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Abstract

We introduce FlowComb, a network management frame-
work that helps Big Data processing applications, such as
Hadoop, achieve high utilization and low data processing
times. FlowComb predicts application network transfers,
sometimes before they start, by using software agents in-
stalled on application servers and while remaining com-
pletely transparent to the application. A centralized de-
cision engine collects data movement information from
agents and schedules upcoming flows on paths such that
the network does not become congested. Results on our
lab testbed show that FlowComb is able to reduce the
time to sort 10GB of randomly generated data by 35%
while changing paths for only 6% of the transfers.

1 Introduction

Recent years have witnessed the emergence of appli-
cations and services (e.g., social media, e-commerce,
search) that generate massive collections of data (also
known as Big Data). To analyze the data quickly and ef-
ficiently and extract value for customers, these services
use distributed frameworks (e.g., Map/Reduce, Dryad)
deployed in cloud environments (e.g., Amazon AWS,
Microsoft Azure, Google Apps). The frameworks split
the data across clusters of hundreds or thousands of com-
puters, analyze each piece in parallel, and then transfer
and merge the results across the cloud network. To re-
duce the running costs of the cloud provider (who man-
ages the infrastructure) and the customer (who pays by
the hour), it is important to improve cluster utilization
and keep the duration of data processing jobs low.
Previous research has taken two directions to optimize
utilization and keep running time low: schedule compu-
tation or schedule communication. Several works pro-
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pose to improve job scheduling by preserving data local-
ity [17, 24], maintaining fair allocation among multiple
resource types [12] or culling time-consuming tasks [4].
Even with optimal computation scheduling, the cluster
network can still become a bottleneck. A previous study
on Facebook traces shows that on average, transferring
data between successive stages accounts for 33% of the
running time and that for many jobs the communication
phase takes up more than half of the running time [8].

Consequently, recent proposals seek to schedule com-
munication rather than, or in addition to computation.
They optimize network transfers by improving the flow
bandwidth allocation [8, 19] or by dynamically chang-
ing paths in response to demand [3, 21, 10]. These ap-
proaches need accurate and timely application demand
information, obtained either from the application itself
through instrumentation [8], which is quick and accu-
rate but intrusive, or from the network through monitor-
ing [3], which does not require application involvement,
but can be expensive, slow, and detects changes in de-
mand only after they have occurred.

We propose FlowComb, a network management mid-
dleware for Big Data processing frameworks that is both
transparent to the applications and quick and accurate
in detecting their demand. FlowComb detects network
transfers, sometimes before they start, and adapts the net-
work by changing the paths in response of these trans-
fers. We present a proof of concept for FlowComb using
the Hadoop Map/Reduce framework.

Three questions lie at the foundation of FlowComb’s
design: (1) how to anticipate the network demand of the
application?, (2) how to schedule detected transfers? and
(3) how to enforce the schedule in the network?

First, accurately inferring Hadoop network demand
without application involvement is difficult. Relying on
past demands is not an option because different jobs may
have different network footprints [7]. Monitoring the
network is expensive and detects demand changes only
after they have occurred [3]. Instead, we rely on ap-



plication domain knowledge to detect network transfers.
To alleviate the load on the network and avoid the in-
cast problem [18], Hadoop randomly delays the network
transfers of data that becomes available [16]. To detect
when this happens, we install agents on each server in the
cluster and continually monitor the local tasks and logs.

Second, adapting the network in time after detecting
a network transfer is challenging, especially when the
transfer is short. A centralized decision engine collects
data from each agent and maintains network topology
and utilization information. If the pending or current
transfer creates congestion, the decision engine finds an
alternative path with sufficient available bandwidth. Fi-
nally, FlowComb uses OpenFlow to enforce the path and
install forwarding rules into switches.

FlowComb balances the load in the network by redi-
recting flows along paths with sufficient available band-
width, similarly to Hedera [3] or ECMP [13]. However,
FlowComb uses application domain knowledge to de-
tect network transfers that lead to congestion, rather than
rely on the network to detect and reschedule only large-
volume flows, such as Hedera, or choose paths by hash-
ing selected fields in the packet header, such as ECMP.
As argued by others as well, network scheduling with
application input may lead to better allocations [22, 5].

FlowComb is effective when at least one network link
is fully utilized, i.e., when the application may not be
able to improve transfer time by increasing the flow rate.
In such situations, shifting part of the traffic on alternate
paths is necessary. FlowComb is complementary to re-
cent systems, such as Orchestra [8] or Seawall [19], that
perform rate allocation, rather than route allocation, of
flows on their default saturated paths.

We deployed FlowComb on a 14 node lab Hadoop
cluster connected by a network consisting of two hard-
ware and six software OpenFlow switches. FlowComb is
able to reduce the average running time of sorting 10GB
of randomly generated data by 35%. While few (6%) of
all transfers are rescheduled on alternate paths, 60% of
path changes are enforced before the midpoint of a trans-
fer and 10% before the transfer even starts.

To summarize, we propose a Big Data network
management framework that detects application de-
mand without application involvement. FlowComb uses
software-defined networking to adapt the network paths
to the demands. Our work shows that it is possible to
make the network more responsive to application de-
mands by combining the power of software-defined net-
working with lightweight end-host monitoring.

2 Motivation

We use Hadoop’s MapReduce framework to motivate the
design of our system. MapReduce provides a divide-and-

conquer data processing model, where large workloads
are split into smaller tasks, each processed by a single
server in a cluster (the map phase). The results of each
task are sent over the cluster network (the shuffle phase)
and merged to obtain the final result (the reduce phase).
In this section, we describe the network footprint of a
MapReduce job, evaluate its impact on the overall data
processing, and outline our vision to alleviate it.

2.1 Network footprint

The network footprint of a MapReduce job consists pre-
dominantly of traffic sent during the shuffle phase. In
some cases, map tasks do not have the required data on
the local server and must request it from another node,
thus generating additional network traffic. As such sce-
narios are rare, we do not consider them in our study [1].
We describe the network footprint of MapReduce shuffle
from three perspectives: time, volume, burstiness.

Time: The shuffle phase consumes a significant time
of the job processing. Chowdhury ef al. analyzed a
week-long trace from Facebook’s Hadoop cluster, con-
taining 188,000 MapReduce jobs, and discovered that,
on average, the shuffle phase accounted for 33% of the
running time [8]. In addition, in 26% of jobs the shuffle
takes up more than half of the running time. This shows
that attempting to optimize network communication can
yield big gains in processing time.

Volume: How much traffic is exchanged during a typ-
ical shuffle phase depends on the type of job and the clus-
ter setup. Jobs with small map input-to-output ratio gen-
erate less network traffic. Similarly, Hadoop configura-
tions with many tasks running on a server generate less
traffic since it is more likely for a mapper and reducer to
run on the same server. Chen et al. performed a study on
seven industrial MapReduce workloads and found that,
while the shuffle size varies widely, there are workloads
whose processing generates more than 1GB of network
traffic among the nodes of the cluster for each job [7].

Burstiness: Previous studies show that MapReduce
shuffle traffic is bursty [1]. We set up a Hadoop cluster
(see Section 4) and performed several operations, while
varying Hadoop configuration parameters, such as repli-
cation factor or block size. In all experiments, we ob-
served significant traffic spikes that can introduce net-
work congestion and delay job processing.

2.2 Network impact

Intuitively, having more network capacity reduces the
communication time and decreases job processing dura-
tion. We use our Hadoop cluster (Section 4 to repeatedly
sort the same 10GB workload while varying the capacity
of each link in the network from 10 to 100 Mbps. The av-
erage sort time (computed over 10 runs) increases from



Link capacity (Mbps) | Avg. processing time (min)

100 39

50 53 (x1.3)
25 67 (x1.7)
10 146 (x3.7)

Table 1: Average job processing time increases as the
network capacity decreases. The results represent aver-
ages over 10 runs of sorting a 10GB workload on a 14
node Hadoop cluster. The network topology is presented
in Figure 2. The numbers within parentheses represent
increases from the baseline 100Mbps network.

39 to 146 min (almost four times) when we reduce the
link capacity from 100Mbps to 10 Mbps. The results,
summarized in Table 1, match our intuition and indicate
that finding paths with unused capacity in the network
and redirecting congested flows along these paths could
improve performance.

2.3 Our goal

As the network plays an important role in the perfor-
mance of distributed data processing, it is crucial to tune
it to the demands of applications. Obtaining accurate
demand information is difficult [5]. Requiring users to
specify the demand is unrealistic because changes in de-
mands may be unknown to users. Instrumenting appli-
cations to give the instant demand is better but is intru-
sive and deters deployment because it requires modifi-
cations to applications [11]. Finally, inferring demand
from switch counters [3] does not place any burden on
the user or application but gives only current and past
statistics without revealing future demand. In addition,
polling switch counters must be carefully scheduled to
maintain scalability, which may lead to stale information.

Our goal is to build a network management platform
for distributed data processing applications that is both
transparent to the applications and quick and accurate in
detecting their demand. We propose to use application
domain knowledge to detect network transfers (possibly
before they start) and software-defined networking to up-
date the network paths to support these transfers without
creating congestion. Our vision bridges the gap between
the network and the application by introducing a middle
layer that collects demand information transparently and
scalably from both the application (data transfers) and
the network (current network utilization) and adapts the
network to the needs of the application.

3 Design

FlowComb improves job processing times and averts net-
work congestion in Hadoop MapReduce clusters by pre-
dicting network transfers and scheduling them dynami-
cally on paths with sufficient available bandwidth. Fig-
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Figure 1: FlowComb consists of three modules: flow
prediction, flow scheduling, and flow control.

ure 1 highlights the three main components of Flow-
Comb, flow prediction, flow scheduling, and flow control.

3.1 Prediction

FlowComb detects data transfers between nodes in a
Hadoop cluster using domain knowledge about the in-
teraction between Hadoop components.

Hadoop operation. When a map task finishes, it
writes its output to disk and notifies the job tracker,
which in turn notifies the reduce tasks. Each reduce task
then retrieves from the mapper the data corresponding to
its own key space. However, not all transfers start im-
mediately. To avoid overloading the same mapper with
many simultaneous requests and burdening themselves
with concurrent transfers from many mappers, reducers
start a limited number of transfers (5 by default). When a
transfer ends, the reducer starts retrieving data from an-
other mapper chosen at random. Hadoop makes available
information about the transfer (e.g., source, destination,
volume) using its logs or through a web-based API.

Agents. To obtain information about data transfers
without modifying Hadoop, we install software agents
on each server in the cluster. An agent performs two sim-
ple tasks: 1) periodically scans Hadoop logs and queries
Hadoop nodes to find which map tasks have finished and
which transfers have begun (or already finished), and 2)
sends this information to FlowComb’s flow scheduling
module. To detect the size of a map output, an agent
learns the ID of the local mappers from the job tracker
and queries each mapper using the web API. Essentially,
our agent performs the same sequence of calls as a re-
ducer that tries to obtain information about where to re-
trieve data. In addition, the agent scans the local Hadoop
logs to learn whether a transfer has already started.



3.2 Scheduling

The scheduler receives periodically a list of current or
pending data transfers (i.e., source and destination IPs
and volume), detects if any of them creates congestion
on their default path and if it does, schedules them on a
new path. The scheduler maintains a current map of the
network with the scheduled flows and available capacity
on each link. Three important decisions underline the
functioning of the flow scheduler: 1) choose a flow to
schedule, 2) decide whether the flow needs another path,
and 3) find a good alternate path for it.

Choosing flows. At any moment, the scheduler may
have several flows that are waiting to be scheduled. We
use FIFO scheduling, where the decision engine sched-
ules flows as it learns about them, because it introduces
the least delay in processing a flow. We plan to experi-
ment with other policies, such as prioritizing flows with
larger volume or larger bandwidth.

Detecting congestion. Once we have selected a flow
to schedule, we must detect whether leaving it on the de-
fault path leads to congestion. For this, we compute the
flow’s natural demand, i.e. its max-min fair bandwidth if
it was limited only by the sender and the receiver. The
natural demand estimates the rate that the flow will have,
given the current network allocation. We use the algo-
rithm developed by Al-Fares et al. [3] to compute the nat-
ural demand. If the natural demands for all active flows
together with that of the current flow create congestion
then we must choose a new path for our flow.

Choosing a new path. We schedule each flow whose
natural demand creates congestion on the first path with
enough available bandwidth [3] that we find between the
source and the destination of the flow.

3.3 Control

To exploit the full potential of FlowComb, the switches
in the network must be programmable from a centralized
controller. FlowComb maintains a map of the network
with all switches and the flows mapped to paths. It can
derive the utilization of each link in two ways: from the
server agents (if Hadoop is the only application running
in the network) or by polling switch counters (if the net-
work is shared). We leave the description for future work
but note that there exist scalable methods for utilization
monitoring [20, 23].

4 Preliminary Evaluation

We implemented FlowComb as an extension to the Nox
OpenFlow controller [14] and deployed it on a Hadoop
14-server cluster. Figure 2 shows the network topology
of the cluster. Our preliminary results focus on the per-
formance of FlowComb. We also discuss the overhead
involved in running it and the scalability implications.
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Figure 2: Network topology used for experiments: of1
and of2 are NEC PF5240 OpenFlow switches; ovsI-6 are
software switches, running Open Vswitch. All links have
100Mbps capacity.

4.1 Performance

We seek to understand (1) how effective FlowComb is
in detecting network transfers and scheduling them on
alternative paths, and (2) how much it can reduce job
processing time. We initially set the default paths be-
tween all servers not connected to the same switch to
traverse of1 and sort 10GB of randomly generated data.
Each Hadoop task tracker has two slots for map or re-
duce tasks; the block size is 64MB and the replication
factor is 3. The agent polling period is 1s. We repeat the
experiment 10 times.

Prediction. FlowComb detects around 28% of all
shuffle phase flows before they start, and 56% before
they end. Each flow transfers, on the average 6.5MB of
data, and each host is the source of roughly 200 flows
during each run. Even though most transfers are short,
FlowComb is able to detect them in time for positive
gains in running time, as we show below.

Scheduling. FlowComb reroutes few flows (6%) to
avert congestion. We compute when FlowComb change
the route of a flow relative to the start of the flow. Fig-
ure 3 presents the distribution for the normalized time
of path change (the difference between the route change
time and the flow start time divided by the length of the
flow) for one run. FlowComb sets up the new path be-
fore the flow starts for about 10% of flows, and before
the flow ends for 80%. For 60% of the flows, the new
path is enacted before the midpoint of the flow.

Processing time. We computed the average job pro-
cessing time with FlowComb and without FlowComb.
FlowComb is able to reduce the time to sort 10GB of
data from 39 min to 25 min (by 36%) just by detecting
application demand and rerouting a small percentage of
flows. We also ran ECMP to randomly assign paths to
flows. With ECMP, the sorting took 35 min, better than
the baseline but 40% longer than with FlowComb.

4.2 Discussion
4.2.1 Scalability

While we did not have the resources to experiment with
FlowComb at scale, we try to identify and discuss the
elements that could impact the system’s scalability:
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Figure 3: Normalized time of path change for each
rescheduled flow, relative to the start and end of the flow.
The x value of each point represents the time when the
flow’s path is changed as a fraction of the flow dura-
tion. Points with negative x values correspond to flows
rescheduled before they start. Points with x values be-
tween 0 and 1 are for flows scheduled before they finish.

Agents. Agents scan log files and query the local task
tracker. We measured the increase in CPU utilization that
an agent introduces and found that on the average, run-
ning an agent adds less than 5% of CPU utilization.

Network. Agents send periodically demand informa-
tion to the centralized decision engine. Each message
containing demand information for one transfer has a
payload of 25B. The amount of network traffic increases
linearly with the number of transfers detected, which de-
pends linearly on the number of map and reduce tasks.
However, because not all agents see the same demand or
learn of new demands at the same time, it is unlikely that
the decision engine communicate with all agents at the
same time and be overloaded by their packets.

Scheduling. The time taken by the decision engine to
compute a new path and install it in the network depends
on the size of the network and on the number of flows.
Previous work analyzed this control loop and found it
takes on the average 100 ms, even in deployments with
thousands of hosts and tens of flows per host [3].

4.2.2 Limitations

The requirement that FlowComb be transparent to appli-
cations yet flexible to adapt the network to new applica-
tion demands introduces a few limitations.

Transfer start. Although we know that a transfer is
about to start, we do not know when, since the reducer
starts transfers at random. Thus, we may setup a path
that will not be used for some time. However, as shown
above, the number of flows for which we change the path
is relatively small compared to the total number of flows.

Polling. Polling task trackers or scanning logs intro-
duces computation overhead. Choosing the polling pe-
riod requires careful consideration. Large periods yield
lower overhead but may not detect transfers in time;
small periods may prove too demanding on the system.

Applicability. FlowComb is effective when the net-
work is congested. This is more likely to occur for
network-heavy MapReduce jobs, where the ratio of map
input to output is close to 1, and for large Hadoop clus-
ters, with little data locality.

4.2.3 Extensions

Multiple jobs. Hadoop frameworks frequently execute
multiple, unrelated jobs at the same time. While the op-
eration of FlowComb should largely be unchanged un-
der such scenarios, we underline two aspects that may
introduce additional overhead. First, monitoring appli-
cation demand and network utilization may introduce
more traffic. Second, the decision engine must be care-
ful in changing the congested path shared by multiple
jobs: simply switching all transfers on the same new path
would just transfer the congestion to that path.

Other applications. Extending FlowComb to other
Big Data processing applications (e.g., Cassandra,
HBase) requires domain knowledge of how the appli-
cation components interact with each other. Whether
FlowComb would exhibit the same performance on other
platforms depends on the dynamics between application
components (e.g., whether data becomes available long
before it is sent over the network). We are currently in-
vestigating the applicability of FlowComb to the Cassan-
dra key-value storage system.

5 Related Work

Prior work has tackled improving network communica-
tions in MapReduce jobs in several ways.

Communication scheduling. Systems such as Or-
chestra [8] and Seawall [19] propose to improve the per-
formance of the shuffle phase by scheduling flows using
a weighted fair sharing scheme rather than the default
fair sharing mechanism of TCP. This has the effect of
making transfers proportional with data sizes. However,
as Chowdhury et al. observe [8], when at least one link
on a transfer path is fully utilized, there is little to be
gained from using a weighted scheme. FlowComb per-
forms route allocation, rather than rate allocation, and is
complementary with Orchestra and Seawall

Data aggregation. Rather than modify the way data
transfers are scheduled, other systems propose to reduce
the amount of data being transferred. Camdoop performs
in-network aggregation of the shuffle data by building
aggregation trees with the sources of the intermediate



MapReduce data as children and the server executing
the final reduction as root [9]. The service, however,
is designed specifically for CamCube [2], a cluster built
from commodity hardware where servers are connected
directly with each other, and does not work in a tradi-
tional Hadoop cluster.

Full bisection bandwidth. Many data center topolo-
gies are designed to achieve full bisection bandwidth be-
tween any two parts of the topology [13, 15]. To take
advantage of the multiple paths between any two hosts,
operators use ECMP forwarding, where the path selected
for a packet is selected by hashing selected fields in the
packet’s header. However, if flows collide on their hash
and follow the same path, it can lead to congestion and
reduced performance. FlowComb assigns flows to paths
using both application and network demand information,
rather than bits in the packet header.

Malleable topologies. c-Through [21], Helios [10],
and OSA [6], propose to dynamically allocate optical cir-
cuits in response to traffic demand. Recently, Wang et al.
proposed to make such architectures application-aware
using software-defined networking [22]. In their design,
the job tracker requests the SDN controller to setup the
network for the shuffles with the greatest estimated vol-
ume. However, the granularity of their approach is too
coarse in that it may impact other traffic traversing the
network and which has different requirements.

6 Conclusions

We presented a network management platform for Big
Data processing applications that is transparent to the
applications yet is able to quickly and accurately de-
tect changes in their demand. FlowComb relies on ap-
plication domain knowledge to detect network transfers
between the application components, sometimes before
they even start, and on software-defined networking to
change the network path to support these transfers. Ex-
periments on a lab testbed show that FlowComb can im-
prove MapReduce sort times by an average of 35%.
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