SecuredTrust: A Dynamic Trust Computation
Model for Secured Communication in
Multi-Agent Systems

Anupam Das and M. Mahfuzul Islam, Member, IEEE,

Abstract—Security and privacy issues have become critically important with the fast expansion of multi-agent systems. Most
network applications such as pervasive computing, grid computing and P2P networks can be viewed as multi-agent systems
which are open, anonymous and dynamic in nature. Such characteristics of multi-agent systems introduce vulnerabilities and
threats to providing secured communication. One feasible way to minimize the threats is to evaluate the trust and reputation
of the interacting agents. Many trust/reputation models have done so, but they fail to properly evaluate trust when malicious
agents start to behave in an unpredictable way. Moreover, these models are ineffective in providing quick response to a malicious
agent’s oscillating behavior. Another aspect of multi-agent systems which is becoming critical for sustaining good service quality,
is the even distribution of workload among service providing agents. Most trust/reputation models have not yet addressed this
issue. So, to cope with the strategically altering behavior of malicious agents and to distribute workload as evenly as possible
among service providers; we present in this paper a dynamic trust computation model called ‘SecuredTrust'. In this paper we
first analyze the different factors related to evaluating the trust of an agent in a and then propose a comprehensive quantitative
model for measuring such trust. We also propose a novel load balancing algorithm based on the different factors defined in our
model. Simulation results indicate that our model compared to other existing models can effectively cope with strategic behavioral
change of malicious agents and at the same time efficiently distribute workload among the service providing agents under stable

condition.

Index Terms—Multi-agent system, trust management, reputation model, load balancing, malicious behavior.

1 INTRODUCTION

In a multi-agent system, agents interact with each other
to achieve a definite goal that they cannot achieve alone
[1] and such systems include P2P [2-5], grid computing
[6], the semantic web [7], pervasive computing [8] and
MANETSs. Multi-agent Systems (MASs) are increasingly
becoming popular in carrying valuable and secured data
over the network. Nevertheless, the open and dynamic
nature of MAS has made it a challenge for researchers
to operate MAS in a secured environment for information
transaction. Malicious agents are always seeking ways of
exploiting any existing weakness in the network. This is
where trust and reputation play a critical role in ensuring
effective interactions among the participating agents [9,
10]. Researchers have long been utilizing trust theory from
social network to construct trust models for effectively
suppressing malicious behaviors of participating agents.
Trust issues have become more and more popular since
traditional network security approaches such as the use of
fire-wall, access control and authorized certification cannot
predict agent behavior from a ‘trust’ viewpoint.

A reputation based trust model [11-14] collects, dis-

Anupam Das is currently working as a PhD student in the Department of
Computer Science at University of lllinois at Urbana Champaign, Urbana,
IL 61801-2302, USA and M. Mahfuzul Islam is with the Department of
Computer Science and Engineering, Bangladesh University of Engineering
and Technology, Dhaka-1000, Bangladesh,

e-mail: anupamdas @ cse.buet.ac.bd, mahfuzul.islam@ieee.org

tributes, and aggregates feedback about participants’ past
behavior. These models help agents decide whom to trust,
encourage trustworthy behavior, and discourage participa-
tion by agents who are dishonest. Reputation based trust
models are basically divided into two category based on the
way information is aggregated from an evaluator’s perspec-
tive [15,16]. They are “’Direct/Local experience model” and
“Indirect/Global reputation model” where direct experience
is derived from direct encounters or observations (first hand
experience) and indirect reputation is derived from infer-
ences based on information gathered indirectly (second-
hand evidence such as by word-of-mouth). So, in case
of global reputation models [17-29] an agent aggregates
feedback from all the agents who have ever interacted with
the target agent i.e., an agent has a view of the network
which is wider than its own experience, thus enabling it
to quickly converge to a better decision. However, global
reputation models are much more complex to manage
than local experience models as malicious agents have the
opportunity to provide false feedbacks.

Most of the existing global reputation models can suc-
cessfully isolate malicious agents when the agents behave
in a predictable way. However, these models suffer greatly
when agents start to show dynamic personality i.e., when
they start to behave in a way that benefits them. These
models also fail to adapt to the abrupt change in agents’
behavior and as a result suffer when agents alter their
activities strategically. Moreover, some of the models show

little effect in dealing with more complex attacks such as
dishonest or unfair rating and collusion. Another aspect
which is slowly becoming critical for the proper mainte-
nance of service quality is the appropriate distribution of
workload among the trusted service providers. Without a
proper load balancing scheme the load at highly reputable
service providers will be immense which will eventually
cause a bottleneck in the system’s service quality. To the
best of our knowledge none of the existing trust models
consider load balancing among service providers.

With these research problems in mind, we propose a
feedback based dynamic trust computation model named
SecuredTrust which can effectively detect sudden strate-
gic alteration in malicious behavior with the additional
feature of balancing workload among service providers.
SecuredTrust considers variety of factors in determining the
trust of an agent such as satisfaction, similarity, feedback
credibility, recent trust, historical trust, sudden deviation of
trust and decay of trust. We have used a novel policy of
utilizing exponential averaging function to reduce storage
overhead in computing the trust of agents. We have also
proposed a new load balancing algorithm based on approx-
imate calculation of workload present at different service
providers.

The remaining part of the paper is organized as follows.
Section 2 reviews the most recent and well known related
works. In section 3, we formally introduce our dynamic
trust computation model. We present our novel load bal-
ancing algorithm in section 4. To show the effectiveness of
our model, we present simulations and comparative studies
in section 5. In section 6, we discuss how our model resists
the common threats confronted in multi-agent systems and
how other threats can be addressed. Finally we conclude
the paper in section 7.

2 RELATED WORK

In this section we look into some of the most recent
and popular research works done on reputation model.
Here we discuss the key ideas of the following models-
Bayesian network based trust model [18], EigenTrust [19],
trust model given by Dou et al. [30], ReGreT [31-33],
PeerTrust [20,34], FCTrust [25], SFTrust [24], FIRE [35-
37], recommendation model provided by Wang er al. [26],
trust model provided by Li et al. [23] and trust model
proposed by Wen et al. [27].

Bayesian network based trust model [18] believes that
trust is multi-dimensional and agents need to evaluate trust
from different aspects of an agent’s capability. This model
uses bayesian network and bayesian probability to calculate
trust. This model’s main flaw lies in the authors’ assumption
that all the agents have identical bayesian network archi-
tecture which is unrealistic because different agents have
different requirements which leads to different network
architecture. In case of aggregating recommendation from
other agents, this model assumes that all the agents are
truthful in providing their feedbacks. This assumption is
also not realistic as malicious agents will often provide false
feedback to other agents to disrupt the system.

EigenTrust [19] aggregates the local trust values of all
agents to calculate the unique global trust value of a given
agent. An agent depends on some pre-trusted agents for
trust evaluation in absence of trustworthy recommenders.
Even though FigenTrust may work well in social net-
work infrastructure where pre-trusted neighbors (agents)
are likely to be trustworthy, but in case of other multi-agent
systems like P2P, EigenTrust poses a few problems. Firstly,
In P2P network such pre-determined trustworthy agents are
not readily available. Secondly, depending on these pre-
trusted agents create a vulnerability in the sense that if
some of these pre-trusted agents get compromised then it
will be much easier to launch a large scale malicious attack.
The trust model proposed by Dou ef al. [30] is similar to
EigenTrust, but it does not consider the use of pre-trusted
agents in the calculation of trust. Dou’s model reduces
iteration cost and punishes malicious behavior, but does
not consider the punishment of dishonest recommenders.

ReGreT [31-33] is a reputation model that computes
reputation from three dimensions: individual dimension,
social dimension and ontological dimension. The individual
dimension reflects an agent’s own observation whereas the
social dimension considers the opinion of other agents in
the community. Finally, the ontological dimension consid-
ers reputation as a multi-facet concept and computes repu-
tation from different aspect. Other models such as Repage
[38] and BDI+Repage [39] consider a role based dimension
in computing reputation. While ReGreT considers different
dimensions in computing reputation, it does not address
the collusion problem associated with computing global
reputation.

PeerTrust [20, 34], computes the trustworthiness of an
agent as normalized feedback weighted against the cred-
ibility of feedback originators. In PeerTrust Xiong et al.
defined five factors in computing the trustworthiness of
agents among which three factors are basic trust parameters
while the remaining two are adaptive factors. PeerTrust uses
personalized similarity measure to compute the credibility
of recommenders and it uses this credibility measure to
weight each feedback submitted by the recommenders.
PeerTrust’s main drawback is that it has to retrieve all the
transactions within the recent time window (which may
contain a large number of transactions) to compute the
trust of an agent. So the trust evaluation process is both
computationally and spatially expensive. Furthermore, all
the transactions in the retrieved window is given equal
significance but recent transactions should be given higher
weight than past transactions.

FCTrust [25] uses transaction density and similarity
measure to define the credibility of any recommender
providing feedback as opposed to [19,30] which use global
trust to weigh the quality of feedbacks. In other words,
FCTrust differentiates the role of providing feedbacks from
that of providing services. However, FCTrust’s main draw-
back is that in computing direct trust it retrieves all the
transactions performed within a time frame. This imposes
storage overhead. Moreover, the simple averaging function
used to define local trust assigns equal weight to all the

transactions but realistically recent transactions should be
given more importance than historical transactions. Another
drawback of FCTrust is that it assigns equal degree of
reward and punishment in computing similarity but the
degree of punishment should be greater than that of reward.

SFTrust [24] is a double trust metric model which main-
tains two trust metric, one for service trust and the other for
feedback trust. It separates service trust from feedback trust
to take full advantage of all the agents’ service capabilities
even in the presence of fluctuating feedbacks. In this model,
recommendation is aggregated through local broadcasting
(limited by the TTL field) which can be really time
consuming and moreover, recommendation should come
from agents who have first hand experience [40,41] with
the respective target agent. SFTrust computes service trust
as a weighted average of local trust and recommendation
trust, but the weight itself is static and as a result it
cannot properly accommodate the experience gained by the
evaluating agent over time.

The FIRE model [35-37] believes that most of the
trust information source can be categorized into four main
sources- direct experience, witness information, role based
rules and third party references. FIRE integrates all four
sources of information and is able to provide trust metrics
in a wide variety of situations. However, among the four
sources two of them namely- witness information and third-
party references are directly dependent on third-party agents
and are therefore, susceptible to dishonesty and unfair
rating. Since agents in an open MAS are self-interested,
they may provide false rating to gain unwarranted trust
from their partners and form collusive groups. As far as
we understand FIRE thats does address this problem.

In computing the global trust of any agent, the recom-
mendation model provided by Wang et al. [26] combines
both local trust calculated from the agent’s own experience
and recommendation provided by other agents. This model
uses average number of successful transaction as a metric
of local trust which fails to assign time relative weight to
the transactions. This model calculates global trust as a
weighted combination of local trust and recommendation,
but the weights assigned to these trust values are fixed and
do not change over time. So, the model cannot accom-
modate the experience gained over time by the evaluating
agent.

The trust model provided by Li er al. [23] address
different aspects in determining the trust of an agent such as
recent trust, historical trust, expected trust and confidence
in its trust for other agents. However, in computing direct
trust this model uses simple averaging function which fails
to assign any time relative weight to the transactions.
Another drawback of this model is that the formulation
of both historical trust and credibility requires the storage
of previous values upto a certain interval and this causes
storage overhead.

Wen et al. [27] combines both direct trust and indirect
trust in computing the trust value of an agent. In calculating
indirect trust this model considers both direct and indirect
recommenders. As a result two types of credibility have

been defined namely direct credibility and referral credibil-
ity. In case of referral credibility it uses the transitive law of
trust and as a result there exists the possibility of false error
propagation. The model’s main flaw lies in the assumption
that all routes to target agent have equal weight which is
not logical since longer the path, higher the chance that a
malicious agent lies in that path. So longer paths should be
given lesser weight than smaller paths.

The models defined in [18-20, 35, 30, 26, 25, 24, 23] do
not address a critical aspect of trust theory which is decay
of trust value with the elapse of time. Since, at present, the
network is highly dynamic and unpredictable, trust values
should decay as time elapse in absence of interaction.
Some models [27,42] address the above mentioned issue
by incorporating their own decay function. However, these
models fail to simulate real life decay function which has
a small decay rate in the initial phase while displaying
higher decay rate as more and more time elapse. We have
incorporated such decay function in our trust model along
with many other issues which have not been addressed by
existing trust models.

Another aspect which is slowly becoming vital for the
sustaining service quality, is the balanced distribution of
workload among service providers. Almost all trust models
have ignored this issue so far. In fact none of the models
discussed so far address the aspect of balancing load
among the trusted agents for proper maintenance of service
quality. In a trust computing environment an agent with
the highest trust is normally selected as service provider,
so highly reputed agents handle bulk of the total service
requests. This can degrade the overall service quality of the
system if these highly reputed agents are assigned too much
workload. So a load balancing algorithm which distributes
service requests to all capable (i.e., a bit less reputable but
trustworthy) agents is required to maintain a satisfactory
level of service quality. We have proposed such a load
balancing algorithm.

3 SECUREDTRUST

The main objective of this paper is to provide a dynamic
trust computation model for effectively evaluating the trust
of agents even in the presence of highly oscillating ma-
licious behavior. Our model also provides an effective
load balancing scheme for proper distribution of workload
among the service providing agents. A number of parame-
ters have been considered in our trust model for computing
the trust of an agent. Now, some of these parameters have
been previously discussed in [25,20,24,26,27,23] but none
of these models can fully cope with the strategic adaptations
made by malicious agents. The mathematical and logical
definitions used for these parameters also cannot reflect
the true scenarios faced in real life. Moreover, none of
the models have considered the wide range of parameters
that we have considered. In the following sections we
redefine the mathematical expressions used for some of the
parameters and at the same time define some new ones and
then finally combine all of the parameters to present our

new dynamic trust model. For the following sections we
assume that agent p (called evaluator) needs to calculate
the trustworthiness of agent g (called the target agent).

3.1

Satisfaction function measures the degree of satisfaction
an agent has about a given service provider. In other
words, it keeps record of the satisfaction level of all the
transactions an agent makes with another agent. However,
instead of storing all of the transaction history we have
defined an exponential averaging update function to store
the value of satisfaction. This greatly reduces the storage
overhead and at the same time assigns time relative weight
to the transactions. Let, Sat!, (p, q) represent the amount of
satisfaction agent p has upon agent g based on its service up
to n transactions in the 7-th time interval . The satisfaction
update function is defined as follows-

Satisfaction

Satt (p,q) = a x Satey, + (1 —a) x Satt,_,(p,q) (1)

Satt(p,q) = Satl, }(p,q) ie., the value of satisfaction
at the start of #-th time interval is equal to the last
computed satisfaction in the (z-1)-th time interval and the
very initial value of satisfaction is Sat$(p,q) = 0. Here,
Sat.,, represents the satisfaction value for the most recent
transaction and we have used a feedback based system
where an agent rates other agent’s service quality according
to the following function '-

0, if transaction is fully unsatisfactory
Sat ey, = 1, if transaction is fully satisfactory
€ (0,1), otherwise

2

The weight o changes based on the accumulated deviation
&.(p,q).

o (p,q)
a = threshold+c¢x —2—22 3
1+ &L (p,q) ©)
6,(p,q) = |Sat;,_1(p,q) — Satcu,| 4)
&g = exdipg)+(1—c)x&_1(p,q) 5)

&(p,q) = tl;; (p,q) and £)(p, q) = 0. Here c is some user
defined constant factor which controls to what extent we
will react to the recent error (6% (p, q)). So, if we increase
the value of ¢ then we give more significance to the recent
deviation than the accumulated deviation and vice versa.
Again we can see that as recent error (&, (p, q)) increases
so does a which means that recent satisfaction is given
higher weight than accumulated satisfaction (i.e., higher
significance is given to the recent service feedback). The
threshold represents a threshold which is used to prevent
« from saturating to a fixed value. Initial value of « is
set to 1 (we consider only the current transaction at the
very beginning as we have no knowledge of any previous
transaction) and threshold is set to 0.25.

1. We could compute satisfaction by considers multiple attributes (a;)
of a given transaction. Then satisfaction Sat could be computed using the
function: Sat = vazl w; a4, where there are IV attributes for evaluating
a transaction and w; represent their corresponding weight.

3.2 Similarity

Similarity metric defines to what extent two agents are
alike. We have computed similarity by determining the per-
sonalized difference in satisfaction rating over the common
set of interacted agents and have then used the computed
difference rating to define the degree of similarity. Let,
IS(p) represent the set of agents with whom agent p
has made interaction. Then C1S(p,q) = IS(p)(1S(q)
denotes the set of agents with whom both agent p and ¢
have made interaction.

The personalized difference in satisfaction rating be-
tween agent p and g denoted as Dif fi(p,q) is defined
as follows-

T e I T
|C1S(p, q)
(6)
To measure the similarity between agent p and ¢
(Sim! (p,q)), agent p first compares Dif f!(p,q) with the
similarity deviation constant (7) and then updates similarity
according to the following function-

1-Sim}, 1 (p,g)
L

P)
if Diffr(p,q) <7

Sim’jl—l(pvq)
¥

Simy, 1 (p,q) +
Simy, (p, q) =

Simy, _1(pq) — else

(N

where p,1 represent the reward and punishment factor
respectively and both of them can be changed dynamically
depending on the system. From equation (7) we see that
as Dif fl(p,q) increases beyond 7, similarity Sim? (p, q)
decreases. Here p,7p € R and we must make sure that
1 > 1 because the degree of punishment should be greater
than that of incentive. By doing so we incorporate the
principle of “slow rise and quick decline”. If however,
|CIS(p,q)] = 0 then we set Diff!(p,q) = 0 and
Sim!t (p,q) = 0.5 (default value).

3.3 Feedback Credibility

Feedback credibility is used to measure the degree of ac-
curacy of the feedback information that the recommending
agent provides to the evaluator. Normally it is assumed that
good agents always provide true feedback and malicious
agents provide false feedback. However, this is not always
the real scenario as good agents might provide false feed-
backs to their competitors and malicious agents might occa-
sionally provide true feedbacks to hide their real nature. So
feedback credibility is needed to determine the reliability of
the feedback. During trust evaluation, feedbacks provided
by agents with higher credibility are trustworthier, and
are therefore weighted more than those from agents with
lower credibility. Let, FCrel (p,q) present the feedback
credibility of agent g from agent p’s perspective.

1— ln(SimL,(pm),

e Qe t
FCret (p,q) = s if Sim! (p,q) >0
0, else

®)
where § = 0.01 represents the lowest allowed value of
similarity. As we can see from equation (8), credibility is a

direct logarithmic function of similarity for its slow rise to
the highest attainable value. This implies that agents with
higher similarity with respect to the evaluating agent have
higher feedback credibility.

3.4 Direct Trust

Direct trust also known as local trust represents the portion
of trust that an agent computes from its own experience
about the target agent. Let, DT (p, q) represent the direct
trust that agent p has upon agent g up to n transactions in
the #-th time interval. We have used the satisfaction measure
to define direct trust as follows-

DT} (p,q) = Satl,(p,q)))

Since satisfaction is computed by an agent’s own experi-
ence, we are using it as local trust. So, if agent g provides
good service then agent p will rate it with a high satisfaction
value and as a result agent g will obtain a high local trust
rating from agent p’s perspective.

3.5

Indirect trust also referred as recommendation is computed
from the experience of other agents. An agent utilizes the
experience gained by other agents in the system to make
effective transaction decisions especially when it has no or
very little experience with the given target agent. To do so,
an agent requests other agents to provide recommendation
about the target agent. The evaluating agent then aggregates
recommendation from other agents along with the feedback
credibility of the recommenders. Let, IT(p,q) represent
the indirect trust that agent p computes about agent g.

Indirect Trust

ZmeW—{p} FCrefL (p,a:)xDT,tL(w7q)
FCret (p,x) ’

if 17— {p}] > 0
0, if W — {p}| = 0

ze€W —{p}

IT}(p,q) =

Here W = T'S(q), represents the set of agents who have
ever interacted with agent g. From equation (10) we see that
indirect trust is computed as weighted average of recom-
mendation from different recommenders where the weights
represent the feedback credibility of the recommenders.
The recommendation made by a recommender is its own
experience i.e., its own direct trust (DT).

3.6 Recent Trust

Recent trust reflects only the recent behaviors. We have
defined recent trust as a weighted combination of direct
and indirect trust. Direct trust is given higher weight as the
evaluating agent performs more and more interactions with
the target agent, i.e., the evaluator becomes more confident
about its own experience than taking recommendation from
others. Let, RT) (p, q) represent the recent trust that agent
p has upon agent g.

RT}(p,q) = B x DT} (p,q) + (1 — B) x IT}(p,q) (11)

where [represents the weight of direct trust which can be
calculated as follows-

I'(p,q)
— 12
4 I*(p,q) + M*(p,q) (12
Mt(p, q) _ ZmEW—{p} Fcrezz(pa :E) X It(‘ra Q)(IS)

W —{p}|

Here W = T'S(q), represents the set of agents who have
ever interacted with agent ¢ and I%(p,q) represents the
number of interactions agent p has conducted with agent
g in the t-th interval. So, M*(p,q) represents the mean
number of interactions that other agents (agents other than
p) have conducted with agent g. We have weighted the
interaction count (/) with feedback credibility (F'Cre) of
the recommenders in computing M (p, q). We can see that
as I'(p, q) increases (compared to M*(p, q)) the value of 3
also increases signifying that as the evaluator becomes more
experienced, it tends to rely more on its own judgement.
If |[W — {p}| = 0 then we set M*(p,q) = 0 and if
It(p,q)+M?t(p,q) = 0 then we set 3 = 0.5 (default value).

3.7 Historical Trust

Historical trust is built from past experience and it reflects
long term behavioral pattern. With the elapse of time recent
trend becomes historical trend, and as a result we have
defined historical trust by using an exponential averaging
update function. By using an exponential averaging update
function we not only reduce the storage overhead associated
with storing the previous recent trusts but also assign time
relative weights to all the previous values. Let, HT!(p, q)
represent the historical trust that agent p has about agent g.

_ px HT. \(p,q) +RT}_,(p,q)

HT,(p,q) = 5 (14)

where p(0 < p < 1) is the forgetting factor (discounting
older experiences) and HT((p,q) = 0. With historical
trust present malicious agents cannot suddenly forget their
past and start behaving good. In other words, since we
are keeping track of an agent’s past behavior it cannot
deceive other agents into believing that it is a good agent
by just behaving cooperatively in the recent transactions.
For an agent to be considered as good, it has to perform
in a cooperative manner for a significantly large number of
transactions so that its recent trend can replace most of its
historical trend.

3.8 Expected Trust

Expected trust reflects expected performance of the target
agent and it is deduced from both recent and historical
trust. In other words, we are combining both recent trend
and historical trend to get a prediction of the future trend.
Let, ET! (p, q) represent the expected trust of agent ¢ from
agent p’s perspective. Expected trust is calculated by the
following equation-

0, if neither RT nor HT is available
nRT (p,q) + (1 —n)HT} (p, q),

if either RT and/or HT is available

15)

Initially 7 is set to 0.5, but n adjusts dynamically based on
the difference of recent and historical trust (deviation factor
€). Here we are encouraging benevolent behavior by agents
in the recent interactions by increasing 7 when recent trust
exceeds historical trust by a given threshold (¢). This also
provides agents with the opportunity to improve their rating
after network failure/congestion (provides a second chance
opportunity).

ET!(p,q) =

n+0.1, if RT!(p,q) — HT}(p,q) > €
n=q n-01, if RT,(p,q) — HT,(p,q) < —¢
n, if —e < RT!(p,q) — HT!(p,q) <¢
(16)

As we see from equation (16) that when recent trust exceeds
historical trust by € the value of 7 increases by 0.1 (empiri-
cally tuned) and as a result the contribution of recent trust to
expected trust increases i.e., the expected trust reflects more
of the recent trust than the historical trust and vice versa.
So, we are actually opting to take an optimistic approach
where we are considering the best possible outcome for an
agent. In other words, we are highlighting or emphasizing
the best possible behavior expected from an agent. Now, by
controlling the value of ¢ we can determine how quickly
an agent can recover from its historical trend. However, the
value of ¢ should not be set very small as malicious agents
might then try to exploit this by quickly recovering from
their past mischiefs.

3.9 Decay model

Due to the highly dynamic nature of agents, trust should
attenuate with the elapse of time in absence of interaction.
If an agent remains idle for a long time i.e., if it does not
interact with the network for a long period, the evaluation of
its trust should degrade gradually. Since in our model direct
trust depends on satisfaction and indirect trust is calculated
from the direct trust of recommenders we apply a decay
function on satisfaction metric. The decay function is given
as follows-

Satfl (p,q) = Sat; (p, q)e_’\At

At = teurrent — tprem'ous

a7
(18)

where §at;(p, q) represents the value of satisfaction after
decay. Here, A is the decay constant and it controls how
quickly the value will diminish to zero. At represents
the interval between the current interaction and the last
interaction. So, as At increases, i.e., as the interval between
successive interactions increases the trust value of the target
agent decreases from the perspective of the evaluating
agent. By including the time decay model we establish the
principle “the more recent the transaction the more reliable
it is”.

3.10 Deviation Reliability

Deviation reliability is a measure of how much deviation
we are willing to tolerate. Malicious agents sometimes
strategically oscillate between raising and milking their
reputation which seriously affects the performance of the
network. So, some form of measurement is required to
handle such scenario. Deviation reliability handles such
trust fluctuation. To record the sudden misuse of trust
by agents, we introduce the component accumulated trust
fluctuation (denoted as ATFE} (p, q)).

ATF . (p,q) + RT} (p,Q);HTfL(p,q)’
if RT}(p,q) — HT}(p,q) > ¢
ATF!_(p,q) + HT}(p,q) — RT}(p,q),
if RT} (p,q) — HT}(p,q) < —¢

ATF7t),—1 (p7 q)7 otherwise

ATF!(p,q) =

(19)
where ¢ represents the tolerated margin of error in the
evaluation of trust and w (w > 1) represents the punishment
factor for sudden rise in trust. From equation (19) we see
that we are considering both sudden rise and fall of trust
by agents. However, we are penalizing lesser for sudden
rise (through controlling the value of w) since we are
encouraging agents to raise their trust through benevolent
interactions. This is evident from the above equation be-
cause with w > 1 the contribution to accumulated trust
fluctuation will be less than RT!(p,q) — HT}(p,q) for
sudden rise where it is exactly HT}(p,q) — RT(p,q)
for sudden fall. Initial value of accumulated misused trust
ATF{ (p,q) = 0.

Deviation reliability uses the accumulated trust fluctu-
ation metric to measure the deviation in agent behavior.
Deviation reliability (denoted DR!, (p, q)) is defined by the
following equation-

0, if ATF!(p,q) > mazAT

o, ATFE;(p.q)
COS(? X mazATF

DRl (p.q) = { (20)

), otherwise

where max ATF represents the maximum tolerable trust
fluctuation. So from equation (20) we can see that the
deviation reliability follows the property of a cosine curve
when the accumulated trust fluctuation is less than the
given threshold maxzATF and it becomes zero when the
accumulated trust fluctuation exceeds max AT F'. We have
used a cosine function for defining deviation reliability
since the cosine function has a low degradation rate in the
initial stage and as more and more trust fluctuation occurs
the degradation rate increases. Here, the initial value of
deviation reliability is DRY,(p,q) = 1.

3.11

This is the actual trust value used in prioritizing all agents.
It is computed from expected trust and deviation reliability.
Let, Trustt (p,q) represent the final trust value agent p
places upon agent g.

Overall Trust Metric

Trust! (p,q) = ET!(p,q) x DR, (p,q) (21

From the equation it is evident that agents with high
expected trust values but with low deviation reliability
will eventually have low overall trust value. Otherwise
stated, agents that strategically oscillate between building
and milking trust will have low trust value due to low
deviation reliability. For an agent to attain a high overall
trust value it must behave cooperatively and at the same
time must not show major trust fluctuation. Therefore, an
agent will use equation (21) to select the target agent with
the highest trust value as this metric combines all the factors
we have discussed so far.

4 LoOAD BALANCING AMONG AGENTS

In this section we propose an algorithm for balancing loads
among the trusted agents. For selective scenario, we first
compute the trust of agents who respond to a transaction
request and then we select the agent with the highest
trust value. However, in this scenario the agent with the
highest trust value will have immense workload while other
capable agents with slightly lower reputation will have
considerably less workload. The problem that will arise
from this disproportionate allocation of workload is that the
quality of service will fall greatly due to the heavy workload
present at the highly trusted agents. So a load balancing
algorithm is required for the sustainability of good service
quality.

In our load balancing algorithm we either calculate a
heuristic value of workload and choose the agent with the
smallest load or make a probabilistic choice based on the
computed trust value of agents. We start our load balancing
algorithm by first classifying the responders (agents that
respond to a transaction request) into two groups namely-
good service providers (G) and unknown service providers
(U) based on a threshold value of trust (y). We then
first seek to choose an agent from G by computing an
approximate value (heuristic value) of load present at each
responders in G. Sorting the responders in increasing order
of load we take the responder with the smallest workload.
In case of no responders being present in the class G we
select an agent from U either probabilistically based on its
trust value or randomly.

We compute the approximate load present at the good
service providers using the following equation-

D

z€W—{p}

N'(p,q) =I'(p,q) + FCre,(p,x) x I'(z,q)

(22)
Here W = TS(q), represents the set of agents who
have ever interacted with agent ¢ and I*(p,q) represents
the number of interactions agent p has conducted with
agent g. So, N*(p, q) represents the total number of direct
(from own experience) and indirect (from recommenders)
interactions considered during the computation of trust from
agent p’s perspective. We finally sort the good service
providers in increasing order of load and select the one
with the smallest workload as the corresponding service
provider to a transaction request.

However, all the service providing agents might be
classified as unknown service providers in the initial stage
of the system as their trust values might not have reached
a stable state due to the lack of transactions. In such case,
we choose an agent based on the following probability
measure-

Trust! (p,q)
Z:EEU Trustt (p,x)’
if Y oy Trust,(p,x) # 0
randomly select any agent,
else

Prob(p,q) = (23)

In case of choosing an agent from U, we see from equation
(23) that higher the trust value the more chance an agent
has in being selected as a service provider. In other words,
the probability of being selected is directly proportional to
an agent’s trust value which is logical as trust values are
an indication of agents’ service capabilities. However, in
case the trust values of all agents in U are zero we have no
other option but to select an agent randomly as there are
no useful metrics to help us make any predictions. In such
case, we cannot guarantee effective selection of responders.

Pseudo-code of the load balancing algorithm is given in
Algorithm 1.

Algorithm 1 Selection of service providing agent(p, S)

Input: Evaluating agent p and the set of agents
responding to a service request S
Output: Service providing agent q
for each x € S do
compute Trust(p,)
if Trust(p,z) >~ then
G+ GU{zx}
else
U<+ UU{x}
end if
end for
if G # () then
for ecach x € G do
compute load N (p,x)
end for
sort G in increasing order of load N
return agent q with the smallest load N
else
Total_trust < 0
for each x € U do
Total_trust < Total_trust + Trust(p,x)
end for
if Total_trust > 0 then
for each x € U do
compute Prob(p,x)
end for
return agent q with probability Prob(p,q)
else
return any agent q randomly
end if
end if

5 EXPERIMENTAL EVALUATION

This section evaluates SecuredTrust’s performance and
shows its effectiveness under different adversarial strategy.
We have carried out our experiment to achieve four main
objectives. Firstly, we evaluate its accuracy in terms of
trust computation in the presence of malicious agents under
two settings. The second experiment shows how quickly
it adapts to strategically oscillating behavior. In the third
set of experiments we demonstrates the robustness of
SecuredTrust compared to other existing trust models under
different scenarios. Lastly, we show its effectiveness under
the load balancing scheme.

5.1 Simulation Setup

We have developed our simulation in Java using JBuilder
[43] and the discrete event simulation toolkit SimlJava
[44, 45]. From the hardware’s point of view we used
Pentium-4(P4) 3.00 Ghz processor with 2GB RAM. This
section describes the general simulation setup including the
environment setting, agent’s behavioral pattern, transaction
setting and performance evaluation index.

5.1.1 Environment Setting

Our simulated environment contains N agents. N is set
to 100 in almost all the experiment. However, in one
experiment we have varied the value of N to show the
scalability of the trust model. It was evident from the
experiment that the variation in N did not affect the
performance of the trust model and as such N was set to
100 for most of the experiments. The agents are of mainly
two types- good and malicious. Good agents cooperate
in providing both good service and honest feedback. In
contrast, malicious agents are opportunistic in the sense that
they cheat whenever it is advantageous for them. Malicious
agents provide both ineffective service and false feedback.
The percentage of malicious agents in the environment is
denoted by the parameter malicious_per which is varied in
different experiments.

5.1.2 Agent’s Behavioral Pattern

The behavioral pattern of good agents is quite easy to
simulate as they provide good service and honest feedback.
However, it is challenging to simulate an agent’s malicious
behavior realistically. We mainly study three behavioral
patterns namely- noncollusive, collusive and strategically
altering. In noncollusive setting malicious agents cheat dur-
ing transaction and give false feedback to other agents i.e.,
they rate good agents poorly while rating malicious agents
highly. The collusive setting is similar to the noncollusive
setting with one additional feature that malicious agents
form a collusive group and deterministically help each other
by performing numerous fake transactions to boost their
own rating while disparaging other good agents. We have
used the parameter collusion to denote the percentage of
malicious agents forming a collusive group. In the strate-
gically altering setting a malicious agent may occasionally
decide to cooperate in order to confuse the system. We use

the parameter malicious_res to model the rate of dishonest
feedback by a malicious agent. In this case, other agents
are commonly fooled into thinking that the malicious agent
is actually a good agent.

5.1.3 Transaction Setting

Three types of transaction setting are simulated namely,
random setting, trust prioritized setting and load balanced
setting. In the random setting, agents randomly interact with
each other. In the trust prioritized setting an agent first
initiates a transaction request. Against each request certain
percentage of agents respond. The response percentage is
controlled by response_rate parameter. The initiating agent
then sorts the responders based on their trust value and
selects the agent with the highest trust value to perform the
desired transaction. Finally, in the load balancing scheme a
service provider with least amount of workload is selected.

Table 1, summarizes the different parameters related to
the environmental setting and trust computation. The table
also lists the default values of the different parameters used.
These default values have been empirically tuned.

5.1.4 Performance evaluation index

To compare the performance of SecuredTrust with other
existing trust models we use a evaluation index named,
successful transaction rate (STR). STR is described as the
ratio of the number of successful transactions to the total
number of transactions. Since computed trust values may
range differently for different trust models, other form of
evaluation index such as trust computation error is not
suitable for comparison. It really does not matter what
range of trust value we assign to an agent, what matters
is how efficiently the model can filter out malicious agents
based on the calculated trust value. In other words, the
relative ranking of agents based on their trust values is
comparable and thats why we only compute STR for
comparison with other models. We determine STR against
the variation of malicious_per, malicious_res and collusion.
All experimental results are averaged over 30 runs.

5.2 Trust Computation Accuracy

The objective of this set of experiments is to show the
effectiveness of SecuredTrust against different malicious
behavior. The experiment starts as agents randomly start
interacting with each other. After each agent performs on
average 500 transactions, a good agent is randomly selected
to compute the trust value of all the other agents. The
experiments are performed under both noncollusive and
collusive setting as described in the previous section. The
trust computation error is computed by taking the root-
mean-square (RMS) of the computed trust value for all
the agents against their actual likelihood of performing a
satisfactory transaction, which is 1 for good agents and 0
for malicious agents. So a low RMS value indicates better
performance.

In the first experiment we vary the percentage of mali-
cious agents (malicious_per) in the system while keeping

TABLE 1

Simulation Parameter settings

Parameter Description Default value
N # of agents in the system 100
Environment | malicious_per | % of agents malicious in the system 40%
Setting malicious_res | % of time a malicious agents gives false feedback 100%
response_rate | % of agents who respond to a transaction request 5%
collusion % of malicious agents forming a collusive group 0%
o contribution factor for recent satisfaction 1
threshold minimum threshold of « 0.25
c user defined constant 0.9
6] weight of direct trust in computing recent trust 0.5
P forgetting factor 0.9
n weight of recent trust in computing expected trust 0.5
Trust € deviation factor for expected trust 0.3
Computation ”w reward factor for similarity 20
Setting P punishment factor for similarity 4
T similarity deviation 0.25
0 lowest allowed value of similarity 0.01
A decay constant or decay rate 0.05
%) tolerated margin of error 0.25
w punishment factor for sudden rise in trust 2
max AT threshold for accumulated misused trust 10
¥ threshold for credibility/trust value 0.8

0.25 T T T T T T T T
collusion=0% —e—
collusion=100%
0.2 4
0.15 q

0.1 1

Computed Trust Error

B g
0.05 | o R 1
STedle g

S—oal g

0 0 1‘0 éO (;0 4‘0 50 610 7‘0 80 90
% of malicious agents (malicious_per)
Fig. 1. Trust computation error (RMS) with respect to
percentage of malicious agents (malicious_per).

malicious_res to 100% (i.e., malicious agents give false
feedback in every interaction). Fig. 1 represents the trust
computation error with respect to malicious_per under two
settings. For noncollusive (collusion set to 0%) setting in
Fig. 1, we see that SecuredTrust remains more effective
in the presence of large percentage of malicious agents.
The reason behind this is that feedback credibility metric
effectively filters out dishonest feedbacks submitted by
malicious agents. For the collusive setting in Fig. 1, we
set collusion to 100% and again we observe that our
model efficiently discards the dishonest feedbacks submit-
ted by the collusive group. This certifies that our similarity
measure appropriately computes feedback credibility of
recommenders providing recommendation.

In the second experiment we vary malicious_res while
setting malicious_per to 40%. Fig. 2 represents the trust
computation error in both noncollusive and collusive set-
ting. In the noncollusive setting where collusion is set to
0%, we see that the error is slightly high when mali-
cious_res varies from 30% to 45% signifying that malicious
agents can confuse the system a little when they oscillate

0.25 T T T T T T T T T
collusion=0% —e—
collusion=100%
. o2t —
2
H
wi
g 0.15 q
=
°
Q
5 0.1]
Qo
; //\
38
0.05 g.e—o—® o

0 10 éO éO 4‘0 50 éO 7‘0 éO S;O 100
% of false feedback by malicious agents (malicious_res)
Fig. 2. Trust computation error (RMS) with respect

to percentage of false response by malicious agents
(malicious_res).

between good and malicious nature alternatively. For col-
lusive setting where collusion is set to 100%, we see a
better result in the presence of collusion. This signifies that
SecuredTrust can successfully discard false rating provided
by collusive groups.

In the third experiment we vary collusion while setting
malicious_per to 40% and malicious_res to 100%. Again
from Fig. 3 we see that our model effectively discards the
impact of collusion by leveraging our sensitive feedback
credibility metric. Here, in fact false feedback ratings
come from agents (namely malicious agents) with very low
credibility and as a result they cannot influence the overall
trust value.

5.3 Handling Dynamic Personality of Agents

So far, we have considered more or less fixed personality of
agents. The objective of this experiment is to show how Se-
curedTrust handles dynamic change in agent behavior. We
have already showed SecuredTrust’s effectiveness against
filtering out dishonest feedback submitted by malicious

0.055

0.05 -

X
0,045 :MWW‘W

Computed Trust Error

0.04

0'0350 1‘0 éO éO 4‘0 50 E‘;O 7‘0 éO E;O 100

% of malicious agents forming collusive group (col_per)
Fig. 3. Trust computation error with respect to per-
centage of malicious agents forming collusive group
(collusion).

agents, so in this experiment we concentrate on alternating
behavior of malicious agents. Here we simulate the pattern
where a malicious agent first builds up its reputation and
then milks the built reputation and finally tries to build
its reputation back again i.e., the agent oscillates between
building and milking reputation. For testing such sce-
nario we simulate an environment which contains all good
agents except for only one malicious agent with dynamic
personality. The experiment proceeds as agents randomly
perform transactions with each other and a good agent
is selected to determine the trust value of the malicious
agent periodically. In this experiment the malicious agent
performs a total of 1000 interactions which are equally
divided into four consecutive slots . The malicious agent
then oscillates between good and malicious nature from
one slot to the next starting with good nature.

Fig. 4 shows the computed trust value of the ma-
licious agent under altering behavioral pattern. We see
that SecuredTrust quickly responds to the sudden fall of
performance by malicious agent and thus prevents it from
utilizing its built reputation. The sharp fall in the curve
signifies this. Once the trust value diminishes to zero it
requires a significant number of consecutive good services
for its trust value to rise again, i.e., it must give proof of its
cooperative nature. From Fig. 4 we see that in spite of the
good nature of the malicious agent in the third slot its trust
value rises very late and even in that case it does not rise
to the previous value. So, the cost of rebuilding reputation
is actually higher than that of milking it. That is the model
successfully incorporates the principle “quick decline and
slow rise of trust value”.

5.4 Comparison with other Trust Models

In this set of experiments we will demonstrate the efficiency
of SecuredTrust against other existing trust models. In
these experiments an agent first computes and compares
the trust values of the responding agents (i.e., agents who
respond to a transaction request) and chooses the agent
with the highest trust value for interaction. A transaction is
successful if the participating agent is cooperative i.e., if it
is a good agent. In all the experiments, we compute STR

;
09l
08|
07} e
06 i
o5 7 ;

H
04 17 }
T i

i

i

.

03 | i

02 | t%

0.1 i M M

o L L L

0 100 200 300 400 500 600 700 800 900 1000
Number of Iterations

Computed Trust Value

+
Y
Yy

4
P
r
{
H
H
Dl
B
f
H
7

Fig. 4. Effectiveness against dynamic personality.

as the evaluation criterion under different scenarios. The
experiment proceeds in iterations where in each iteration
each agent in the system initiates one transaction. We have
discarded the transactions initiated by malicious agents
from the calculation of STR. We execute a total of 100
iterations in one experiment and compute the average STR.
Since the responders to a transaction request is generated
at random, we take the mean (along with the 95% con-
fidence interval) of 30 experiments for each scenario. We
compare our model with SFTrust [24], FCTrust [25], P2P
recommendation trust model (for short we will use Reco-
Trust) [26], trust model of users’ behavior (for short we
will use User-Trust) [27], dynamic trust model for multi-
agent systems (for short we will use MAS-Trust) [23] and
PeerTrust [20].

First, we calculate STR against the variation of percent-
age of malicious agents, malicious_per while keeping mali-
cious_res to 100% and collusion to 0%. As from Fig. 5 we
see that both SecuredTrust and PeerTrust show superiority
over the remaining trust models as the amount of malicious
agents in the network increase beyond 40%. Due to the ease
of accessibility, networks today are home to a significantly
large number of malicious agents, especially the internet
holds great threats as it teems with malicious agents (in
the form of botnets [46—48]). In other words, threats and
risks are implicitly increasing as network applications are
widening. So, in such networks SecuredTrust would be the
best option.

In the next experiment we want to observe the impact
of collusion on STR. So, for this experiment we set
malicious_per to 60% because as the number of malicious
agents increase their collusive impact becomes greater.
We also set malicious_res to 100%. Fig. 6 represents the
computed STR against collusion. Due to the experimental
randomness, the gradient of the curves may vary from
experiment to experiment. In Fig. 6 we see that SFTrust,
MAS-Trust and User-Trust have negative gradient so in
their case STR is actually decreasing as collusive group
size is increasing. The remaining four trust models remain
unaffected by collusion but we see that again, SecuredTrust
and PeerTrust show superiority over others. The main rea-
son behind this is the feedback credibility measure which
filters out false feedbacks. Here false high ratings come

1
0.9 -
0.8
0.7 +
0.6
0.5

0.4 | PeerTrust
03| SecuredTrust
2 [Reco-Trust
0.2 | SFTrust
User-Trust
0.1 |- FCTrust

0 MAS-Trust

0 10 20 30 40 50 60 70 80 90 100
% of malicious agents (malicious_per)

Average STR

¥,
oy
S

Fig. 5. Comparing SecuredTrust with other models in
terms of average STR (with 95% confidence interval)
against malicious_per.

from agents with low feedback credibility as a result they
have no impact on STR. The low credibility itself results
from the personalized similarity measure. In order to attain
a high credibility malicious agents would have to provide
honest feedback which goes against their true nature.

PeerTrust
SecuredTrust

Reco-Trust ~ =wweeeeees
SFTrust
User-Trust ~ ====--
FCTrust
4 MAS-Trust =
e S L S S S o
?:f.}—" A R PERE
E -
e o e e S .""k"’é‘---i S
5
o
g a
a = a .
< 5l @ @ a s P o &
02 pf

: LI S R]
0 10 20 30 40 50 60 70 80 90 100
% of malicious agents forming collusive group (collusion)

Fig. 6. Comparing SecuredTrust with other existing
trust models in terms of average STR (with 95% confi-
dence interval) against collusion.

In the third experiment we analyze the impact of mali-
cious_res on STR. As we saw in Fig. 2 that the malicious
agents tend to fool other agents by oscillating between
good and malicious nature. In this experiment we test
two scenarios with malicious_per set to 40% and 60%
respectively while collusion is set to 0% in both the cases.
Fig. 7 represents the computed STR against malicious_res.
From the figures we see that SecuredTrust out performs all
other trust models significantly and in these cases PeerTrust
suffers the most. This is because our model keeps track
of sudden rise and fall of trust by agents and penalizes
any agent showing frequent trust fluctuations. While other
models fail to identify the strategic alternations made by
malicious agents, our model quickly distinguishes such
alternations through our deviation reliability metric (see

equation (20)). Thus, SecuredTrust can successfully restrain
strategically altering behavior of malicious agents.

[+
[=
7
()
o
©
o
: 04 PeerTrust
< 03 SecuredTrust
' Reco-Trust ~ =wwee
02 SFTrust
User-Trust =~ ====--
o1 FCTrust
. MAS-Trust = e]
0 10 20 30 40 50 60 70 80 90 100
% of false feedback by malicious agents (malicious_res)
(a)
9
[+
=
(7]
()
(=2}
o ,
£ 04r PeerTrust
< 03+ SecuredTrust
' Reco-Trust
0.2 SFTrust
' User-Trust
0.1 FCTrust
MAS-Trust -

0]
0O 10 20 30 40 50 60 70 80 90 100
% of false feedback by malicious agents (malicious_res)

(b)

Fig. 7. Comparing SecuredTrust with other trust mod-
els in terms of average STR (with 95% confidence in-
terval) against malicious_res (a) 40% malicious agents
(b) 60% malicious agents.

In the next experiment we determine the number of times
malicious agents are selected as service providers in the
presence of oscillating malicious behavior. Here we run the
experiment for a total of 500 iterations with malicious_res
set to 50%, malicious_per set to 40% and collusion set
to 0%. However, we divide the 500 iterations into four
equal slots, so each slot contains 125 iterations. Malicious
agents oscillate between good and malicious nature from
one slot to the next starting with good nature. Then we
compute the number of times malicious agents are selected
as service providers to transactions initiated by only good
agents. From Fig. 8 we see that in the initial slot malicious
agents are selected numerous times. This is understandable
because in the first slot they start off by behaving good
so there is no reason to reject them, but in the following
slots this number should decline as we now know their
true nature. We see that our trust model performs best in
isolating the malicious agents and thus reducing unauthentic
transactions compared to other models. The reason behind
our model’s superiority is that we keep track of sudden rise
and fall of trust with the intent to heavily punish any agents
showing such trust fluctuations.

Finally, we compare the computation time required by
the different trust models. For this purpose we compute the

° 2500 | Exx gia:gl':_uredTrust'
o i) rust
EL 2250 [mmm FCTrust
c 0 X Reco-Trust
%Tg 2000 | o Uger-Trust
@S 1750 | MAS-Trust
e wzza PeerTrust 0 7
88 1500 - g
28 1250 f
38
.Eg 1000
5 g 750
2 3 500
§ 250 | %@
4
0

s 1 N
125 125 125 125
Number of iterations in each slot

Fig. 8. Comparing SecuredTrust with other trust mod-
els in terms of the number of times malicious agents
are selected as service providers.

amount of times it takes for the trust models to execute 200
iterations with malicious_per set to 50%, collusion set to
0% and malicious_res set to 100%. We take the average
of 30 runs. From Fig. 9 we see that PeerTrust requires the
largest amount of time while FCTrust requires the lowest.
Our trust model requires on average 1.2 seconds to execute
200 iterations which is slightly higher than some of the
remaining trust models. This is understandable as we have
considered more components compared to the other trust
models. For example we have considered sudden rise and
fall of trust as well as historical trend of agent behavior all
of which are not considered by other models. As a result
these trust models fail to effectively filter out malicious
agents when they start to show oscillating behaviors. So,
we are sacrificing a very small amount of computational
overhead for the sack of better resilience.

8000

7000

6000

5000

4000

3000

Time (milliseconds)

2000

1000 -

Trust Models

Fig. 9. Comparing SecuredTrust with other models in
terms of the computational time required to execute
200 iterations.

5.5

In this section we analyze the impact of our load balancing
algorithm on the service providers. For this experiment

Impact of Load Balancing

we set malicious_per to 50%, collusion to 0% and ma-
licious_res to 100%. We assume that fixed 10% of the
agents act as service providers to different transaction
requests and among these service providers 60% of them
are good agents while the remaining 40% are malicious.
Now, we set response_rate to 50% i.e., 50% of the service
providers respond to a transaction request. So we can
see that at least one good service provider responds to
a transaction request. In this experiment we perform 500
iterations where in each iteration each agent performs one
transaction. In Fig. 10 we present the workloads present
at good service providers under both load-balancing and
non load-balancing scheme. It is evident from Fig. 10 that
under load balancing scheme the total workload is evenly
distributed among the service providers. Fig. 11 presents
the average STR under both schemes and it is observable
that the performance remains same under both schemes.
Since at least one good service provider responds to a
transaction request, the STR in both cases are very high
which is expected. So, we can see that our load balancing
algorithm can successfully distribute workload among the
agents without compromising performance.

Load Balanced Scheme

6000 - Non-Load Blanaced Scheme

5000 -

4000 -

3000

2000

Workload (transactions)

1000 -

Honest agents

Fig. 10. Comparison between load-balancing and no-
load-balancing scheme in terms of workload.

0.999 |
0.998 | gt
0997 ¢ -
0.996
0995
0.994 |
0993
0992 |

0.991 - Load Balanced Scheme e

99 Non-Load Balanced Scheme C

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
% of malicious agents (malicious_per)

Average STR

Fig. 11. Comparison between load-balancing and no-
load-balancing scheme in terms of average STR.

5.6 Analyzing Scalability

The objective of this section is to show that our trust model
remains unaffected in terms of performance as the number

of agents in the network increases. For this purpose we
computed average STR against the number of agents in the
network. We set malicious_per to 40%, malicious_res to
100% and collusion to 0%. Fig. 12 shows that the computed
average STR remains same as the number of agents in the
network is varied. So, our trust model is scalable with the
increase of agents in the system.

0.95 7
0.9
0.85
0.8
0.75
0.7
0.65
0.6 [
0.55

Average STR

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of agents (N)

Fig. 12. Scalability of SecuredTrust.

5.7 Decay of trust with lapse of time

This experiment emphasizes the importance of attenuation
of trust with elapse of time in absence of interaction. Since
now a days agents are highly dynamic in nature, it is
realistic that trust should decay with time. For example
suppose agent u is malicious and it belongs to a community
where the most important transactions happen on Friday
before the weekends and comparatively less important
transactions occur from Monday to Tuesday. Now, agent
u can intentionally act good from Monday to Tuesday and
builds its reputation with the long term plan of utilizing
its reputation during the transactions on Friday to cheat
other agents. With no decay model present such scenario
is possible. To prevent such a case from occurring we
incorporate a decay model as described in equation (18).

Fig. 13 shows the different decay schemes possible for
our decay model. From the figure it is observable that the
attenuation function defined in [27], initially has a higher
degradation rate than later one. Realistically it should be the
reverse i.e., initially the degradation rate should be smaller
and as more and more time elapse without interaction
the degradation rate should increase. Our decay function
incorporates such philosophy. By including a time decay
model we are establishing the principle-*“the more recent
the transaction the more reliable it is”.

6 DISCUSSION

In this paper we have described a generic trust computation
model for multi-agent systems. Our model can be tuned to
the meet the requirements of a specific application. For
example our model can be used in electronic markets and
e-commerce environments (like Amazon Auctions, eBay,
OnSale Exchange) where buyers rate sellers regarding
their purchase after they make a transaction. Sellers might

No Decay

=0.1
=0.05
=0.0217’I(

T=T/At." [27]

Trust Value

0 10 20 30 40 50 60 70 80 90 100
Lapse of time (At)

Fig. 13. Decay of trust value with elapse of time.

attempt to raise their trust value (hence reputation) by
creating fake buyers and fake transactions. So, in such
scenarios our model can be applied to filter out potential
bad sellers.

Now we will briefly discuss how our proposed trust
model resists some threats, commonly confronted in a
multi-agent system. We then propose some potential so-
lutions for restraining some of the other existing threats.

Like any other reputation model our model assists agents
to choose reputed agents while avoiding untrustworthy
ones. However, reputation-based trust mechanism also in-
troduces vulnerabilities such as shilling attacks where ad-
versaries attack the system by submitting false ratings
to confuse the system. Shilling attack is often followed
by collusion attack where malicious agents collaborate
to raise each other’s rating by making fake transactions.
SecuredTrust prevents such threats by assigning feed-
back credibility to each feedback provider. By doing so,
SecuredTrust discards feedbacks submitted by malicious
agents and thereby avoid collusion attack. Another chal-
lenging threat that most trust models fail to handle is
the dynamic personality of malicious agents. By cleverly
alternating between good and malicious nature they try
to remain undetected while causing damage. SecuredTrust
keeps track of sudden rise and fall of trust and thereby can
easily penalize such oscillating behavior.

Now, we will propose some techniques which can be
incorporated with our trust model to provide solutions
to some of the other existing threats present in a multi-
agent system. Threats such as tampering of distributed trust
information and man in the middle attack can be resolved
by combining public key cryptography algorithms on top
of our trust model. By doing so we can ensure secured
trust data transmission. The free riding problem [49] in
case of P2P where an agent only consumes service but
does not provide any service or feedback can be handled
as suggested by Xiong and Liu [20]. Xiong and Liu
have considered a community context factor for providing
incentives to agents who give feedbacks. We can also incor-
porate such a factor in our trust model where the incentive
factor can be equal to the ratio of total feedbacks over
transactions. Several other remedies have been suggested
for the incentive problem of reputation based systems in

[50]. Another common threat is the sybil attack [51] where
an agent creates multiple identities and switches from one
identity to another. If a malicious agent can easily switch
its identity then the trust system may suffer as malicious
agents can easily dispatch their bad history. The defense
against such attacks should not depend on the trust model
but rather on the authentication and access control system.
Friedman and Resnick [52] discuss two approaches to this
issue: either make it difficult to change online identities or
structure the community in such a way that exit and entry
with a new identity becomes unprofitable.

7 CONCLUSION

We have presented a novel trust computation model called
SecuredTrust for evaluating agents in multi-agent environ-
ments. SecuredTrust can ensure secured communication
among agents by effectively detecting strategic behaviors of
malicious agents. In this paper we have given a comprehen-
sive mathematical definition of the different factors related
to computing trust. We also provide a model for combining
all these factors to evaluate trust and, finally we propose
a heuristic load balancing algorithm for distributing work-
load among service providers. Simulation results indicate,
compared to other existing trust models SecuredTrust is
more robust and effective against attacks from opportunistic
malicious agents while being capable of balancing load
among service providers.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their thoughtful reviews and advice. We would also like
to thank BUET (Bangladesh University of Engineering and
Technology) for its cooperation in providing the required
computing resources.

REFERENCES

[1] N. R. Jennings, “An agent-based approach for building complex
software systems,” Communications of the ACM, vol. 44, no. 4, pp.
35-41, 2001.

[2] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications.
Springer-Verlag New York, Inc., 2005.

[3] (2000) Gnutella. [Online]. Available: http://www.gnutella.com

[4] Kazaa. [Online]. Available: http://www.kazaa.com/

[5] (2000) edonkey2000. [Online]. Available: http://www.emule-
project.net/

[6] I Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
enabling scalable virtual organizations,” International Journal of
High Performance Computing Applications, vol. 15, no. 3, pp. 200—
222, 2001.

[7]1 T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, pp. 35-43, May 2001.

[8] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm for
the 21st century,” Computer, vol. 36, no. 3, pp. 25-31, 2003.

[9] S. D. Ramchurn, D. Huynh, and N. R. Jennings, “Trust in multi-

agent systems,” The Knowledge Engineering Review, vol. 19, no. 1,

pp. 1-25, 2004.

P. Dasgupta, “Trust as a commodity,” Trust: Making and Breaking

Cooperative Relations, pp. 49-72, 2000.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Repu-

tation systems,” Communications of the ACM, vol. 43, no. 12, pp.

45-48, 2000.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22])

(23]

(24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

A. A. Selcuk, E. Uzun, and M. R. Pariente, “A reputation-based trust
management system for P2P networks,” in Proceedings of the 2004
IEEE International Symposium on Cluster Computing and the Grid
(CCGRID), 2004, pp. 251-258.

M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-
to-peer networks,” in Proceedings of the 13th international workshop
on Network and operating systems support for digital audio and
video (NOSSDAV). ACM, 2003, pp. 144-152.

K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in Proceedings of the tenth international conference
on Information and knowledge management (CIKM). ACM, 2001,
pp. 310-317.

L. Mui, M. Mohtashemi, and A. Halberstadt, “A computational
model of trust and reputation for e-businesses,” in Proceedings of the
35th Annual Hawaii International Conference on System Sciences
(HICSS’02), 2002, pp. 2431 — 2439.

L. Mui, “Computational models of trust and reputation:
agents, evolutionary games, and social networks,” Ph.D. Thesis,
Massachusetts Institute of Technology(MIT), 2002. [Online].
Available: http://groups.csail.mit.edu/medg/medg/people/lmui/docs/

F. Cornelli, E. Damiani, S. D. Capitani, S. Paraboschi, and P. Sama-
rati, “Choosing reputable servents in a P2P network,” in Proceedings
of the 11th ACM World Wide Web Conference (WWW), May 2002,
pp. 376-386.

Y. Wang and J. Vassileva, “Bayesian network-based trust model,”
in Proceedings of IEEE/WIC International Conference on Web
Intelligence (WI), Halifax, Canada, October 2003, pp. 372-378.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, ‘“The
EigenTrust algorithm for reputation management in P2P networks,”
in Proceedings of the 12th ACM international World Wide Web
conference (WWW), 2003, pp. 640-651.

L. Xiong and L. Li, “Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities,” [EEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 7, pp. 843-857, 2004.
M. Srivatsa, L. Xiong, and L. Liu, “TrustGuard: Countering vul-
nerabilities in reputation management for decentralized overlay
networks,” in Proceedings of the 14th ACM international conference
on World Wide Web (WWW), 2005, pp. 422-431.

Z. Runfang and H. Kai, “Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, pp. 460476, 2007.
B. Li, M. Xing, J. Zhu, and T. Che, “A dynamic trust model
for the multi-agent systems,” in Proceedings of IEEE International
Symposiums on Information Processing (ISIP), 2008, pp. 500-504.

Y. Zhang, S. Chen, and G. Yang, “SFTrust: A double trust metric
based trust model in unstructured P2P systems,” in Proceedings of
IEEE International Symposium on Parallel and Distributed Process-
ing (ISPDP), 2009, pp. 1-7.

J. Hu, Q. Wu, and B. Zhou, “FCTrust: A robust and efficient feed-
back credibility-based distributed P2P trust model,” in Proceedings
of IEEE 9th International Conference for Young Computer Scientists
(ICYCS), 2008, pp. 1963-1968.

X. Wang and L. Wang, “P2P recommendation trust model,” in
Proceedings of IEEE 8th International Conference on Intelligent
Systems Design and Applications (ISDA), 2008, pp. 591-595.

L. Wen, P. Lingdi, L. Kuijin, and C. Xiaoping, “Trust model of
users’ behavior in trustworthy internet,” in Proceedings of IEEE
WASE International Conference on Information Engineering (ICIE),
2009, pp. 403-406.

R. Aringhieri, E. Damiani, S. D. Capitani, S. Paraboschi, and
P. Samarati, “Fuzzy techniques for trust and reputation management
in anonymous peer-to-peer systems: Special topic section on soft
approaches to information retrieval and information access on the
web,” Journal of the American Society for Information Science and
Technology, vol. 57, pp. 528-537, 2006.

E. Damiani, S. D. Capitani, S. Paraboschi, and P. Samarati, “Man-
aging and sharing servents’ reputations in p2p systems,” [EEE
Transaction on Knowledge and Data Engineering, vol. 15, pp. 840—
854, 2003.

D. Wen, W. Huaimin, J. Yan, and Z. Peng, “A recommendation-
based peer-to-peer trust model,” Journal of Software, vol. 15, no. 4,
pp. 571-583, 2004.

J. Sabater and C. Sierra, “Regret: A reputation model for gregarious
societies,” in Proceedings of the Fourth Workshop on Deception,
Fraud and Trust in Agent Societies, 2001, pp. 61-69.

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

(501

(511

[52]

Jordi Sabater and Carles Sierra, “Social regret, a reputation model
based on social relations,” ACM SIGecom Exchanges - Chains of
commitment, vol. 3, pp. 44-56, December 2001.

J. Sabater and C. Sierra, “Reputation and social network analysis
in multi-agent systems,” in Proceedings of the first international
Jjoint conference on Autonomous Agents and Multi-Agent Systems,
ser. AAMAS ’02. ACM, 2002, pp. 475-482.

L. Xiong and L. Liu, “A reputation-based trust model for peer-to-
peer ecommerce communities [extended abstract],” in Proceedings
of the 4th ACM conference on Electronic commerce(EC), 2003, pp.
228-229.

T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An integrated trust
and reputation model for open multi-agent systems,” Autonomous
Agents and Multi-Agent Systems, vol. 13, no. 2, pp. 119-154, 2006.
N. R. Jennings, T. D. Huynh, and N. R. Shadbolt, “FIRE: An
integrated trust and reputation model for open multi-agent systems,”
in Proceedings of the 16th European Conference on Artificial Intel-
ligence (ECAI), 2004, pp. 18-22.

T. D. Huynh, N. R. Shadbolt, and N. R. Jennings, “Developing an
integrated trust and reputation model for open multi-agent systems,”
in Proceedings of the 7th International Workshop on Trust in Agent
Societies, 2004, pp. 65-74.

J. Sabater, M. Paolucci, and R. Conte, “Repage: REPutation and
ImAGE Among Limited Autonomous Partners,” Journal of Artificial
Societies and Social Simulation, vol. 9, no. 2, 2006.

I. Pinyol and J. Sabater-Mir, “Pragmatic-strategic reputation-based
decisions in bdi agents,” in Proceedings of The Sth International
Conference on Autonomous Agents and Multiagent Systems - Volume
2, ser. AAMAS °09, 2009, pp. 1001-1008.

R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai,
V. Mirrokni, and M. Tennenholtz, “Trust-based recommendation
systems: An axiomatic approach,” in Proceeding of the 17th ACM
international conference on World Wide Web (WWW), Beijing,
China, 2008, pp. 199-208.

J. J. Qi and Z. Z. Li, “Managing trust for secure active networks,”
in Central and Eastern European Conference on Multi-Agent Sys-
tems(CEEMAS). Springer-Verlag, 2005, pp. 628-631.

Y. Zhang, K. Wang, K. Li, W. Qu, and Y. Xiang, “A time-decay
based P2P trust model,” in Proceedings of the 2009 International
Conference on Networks Security, Wireless Communications and
Trusted Computing, vol. 2, 2009, pp. 235-238.

Jbuilder. [Online]. Available:
http://www.embarcadero.com/products/jbuilder

R. McNab and F. Howell, “Using java for discrete
event simulation,” in Proceedings of the Twelfth UK
Computer and Telecommunications Performance Engineer-
ing Workshop, 1996, pp. 219-228. [Online]. Available:
http://www.dcs.ed.ac.uk/home/hase/simjava/UKPEWpaper.ps

F. Howell. (1999) The simjava home page. [Online]. Available:
http://www.dcs.ed.ac.uk/home/hase/simjava/

J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: overview and case study,” in Proceedings of
the first conference on First Workshop on Hot Topics in Understand-
ing Botnets. USENIX Association, 2007, pp. 1-8.

Expert: Botnets No. 1 Emerging Internet Threat, CNN Technology.
Attack of the Zombie Computers Is a Growing Threat, The New York
Times, January 2007.

E. Adar and B. A. Huberman, “Free riding on gnutella,” First
Monday, vol. 5, no. 10, 2000.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Repu-
tation systems,” Communications of the ACM, vol. 43, no. 12, pp.
45-48, 2000.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against sybil attacks via social networks,” in Proceedings
of the 2006 conference on Applications, technologies, architectures,
and protocols for computer communications (ACM SIGCOMM),
2006, pp. 267-278.

E. J. Friedman and P. Resnick, “The social cost of cheap
pseudonyms,” Journal of Economics and Management Strategy,
vol. 10, pp. 173-199, 1998.

Anupam Das received his B. Sc. Engg. and
M. Sc. Engg. degree from the Department
of Computer Science and Engineering (CSE)
of Bangladesh University of Engineering and
Technology (BUET) in 2008 and 2010 re-
spectively.

In 2008, he joined the Department of
Computer Science and Engineering (CSE)
of BUET, first as a lecturer and in 2010
he became an Assistant Professor of the
same department. In 2010 he received the
prestigious Fulbright International Science and Technology award
to pursue higher studies in USA. He is currently pursuing Ph.D.
degree in the department of Computer Science at the University of
lllinois at Urbana-Champaign (UIUC), USA. His research interests
include information security and privacy, network measurement and
distributed systems.

M. Mahfuzul Islam (S’03-M’11) received the
B.Sc.Engg degree and the M. Sc. Engg. de-
gree from the Department of Computer Sci-
ence and Engineering (CSE) of Bangladesh
University of Engineering and Technology
(BUET) in 1997 and 2000, respectively. He
obtained the Ph.D. degree from Gippsland
School of Information Technology, Monash
University, Australia in 2006.

He is an Associate Professor in the same
Department of BUET. Dr. Islam has pub-
lished more than 40 papers in peer-reviewed reputed international
journals and conferences. His research interests include network
security, vertical handover, wireless resource management and wire-
less sensor networks.

