
1

SecuredTrust: A Dynamic Trust Computation
Model for Secured Communication in

Multi-Agent Systems
Anupam Das and M. Mahfuzul Islam, Member, IEEE,

Abstract—Security and privacy issues have become critically important with the fast expansion of multi-agent systems. Most

network applications such as pervasive computing, grid computing and P2P networks can be viewed as multi-agent systems

which are open, anonymous and dynamic in nature. Such characteristics of multi-agent systems introduce vulnerabilities and

threats to providing secured communication. One feasible way to minimize the threats is to evaluate the trust and reputation

of the interacting agents. Many trust/reputation models have done so, but they fail to properly evaluate trust when malicious

agents start to behave in an unpredictable way. Moreover, these models are ineffective in providing quick response to a malicious

agent’s oscillating behavior. Another aspect of multi-agent systems which is becoming critical for sustaining good service quality,

is the even distribution of workload among service providing agents. Most trust/reputation models have not yet addressed this

issue. So, to cope with the strategically altering behavior of malicious agents and to distribute workload as evenly as possible

among service providers; we present in this paper a dynamic trust computation model called ‘SecuredTrust’. In this paper we

first analyze the different factors related to evaluating the trust of an agent in a and then propose a comprehensive quantitative

model for measuring such trust. We also propose a novel load balancing algorithm based on the different factors defined in our

model. Simulation results indicate that our model compared to other existing models can effectively cope with strategic behavioral

change of malicious agents and at the same time efficiently distribute workload among the service providing agents under stable

condition.

Index Terms—Multi-agent system, trust management, reputation model, load balancing, malicious behavior.

F

1 INTRODUCTION

In a multi-agent system, agents interact with each other

to achieve a definite goal that they cannot achieve alone

[1] and such systems include P2P [2–5], grid computing

[6], the semantic web [7], pervasive computing [8] and

MANETs. Multi-agent Systems (MASs) are increasingly

becoming popular in carrying valuable and secured data

over the network. Nevertheless, the open and dynamic

nature of MAS has made it a challenge for researchers

to operate MAS in a secured environment for information

transaction. Malicious agents are always seeking ways of

exploiting any existing weakness in the network. This is

where trust and reputation play a critical role in ensuring

effective interactions among the participating agents [9,

10]. Researchers have long been utilizing trust theory from

social network to construct trust models for effectively

suppressing malicious behaviors of participating agents.

Trust issues have become more and more popular since

traditional network security approaches such as the use of

fire-wall, access control and authorized certification cannot

predict agent behavior from a ‘trust’ viewpoint.

A reputation based trust model [11–14] collects, dis-

Anupam Das is currently working as a PhD student in the Department of

Computer Science at University of Illinois at Urbana Champaign, Urbana,

IL 61801-2302, USA and M. Mahfuzul Islam is with the Department of

Computer Science and Engineering, Bangladesh University of Engineering

and Technology, Dhaka-1000, Bangladesh,

e-mail: anupamdas@cse.buet.ac.bd, mahfuzul.islam@ieee.org

tributes, and aggregates feedback about participants’ past

behavior. These models help agents decide whom to trust,

encourage trustworthy behavior, and discourage participa-

tion by agents who are dishonest. Reputation based trust

models are basically divided into two category based on the

way information is aggregated from an evaluator’s perspec-

tive [15,16]. They are ”Direct/Local experience model” and

”Indirect/Global reputation model” where direct experience

is derived from direct encounters or observations (first hand

experience) and indirect reputation is derived from infer-

ences based on information gathered indirectly (second-

hand evidence such as by word-of-mouth). So, in case

of global reputation models [17–29] an agent aggregates

feedback from all the agents who have ever interacted with

the target agent i.e., an agent has a view of the network

which is wider than its own experience, thus enabling it

to quickly converge to a better decision. However, global

reputation models are much more complex to manage

than local experience models as malicious agents have the

opportunity to provide false feedbacks.

Most of the existing global reputation models can suc-

cessfully isolate malicious agents when the agents behave

in a predictable way. However, these models suffer greatly

when agents start to show dynamic personality i.e., when

they start to behave in a way that benefits them. These

models also fail to adapt to the abrupt change in agents’

behavior and as a result suffer when agents alter their

activities strategically. Moreover, some of the models show

2

little effect in dealing with more complex attacks such as

dishonest or unfair rating and collusion. Another aspect

which is slowly becoming critical for the proper mainte-

nance of service quality is the appropriate distribution of

workload among the trusted service providers. Without a

proper load balancing scheme the load at highly reputable

service providers will be immense which will eventually

cause a bottleneck in the system’s service quality. To the

best of our knowledge none of the existing trust models

consider load balancing among service providers.

With these research problems in mind, we propose a

feedback based dynamic trust computation model named

SecuredTrust which can effectively detect sudden strate-

gic alteration in malicious behavior with the additional

feature of balancing workload among service providers.

SecuredTrust considers variety of factors in determining the

trust of an agent such as satisfaction, similarity, feedback

credibility, recent trust, historical trust, sudden deviation of

trust and decay of trust. We have used a novel policy of

utilizing exponential averaging function to reduce storage

overhead in computing the trust of agents. We have also

proposed a new load balancing algorithm based on approx-

imate calculation of workload present at different service

providers.

The remaining part of the paper is organized as follows.

Section 2 reviews the most recent and well known related

works. In section 3, we formally introduce our dynamic

trust computation model. We present our novel load bal-

ancing algorithm in section 4. To show the effectiveness of

our model, we present simulations and comparative studies

in section 5. In section 6, we discuss how our model resists

the common threats confronted in multi-agent systems and

how other threats can be addressed. Finally we conclude

the paper in section 7.

2 RELATED WORK

In this section we look into some of the most recent

and popular research works done on reputation model.

Here we discuss the key ideas of the following models-

Bayesian network based trust model [18], EigenTrust [19],

trust model given by Dou et al. [30], ReGreT [31–33],

PeerTrust [20, 34], FCTrust [25], SFTrust [24], FIRE [35–

37], recommendation model provided by Wang et al. [26],

trust model provided by Li et al. [23] and trust model

proposed by Wen et al. [27].

Bayesian network based trust model [18] believes that

trust is multi-dimensional and agents need to evaluate trust

from different aspects of an agent’s capability. This model

uses bayesian network and bayesian probability to calculate

trust. This model’s main flaw lies in the authors’ assumption

that all the agents have identical bayesian network archi-

tecture which is unrealistic because different agents have

different requirements which leads to different network

architecture. In case of aggregating recommendation from

other agents, this model assumes that all the agents are

truthful in providing their feedbacks. This assumption is

also not realistic as malicious agents will often provide false

feedback to other agents to disrupt the system.

EigenTrust [19] aggregates the local trust values of all

agents to calculate the unique global trust value of a given

agent. An agent depends on some pre-trusted agents for

trust evaluation in absence of trustworthy recommenders.

Even though EigenTrust may work well in social net-

work infrastructure where pre-trusted neighbors (agents)

are likely to be trustworthy, but in case of other multi-agent

systems like P2P, EigenTrust poses a few problems. Firstly,

In P2P network such pre-determined trustworthy agents are

not readily available. Secondly, depending on these pre-

trusted agents create a vulnerability in the sense that if

some of these pre-trusted agents get compromised then it

will be much easier to launch a large scale malicious attack.

The trust model proposed by Dou et al. [30] is similar to

EigenTrust, but it does not consider the use of pre-trusted

agents in the calculation of trust. Dou’s model reduces

iteration cost and punishes malicious behavior, but does

not consider the punishment of dishonest recommenders.

ReGreT [31–33] is a reputation model that computes

reputation from three dimensions: individual dimension,

social dimension and ontological dimension. The individual

dimension reflects an agent’s own observation whereas the

social dimension considers the opinion of other agents in

the community. Finally, the ontological dimension consid-

ers reputation as a multi-facet concept and computes repu-

tation from different aspect. Other models such as Repage

[38] and BDI+Repage [39] consider a role based dimension

in computing reputation. While ReGreT considers different

dimensions in computing reputation, it does not address

the collusion problem associated with computing global

reputation.

PeerTrust [20, 34], computes the trustworthiness of an

agent as normalized feedback weighted against the cred-

ibility of feedback originators. In PeerTrust Xiong et al.

defined five factors in computing the trustworthiness of

agents among which three factors are basic trust parameters

while the remaining two are adaptive factors. PeerTrust uses

personalized similarity measure to compute the credibility

of recommenders and it uses this credibility measure to

weight each feedback submitted by the recommenders.

PeerTrust’s main drawback is that it has to retrieve all the

transactions within the recent time window (which may

contain a large number of transactions) to compute the

trust of an agent. So the trust evaluation process is both

computationally and spatially expensive. Furthermore, all

the transactions in the retrieved window is given equal

significance but recent transactions should be given higher

weight than past transactions.

FCTrust [25] uses transaction density and similarity

measure to define the credibility of any recommender

providing feedback as opposed to [19,30] which use global

trust to weigh the quality of feedbacks. In other words,

FCTrust differentiates the role of providing feedbacks from

that of providing services. However, FCTrust’s main draw-

back is that in computing direct trust it retrieves all the

transactions performed within a time frame. This imposes

storage overhead. Moreover, the simple averaging function

used to define local trust assigns equal weight to all the

3

transactions but realistically recent transactions should be

given more importance than historical transactions. Another

drawback of FCTrust is that it assigns equal degree of

reward and punishment in computing similarity but the

degree of punishment should be greater than that of reward.

SFTrust [24] is a double trust metric model which main-

tains two trust metric, one for service trust and the other for

feedback trust. It separates service trust from feedback trust

to take full advantage of all the agents’ service capabilities

even in the presence of fluctuating feedbacks. In this model,

recommendation is aggregated through local broadcasting

(limited by the TTL field) which can be really time

consuming and moreover, recommendation should come

from agents who have first hand experience [40, 41] with

the respective target agent. SFTrust computes service trust

as a weighted average of local trust and recommendation

trust, but the weight itself is static and as a result it

cannot properly accommodate the experience gained by the

evaluating agent over time.

The FIRE model [35–37] believes that most of the

trust information source can be categorized into four main

sources- direct experience, witness information, role based

rules and third party references. FIRE integrates all four

sources of information and is able to provide trust metrics

in a wide variety of situations. However, among the four

sources two of them namely- witness information and third-

party references are directly dependent on third-party agents

and are therefore, susceptible to dishonesty and unfair

rating. Since agents in an open MAS are self-interested,

they may provide false rating to gain unwarranted trust

from their partners and form collusive groups. As far as

we understand FIRE thats does address this problem.

In computing the global trust of any agent, the recom-

mendation model provided by Wang et al. [26] combines

both local trust calculated from the agent’s own experience

and recommendation provided by other agents. This model

uses average number of successful transaction as a metric

of local trust which fails to assign time relative weight to

the transactions. This model calculates global trust as a

weighted combination of local trust and recommendation,

but the weights assigned to these trust values are fixed and

do not change over time. So, the model cannot accom-

modate the experience gained over time by the evaluating

agent.

The trust model provided by Li et al. [23] address

different aspects in determining the trust of an agent such as

recent trust, historical trust, expected trust and confidence

in its trust for other agents. However, in computing direct

trust this model uses simple averaging function which fails

to assign any time relative weight to the transactions.

Another drawback of this model is that the formulation

of both historical trust and credibility requires the storage

of previous values upto a certain interval and this causes

storage overhead.

Wen et al. [27] combines both direct trust and indirect

trust in computing the trust value of an agent. In calculating

indirect trust this model considers both direct and indirect

recommenders. As a result two types of credibility have

been defined namely direct credibility and referral credibil-

ity. In case of referral credibility it uses the transitive law of

trust and as a result there exists the possibility of false error

propagation. The model’s main flaw lies in the assumption

that all routes to target agent have equal weight which is

not logical since longer the path, higher the chance that a

malicious agent lies in that path. So longer paths should be

given lesser weight than smaller paths.

The models defined in [18–20, 35, 30, 26, 25, 24, 23] do

not address a critical aspect of trust theory which is decay

of trust value with the elapse of time. Since, at present, the

network is highly dynamic and unpredictable, trust values

should decay as time elapse in absence of interaction.

Some models [27, 42] address the above mentioned issue

by incorporating their own decay function. However, these

models fail to simulate real life decay function which has

a small decay rate in the initial phase while displaying

higher decay rate as more and more time elapse. We have

incorporated such decay function in our trust model along

with many other issues which have not been addressed by

existing trust models.

Another aspect which is slowly becoming vital for the

sustaining service quality, is the balanced distribution of

workload among service providers. Almost all trust models

have ignored this issue so far. In fact none of the models

discussed so far address the aspect of balancing load

among the trusted agents for proper maintenance of service

quality. In a trust computing environment an agent with

the highest trust is normally selected as service provider,

so highly reputed agents handle bulk of the total service

requests. This can degrade the overall service quality of the

system if these highly reputed agents are assigned too much

workload. So a load balancing algorithm which distributes

service requests to all capable (i.e., a bit less reputable but

trustworthy) agents is required to maintain a satisfactory

level of service quality. We have proposed such a load

balancing algorithm.

3 SECUREDTRUST

The main objective of this paper is to provide a dynamic

trust computation model for effectively evaluating the trust

of agents even in the presence of highly oscillating ma-

licious behavior. Our model also provides an effective

load balancing scheme for proper distribution of workload

among the service providing agents. A number of parame-

ters have been considered in our trust model for computing

the trust of an agent. Now, some of these parameters have

been previously discussed in [25,20,24,26,27,23] but none

of these models can fully cope with the strategic adaptations

made by malicious agents. The mathematical and logical

definitions used for these parameters also cannot reflect

the true scenarios faced in real life. Moreover, none of

the models have considered the wide range of parameters

that we have considered. In the following sections we

redefine the mathematical expressions used for some of the

parameters and at the same time define some new ones and

then finally combine all of the parameters to present our

4

new dynamic trust model. For the following sections we

assume that agent p (called evaluator) needs to calculate

the trustworthiness of agent q (called the target agent).

3.1 Satisfaction

Satisfaction function measures the degree of satisfaction

an agent has about a given service provider. In other

words, it keeps record of the satisfaction level of all the

transactions an agent makes with another agent. However,

instead of storing all of the transaction history we have

defined an exponential averaging update function to store

the value of satisfaction. This greatly reduces the storage

overhead and at the same time assigns time relative weight

to the transactions. Let, Sattn(p, q) represent the amount of

satisfaction agent p has upon agent q based on its service up

to n transactions in the t-th time interval . The satisfaction

update function is defined as follows-

Sattn(p, q) = α× Satcur + (1− α)× Sattn−1(p, q) (1)

Satt0(p, q) = Satt−1
last(p, q) i.e., the value of satisfaction

at the start of t-th time interval is equal to the last

computed satisfaction in the (t-1)-th time interval and the

very initial value of satisfaction is Sat00(p, q) = 0. Here,
Satcur represents the satisfaction value for the most recent

transaction and we have used a feedback based system

where an agent rates other agent’s service quality according

to the following function 1-

Satcur =





0, if transaction is fully unsatisfactory

1, if transaction is fully satisfactory

∈ (0, 1), otherwise
(2)

The weight α changes based on the accumulated deviation

ξtn(p, q).

α = threshold+ c×
δtn(p, q)

1 + ξtn(p, q)
(3)

δtn(p, q) = |Sattn−1(p, q)− Satcur| (4)

ξtn(p, q) = c× δtn(p, q) + (1− c)× ξtn−1(p, q) (5)

ξt0(p, q) = ξt−1
last(p, q) and ξ

0
0(p, q) = 0. Here c is some user

defined constant factor which controls to what extent we

will react to the recent error (δtn(p, q)). So, if we increase

the value of c then we give more significance to the recent

deviation than the accumulated deviation and vice versa.

Again we can see that as recent error (δtn(p, q)) increases
so does α which means that recent satisfaction is given

higher weight than accumulated satisfaction (i.e., higher

significance is given to the recent service feedback). The

threshold represents a threshold which is used to prevent

α from saturating to a fixed value. Initial value of α is

set to 1 (we consider only the current transaction at the

very beginning as we have no knowledge of any previous

transaction) and threshold is set to 0.25.

1. We could compute satisfaction by considers multiple attributes (ai)
of a given transaction. Then satisfaction Sat could be computed using the

function: Sat =
∑

N

i=1
wi.ai, where there areN attributes for evaluating

a transaction and wi represent their corresponding weight.

3.2 Similarity

Similarity metric defines to what extent two agents are

alike. We have computed similarity by determining the per-

sonalized difference in satisfaction rating over the common

set of interacted agents and have then used the computed

difference rating to define the degree of similarity. Let,

IS(p) represent the set of agents with whom agent p

has made interaction. Then CIS(p, q) = IS(p)
⋂
IS(q)

denotes the set of agents with whom both agent p and q

have made interaction.

The personalized difference in satisfaction rating be-

tween agent p and q denoted as Diff tn(p, q) is defined

as follows-

Diff tn(p, q) =

√∑
x∈CIS(p,q)(Sat

t
n(p, x)− Sat

t
n(q, x))

2

|CIS(p, q)|
(6)

To measure the similarity between agent p and q

(Simt
n(p, q)), agent p first compares Diff tn(p, q) with the

similarity deviation constant (τ) and then updates similarity

according to the following function-

Simt
n(p, q) =





Simt
n−1(p, q) +

1−Simt
n−1

(p,q)

µ
,

if Diff tn(p, q) < τ

Simt
n−1(p, q)−

Simt
n−1

(p,q)

ψ
, else

(7)

where µ, ψ represent the reward and punishment factor

respectively and both of them can be changed dynamically

depending on the system. From equation (7) we see that

as Diff tn(p, q) increases beyond τ , similarity Simt
n(p, q)

decreases. Here µ, ψ ∈ ℜ and we must make sure that

µ > ψ because the degree of punishment should be greater

than that of incentive. By doing so we incorporate the

principle of “slow rise and quick decline”. If however,

|CIS(p, q)| = 0 then we set Diff tn(p, q) = 0 and

Simt
n(p, q) = 0.5 (default value).

3.3 Feedback Credibility

Feedback credibility is used to measure the degree of ac-

curacy of the feedback information that the recommending

agent provides to the evaluator. Normally it is assumed that

good agents always provide true feedback and malicious

agents provide false feedback. However, this is not always

the real scenario as good agents might provide false feed-

backs to their competitors and malicious agents might occa-

sionally provide true feedbacks to hide their real nature. So

feedback credibility is needed to determine the reliability of

the feedback. During trust evaluation, feedbacks provided

by agents with higher credibility are trustworthier, and

are therefore weighted more than those from agents with

lower credibility. Let, FCretn(p, q) present the feedback

credibility of agent q from agent p’s perspective.

FCretn(p, q) =

{
1− ln(Simt

n(p,q))
ln θ , if Simt

n(p, q) > θ

0, else

(8)

where θ = 0.01 represents the lowest allowed value of

similarity. As we can see from equation (8), credibility is a

5

direct logarithmic function of similarity for its slow rise to

the highest attainable value. This implies that agents with

higher similarity with respect to the evaluating agent have

higher feedback credibility.

3.4 Direct Trust

Direct trust also known as local trust represents the portion

of trust that an agent computes from its own experience

about the target agent. Let, DT tn(p, q) represent the direct

trust that agent p has upon agent q up to n transactions in

the t-th time interval. We have used the satisfaction measure

to define direct trust as follows-

DT tn(p, q) = Sattn(p, q)) (9)

Since satisfaction is computed by an agent’s own experi-

ence, we are using it as local trust. So, if agent q provides

good service then agent p will rate it with a high satisfaction

value and as a result agent q will obtain a high local trust

rating from agent p’s perspective.

3.5 Indirect Trust

Indirect trust also referred as recommendation is computed

from the experience of other agents. An agent utilizes the

experience gained by other agents in the system to make

effective transaction decisions especially when it has no or

very little experience with the given target agent. To do so,

an agent requests other agents to provide recommendation

about the target agent. The evaluating agent then aggregates

recommendation from other agents along with the feedback

credibility of the recommenders. Let, IT tn(p, q) represent

the indirect trust that agent p computes about agent q.

IT tn(p, q) =





∑
x∈W−{p}

FCretn(p,x)×DT
t
n(x,q)∑

x∈W−{p}
FCretn(p,x)

,

if |W − {p}| > 0
0, if |W − {p}| = 0

(10)

Here W = TS(q), represents the set of agents who have

ever interacted with agent q. From equation (10) we see that

indirect trust is computed as weighted average of recom-

mendation from different recommenders where the weights

represent the feedback credibility of the recommenders.

The recommendation made by a recommender is its own

experience i.e., its own direct trust (DT).

3.6 Recent Trust

Recent trust reflects only the recent behaviors. We have

defined recent trust as a weighted combination of direct

and indirect trust. Direct trust is given higher weight as the

evaluating agent performs more and more interactions with

the target agent, i.e., the evaluator becomes more confident

about its own experience than taking recommendation from

others. Let, RT tn(p, q) represent the recent trust that agent

p has upon agent q.

RT tn(p, q) = β ×DT tn(p, q) + (1− β)× IT tn(p, q) (11)

where β represents the weight of direct trust which can be

calculated as follows-

β =
It(p, q)

It(p, q) +M t(p, q)
(12)

M t(p, q) =

∑
x∈W−{p} FCre

t
n(p, x)× I

t(x, q)

|W − {p}|
(13)

Here W = TS(q), represents the set of agents who have

ever interacted with agent q and It(p, q) represents the

number of interactions agent p has conducted with agent

q in the t-th interval. So, M t(p, q) represents the mean

number of interactions that other agents (agents other than

p) have conducted with agent q. We have weighted the

interaction count (I) with feedback credibility (FCre) of

the recommenders in computing M t(p, q). We can see that

as It(p, q) increases (compared toM t(p, q)) the value of β
also increases signifying that as the evaluator becomes more

experienced, it tends to rely more on its own judgement.

If |W − {p}| = 0 then we set M t(p, q) = 0 and if

It(p, q)+M t(p, q) = 0 then we set β = 0.5 (default value).

3.7 Historical Trust

Historical trust is built from past experience and it reflects

long term behavioral pattern. With the elapse of time recent

trend becomes historical trend, and as a result we have

defined historical trust by using an exponential averaging

update function. By using an exponential averaging update

function we not only reduce the storage overhead associated

with storing the previous recent trusts but also assign time

relative weights to all the previous values. Let, HT tn(p, q)
represent the historical trust that agent p has about agent q.

HT tn(p, q) =
ρ×HT tn−1(p, q) +RT tn−1(p, q)

2
(14)

where ρ(0 ≤ ρ ≤ 1) is the forgetting factor (discounting

older experiences) and HT 0
0 (p, q) = 0. With historical

trust present malicious agents cannot suddenly forget their

past and start behaving good. In other words, since we

are keeping track of an agent’s past behavior it cannot

deceive other agents into believing that it is a good agent

by just behaving cooperatively in the recent transactions.

For an agent to be considered as good, it has to perform

in a cooperative manner for a significantly large number of

transactions so that its recent trend can replace most of its

historical trend.

3.8 Expected Trust

Expected trust reflects expected performance of the target

agent and it is deduced from both recent and historical

trust. In other words, we are combining both recent trend

and historical trend to get a prediction of the future trend.

Let, ET tn(p, q) represent the expected trust of agent q from

agent p’s perspective. Expected trust is calculated by the

following equation-

6

ET tn(p, q) =





0, if neither RT nor HT is available

ηRT tn(p, q) + (1− η)HT tn(p, q),
if either RT and/or HT is available

(15)

Initially η is set to 0.5, but η adjusts dynamically based on

the difference of recent and historical trust (deviation factor

ε). Here we are encouraging benevolent behavior by agents

in the recent interactions by increasing η when recent trust

exceeds historical trust by a given threshold (ε). This also

provides agents with the opportunity to improve their rating

after network failure/congestion (provides a second chance

opportunity).

η =





η + 0.1, if RT tn(p, q)−HT
t
n(p, q) > ε

η − 0.1, if RT tn(p, q)−HT
t
n(p, q) < −ε

η, if −ε < RT tn(p, q)−HT
t
n(p, q) < ε

(16)

As we see from equation (16) that when recent trust exceeds

historical trust by ε the value of η increases by 0.1 (empiri-

cally tuned) and as a result the contribution of recent trust to

expected trust increases i.e., the expected trust reflects more

of the recent trust than the historical trust and vice versa.

So, we are actually opting to take an optimistic approach

where we are considering the best possible outcome for an

agent. In other words, we are highlighting or emphasizing

the best possible behavior expected from an agent. Now, by

controlling the value of ε we can determine how quickly

an agent can recover from its historical trend. However, the

value of ε should not be set very small as malicious agents

might then try to exploit this by quickly recovering from

their past mischiefs.

3.9 Decay model

Due to the highly dynamic nature of agents, trust should

attenuate with the elapse of time in absence of interaction.

If an agent remains idle for a long time i.e., if it does not

interact with the network for a long period, the evaluation of

its trust should degrade gradually. Since in our model direct

trust depends on satisfaction and indirect trust is calculated

from the direct trust of recommenders we apply a decay

function on satisfaction metric. The decay function is given

as follows-

Ŝattn(p, q) = Sattn(p, q)e
−λ∆t (17)

∆t = tcurrent − tprevious (18)

where Ŝattn(p, q) represents the value of satisfaction after

decay. Here, λ is the decay constant and it controls how

quickly the value will diminish to zero. ∆t represents

the interval between the current interaction and the last

interaction. So, as ∆t increases, i.e., as the interval between
successive interactions increases the trust value of the target

agent decreases from the perspective of the evaluating

agent. By including the time decay model we establish the

principle “the more recent the transaction the more reliable

it is”.

3.10 Deviation Reliability

Deviation reliability is a measure of how much deviation

we are willing to tolerate. Malicious agents sometimes

strategically oscillate between raising and milking their

reputation which seriously affects the performance of the

network. So, some form of measurement is required to

handle such scenario. Deviation reliability handles such

trust fluctuation. To record the sudden misuse of trust

by agents, we introduce the component accumulated trust

fluctuation (denoted as ATF tn(p, q)).

ATF tn(p, q) =





ATF tn−1(p, q) +
RT t

n(p,q)−HT
t
n(p,q)

ω
,

if RT tn(p, q)−HT
t
n(p, q) > ϕ

ATF tn−1(p, q) +HT tn(p, q)−RT
t
n(p, q),

if RT tn(p, q)−HT
t
n(p, q) < −ϕ

ATF tn−1(p, q), otherwise
(19)

where ϕ represents the tolerated margin of error in the

evaluation of trust and ω (ω > 1) represents the punishment

factor for sudden rise in trust. From equation (19) we see

that we are considering both sudden rise and fall of trust

by agents. However, we are penalizing lesser for sudden

rise (through controlling the value of ω) since we are

encouraging agents to raise their trust through benevolent

interactions. This is evident from the above equation be-

cause with ω > 1 the contribution to accumulated trust

fluctuation will be less than RT tn(p, q) − HT tn(p, q) for

sudden rise where it is exactly HT tn(p, q) − RT tn(p, q)
for sudden fall. Initial value of accumulated misused trust

ATF 0
0 (p, q) = 0.

Deviation reliability uses the accumulated trust fluctu-

ation metric to measure the deviation in agent behavior.

Deviation reliability (denoted DRtn(p, q)) is defined by the

following equation-

DRtn(p, q) =

{
0, if ATF tn(p, q) > maxAT

cos(Π2 ×
ATF t

n(p,q)
maxATF

), otherwise
(20)

where maxATF represents the maximum tolerable trust

fluctuation. So from equation (20) we can see that the

deviation reliability follows the property of a cosine curve

when the accumulated trust fluctuation is less than the

given threshold maxATF and it becomes zero when the

accumulated trust fluctuation exceeds maxATF . We have

used a cosine function for defining deviation reliability

since the cosine function has a low degradation rate in the

initial stage and as more and more trust fluctuation occurs

the degradation rate increases. Here, the initial value of

deviation reliability is DRtn(p, q) = 1.

3.11 Overall Trust Metric

This is the actual trust value used in prioritizing all agents.

It is computed from expected trust and deviation reliability.

Let, Trusttn(p, q) represent the final trust value agent p

places upon agent q.

Trusttn(p, q) = ET tn(p, q)×DR
t
n(p, q) (21)

7

From the equation it is evident that agents with high

expected trust values but with low deviation reliability

will eventually have low overall trust value. Otherwise

stated, agents that strategically oscillate between building

and milking trust will have low trust value due to low

deviation reliability. For an agent to attain a high overall

trust value it must behave cooperatively and at the same

time must not show major trust fluctuation. Therefore, an

agent will use equation (21) to select the target agent with

the highest trust value as this metric combines all the factors

we have discussed so far.

4 LOAD BALANCING AMONG AGENTS

In this section we propose an algorithm for balancing loads

among the trusted agents. For selective scenario, we first

compute the trust of agents who respond to a transaction

request and then we select the agent with the highest

trust value. However, in this scenario the agent with the

highest trust value will have immense workload while other

capable agents with slightly lower reputation will have

considerably less workload. The problem that will arise

from this disproportionate allocation of workload is that the

quality of service will fall greatly due to the heavy workload

present at the highly trusted agents. So a load balancing

algorithm is required for the sustainability of good service

quality.

In our load balancing algorithm we either calculate a

heuristic value of workload and choose the agent with the

smallest load or make a probabilistic choice based on the

computed trust value of agents. We start our load balancing

algorithm by first classifying the responders (agents that

respond to a transaction request) into two groups namely-

good service providers (G) and unknown service providers

(U) based on a threshold value of trust (γ). We then

first seek to choose an agent from G by computing an

approximate value (heuristic value) of load present at each

responders in G. Sorting the responders in increasing order

of load we take the responder with the smallest workload.

In case of no responders being present in the class G we

select an agent from U either probabilistically based on its

trust value or randomly.

We compute the approximate load present at the good

service providers using the following equation-

N t(p, q) = It(p, q) +
∑

x∈W−{p}

FCretn(p, x)× I
t(x, q)

(22)

Here W = TS(q), represents the set of agents who

have ever interacted with agent q and It(p, q) represents

the number of interactions agent p has conducted with

agent q. So, N t(p, q) represents the total number of direct

(from own experience) and indirect (from recommenders)

interactions considered during the computation of trust from

agent p’s perspective. We finally sort the good service

providers in increasing order of load and select the one

with the smallest workload as the corresponding service

provider to a transaction request.

However, all the service providing agents might be

classified as unknown service providers in the initial stage

of the system as their trust values might not have reached

a stable state due to the lack of transactions. In such case,

we choose an agent based on the following probability

measure-

Prob(p, q) =





Trusttn(p,q)∑
x∈U

Trusttn(p,x)
,

if
∑
x∈U Trust

t
n(p, x) 6= 0

randomly select any agent,

else

(23)

In case of choosing an agent from U , we see from equation

(23) that higher the trust value the more chance an agent

has in being selected as a service provider. In other words,

the probability of being selected is directly proportional to

an agent’s trust value which is logical as trust values are

an indication of agents’ service capabilities. However, in

case the trust values of all agents in U are zero we have no

other option but to select an agent randomly as there are

no useful metrics to help us make any predictions. In such

case, we cannot guarantee effective selection of responders.

Pseudo-code of the load balancing algorithm is given in

Algorithm 1.

Algorithm 1 Selection of service providing agent(p, S)

Input: Evaluating agent p and the set of agents

responding to a service request S

Output: Service providing agent q

for each x ∈ S do

compute Trust(p, x)
if Trust(p, x) > γ then

G← G ∪ {x}
else

U ← U ∪ {x}
end if

end for

if G 6= ∅ then

for each x ∈ G do

compute load N(p, x)
end for

sort G in increasing order of load N

return agent q with the smallest load N

else

Total trust← 0
for each x ∈ U do

Total trust← Total trust+ Trust(p, x)
end for

if Total trust > 0 then

for each x ∈ U do

compute Prob(p, x)
end for

return agent q with probability Prob(p, q)
else

return any agent q randomly

end if

end if

8

5 EXPERIMENTAL EVALUATION

This section evaluates SecuredTrust’s performance and

shows its effectiveness under different adversarial strategy.

We have carried out our experiment to achieve four main

objectives. Firstly, we evaluate its accuracy in terms of

trust computation in the presence of malicious agents under

two settings. The second experiment shows how quickly

it adapts to strategically oscillating behavior. In the third

set of experiments we demonstrates the robustness of

SecuredTrust compared to other existing trust models under

different scenarios. Lastly, we show its effectiveness under

the load balancing scheme.

5.1 Simulation Setup

We have developed our simulation in Java using JBuilder

[43] and the discrete event simulation toolkit SimJava

[44, 45]. From the hardware’s point of view we used

Pentium-4(P4) 3.00 Ghz processor with 2GB RAM. This

section describes the general simulation setup including the

environment setting, agent’s behavioral pattern, transaction

setting and performance evaluation index.

5.1.1 Environment Setting

Our simulated environment contains N agents. N is set

to 100 in almost all the experiment. However, in one

experiment we have varied the value of N to show the

scalability of the trust model. It was evident from the

experiment that the variation in N did not affect the

performance of the trust model and as such N was set to

100 for most of the experiments. The agents are of mainly

two types- good and malicious. Good agents cooperate

in providing both good service and honest feedback. In

contrast, malicious agents are opportunistic in the sense that

they cheat whenever it is advantageous for them. Malicious

agents provide both ineffective service and false feedback.

The percentage of malicious agents in the environment is

denoted by the parameter malicious per which is varied in

different experiments.

5.1.2 Agent’s Behavioral Pattern

The behavioral pattern of good agents is quite easy to

simulate as they provide good service and honest feedback.

However, it is challenging to simulate an agent’s malicious

behavior realistically. We mainly study three behavioral

patterns namely- noncollusive, collusive and strategically

altering. In noncollusive setting malicious agents cheat dur-

ing transaction and give false feedback to other agents i.e.,

they rate good agents poorly while rating malicious agents

highly. The collusive setting is similar to the noncollusive

setting with one additional feature that malicious agents

form a collusive group and deterministically help each other

by performing numerous fake transactions to boost their

own rating while disparaging other good agents. We have

used the parameter collusion to denote the percentage of

malicious agents forming a collusive group. In the strate-

gically altering setting a malicious agent may occasionally

decide to cooperate in order to confuse the system. We use

the parameter malicious res to model the rate of dishonest

feedback by a malicious agent. In this case, other agents

are commonly fooled into thinking that the malicious agent

is actually a good agent.

5.1.3 Transaction Setting

Three types of transaction setting are simulated namely,

random setting, trust prioritized setting and load balanced

setting. In the random setting, agents randomly interact with

each other. In the trust prioritized setting an agent first

initiates a transaction request. Against each request certain

percentage of agents respond. The response percentage is

controlled by response rate parameter. The initiating agent

then sorts the responders based on their trust value and

selects the agent with the highest trust value to perform the

desired transaction. Finally, in the load balancing scheme a

service provider with least amount of workload is selected.

Table 1, summarizes the different parameters related to

the environmental setting and trust computation. The table

also lists the default values of the different parameters used.

These default values have been empirically tuned.

5.1.4 Performance evaluation index

To compare the performance of SecuredTrust with other

existing trust models we use a evaluation index named,

successful transaction rate (STR). STR is described as the

ratio of the number of successful transactions to the total

number of transactions. Since computed trust values may

range differently for different trust models, other form of

evaluation index such as trust computation error is not

suitable for comparison. It really does not matter what

range of trust value we assign to an agent, what matters

is how efficiently the model can filter out malicious agents

based on the calculated trust value. In other words, the

relative ranking of agents based on their trust values is

comparable and thats why we only compute STR for

comparison with other models. We determine STR against

the variation of malicious per, malicious res and collusion.

All experimental results are averaged over 30 runs.

5.2 Trust Computation Accuracy

The objective of this set of experiments is to show the

effectiveness of SecuredTrust against different malicious

behavior. The experiment starts as agents randomly start

interacting with each other. After each agent performs on

average 500 transactions, a good agent is randomly selected

to compute the trust value of all the other agents. The

experiments are performed under both noncollusive and

collusive setting as described in the previous section. The

trust computation error is computed by taking the root-

mean-square (RMS) of the computed trust value for all

the agents against their actual likelihood of performing a

satisfactory transaction, which is 1 for good agents and 0

for malicious agents. So a low RMS value indicates better

performance.

In the first experiment we vary the percentage of mali-

cious agents (malicious per) in the system while keeping

9

TABLE 1

Simulation Parameter settings

Parameter Description Default value

N # of agents in the system 100
Environment malicious per % of agents malicious in the system 40%

Setting malicious res % of time a malicious agents gives false feedback 100%
response rate % of agents who respond to a transaction request 5%
collusion % of malicious agents forming a collusive group 0%

α contribution factor for recent satisfaction 1
threshold minimum threshold of α 0.25

c user defined constant 0.9
β weight of direct trust in computing recent trust 0.5
ρ forgetting factor 0.9
η weight of recent trust in computing expected trust 0.5

Trust ε deviation factor for expected trust 0.3
Computation µ reward factor for similarity 20

Setting ψ punishment factor for similarity 4
τ similarity deviation 0.25
θ lowest allowed value of similarity 0.01
λ decay constant or decay rate 0.05
ϕ tolerated margin of error 0.25
ω punishment factor for sudden rise in trust 2

maxAT threshold for accumulated misused trust 10
γ threshold for credibility/trust value 0.8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90

C
o

m
p

u
te

d
 T

ru
s

t
E

rr
o

r

% of malicious agents (malicious_per)

collusion=0%
collusion=100%

Fig. 1. Trust computation error (RMS) with respect to

percentage of malicious agents (malicious per).

malicious res to 100% (i.e., malicious agents give false

feedback in every interaction). Fig. 1 represents the trust

computation error with respect to malicious per under two

settings. For noncollusive (collusion set to 0%) setting in

Fig. 1, we see that SecuredTrust remains more effective

in the presence of large percentage of malicious agents.

The reason behind this is that feedback credibility metric

effectively filters out dishonest feedbacks submitted by

malicious agents. For the collusive setting in Fig. 1, we

set collusion to 100% and again we observe that our

model efficiently discards the dishonest feedbacks submit-

ted by the collusive group. This certifies that our similarity

measure appropriately computes feedback credibility of

recommenders providing recommendation.

In the second experiment we vary malicious res while

setting malicious per to 40%. Fig. 2 represents the trust

computation error in both noncollusive and collusive set-

ting. In the noncollusive setting where collusion is set to

0%, we see that the error is slightly high when mali-

cious res varies from 30% to 45% signifying that malicious

agents can confuse the system a little when they oscillate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
te

d
 T

ru
s

t
E

rr
o

r

% of false feedback by malicious agents (malicious_res)

collusion=0%
collusion=100%

Fig. 2. Trust computation error (RMS) with respect

to percentage of false response by malicious agents

(malicious res).

between good and malicious nature alternatively. For col-

lusive setting where collusion is set to 100%, we see a

better result in the presence of collusion. This signifies that

SecuredTrust can successfully discard false rating provided

by collusive groups.

In the third experiment we vary collusion while setting

malicious per to 40% and malicious res to 100%. Again

from Fig. 3 we see that our model effectively discards the

impact of collusion by leveraging our sensitive feedback

credibility metric. Here, in fact false feedback ratings

come from agents (namely malicious agents) with very low

credibility and as a result they cannot influence the overall

trust value.

5.3 Handling Dynamic Personality of Agents

So far, we have considered more or less fixed personality of

agents. The objective of this experiment is to show how Se-

curedTrust handles dynamic change in agent behavior. We

have already showed SecuredTrust’s effectiveness against

filtering out dishonest feedback submitted by malicious

10

 0.035

 0.04

 0.045

 0.05

 0.055

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
p

u
te

d
 T

ru
s
t

E
rr

o
r

% of malicious agents forming collusive group (col_per)

Fig. 3. Trust computation error with respect to per-

centage of malicious agents forming collusive group

(collusion).

agents, so in this experiment we concentrate on alternating

behavior of malicious agents. Here we simulate the pattern

where a malicious agent first builds up its reputation and

then milks the built reputation and finally tries to build

its reputation back again i.e., the agent oscillates between

building and milking reputation. For testing such sce-

nario we simulate an environment which contains all good

agents except for only one malicious agent with dynamic

personality. The experiment proceeds as agents randomly

perform transactions with each other and a good agent

is selected to determine the trust value of the malicious

agent periodically. In this experiment the malicious agent

performs a total of 1000 interactions which are equally

divided into four consecutive slots . The malicious agent

then oscillates between good and malicious nature from

one slot to the next starting with good nature.

Fig. 4 shows the computed trust value of the ma-

licious agent under altering behavioral pattern. We see

that SecuredTrust quickly responds to the sudden fall of

performance by malicious agent and thus prevents it from

utilizing its built reputation. The sharp fall in the curve

signifies this. Once the trust value diminishes to zero it

requires a significant number of consecutive good services

for its trust value to rise again, i.e., it must give proof of its

cooperative nature. From Fig. 4 we see that in spite of the

good nature of the malicious agent in the third slot its trust

value rises very late and even in that case it does not rise

to the previous value. So, the cost of rebuilding reputation

is actually higher than that of milking it. That is the model

successfully incorporates the principle “quick decline and

slow rise of trust value”.

5.4 Comparison with other Trust Models

In this set of experiments we will demonstrate the efficiency

of SecuredTrust against other existing trust models. In

these experiments an agent first computes and compares

the trust values of the responding agents (i.e., agents who

respond to a transaction request) and chooses the agent

with the highest trust value for interaction. A transaction is

successful if the participating agent is cooperative i.e., if it

is a good agent. In all the experiments, we compute STR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

C
o

m
p

u
te

d
 T

ru
s
t

V
a

lu
e

Number of Iterations

Fig. 4. Effectiveness against dynamic personality.

as the evaluation criterion under different scenarios. The

experiment proceeds in iterations where in each iteration

each agent in the system initiates one transaction. We have

discarded the transactions initiated by malicious agents

from the calculation of STR. We execute a total of 100

iterations in one experiment and compute the average STR.

Since the responders to a transaction request is generated

at random, we take the mean (along with the 95% con-

fidence interval) of 30 experiments for each scenario. We

compare our model with SFTrust [24], FCTrust [25], P2P

recommendation trust model (for short we will use Reco-

Trust) [26], trust model of users’ behavior (for short we

will use User-Trust) [27], dynamic trust model for multi-

agent systems (for short we will use MAS-Trust) [23] and

PeerTrust [20].

First, we calculate STR against the variation of percent-

age of malicious agents, malicious per while keeping mali-

cious res to 100% and collusion to 0%. As from Fig. 5 we

see that both SecuredTrust and PeerTrust show superiority

over the remaining trust models as the amount of malicious

agents in the network increase beyond 40%. Due to the ease

of accessibility, networks today are home to a significantly

large number of malicious agents, especially the internet

holds great threats as it teems with malicious agents (in

the form of botnets [46–48]). In other words, threats and

risks are implicitly increasing as network applications are

widening. So, in such networks SecuredTrust would be the

best option.

In the next experiment we want to observe the impact

of collusion on STR. So, for this experiment we set

malicious per to 60% because as the number of malicious

agents increase their collusive impact becomes greater.

We also set malicious res to 100%. Fig. 6 represents the

computed STR against collusion. Due to the experimental

randomness, the gradient of the curves may vary from

experiment to experiment. In Fig. 6 we see that SFTrust,

MAS-Trust and User-Trust have negative gradient so in

their case STR is actually decreasing as collusive group

size is increasing. The remaining four trust models remain

unaffected by collusion but we see that again, SecuredTrust

and PeerTrust show superiority over others. The main rea-

son behind this is the feedback credibility measure which

filters out false feedbacks. Here false high ratings come

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 S
T

R

% of malicious agents (malicious_per)

PeerTrust
SecuredTrust
Reco-Trust
SFTrust
User-Trust
FCTrust
MAS-Trust

Fig. 5. Comparing SecuredTrust with other models in

terms of average STR (with 95% confidence interval)

against malicious per.

from agents with low feedback credibility as a result they

have no impact on STR. The low credibility itself results

from the personalized similarity measure. In order to attain

a high credibility malicious agents would have to provide

honest feedback which goes against their true nature.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 S
T

R

% of malicious agents forming collusive group (collusion)

PeerTrust
SecuredTrust
Reco-Trust
SFTrust
User-Trust
FCTrust
MAS-Trust

Fig. 6. Comparing SecuredTrust with other existing

trust models in terms of average STR (with 95% confi-

dence interval) against collusion.

In the third experiment we analyze the impact of mali-

cious res on STR. As we saw in Fig. 2 that the malicious

agents tend to fool other agents by oscillating between

good and malicious nature. In this experiment we test

two scenarios with malicious per set to 40% and 60%

respectively while collusion is set to 0% in both the cases.

Fig. 7 represents the computed STR against malicious res.

From the figures we see that SecuredTrust out performs all

other trust models significantly and in these cases PeerTrust

suffers the most. This is because our model keeps track

of sudden rise and fall of trust by agents and penalizes

any agent showing frequent trust fluctuations. While other

models fail to identify the strategic alternations made by

malicious agents, our model quickly distinguishes such

alternations through our deviation reliability metric (see

equation (20)). Thus, SecuredTrust can successfully restrain

strategically altering behavior of malicious agents.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 S
T

R

% of false feedback by malicious agents (malicious_res)

PeerTrust
SecuredTrust
Reco-Trust
SFTrust
User-Trust
FCTrust
MAS-Trust

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 S
T

R

% of false feedback by malicious agents (malicious_res)

PeerTrust
SecuredTrust
Reco-Trust
SFTrust
User-Trust
FCTrust
MAS-Trust

(b)

Fig. 7. Comparing SecuredTrust with other trust mod-

els in terms of average STR (with 95% confidence in-

terval) against malicious res (a) 40% malicious agents

(b) 60% malicious agents.

In the next experiment we determine the number of times

malicious agents are selected as service providers in the

presence of oscillating malicious behavior. Here we run the

experiment for a total of 500 iterations with malicious res

set to 50%, malicious per set to 40% and collusion set

to 0%. However, we divide the 500 iterations into four

equal slots, so each slot contains 125 iterations. Malicious

agents oscillate between good and malicious nature from

one slot to the next starting with good nature. Then we

compute the number of times malicious agents are selected

as service providers to transactions initiated by only good

agents. From Fig. 8 we see that in the initial slot malicious

agents are selected numerous times. This is understandable

because in the first slot they start off by behaving good

so there is no reason to reject them, but in the following

slots this number should decline as we now know their

true nature. We see that our trust model performs best in

isolating the malicious agents and thus reducing unauthentic

transactions compared to other models. The reason behind

our model’s superiority is that we keep track of sudden rise

and fall of trust with the intent to heavily punish any agents

showing such trust fluctuations.

Finally, we compare the computation time required by

the different trust models. For this purpose we compute the

12

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

125 125 125 125

N
u

m
b

e
r

o
f

ti
m

e
s
 m

a
lic

io
u

s
 a

g
e

n
ts

 a
re

s
e

le
c
te

d
 a

s
 s

e
rv

ic
e

 p
ro

v
id

e
r

Number of iterations in each slot

SecuredTrust
SFTrust
FCTrust
Reco-Trust
User-Trust
MAS-Trust
PeerTrust

Fig. 8. Comparing SecuredTrust with other trust mod-

els in terms of the number of times malicious agents

are selected as service providers.

amount of times it takes for the trust models to execute 200

iterations with malicious per set to 50%, collusion set to

0% and malicious res set to 100%. We take the average

of 30 runs. From Fig. 9 we see that PeerTrust requires the

largest amount of time while FCTrust requires the lowest.

Our trust model requires on average 1.2 seconds to execute

200 iterations which is slightly higher than some of the

remaining trust models. This is understandable as we have

considered more components compared to the other trust

models. For example we have considered sudden rise and

fall of trust as well as historical trend of agent behavior all

of which are not considered by other models. As a result

these trust models fail to effectively filter out malicious

agents when they start to show oscillating behaviors. So,

we are sacrificing a very small amount of computational

overhead for the sack of better resilience.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

SecuredTrust

SFTrust

FC
Trust

R
eco-Trust

U
ser-trust

M
AS-Trust

PeerTrust

T
im

e
 (

m
il

li
s

e
c

o
n

d
s

)

Trust Models

Fig. 9. Comparing SecuredTrust with other models in

terms of the computational time required to execute

200 iterations.

5.5 Impact of Load Balancing

In this section we analyze the impact of our load balancing

algorithm on the service providers. For this experiment

we set malicious per to 50%, collusion to 0% and ma-

licious res to 100%. We assume that fixed 10% of the

agents act as service providers to different transaction

requests and among these service providers 60% of them

are good agents while the remaining 40% are malicious.

Now, we set response rate to 50% i.e., 50% of the service

providers respond to a transaction request. So we can

see that at least one good service provider responds to

a transaction request. In this experiment we perform 500

iterations where in each iteration each agent performs one

transaction. In Fig. 10 we present the workloads present

at good service providers under both load-balancing and

non load-balancing scheme. It is evident from Fig. 10 that

under load balancing scheme the total workload is evenly

distributed among the service providers. Fig. 11 presents

the average STR under both schemes and it is observable

that the performance remains same under both schemes.

Since at least one good service provider responds to a

transaction request, the STR in both cases are very high

which is expected. So, we can see that our load balancing

algorithm can successfully distribute workload among the

agents without compromising performance.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6

W
o

rk
lo

a
d

 (
tr

a
n

s
a

c
ti

o
n

s
)

Honest agents

Load Balanced Scheme
Non-Load Blanaced Scheme

Fig. 10. Comparison between load-balancing and no-

load-balancing scheme in terms of workload.

 0.99

 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

A
v

e
ra

g
e

 S
T

R

% of malicious agents (malicious_per)

Load Balanced Scheme
Non-Load Balanced Scheme

Fig. 11. Comparison between load-balancing and no-

load-balancing scheme in terms of average STR.

5.6 Analyzing Scalability

The objective of this section is to show that our trust model

remains unaffected in terms of performance as the number

13

of agents in the network increases. For this purpose we

computed average STR against the number of agents in the

network. We set malicious per to 40%, malicious res to

100% and collusion to 0%. Fig. 12 shows that the computed

average STR remains same as the number of agents in the

network is varied. So, our trust model is scalable with the

increase of agents in the system.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v

e
ra

g
e

 S
T

R

Number of agents (N)

Fig. 12. Scalability of SecuredTrust.

5.7 Decay of trust with lapse of time

This experiment emphasizes the importance of attenuation

of trust with elapse of time in absence of interaction. Since

now a days agents are highly dynamic in nature, it is

realistic that trust should decay with time. For example

suppose agent u is malicious and it belongs to a community

where the most important transactions happen on Friday

before the weekends and comparatively less important

transactions occur from Monday to Tuesday. Now, agent

u can intentionally act good from Monday to Tuesday and

builds its reputation with the long term plan of utilizing

its reputation during the transactions on Friday to cheat

other agents. With no decay model present such scenario

is possible. To prevent such a case from occurring we

incorporate a decay model as described in equation (18).

Fig. 13 shows the different decay schemes possible for

our decay model. From the figure it is observable that the

attenuation function defined in [27], initially has a higher

degradation rate than later one. Realistically it should be the

reverse i.e., initially the degradation rate should be smaller

and as more and more time elapse without interaction

the degradation rate should increase. Our decay function

incorporates such philosophy. By including a time decay

model we are establishing the principle-“the more recent

the transaction the more reliable it is”.

6 DISCUSSION

In this paper we have described a generic trust computation

model for multi-agent systems. Our model can be tuned to

the meet the requirements of a specific application. For

example our model can be used in electronic markets and

e-commerce environments (like Amazon Auctions, eBay,

OnSale Exchange) where buyers rate sellers regarding

their purchase after they make a transaction. Sellers might

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

T
ru

s
t

V
a

lu
e

Lapse of time (∆t)

No Decay
λ =0.1
λ =0.05
λ =0.025
¾
T=T/∆t

1/k
 [27]

Fig. 13. Decay of trust value with elapse of time.

attempt to raise their trust value (hence reputation) by

creating fake buyers and fake transactions. So, in such

scenarios our model can be applied to filter out potential

bad sellers.

Now we will briefly discuss how our proposed trust

model resists some threats, commonly confronted in a

multi-agent system. We then propose some potential so-

lutions for restraining some of the other existing threats.

Like any other reputation model our model assists agents

to choose reputed agents while avoiding untrustworthy

ones. However, reputation-based trust mechanism also in-

troduces vulnerabilities such as shilling attacks where ad-

versaries attack the system by submitting false ratings

to confuse the system. Shilling attack is often followed

by collusion attack where malicious agents collaborate

to raise each other’s rating by making fake transactions.

SecuredTrust prevents such threats by assigning feed-

back credibility to each feedback provider. By doing so,

SecuredTrust discards feedbacks submitted by malicious

agents and thereby avoid collusion attack. Another chal-

lenging threat that most trust models fail to handle is

the dynamic personality of malicious agents. By cleverly

alternating between good and malicious nature they try

to remain undetected while causing damage. SecuredTrust

keeps track of sudden rise and fall of trust and thereby can

easily penalize such oscillating behavior.

Now, we will propose some techniques which can be

incorporated with our trust model to provide solutions

to some of the other existing threats present in a multi-

agent system. Threats such as tampering of distributed trust

information and man in the middle attack can be resolved

by combining public key cryptography algorithms on top

of our trust model. By doing so we can ensure secured

trust data transmission. The free riding problem [49] in

case of P2P where an agent only consumes service but

does not provide any service or feedback can be handled

as suggested by Xiong and Liu [20]. Xiong and Liu

have considered a community context factor for providing

incentives to agents who give feedbacks. We can also incor-

porate such a factor in our trust model where the incentive

factor can be equal to the ratio of total feedbacks over

transactions. Several other remedies have been suggested

for the incentive problem of reputation based systems in

14

[50]. Another common threat is the sybil attack [51] where

an agent creates multiple identities and switches from one

identity to another. If a malicious agent can easily switch

its identity then the trust system may suffer as malicious

agents can easily dispatch their bad history. The defense

against such attacks should not depend on the trust model

but rather on the authentication and access control system.

Friedman and Resnick [52] discuss two approaches to this

issue: either make it difficult to change online identities or

structure the community in such a way that exit and entry

with a new identity becomes unprofitable.

7 CONCLUSION

We have presented a novel trust computation model called

SecuredTrust for evaluating agents in multi-agent environ-

ments. SecuredTrust can ensure secured communication

among agents by effectively detecting strategic behaviors of

malicious agents. In this paper we have given a comprehen-

sive mathematical definition of the different factors related

to computing trust. We also provide a model for combining

all these factors to evaluate trust and, finally we propose

a heuristic load balancing algorithm for distributing work-

load among service providers. Simulation results indicate,

compared to other existing trust models SecuredTrust is

more robust and effective against attacks from opportunistic

malicious agents while being capable of balancing load

among service providers.

ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for

their thoughtful reviews and advice. We would also like

to thank BUET (Bangladesh University of Engineering and

Technology) for its cooperation in providing the required

computing resources.

REFERENCES

[1] N. R. Jennings, “An agent-based approach for building complex
software systems,” Communications of the ACM, vol. 44, no. 4, pp.
35–41, 2001.

[2] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications.
Springer-Verlag New York, Inc., 2005.

[3] (2000) Gnutella. [Online]. Available: http://www.gnutella.com

[4] Kazaa. [Online]. Available: http://www.kazaa.com/

[5] (2000) edonkey2000. [Online]. Available: http://www.emule-
project.net/

[6] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
enabling scalable virtual organizations,” International Journal of

High Performance Computing Applications, vol. 15, no. 3, pp. 200–
222, 2001.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, pp. 35–43, May 2001.

[8] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm for
the 21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003.

[9] S. D. Ramchurn, D. Huynh, and N. R. Jennings, “Trust in multi-
agent systems,” The Knowledge Engineering Review, vol. 19, no. 1,
pp. 1–25, 2004.

[10] P. Dasgupta, “Trust as a commodity,” Trust: Making and Breaking

Cooperative Relations, pp. 49–72, 2000.

[11] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Repu-
tation systems,” Communications of the ACM, vol. 43, no. 12, pp.
45–48, 2000.

[12] A. A. Selcuk, E. Uzun, and M. R. Pariente, “A reputation-based trust
management system for P2P networks,” in Proceedings of the 2004

IEEE International Symposium on Cluster Computing and the Grid

(CCGRID), 2004, pp. 251–258.

[13] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-
to-peer networks,” in Proceedings of the 13th international workshop
on Network and operating systems support for digital audio and

video (NOSSDAV). ACM, 2003, pp. 144–152.

[14] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in Proceedings of the tenth international conference

on Information and knowledge management (CIKM). ACM, 2001,
pp. 310–317.

[15] L. Mui, M. Mohtashemi, and A. Halberstadt, “A computational
model of trust and reputation for e-businesses,” in Proceedings of the

35th Annual Hawaii International Conference on System Sciences

(HICSS’02), 2002, pp. 2431 – 2439.

[16] L. Mui, “Computational models of trust and reputation:
agents, evolutionary games, and social networks,” Ph.D. Thesis,
Massachusetts Institute of Technology(MIT), 2002. [Online].
Available: http://groups.csail.mit.edu/medg/medg/people/lmui/docs/

[17] F. Cornelli, E. Damiani, S. D. Capitani, S. Paraboschi, and P. Sama-
rati, “Choosing reputable servents in a P2P network,” in Proceedings

of the 11th ACM World Wide Web Conference (WWW), May 2002,
pp. 376–386.

[18] Y. Wang and J. Vassileva, “Bayesian network-based trust model,”
in Proceedings of IEEE/WIC International Conference on Web

Intelligence (WI), Halifax, Canada, October 2003, pp. 372–378.

[19] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
EigenTrust algorithm for reputation management in P2P networks,”
in Proceedings of the 12th ACM international World Wide Web

conference (WWW), 2003, pp. 640–651.

[20] L. Xiong and L. Li, “Peertrust: Supporting reputation-based trust
for peer-to-peer electronic communities,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 7, pp. 843–857, 2004.

[21] M. Srivatsa, L. Xiong, and L. Liu, “TrustGuard: Countering vul-
nerabilities in reputation management for decentralized overlay
networks,” in Proceedings of the 14th ACM international conference

on World Wide Web (WWW), 2005, pp. 422–431.

[22] Z. Runfang and H. Kai, “Powertrust: A robust and scalable reputation
system for trusted peer-to-peer computing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no. 4, pp. 460–476, 2007.

[23] B. Li, M. Xing, J. Zhu, and T. Che, “A dynamic trust model
for the multi-agent systems,” in Proceedings of IEEE International

Symposiums on Information Processing (ISIP), 2008, pp. 500–504.

[24] Y. Zhang, S. Chen, and G. Yang, “SFTrust: A double trust metric
based trust model in unstructured P2P systems,” in Proceedings of

IEEE International Symposium on Parallel and Distributed Process-

ing (ISPDP), 2009, pp. 1–7.

[25] J. Hu, Q. Wu, and B. Zhou, “FCTrust: A robust and efficient feed-
back credibility-based distributed P2P trust model,” in Proceedings

of IEEE 9th International Conference for Young Computer Scientists

(ICYCS), 2008, pp. 1963–1968.

[26] X. Wang and L. Wang, “P2P recommendation trust model,” in
Proceedings of IEEE 8th International Conference on Intelligent

Systems Design and Applications (ISDA), 2008, pp. 591–595.

[27] L. Wen, P. Lingdi, L. Kuijin, and C. Xiaoping, “Trust model of
users’ behavior in trustworthy internet,” in Proceedings of IEEE

WASE International Conference on Information Engineering (ICIE),
2009, pp. 403–406.

[28] R. Aringhieri, E. Damiani, S. D. Capitani, S. Paraboschi, and
P. Samarati, “Fuzzy techniques for trust and reputation management
in anonymous peer-to-peer systems: Special topic section on soft
approaches to information retrieval and information access on the
web,” Journal of the American Society for Information Science and

Technology, vol. 57, pp. 528–537, 2006.

[29] E. Damiani, S. D. Capitani, S. Paraboschi, and P. Samarati, “Man-
aging and sharing servents’ reputations in p2p systems,” IEEE

Transaction on Knowledge and Data Engineering, vol. 15, pp. 840–
854, 2003.

[30] D. Wen, W. Huaimin, J. Yan, and Z. Peng, “A recommendation-
based peer-to-peer trust model,” Journal of Software, vol. 15, no. 4,
pp. 571–583, 2004.

[31] J. Sabater and C. Sierra, “Regret: A reputation model for gregarious
societies,” in Proceedings of the Fourth Workshop on Deception,

Fraud and Trust in Agent Societies, 2001, pp. 61–69.

15

[32] Jordi Sabater and Carles Sierra, “Social regret, a reputation model
based on social relations,” ACM SIGecom Exchanges - Chains of

commitment, vol. 3, pp. 44–56, December 2001.
[33] J. Sabater and C. Sierra, “Reputation and social network analysis

in multi-agent systems,” in Proceedings of the first international

joint conference on Autonomous Agents and Multi-Agent Systems,
ser. AAMAS ’02. ACM, 2002, pp. 475–482.

[34] L. Xiong and L. Liu, “A reputation-based trust model for peer-to-
peer ecommerce communities [extended abstract],” in Proceedings

of the 4th ACM conference on Electronic commerce(EC), 2003, pp.
228–229.

[35] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An integrated trust
and reputation model for open multi-agent systems,” Autonomous

Agents and Multi-Agent Systems, vol. 13, no. 2, pp. 119–154, 2006.
[36] N. R. Jennings, T. D. Huynh, and N. R. Shadbolt, “FIRE: An

integrated trust and reputation model for open multi-agent systems,”
in Proceedings of the 16th European Conference on Artificial Intel-

ligence (ECAI), 2004, pp. 18–22.
[37] T. D. Huynh, N. R. Shadbolt, and N. R. Jennings, “Developing an

integrated trust and reputation model for open multi-agent systems,”
in Proceedings of the 7th International Workshop on Trust in Agent

Societies, 2004, pp. 65–74.
[38] J. Sabater, M. Paolucci, and R. Conte, “Repage: REPutation and

ImAGE Among Limited Autonomous Partners,” Journal of Artificial
Societies and Social Simulation, vol. 9, no. 2, 2006.

[39] I. Pinyol and J. Sabater-Mir, “Pragmatic-strategic reputation-based
decisions in bdi agents,” in Proceedings of The 8th International

Conference on Autonomous Agents and Multiagent Systems - Volume

2, ser. AAMAS ’09, 2009, pp. 1001–1008.
[40] R. Andersen, C. Borgs, J. Chayes, U. Feige, A. Flaxman, A. Kalai,

V. Mirrokni, and M. Tennenholtz, “Trust-based recommendation
systems: An axiomatic approach,” in Proceeding of the 17th ACM

international conference on World Wide Web (WWW), Beijing,
China, 2008, pp. 199–208.

[41] J. J. Qi and Z. Z. Li, “Managing trust for secure active networks,”
in Central and Eastern European Conference on Multi-Agent Sys-

tems(CEEMAS). Springer-Verlag, 2005, pp. 628–631.
[42] Y. Zhang, K. Wang, K. Li, W. Qu, and Y. Xiang, “A time-decay

based P2P trust model,” in Proceedings of the 2009 International

Conference on Networks Security, Wireless Communications and

Trusted Computing, vol. 2, 2009, pp. 235–238.
[43] Jbuilder. [Online]. Available:

http://www.embarcadero.com/products/jbuilder
[44] R. McNab and F. Howell, “Using java for discrete

event simulation,” in Proceedings of the Twelfth UK

Computer and Telecommunications Performance Engineer-

ing Workshop, 1996, pp. 219–228. [Online]. Available:
http://www.dcs.ed.ac.uk/home/hase/simjava/UKPEWpaper.ps

[45] F. Howell. (1999) The simjava home page. [Online]. Available:
http://www.dcs.ed.ac.uk/home/hase/simjava/

[46] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: overview and case study,” in Proceedings of

the first conference on First Workshop on Hot Topics in Understand-

ing Botnets. USENIX Association, 2007, pp. 1–8.
[47] Expert: Botnets No. 1 Emerging Internet Threat, CNN Technology.
[48] Attack of the Zombie Computers Is a Growing Threat, The New York

Times, January 2007.
[49] E. Adar and B. A. Huberman, “Free riding on gnutella,” First

Monday, vol. 5, no. 10, 2000.
[50] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Repu-

tation systems,” Communications of the ACM, vol. 43, no. 12, pp.
45–48, 2000.

[51] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against sybil attacks via social networks,” in Proceedings

of the 2006 conference on Applications, technologies, architectures,

and protocols for computer communications (ACM SIGCOMM),
2006, pp. 267–278.

[52] E. J. Friedman and P. Resnick, “The social cost of cheap
pseudonyms,” Journal of Economics and Management Strategy,
vol. 10, pp. 173–199, 1998.

Anupam Das received his B. Sc. Engg. and
M. Sc. Engg. degree from the Department
of Computer Science and Engineering (CSE)
of Bangladesh University of Engineering and
Technology (BUET) in 2008 and 2010 re-
spectively.

In 2008, he joined the Department of
Computer Science and Engineering (CSE)
of BUET, first as a lecturer and in 2010
he became an Assistant Professor of the
same department. In 2010 he received the

prestigious Fulbright International Science and Technology award
to pursue higher studies in USA. He is currently pursuing Ph.D.
degree in the department of Computer Science at the University of
Illinois at Urbana-Champaign (UIUC), USA. His research interests
include information security and privacy, network measurement and
distributed systems.

M. Mahfuzul Islam (S’03-M’11) received the
B.Sc.Engg degree and the M. Sc. Engg. de-
gree from the Department of Computer Sci-
ence and Engineering (CSE) of Bangladesh
University of Engineering and Technology
(BUET) in 1997 and 2000, respectively. He
obtained the Ph.D. degree from Gippsland
School of Information Technology, Monash
University, Australia in 2006.

He is an Associate Professor in the same
Department of BUET. Dr. Islam has pub-

lished more than 40 papers in peer-reviewed reputed international
journals and conferences. His research interests include network
security, vertical handover, wireless resource management and wire-
less sensor networks.

