{t:ve I'} U {oo},
are, provided the process is “successful”, therefore roughly Ezp(1) distributed.

Notation. For asubset B of P and a state p we write p(B) for the sum 2 (om)e8 P(2, 7).
Such sums will loosely be referred to as “mass”, since we think of p as assigning
weights to the pairs,

We also give P its natural graph structure, ie. we let (v,71) be adjacent to
(u,72) iff v ~ » and 91 = 73,i.e. we have |T'| disjoint copies of G. Thus we will _
sometimes talk about adjacent pairs and the neighbourhood of a pair.

2.3. The martingale property. We also prescribe for the process we consider
the following “martingale property” on the state of intensities: For v e
(2.9) E[p(v,7) | #*] = p'(v,7).
We can call such a process a .martingale greedy process. Note that this does not
include the uniform greedy. The idea behind {2.4) was picked up in the survey
paper [Kah90] by Jeff Kahn, where the author gave a preliminary sketch of a proof
for the choice number of certain line graphs.

A consequence of (2.4) is that we can rely on concentration properties to keep

the state sufficently normalized. Thus obtaining “colour independence” for the
intensities on the remaining graph. ' -

LThis is one of many examples where the choice of terms is discutable.
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Moreover, assuming the p*’s are defined to have support on all of V instead of
only U, they ma.y for a martmgale process be thought of as the Doob martingale
of the ma.rgma.ls i.e

p' = Ellg, | F],
where 0 € X has the same distribution x as ¢,

Given an increasing random sequence I* of V, such that I® = § and I® = V,
and assuming that F* is bemg generated of what has “happened” on the “seen”

vertex-set I, i.e.
Ft o (o") = (0'|p),

where o ~ ,u » one may in general think of a martingale process as giving the
conditional expectations of such a vertex exposure filtering.

It is also worth noting that this filtering I* of the vertex-set V can be made
in different ways. If the process is governed by a normalized state of intensities,
each vertex move to the get I' with intensity one, making the colour-tnnes ty
exponentially Fzp(1) distributed.

But there is nothing sacred about this construction. For instance when colouring
the edges of a multigraph: the great idea in [?] is to use a “hard-core” measure on
the set of matchings to decide the structure of I*+dt \ I* 2, '

2.4. Some important statistics. For the type of processes we consider, we now
introduce some time dependent statistics that are particularly important.

2.4.1. The degrees. First of all we study the degrees d(v, G‘) Since vertices are
coloured with intensity p*(P,) ~ 1 we have that

‘;—td(u, ') —d(v, GY).

where we use the notation
E
‘;—tx' -11m— (E[X“"" |F] - X')
Hence, assuming the variance of d(v, G*) is negligible, the degree should decrease

exporentially
(2.5) d(v,G*) = e~ 'd(v,G®%) < e*A.

Remark 2.2. In general, since the number of colours will be large and the process
will run fairly independently between different colours, statistics that are not de-
fined by an individual colour, are concenirated. That is, at time ¢ + d, they are
with high probability within a factor (1 -+ o (dt)) of the value expected at time ¢.

In the heuristic discussion we therefore substitute “expected behaviour” (Which
in a strict sense often is not the expected behaviour at all. ) with actual behaviour.
Of course, the real problem is to prove these statements for all vertices. To this
end we will use the “nibble method”. (See §2.8 below.)

¥n the modified model we will use to proveTheorem 7 we add, for reasons explained below,
moreover some elementary events apart from the colouring events. But the general argument with
a vertex-filtering can still be made:

3The proof in [?] has in other respects different characteristics than outlined here, basically it
is a “uniform” model, but I think it should be possible to adapt the basic idea — using hard-core
measures to construct the nibble — to the setting described in thie paper.
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'2.4.2.: The eﬁtrbpy. Moreover, we define for each v € G the local entropy of p* by

26 h(v,p') 1= 3" =p'(v,7) log p' (v, ).
ki

The iinﬁbrtance of this statistic is seen from

L2n, s h(v,p°} < log S|

- JHgnJc_é any lower bound on the entropy gives a lower bound on. the number of
por Lt avalilable colours. It will be more convenient to work with the local entropy than

the sizes of the lists.

2.4.3. ‘The energy. Let P* denote V(G*) x T and denote by N*(v,) the neighbour-
hood in P* of (v,7), i.e. Nt(v,7) :={(u,7) : n € N(v,G")}. ' :
Another important quantity will be the local energy:

28 e(n )= ) e, N (w7) =Zp*(v;7)p*(N:.,,,)-

. i Y

This give the expected rate with which the mass p ('P.,) should decrease were it not
adjusted to stay normalized. o ‘ '
We write also for uv € G '

e(un, 7)== 3 0 (0, 7)p (1, ),
: ¥

for the edge-wise energy. Generally, when talking about the “energy” in a subgraph
of G we mean the edge-wise energy summed over the edges in this subgraph.

Remark 2.8. “Energy” is perhaps an unhappy choice of words. Less overused terms -

would pehaps be “clash” or “tension”. However, the choice is not entirely out of

the blue: If we regard, in the obvious way, the state 7' as a probability distribution’

on the set of colourings of G*, then the “energy”, as defined above, corresponds to
the natural energy functional (or “cost”) for such distributions. '

2.5. Energy as the rate of enfropy loss, The importance of the local energy
sterns from the fact that, in general,

Shes) 2w, 7 €

since p(v,v) must be set to zero whenever some neighbour u ~ v get assigned the
colour . - . _

Assuming the reverse inequality holds within some factor ¢ independent of ¢,
we have in expectation

¢
29 ho,8') 2 hw2%) = C [ efo, ).
0
This give us a way to bound the loss in entropy — the loss of colours available —

by bounding the energy e(v, p*). '
In particular, if for some T

. - T
(2.10) h(v, 2% — Cf e(v,p’)ds > logd(v, GY),
0




8 ANDERS JOHANSSON

we expect the number of available colours to exceed the degree at each vertex.
The process may then be terminated, since the rest of the graph can be coloured
greedily.

2.8. A construction for triangle free graphs. Perhaps, the most likely choice
of a martingale greedy process is the following: Define, heuristically,

(211) P =2 07) Mo €S F) = Oe p(o )
where, as above, for an event A ' ”
M(A| ) = T4) /P A] ] . Pl tape S5°)

This means we “kill” a pair (v, ¥) only if a neighbour becomes coloured, and adjust
the weight to compensate for this event. It follows then that we obtain the bound
in (2.9) with C = 1. :

In the case of a tna.ngle free graph the above procedure works quite well and
is the method used in [?]. The special useful property of triangle free graphs is
the following: Since the neighbourhoods of any two adjacent vertices v and v are
digjoint the values p*¥9¢(v,v) and p*¥9(u,) are, given .‘F‘ almost independent.
Thus, for uv € G4, :

(2.12) . , [e(uv P 'N‘) | .7-"] 3] e(u'v,p ).

We will loose a negligible amount by conditioning on uv € G*¥.
At the same time, for any vertex v € G*1%, a small fraction (= dt) of the
nelghbours will disappear since they become coloured. Therefore

(2.13) e(v,p ) = —e(v,p')
thus giving an exponential decrea.ae in the energy:
(214) E[e(v,7%)] & e %e(v,p°). -

We assume the initial energy and entropy have some suitable values, i.e. if the .
initial lists satisfy S :
|Ss] > A/K where K =klogA,

we have e(v, p%) = K = klog A. For a small choice of k the integral in (2.9) stays
sufficiently small (< K) and we obtain (2.10) by choosing T large enough.

2.7. The ’tnot:hﬁed approach. Kowever, to deal with graphs more general than
triangle free, the approach must be modified somewhat. Since (2.12) does not hold,
one must find some way to counteract the potentially superexponential increase of
the energy that may result. This would otherwise effectively “kill” the process.
The modified approach is roughly the following: Instead of colouring o*(v) = v
with intensity p*(v,v) we say that the pair (v,7) gets ezcited with intensity p*(v,7).
Then, when a pair (v, ) gets excited, we throw a throw a fair coin. If heads come up,
we colour v with colour 7 and, for all pairs (u,7) with u ~ v, we set p*+#(u,y) = 0.
If ingtead tails come up: we set for u ~ v '

P (u,7) = 29" Y) Mo (u,7)
where M, (u,7), for u ~ v is a random variable having expectation 1. This implies

(2.4). The exponential rate of decrease in the degree is now = 1/2, but the overall
argument stays unchanged. - -
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The random vector M, (vyy) will be called a “modifier®. The concept of such
local modifiers will be used in the formulation of Theorem 7 below., The modifiers
are constructed so that they counteract the increase of the energy. For instance: If
each neighbourhood has chromatic number k we can define M as follows. Choose
at random, among the k given, a colour class V, c N (v, G*) and set

My (u,7) = I(u € Vo) /Pr{u € V).

By construction, M, (-,7) thus shuffies all the mass P(N(v,7)) to the independent
set V. This clearly means that the energy of the neighbourhood N(v, G*) will not
increase as a result of (v,) being excited. '

However, using such local modifiers M implies that the decrease of the local
entropy is enhanced by a factor C = log 2 + & where

%= max E[Mg(u, YHog My (u,7)]

then res the “kindness” of M But, using sufficently large values for the initial lists,
(k= 2(1/C)), the integral in (2.9) will still be small encugh.

2.8. The nibble method. However, since we want the constructed colouring to
be good at all corners of a possibly huge graph, we will not use a continuous process
at all. It is possible that a modified: version of the continuous process described
above could work for moderately sized graphs. But in the general case we must use
the Local Lemna, or some other sieve, to “rectify” the process globally. That is,
making the expected evolution the norm for all vertices. .
To this end, we look instead at a small time-interval [t,t+ ), t = i6, where 6 is
sufficiently small so that the process within this time interval can be approximated
by a probability space 2 — the “nibble space” — which is made up of a set of
mutually independent variables. _ ,
At the same time the time slice @ is sufficiently big so that large deviation
results can be used together with the Local Lemma to choose some outcome where
the relevant quantities stay close to their expected value globally: That is, we will
maintain inequalities corresponding to (2.5), (2.9) and (2.14) above. This way of -
going from a continuous process to a discrete version in order to obtain good global
behaviour can be thought of as using the “nibble method”. :
In general, the nibble method is a way to iteratively extend a partial structure —
a covering, a colouring, and independent set e.t.c — by using & random construction
with sufficently small steps. The main iteration is often followed by a greedy step to
take care of the rest. For asurvey: see [Kah(]. Although the method had been used
before, the term nibble (or “R&dl nibble”) was introduced to describe the central
idea in the proof [?] by V. R5dl of the Erdés-Hanani conjecture. The method, has
since been used with great success on many hard combinatorial problems. ‘

2.9. The truncation. We also take care to “truncate” the state p so that pairs
are active only if p(v,7) < p for some small number = A~9%), In this way the
relevant quantities will have “bounded differences” relative the natural filiration of
2", Standard large deviation results, e.g. Bernstein’s inequality [?], then implies
sufficient concentration, to allow the use of the Local Lemma.

The reason this truncation scheme works is that the bounds on the entropy
given by (2.9) above implies that the pairs T C P discarded by the truncation is a
relatively emall set with small local mass p(Z,) < ¢, for all v € G.
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3. A MORE GENERAL THEOREM

In this section we state Theorem 7 and gwé the proofs that this theorem implies
Theorem 2 and Theorem 6. But, first we define some crucial concepts used in the
proof.

3.1. Mean one variables. For our purposes, a mean one variable M is a non-
negative random variable with expectation E[M] = 1 and such that M = @ or
M > 1. We will use mean one variables to “modify” the weights p(v,<), in order
to keep the “energy” low. The following identity will give the corresponding loss of
“entropy”: For p > 0 and a mean one variable M we clearly have
(3.1) | E[(pM) log(pM)] = plogp + pr(M).
where
w(M) ;= E[MlogM] < log E[Mz]
Note that for an event ‘A we have
R(M(4)) =log (1/Pr[A])
and for independent m.o. variables M and N we have
n(MN) = m(M)+x:(N)

3.2. The stopped product. In the proof we will c:uc;ally use the follomng con~
_ struction. Let ¥;, ¢ = 1,..., be a set of independent m.o. variables. Let X;,
i=10,...,n be the m_a.ri_:ingale defined by Xp =1 and

L
X,':-——HYJ-, izl

=1
For a given threshold a > 0 define the #lopped product X, by
(3.2) | Xo = Xonr,

where 7, is the stopping time .
. =min{i : X; > a} U {cc}.

Then [|Xa]oo 55‘9 a where & = max; || X;||oo- -
Furthermore, x(X,) = 0 if @ < 1 and it is also easy to see that

(33) - HE) < 3 R(H).
i=1

8.3. Modifiers. Given a graph G = (V, E). A vector N = (N(v) : v € G), such
that each N(v) is a mean one variable, is called & modifier for G. Set '
w(N):= max n(N(ﬂ))

and denote by #(M) the maximal outcome of M, i.e.
H3) = max [M(0)]oor
Given a modifier M of G we say that M is contracting if for all edges weG

(3.4) ) E[M(u)M(2)] < 1
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Given a vertex weighting p: V — [0,00] and a ¢ > 0. We say that M is (p,c)-
trimming if for every v € G . :
(3.5) D~ P(v) p(u) CE[M(2)M(u)] - 1) < c- p(v).

L IET) ’

A'contra_cting modifier is thus cleatly (p, ¢)-trimming for any p and e.

3.4. The general theorem. We may now state following theorem which is the -
central theorem of this paper, giving an asymptotic Brook’s bound for graphs with
a local “rimming” property. : o

Theorem 7. Let G be a graph with the following property: For each weighting p
of G such that for allv € G o

P(Gw) < 100logA and Iggxp(‘v) < A™34,

one can consiruct a (p, 1/4)-trimming modifier N, ) oﬁ. Gw with
K(No)} <& and R(N,) <R < AYIO
_ Then
X,(G) = 0(A/log A)(log2 + k).
Remark $.1. The value of the implicit constant obtained is approximately 800/3,
This could certainly be improved by a factor 10 if one was more careful,

Remark 3.2. The use of the number 100 at two places is of course ad hoc: Any pair
of sufficiently large numbers would do. Also, the trimming constant 1/4 is quite
arbitrarily chosen, it is enough to ask for a ¢ strictly smaller than 1/2. Besides, the
choice of ¢ is obviously related to the bounds on p.

Remark 3.8. The theorem can be generalized along the lines indicated for the main
theorem in [?]. In particular, we can start with smaller lists provided these have
sufficiently small intersection for edge-wise pairs.

Remark 3.4. To make the proof go through it is actually enough to ask that, unless
it is zero, Ny (:,7) > 1/2 instead of 1. ’ S

The following corollary is perhaps more plea.siﬁg than Theorem 7.

Corollary 8. Let G be a graph with the Jollowing property: For each w one can
construct a contracting modifier Ny, such that ’

K(No) <k and R(No) < & < AV10

Then
X,(G) = O (4/log A)(log2 + x).

Remark 8.5. The proof of Theorem 7 can be slightly simplified and the constant
considerably improved if we restrict the attention to contracting modifiers.

The stated theorems implies both Theorem 6 and Theorem 2 and the rest of
this section is devoted to showing these implications. The first implication is im-
mediate from Theorem 8: By assumption we have a random subset § C V(Gy) -
such that for any uv € G, the probability Pr[uv € G, [S]] is at most one half of
Pr[u € §] Pr[v € §] and such that max,eq, {1/Pr[u € S]} is less than k. But
these assumptions states Ny,(v) := M(v € §) isa contracting medifier with & equal
to logk, and & equal to k, where k may be assumed to be smaller than A/190
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3.5. Proof that Theorem 7 implies Theorem 2. The construction is hére a bit
more intricate. The idea is to randomly partition the vertices of each neighbourhood
into K,_a-free graphs and a rest-part and then, by a random choice of one of the
parts, “shuffle” all the mass into the part chosen. If that part is one of the K,_,-
free graph we obtain the trimming property by induction on r. The vertices in
the rest-part will by construction have neighbours with low total weight, giving the
_trimming property for all vertices.
For simplicity, let (G, p) denote one of the weighted induced neighbourhoods in
a Ky4 free graph. Hence G = (V, E) is K,-free and has at most A vertices. Let
1> ¢ > 0 and assume that the weighting p satisfies:

(3.6) )= 2 7(v) =0 (log 4).
) - wEV
andVveV
(3.7) p(v) < (256/c)™" (2(V))".
For the given p we shall define a modiﬁer M on G with the property:
(3.8) _ > 2p(v)p(w)E[ M (v)M (u)] < cp(t’)

U

This property is thus somewhat stronger tha.n the (p, c)- f.nmmmg property
The constructed M will satisfy the following bounds

(3.9) k(M) <&(tc) 1= (r—2)logt + (r - 2)? log(256/c)
and ‘ |
(3.10) - R(M) <R (t,0) = (256/c)’ .

where % := p(V) One can easily check that this is enough for Theorem 2 Induc-_
t1vely, we may assume that, for all ¢, such an M can be defined for all weighted

K,_y-free graphs satisfying (3.6) and (3.7) above (For r = 2 there is nothing to
prove: we can set M(v) =1.)

As the first step: for each set X = {ml,mz, +yZm} C V with.m < 32t/c we
construct a modifier Mx as follows. Let ¥ := V \ N(X) and partition N(X) into
subset V3,...,Vis such that V; C ¥ (.’c.) Thus each V;, £ > 1, spans a K,_j-free
graph. Let A ___{z €[1,m] : p(V;) > ¢} and let B =1, m]\A

Define p’ by setting ' = p(v)/w; on V;, where

1/2 - ifi=0
wi =4 p(Vi)/43, p(Vi) ificA
1/4{B| ifie B.

for i = §,... ,m. Note that, since m < 32t/c and ) ;. , p(V;) < ¢ the construction
implies that

(3.11) | wi>c/128 and p(V)< 128t

Let My(v) =1 and for each i > 1 we can , by the induction hypothesis, choose a
modifier M on G[V;] that satisfies the stated properties for ¢ = ¢/2 and p'. Pick at



THE CHOICE NUMBER OF SPARSE GRAPHS 13

random an index « among [0, m] according to the probabilities Wo, . . « , Wy defined
above and let the modifier My be defined by :

Mx(v) := M(v e V,) M (v)
From (3.11} it follows that '
- w(Mx) = max{log(1/w;) + x(M])}
< 10g(128/c) + Ky_1 (128¢, ¢/2)
< (r—2)logt + (r — 2)%log(256/c)
-and similarily that o |
R(Mx) < max{R(M]) - (1/w;)} < (256/c)".
Furthermore, for v € V;, where i £ 0, i.e. if v € N (X), the modifier Mx satisfies
(B12) 2 2 p(v)p(w)E[ Mx (v)Mx (v)] < (c/2)p(v)

U~y

since, the left hand side equals o |
wi 3 28 (0)p () ELM] () M](0)] < wile/2)8' () = (e/2)p(o).

U~y
ueV;

Choose finally Y’ as a random subset by picking v € V' independently at random
with probability 8p(v)/c — this is smaller than 1 by (3.7). Define the random
variable ¥ as Y conditioned on the event that |¥’ | < 32t/ec, ice. for | X| < 32t/c

Pr[Y = X] = Pr[Y' = X /Pr[|Y"] < 32¢/c].

With the random subset Y as above set finally M = My as the modifier for G.
By the construction above, we have that My satisfies the stated bounds (3.9) and
(3.10) for each ¥ of positive probability. Thus, it only remains to verify that M
satisfies (3.8). o ' - Co

We have by (3.12) that

2 2p(0)p(w)E[M(v)M(u) [ v € N(Y)] < (¢/2)p(v).

U~y

On the other hand
E[M(v)M(u) | v ¢ N(¥)] = 2Pr{u ¢ N(Y) | v € N(Y)]
and therefore it is enough to show _

(3.13) - 4p(v)m(v) Pr[v ¢ N(Y)] < —p(v),

where m(v) =3, p(w).
We find that

Prlv ¢ N(Y)] < e~ (®/Im(0) /(3/4)
since Pr[|Y’| < 32¢/c] > 3/4 by Chebyshev’s inequality. Hence,

C 4O)m@Pil € NE)] < 4p(0) - o/8)ae "5 .
where z = (S/C)Iﬁz.(u). But e™"z < 1/e giving (3.13).. - _ a-
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Remark 8.6. The given construction could certainly be improved and simplified.
It would be interesting to know if one can do considerably better by constructing’
a trimming modifier instead of one satisfying the stronger property (3.8).

4. THE PROOF oF THEOREM T

4.1. General outline. We will now give the proof. It is divided into three sec-
tions, where this first section contains the overall structure up to the main lemma:
Lemma 9. The proof of this is the content of the two following sections. The main
point being the argument in §5 bounding the expected energy.

4.1.1. Paremeters. The proof will follow the heuristic outline given above: We start
with a graph G° eatisfying the conditions of the theorem, and a state p° defined by

2°(v,7) = 15(v,7)/|S. 1,
where § C P is the supplied colouring scheme. We tacitly assume that A is large-
enough to allow the estimates to be carried out.
Let € = 1/100 and let

=A%, where a = 3/4+ 5e.

Then, let ¢ = 1/4 be the trummng constant from the theorem. Let,a=1 / 2-3e
and b = a — ¢. These two numbers will give the exponential rate of decrease for the
degree and the energy, respectively. Finally, set

{1-€)2(1 - a)b

(4.1) ‘K= e logAI,
where ‘
C:=log2+x.
By assumption we have that |S,| > A/K for all v € G°. Hence,
(42) " e(v,p”) < K and h(v,p ) >logA—logK.

Remark 4.1. It will be apparent that we make no real effort to compute the best
possible constants. Besides, the constant ¢ = 1/100 can be thought of as a generic
sufficiently small parameter.

4.1.2. The nibble. We let # be given by
’ —1-¢
(4.3) - 0i= S 2 A-1/4+ 2.
andfort =i i=10,1,... we will construct a proba.bility space {2, that carries a
random proper partial colouring ¢’ defined on a subset I’ C V(G*). All probabilistic
notation will refer to the space £2* unless otherwise stated. Let G’ := G*[V(G)\I')
be the remaining graph. The main point in the proof is to construct the residual
state p/, which for convenience has support on G* instead of G'.
We use the Local Lemma to get a good outcome in £2* and for this outcome we

get ot? = o* U’ and
- G'H-O = GI and pf-[-ﬂ - p'IG', .
where '
Pler =P Yo,4):ve67)
We iterate this construction up to some suitable time ¢ = T, when we stop and
colour the remaining graph greedily. '
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Notation. For convenience we will drop time indices when referring to the “present”
time t. That'is, let p = p* and @ = G = (V, E). When referring to vertices we
will mostly use the letters v, %, w, and, if nothing else is said, these symbols refer
to some arbitrary vertex in G = G*. We will also implicitly assume that 7 always
stands for some arbitrary colour in T

4.2. The active state. We will not use the whole state p: Some exceptional pairs -
will be excluded from consideration, Given the state p, define the set - e
T:={(5,) : p(v,7) > 5}.

These pairs will be permanently discarded. Define the active state Pa and the

ezcitable state p, by '
Pai=p-lp\z and poi=p.lp\png.
where
T ={(v,7) : p(Nqy,) > (1/£)K)}.
Thus we “temporarily” deactivate the pairs in 7 where the neighbourhood mass is
to big to allow the modifiers to be defined. We will see that these two states are

almost equal to p: The exceptional pairs in T and J will be raze and not carry
much mass.

4.3. The excited set and the colouring. The main properties of the probability
space {2 are given by the following construction: Define a sparse random subset of
ezcited atoms ' C P as follows: For (v,v) € Plet '

€(2,7) := K(v,7) € £') ~ B (6p:(v,7))
be a set of independent Bernouilli variables each with expectation fpc(v, 7).

We assume that V is ordered and, for B C P, let N~(B) (N+(B)) denote the set-
of pairs adjacent to and preceding (succeding} some pair in B. Define the proper
part £ of £ by setting ' o
. & = E'\N-(&). _ _ ..

That is, remove all excited pairs that have some preceding neighbour that is also
excited. . |

Moreover, for each pair (v,4) € P: throw a fair coin 7'(v,9) ~ B(1/2) and
construct the “colouring” ¢’ C £ by

o Kwyed):= I((v,‘r) Eg') -17'(1:?7).
If C; is non-empty we can take any element of C! for &’(v). Thus
Ifve @) = 1(C, < 0).

4.4. The residual state. We now give the construction of the residual state p'.
The central idea is to define, for each v, a modifier M’ (»¥) on G and then set
(4.9) 2'(v,7) = p(v,7) - M'(v,7)

Crucially, we then get the ma.rtingale.property

(4.5) B (n7)] = (e, ).
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The construction will imply that all paire (v, 1)7 which are neighbours to a pair
(w,7) € ' will be “killed”, meaning that the value of the new active state p’ (v,7)
will- be zero. Here,

P2 =7 Ip\{em):ptom>le
Since, M(v,4) > 1 unless it is zero, we have that p'(v,v) > p('u, %), whenever
p'vg > 0. This 1mp11es that the sequential colouring sta.ys proper, since pairs.in T
will never become active again.
To define M’ note that for p.(w,v) > 0 we have

3 pal,7) < (1/e)K < (1/e)log A
uEGy

Hence, the assumptions of the theorem allow us to define for each (w,+) a modifier

Ny (-,7) on Gy, which is (pa(, 7}, ¢)-trimming, Bach Ny, (:,7) being an “independent

copy”. | .
Then, for each pair (w, ) with p.(w,v) > 0, define M_,(-,7) by

) '] _ 1 : : : if (w"’) ¢ £
(4'6) M"’ (v'j_)-_ {M(‘q’(‘w, 7) = 0) * Nw (”s 7‘) if (w’ 7) € £

Finally, we define M'(w,7) as the stopped product (See (3.2)) of the M/, (v,7) for
w ~ v with respect to the threshold #/p(v,%). (The ordering used is arbitrary.)
This implies that the value of M’(v,v) never exceeds $/p(v,v) with more than a.
factor of 2&. Therefore we have the following bounds

(4.7) P'(v,7) <2p and pl(v;y) <P

4.5. Independence propertles The probability space f2¢ is thus constructed
from the set

{¢ ('”5 I ('”' 1) No(47) : (v,7) €P}

of mutually independent random variables. (We lock upon Ny(+,9) a8 a vector-
valued random variable.)

From the construction it clear that the random variable d(v, G') is determ.med
by the outcome of €' (w, ) and #'(w,~) with w within distance 2 of v. Similarily, for
fixt v and 4 we have that p/(v,v) is determined by €'(w,v), #'(w,v) and N}, (v,7)
with w is at distance 1 from v.

A consequence is that p/(v,v;) and p’ (u,42) are independent random variables
whenever

()m#mnor
(2) v # v and N(u, G) N N{(v,G) = 0.

This give us enough independence to carry out the proof of the concentration prop-
erties in §6 relatively easy. :

4.6. Behaviour of local quantities. The main point is now to maintain the
following inequalities bounding the evolution of the crucial parameters. Basically,
the mequa.htles state that the quantities should not deviate to much in the wrong
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direction from their expected values:

) P(Po) =14+ A7),

(D) d(v, G*) < Ae™%,

(E) - e(n,p}) <e¥K,

(H) | h(v,p") > h{v,p°) - (1 + 0(1))- C- K/t e~ ¥ds,
0

To see where this leads us, note first that (H) and (4.1) ilhplies that
h(v,5%) > h{v,1°) — £(1 — e}l —a)logA |

: >[1-e(1- 5/2)(1 a)llogd.

since h(v, °) =(1- o(l))logA and the integral in (H) is, smaller than l/b

(4.8)

4.7. The active mass. A consequence of (4.8) is then that
(4.9) P(Zo) <, |

i.e. almost all mass is active at each vertex. '
The reason is the following: We can assume that p(v, ) > 1/A unless p(v,y) =
From (N) and (4.8) we then get

P(Z.) - mmin {log(A - p(v, 7)) : (v,7) €T} < 3 log(A - p(v,7))
it

= (1 A~ ) (log A — h(v,p)) < e(1 — £/2)(1 — a) log A
But, by definition of Z, the factor min {log(A - p(v,7)) : (v,7) € I} is greater than
(1 = a)log A, implying (4.9).
In the same manner, we can deduce from (E) that _
Pa(To) < e
since _ 7 '
e K 2 e(v,20) 2 D a0 1)P(Noy) > pal o) - (1/€) K.
. gEJu
Hence, forallv € G

(4.10) it pe(Po} = p(Po) — 0(To) — 0a(Fo) > 1= 2¢.
4.8. The termination. From (4.9) and (4.8) we may then deduce that the loga- |
rithm of the number of available colours at a vertex v exceeds
log |(supppa)s| 2 (1 — ¢)log |(supp p)o|
2(1-e)(l-e(l—a))logA>(1—-¢)logA
since by removmg the pairs (v,7) in T we remove the pairs of highest weight p(v, 1)

and thus, in numbers, a smaller fraction than &.
Thus, if we set

T:= ElogA

and assume that we have managed to maintain the inequalities (N)— (H) up to
time ¢ = T. Then, by (D)

logd(v, GT) S logA—-al < (1-¢) log A,
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i.e. the number of available colours exceeds the degree.- Hence, we may terminate
the process and colour the rest greedily.

4.9, The main lemma. First, we introduce the following statistic:

el == E e(uv,pl)I(u € G’) .

k- Lo N

Note that e gives the energy e(v, pj}er} at v should v stay uncoloured. It will be
more convenient to use e/, and aveid conditioning on v € G’.
The rest of the proof consist in showing the following lernma.

Lemma 9 (The Main Lemma). Assume that (N) —(H) above hold. Then there is
an outcome of 12 such that the following local evenis hold globally, i.e. for all
vertices v in G:

(N) 7 (Py) = p(Ps) % 0(én),

(D) d(v,G") < (1~ a16)d(v, G') + o (6p),
(B%) ey < (1= b18)e(v,pa) +0(6p)
(") h(v,p') > h{v,p) — 8Ce(v,ps) — 0 (85).

Here ay > a and by > b are fized constants, and the error-teims are given by
oy =040 §p =0T K and &p=06e T A.

It is easy to see that by induction this lemma implies the inequalites (N)—(H).

To prove Lemma 9 we will make use of the Local Lemma. (See e.g. [AS92].)
The independence properties stated in §4.5 implies that the dependence degree of
the set of events stated in Lemma 9 is bounded by a polynomial in A (actually

O (A%)). It is therefore more than enough to show that each local event has a
probability of order 1 —A=“(1) to oceur. In that case, we say that the events have
very high probability. '

To prove the lemnia we will show in the next section that the inequalities are true
in expectation. Then we prove in the section that follows, that the variables are
sufficiently concentrated, so that they witk high probability are within the stated
error terms from their expected values.

5. EXPECTATIONS

Thus, we have to show the following bounds en the expectations:

(5.1) E[p'(P.)] = p(P.),

(5.2) E[d(v,G")] < (1 - a18)d(v, B),
(5.3) E[e}] < (1~ biB)e(v, o)
(5.4) E[h(v,p')] > (v, p) — 8Ce(v,p,)

Note that (5.1} follows directly from the martingale property (4.5). The central
point is to show (5.3): It is here we use the “trimming property” of the modifiers.
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5.1. Proof of (5.2). . Since, d(v,6") =%, . Ku€ &) it is clearly enough to
show that ' ' .

(5.5) Prlve G’ < 1—6a - 022(9).
‘We have bir definition thé,t 7
(56 Iv e 6&') = J[(1- €77 (0, 7)¢ (v,7))
v
where _ _
C'(”s 7) = H (1 - E'(w, 7))
B S

Taking expectations we get, since 6 < 1, that

Prlve@]=TJa- gpc(v,v)E[C’(v, N

(5.7 0
e »” 2
<1 ;‘zpc(v,'r)E[C (ﬂﬂ)] +0(8°).
But
E[{'(0,1)] 216 po(w, ),
w<o

and hence
(5.8) PrlveG']<1- gzp,,('u, 7) + 6%e(v,p.) + O (6%).
Since, p.(Py) > 1~ 2¢ = 2a + € by (4.10), we get
(5.9) - Pr[v€G'] <1-6a+0c+ 0 (0°K).
The second term is clearly negligible here and (5.5) follows. 0O

5.2. Proof of (5.4). For a stopped pé.ir (v,7) €I it is clear that

E[-p'(v,7)loglp' (v, 7)]] = —p(v,7) log p(v, 7).
From (3.1) it therefore follows that

(5.10) E[h(v,2)] > h(v, ?) - > Pa(, 7)8(M' (v, 7)).
_ - . ”

From (3.3) and the assumptions on N,, it follows that for fixt (v,7)

K(M'(v,7)) < )0 w(My) = Y Ope(w,7)(log 2 + K(N))

(5.11) Wre Wy
<8y pe(w,7)(log2 + k).

By summing over 4, we see that we have shown (54). ' o
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5.3. The proof for (5.3). First, we show that the possible increase in the energy
is counteracted by the decrease resulting from the removal of vertices. That is, we
show that

(5.12) Ele,] < (1— a8 — 2(6))Ele(v,2})] -
Proof of (5.12). Since, I(u € G') = I(C, = @) and
IC, =0) = I, C {7}) - WC, ={7})»

we have
€, = Ee(uu,p;) I(ue @)
613 =2 L AEMEME C i) - 1= ()
' U~y ' .
= E Zpra(”s ) ALY I(C:, c{vh
u~y Y

since gl (v,7) = 0§ €}, = {}.

By colour independence we have '

E[pa(v, 7)Pa () I(C, C {v}) ] = Br (v, 7)pa(u, 7)1 Pr[C, C {7}],
and moreover
Pr[C, C {7}} - Prlu € G'] < bpc(v,7) < th.
Hence,
PrlC, C{y}] < Prlue '] -6p<1~ab—R2(6). o

by (5.5). The statement (5.12) now follows. _ _ O

‘We note for further use that it also follows that
(5.14) E[e(uv,p,)I(u € G') ] = (Pr[u € G'] — 65)E[e(uv,p})].
Hence, by (5.12), to prove (5.3) it is enough to prove the bound
(5.15) Ele(v,2,)] < (14 0(1)) - (1 + ch)e(v, pa)
sincea —b=c. .

5.3.1. Proof of (5.15). Fix an edge v and a colour . Note that
(5.16) - '

2a(v,7)9, (%) < pa(,7)Pa(u,7) (H M, (v, 'r)). (H M, (u, 1))

Wwrey t
since the r.h.s is zero unless both sides are equal. (The state p|, contains no non-zero
stopped pairs.)
Furthermore, since M;, and M, are independent whenever w; # w;, we get
by taking expectations that

(5.17)
E[p, (v, )0 (4,7)] = pa(v,M)Pa(w,7) [] EIML(u,9)ML(v,7)].

trwiuy

the product taken over all triangles containing the edge uv.
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By the definition of M! in (4.6) we have

E[M,, (u, )My (v,7) | (0,7) € €] = 1
and : .
| E[ My, (s, 7)M;,(0,7) | (,7) € ') = 2E[ N, (u, 7N, (®n)].
It follows that :
(6.18) - E[ M, (u, )M (v,7)] = 14 Op(w, 1), (uv,7)
where _ ‘ '
Jo(uv,y) = 2E[ N, (u, V)N (v, 7] -1
- Note that, by (4.3), we have

(5.19) 2 18pe(w,7) fu(uv, 7)| < 26582 = A,

uvw Suy S
Then, by Taylor approximation, we' get that E[p] (v, v)p}(u,7)] - Pa(0,7)pa (u,7)
is smaller than
(A+0()8 3 pa(v;7)pa(, Vel 7)fr (v, ).
uvw Iuy i

Summing over 1 ~ v gives, since p. < p,, that

E[5(2, )8, (Wea,)) ] — Pa(v,7)p0 (Nevy)s
is less than

(L+0(BD" 37 2ot Mra(v,7)pa(1,9) i (u, )

Urt Uvw dup

S(1+0(1)8 > pa (v,"'})pa (%) Y paluyy)fuluv, 7)

Wy vtwdre
S (1 +o (1_))90.?7& (”$ 7)pa(N(un))s .

where the last inequality is from the trimming property. Finally, summing this over )
7 gives (5.15). . |

Remark §.1." The definition of 8 in (4.3) implies the bound (5.19) which is necessary
for the Taylor approximation above. A more elaborate analysis could probably
allow for a much greater value for 8, since the bound $4 is much to big compared
to a “typical” value of #(N...y). " A-bigger 8 would belp to reduce the size of the
constants. Note also that the Taylor approximation in unnecessary if the modifier
is contracting. - : '

6. CONCENTRATION

We can now conclude the proof of Lemma 9 by showing the following statements
about concentration:

(6.1) with v.h.p: IZ[p’(P,,)]] <o(by),
(6.2) with v.h.p: 2] d(v, "] < o(ép),
(6.3) with v.h.p: IZ[e(‘u,pﬁ,)]l < o(ég),
(6.4) with v.h.p: |2 h(v,p' )| < o(8g),

where Z[ X ] stands for X — E[X]. ~
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The main property we shall nse in proving {6.1) — (6.4) is the independence
between distinct colours. This allows us to use Bernstein’s theorem (see [?] or [?]),
which has the following simple corollary from [?].

Lemma 10. Assume that {Y; : j € J} is a finite set of independent non-negative
rendom variables such that Y; < ¢. If X is the rendom variadle X = . Y;, with
ezpeciation E[ X ] = O (p) and

3/(cp) = w(logd) and Me=w(logA)
then it holds with v.h.p that ‘
|Z[X}] < A

Notation. It is convenient to write f = w,(g) if f =w (logA-g) and f = o.(g) if
g/log A = o(f). For given g, ¢ and Ait thus suffice to check that

A;wc('\/ﬁ+6) or +Jep+c=o0.(})

We list some asymptotic bounds on the parameters which are used below. They
can all be easily checked from the definitions. The “limiting” bound is (6.1¢) below.

(6.5) VERB 1+ 245 = 0. (6)
(6.6) - vV 2i5 - (log A)? +log A - 2&p = o, (6 )
(6.7) V8A+1=o0.(6p)

(6.8) - 205K = o(p)
(69) . V200K +p= (_" (5_5)
(6.10) VZEA-p+ A-$* = 0; (65).

Proof of (6.1} and (6.4). Both }°_ p'(v,7) and 3, —p'vglogp'(v,7) are obv;ously
sums of independent terms, so the lemma applies.

In (6.1) we have u = 1 and ¢ = 2&p, hence it follows from (6.5) and Lemma 10.
For the entropy we have y = O(logA) and ¢ = 2iflogA. Thus (6 6) implies
(6.4). _ O

Hence, it only remains to prove (6.2) and (6.3), where we must work a bit harder
since the sums involved do not have independent terms. However, the following
lemma help us to overcome this obstacle,

Lemma 11. Let the random variable X be defined by
X:= Zc,, Ive G
vEG

| Jor constants ¢, with |cy| < ¢. Then |Z(X}| < A with very high probability if

2
:—ﬂ:«;(logA) and JA/c=w(logA)

where

,u::GEc.,
v
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8.1. The Proof of (6.2) and (6.3). We use Lemma 11 to finish the proof:
Proof of (62) The lemma immediately ﬁnplies (6.2) by taking

o 1= 1y, < 1.
Since ¢ = 1 and u = 64 (6.2) follows from (6.7). O

Proof of (6.3). Let v be fixt and let cu = e(uv, pl) for u ~ v, ¢y == Ef¢! ] and.
Xi=e,=Y Iuec@)e,

X = Z v € G')e,.
Then . B : _
, lZ[X']lSIIX'-XHIX'-E[X]HIE[X]-:E[X']l.
(6.11)

s}]@—m+mquMXbﬂmmf

Uy
The last term is smaller than
053 oy <05 2K = 0(ég)
Uy

by (6.8), (5.15) and (5.14).
- It is therefore enough to show that

(6.12) with vhp: el —ey] = o(6k)
and that with v, 5. 7
|2[X )| = o (65).

The last statement follows from Lemma 11: We have ¢ = Pu=0%, cu<O2K
and :

V02K + § = o, (6g).

To prove (6..12), we use Lemma 10: Each €y i8 a sum of independent terms
bounded by $? and expectation ¢,. We can deduce that :

with v.h.p: ey — €] < w, (V Peq +ﬁ2)-
By Cauchy-Schwarz :
Q=) (b/ea+5°) < VA-p- V2K + Ap2,

U~y -

But, since the intersection of at most A events of v. . P is an event of v. b. P
the sum 37 ot — ¢u| is therefore with v, A. p smaller than o (ép) = w, (Q), by
(6.10). O
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8.2. The proof of Lemma 11. To make the proof complete, we shall prove
Lemma 11. Following the standard procedure (See e.g. [?] or [Kah93].) it is
enough to show the following bound on the Laplace transform

(6.13) _E[esz] < eg’q’ foré <1lfe ,

for Z=2Z[X)] and @ =0 (ep) > 0. o
To see how (6.13) implies the lemma: Note that from Chebyshev’s inequality
follows '

PI{Z > A] = Pt[eez > ef“] < eE:Q-E-\'

With £ = A/2Q, assuming A < 20, the right hand side is e=*"/4Q = g~w(icgd),
This implies the lemma if A < 2Q/c. Should this not be the case, we repeat the
argument with @' = c) > @, and £ = A/2Q’ = 1/2¢ instead. Finally, the lemma
follows by repeating the argument with —Z instead of Z.

In order to prove (6.13), we use Lemma 12 below which is also more or less
standard. But before stating this, we introduce some notation: Given a probability
space (£2, M, Pr[-]) and a filtration Mg C M; C --- C M, of sub-(sigma)-algebras
of M, let Z;[-] := Zjj-1][-] where :

Zij[-] = B[- | Mi] - E[- | Miy].
Then we have the following.
Lemma 12. If X is a r.v. such that for each i for some ¢
*) B{etHX] | Mia | <1+€Qs.
Then .
E{eezo,.[x] !Mo] _<_e£’2-q".

Furthermore, if for eech i
1Z{X][<a<e
“and
E[|Z[X]| | Mi1] <B
then (*) holds with Q; = ¢;b; and [§| < 1/ec.

Proof. The first statement follows from
(6.14)
E[esz.,.otxz lMo] = E[E[eezntxl IM,,_1] %m0 X] tMo]

< e . E[esz.-l.om lMo]

and induction.
The second statement follows readily from a Taylor approximation:

e <1+z4+2% iflz|<1.
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6.3. The proof of (6.13). We assume that V = [1, N] and that the ordering used
in the definition of £’ is the natural one. Let Mgy = @ and for v € V define the
algebra :
' M, = {€(w,7),7/(w,7) : YET,w < v}.
Denote by Ey[-] the conditional expectation E[- | M, ] relative the algebra M,.
Let Y, = ¢, I(v € G") and write T}, = Yusp Yu. Then
%Wl X =%(Y]+2]T],
since the value of ¥, for u < v, is determined by M,_;. Furthermore, since
(6.15) '

E,3 [eezv[x]] < _;_ (Ev—l [3252-,[1’..1} +E,_, [ezezv[n]]) .

it is enough to show the following two inequalities:

(6.16) Eo-y [efzvl”vl] <1+ £%6c2
and
(6.17) ' Ev_1 [eizv[T.,]] <1+¢£2R,
where
R, =2K6%) " ¢ - e(uv, pc).
u>o

This implies (6.13) since summing the R,’s gives

D R, <2K6°. (Zu €Vey- Ze(uv,pc))

vt

< O(K?6%) - cu = o(cp).

- 6.3.1. Proof of (6.16). Clearly, |Z, [¥2]] £ |es! < ¢ and for any indicator variable
I we have
E[|2[1]|] < 2min{E[1], 1~ E[I]},
and hence that E,_4 [IZ, (Y, ]]] < 26c,. By Lemma 12, this proves (6.16). O
6.3.2. Proof of (6.17). In order to show (6.17) we study what happens at v a bit
more closely. Assume that I' = [1, M] and define a filtration
Meya=MC "'C-M'y C ".'CNM=M.,
where
N'r HS (5'('"1 "f):ﬂ'(”a :)-’) ¥ < 7) VMyo1
Thus we look at one excitation at a time. Set E,[-] := E[- | Ny ] and
Z,[X] = E[X | Ny] = B[X | Ay ].
To prove (6.16), it is by Lemma 12 enough to show

(6.18) Z,[Te]1< 0 cupe(u,7)
and u>v
(6.19) Erma[1Z,[T]1] €6 Y cupe(u, Mpe(v, 7).

w>y
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Note that, by the definition of p;, the r.h.s. of (6.18) is of order O{c- K -8) = o(e).
whenever p.(v,) > 0, which is the only case we have to consider, since otherwise,
clearly, both bounds are zero.

By definition, for u € G,

Yu=cy H(1 Oﬂ'(urr)e'(u,'r)C'(u,'r))

where

)= [T -€@w ).

wests
Wy

Therefore, by independence, for v < u,

B, (%] = e [I(1 - 5pel, B ¢/ )

where
(6.20)
E,{¢{'(v, )] = ( II @ —Gpc(w,‘v))) I -€(w,9)
vew<u. <o
Hence
(6.21) Z-y [Yu] =gy P gpc(us 7) Z’r [C'(u! 7)] .
where

P= H(l — "pc("?“f)E i<

&y
From (6.20) it is clear that

izv[‘:’("’ 7][<1 and E'r-—l[lz-r [C'(“s 7111 £ 28p.(v, 7)3
which, by (6.21), implies that

{6.22)
12 (%] | S el ) and EyoaliZ (%] 1] < cotpelu 1)pelo 7).
By summing over u > v we get (6.18) and (6.19). O
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