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Abstract

A central question in designing server farms today is how to efficiently provision the number of
servers to extract the best performance under unpredictable demand patterns while not wasting
energy. While one would like to turn servers off when they become idle to save energy, the large
setup cost (both, in terms of setup time and energy penalty) needed to switch the server back on
can adversely affect performance. The problem is made more complex by the fact that today’s
servers provide multiple sleep or standby states which trade off the setup cost with the power
consumed while the server is ‘sleeping’. With so many controls, finding the optimal server farm
management policy is an almost intractable problem – How many servers should be on at any
given time, how many should be off, and how many should be in some sleep state?
In this paper, we employ the popular metric of Energy-Response time Product (ERP) to cap-
ture the energy-performance tradeoff, and present the first theoretical results on the optimality of
server farm management policies. For a stationary demand pattern, we prove that there exists a
very small, natural class of policies that always contains the optimal policy for a single server,
and conjecture it to contain a near-optimal policy for multi-server systems. For time-varying de-
mand patterns, we propose a simple, traffic-oblivious policy and provide analytical and empirical
evidence for its near-optimality.

Keywords: Power management, Data centers, Capacity provisioning, Setup costs,
Performance-per-Watt, Energy-Delay product

1. Introduction

Motivation
Server farm power consumption accounts for more than 1.5% of the total electricity usage in
the U.S., at a cost of nearly $4.5 billion [23]. The rising cost of energy and the tremendous
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growth of data centers will result in even more spending on power consumption. Unfortunately,
due to over-provisioning, only 20-30% of the total server capacity is used on average [7]. This
over-provisioning results in idle servers which can consume as much as 60% of their peak power.
While a lot of energy can be saved by turning idle servers off, turning on an off server incurs a
significant cost. The setup cost takes the form of both a time delay, which we refer to as the setup
time, and an energy penalty. Another option is to put idle servers into some sleep state. While
a server in sleep mode consumes more power than an off server, the setup cost for a sleeping
server is lower than that for an off server. Today’s state-of-the-art servers come with an array of
sleep states, leaving it up to the server farm manager to determine which of these is best.

Goal and metric
There is a clear tradeoff between leaving idle servers on, and thus minimizing mean response
time, versus turning idle servers off (or putting them to sleep), which hurts response time but
may save power. Optimizing this tradeoff is a difficult problem, since there are an infinite number
of possible server farm management policies. Our goal in this paper is to find a simple class of
server farm management policies, which optimize (or nearly optimize) the above tradeoff. We
also seek simple rules of thumb that allow designers to choose from this class of near-optimal
policies. In doing so, we greatly simplify the job of the server farm manager by reducing the
search space of policies that he/she needs to choose from.
To capture the tradeoff involved in energy and performance, and to compare different policies, we
use the Energy-Response time Product (ERP) metric, also known as the Energy-Delay Product
(EDP) [11, 17–19, 22]. For a control policy π, the ERP is given by:

ERPπ = E
[
Pπ] · E[

T π]
where E[Pπ] is the long-run average power consumed under the control policy π, and E[T π] is
mean customer response time under policy π. Minimizing ERP can be seen as maximizing the
“performance-per-watt”, with performance being defined as the inverse of mean response time.
While ERP is widely accepted as a suitable metric to capture energy-performance tradeoffs, we
believe we are the first to analytically address optimizing the metric of ERP in server farms.
Note that there are other performance metrics that also capture the tradeoff between response time
and energy, for example, a weighted sum of the mean response time and mean power (ERWS) [3,
4, 24]. However, the ERWS metric implies that a reduction in mean response time from 1001 sec
to 1000 sec is of the same value as a reduction from 2 sec to 1 sec. By contrast, the ERP implies
that a reduction in mean response time from 2 sec to 1 sec is much better than a reduction from
1001 sec to 1000 sec, which is more realistic. One reason for the popularity of ERWS is that it
is a nicer metric to handle analytically, being a single expectation, and hence additive over time.
Therefore, one can optimize the ERWS metric via Markov Decision Processes, for example.
From the point of view of worst case sample path based analysis, this metric allows comparing
arbitrary policies to the optimal policy via potential function arguments [15]. However, ERP,
being a product of two expectations, does not allow a similar analysis. Other realistic metrics of
interest include minimizing total energy given bounds on, say, the 95%tile of response times.

Summary of Contributions
We consider a specific set of server farm management policies (defined in Table 1) and prove
that it contains the optimal policy for the case of a single server, and also contains a near-optimal
policy for the case of multi-server systems, assuming a stationary demand pattern. For the case
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Policy Single-Server Multi-Server
NEVEROFF Whenever the server goes

idle, it remains idle until a
job arrives.

A fixed optimally chosen number n∗ (with respect to ERP) of servers are
maintained in the on or idle states. If an arrival finds a server idle, it starts
serving on the idle server. Arrivals that find all n∗ servers on (busy) join a
central queue from which servers pick jobs when they become idle.

INSTANTOFF Whenever the server goes
idle, it turns off. It remains
off until there is no work to
process, and begins to turn
on as soon as work arrives.

Whenever a server goes idle, and there are no jobs in the queue, the server
turns off. Otherwise it picks a job from the queue to serve. At any moment
in time, there are some number of servers that are on (busy), and some
number of servers that are in setup. Every arrival puts a server into setup
mode, unless the number of servers in setup already exceeds the number of
jobs in the queue. A job does not necessarily wait for the full setup time
since it can be run on a different server that becomes free before the setup
time is complete, leaving its initially designated server in setup.

SLEEP(S ) Whenever a server goes
idle, it goes into the sleep
state S . It remains in sleep
state S until there is no
work to process, and be-
gins to wake up as soon as
work arrives.

A fixed optimally chosen number n∗ of servers are maintained in the on,
off or sleep states. Whenever a server goes idle, and there are no jobs in
the queue, it goes into the sleep state S . Otherwise it picks a job from the
queue to serve. Every arrival wakes a sleeping server and puts it into setup,
unless the number of servers in setup already exceeds the number of jobs
in the queue.

Table 1: A summary of the different policies considered in this paper, and their description in the single-server and
multi-server cases.

of time-varying demand patterns, we develop a traffic-oblivious policy that can auto-scale the
server farm capacity to adapt to the incoming load, and prove that for a Poisson arrival process
with an unknown rate, our policy is asymptotically optimal as the arrival rate becomes large.
Further, via simulations, we show that our traffic-oblivious policy also performs well for general
time-varying arrival processes. Throughout this paper, for analytical tractability, we make the
assumption of Exponentially distributed job sizes and a Poisson arrival process. However, the
setup time distribution is assumed to be Deterministic. We formally define the traffic model and
the model for servers’ sleep state dynamics in Section 3.

• We begin in Section 4 by considering a single-server system. The arrival process is Poisson
with a known mean arrival rate. There is an infinite range of policies that one could consider
for managing a single server, for example, when the server goes idle, one could immediately
turn it off (INSTANTOFF), or alternatively, move the server to a specific sleep state (SLEEP).
One could also just leave the server idle when it has no work to do (NEVEROFF). Another
possibility is to turn an idle server off with some probability p, and leave it idle with probability
(1 − p). One could also delay turning on an off server until a certain number of jobs have
accumulated in the queue. Also, when turning on an off server, one could transition through
sleep states, with each successive transition moving the server closer to the on state. Within
this wide range of policies, we prove that one of the policies, NEVEROFF, INSTANTOFF or
SLEEP, is always optimal. Refer to Table 1 for the exact definitions of these policies.

• In Section 5, we consider the case of multi-server systems. The arrival process is Poisson
with a known mean arrival rate. We assume that there are enough servers so that we are not
constrained by the available capacity. In the multi-server setting, we have an even wider range
of policies to choose from. For example, some servers could be turned off when idle, some
could be moved to a specific sleep state, and the rest may be kept idle. One could also delay
turning on an off server until a certain number of jobs have accumulated in the queue, or
delay turning off an idle server until some time has elapsed. Via a combination of analysis
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and numerical experiments, we conjecture that one of NEVEROFF, INSTANTOFF or SLEEP
(defined in Table 1 for a multi-server system) is near-optimal.

• In Section 6 we consider a time-varying arrival pattern with the aim of finding policies which
can auto-scale the capacity while being oblivious to the traffic intensity. This situation is even
more complicated than in Section 5, since a server farm management policy might now also
take into account the history of arrivals or some predictions about the future arrivals. For the
time-varying case, we introduce a new policy DELAYEDOFF. Under the DELAYEDOFF pol-
icy, a server is only turned off if it does not receive any jobs to serve in time twait. If an arrival
finds more than one server idle on arrival, it is routed to the server which was most recently
busy (MRB). Otherwise, the arriving job turns on an off server.
The MRB routing proposed above turns out to be crucial for the near-optimality of DELAYED-
OFF. Intuitively, MRB routing increases the variance of the idle periods of the servers when
compared to random or round-robin routing, and yields the property that the longer a server
has been idle, the longer it is likely to stay idle. We prove that DELAYEDOFF is asymptoti-
cally optimal for a stationary Poisson arrival process with an unknown arrival rate, as the load
becomes large. Policies similar to DELAYEDOFF have been proposed in the literature but
applied to individual devices [9, 15, 21], whereas in our case we propose to apply it to a pool
of homogeneous interchangeable servers under MRB routing. We provide both analytical and
simulation evidence in favor of the auto-scaling capabilities of DELAYEDOFF and show that
it compares favorably to an offline, traffic-aware capacity provisioning policy.

2. Prior work

Prior analytical work in server farm management to optimize energy-performance tradeoff can
be divided into stochastic analysis, which deals with minimizing average power/delay or the tail
of power/delay under some probabilistic assumptions on the arrival sequence, and worst-case
analysis, which deals with minimizing the cost of worst-case arrival sequences.

Stochastic Analysis
The problem of server farm management is very similar in flavor to two well studied problems in
the stochastic analysis community: operator staffing in call centers and inventory management.
In call center staffing, the servers are operators, who require a salary (power) when they are
working. Similarly to our problem, these operators require a setup cost to bring an employee
into work, however, importantly, all analysis in call center staffing has ignored this setup cost.
The operator staffing problem involves finding the number of operators (servers) which minimize
a weighted sum of delay costs experienced by users and the monetary cost of staffing operators.
While this problem has received significant attention under the assumption of stationary (non-
time-varying) demand (see [8] for recent results), there is significantly less work for the time-
varying case, one exception being [16]. In [16], the authors consider the problem of dynamic
staffing based on knowing the demand pattern so as to maintain a target probability of a user
finding all servers busy on arrival.
Within inventory management, the problem of capacity provisioning takes the form: how much
inventory should one maintain so as to minimize the total cost of unused inventory (holding cost,
in our case idle power) and waiting cost experienced by orders when there is no inventory in stock
(queueing delay of users). Conceptually this problem is remarkably similar to the problem we
consider, and the two common solution strategies employed, known as Make to Order and Make
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to Stock, are similar in flavor to what we call INSTANTOFF and NEVEROFF, respectively
(see [2], for example). However, in our case servers can be turned on in parallel, while in
inventory management it is assumed that inventory is produced sequentially (this is similar to
allowing at most one server to be in setup at any time).

Worst-case Analysis
The theoretical CS community has been interested in power management from the point of view
of minimizing worst case cost, for example ERWS (See [14] for a recent survey). Again, none of
the prior work encompasses a setup time and is more applicable to a single device than a server
farm. The performance metrics used are also very different from ERP.
The work can primarily be split in terms of results on speed scaling algorithms, and results
on algorithms for powering down devices. In the realm of speed scaling, the problem flavors
considered have been minimizing energy or maximum temperature while meeting job dead-
lines [5, 6, 25], minimizing mean response time subject to a bound on total energy [20], and
minimizing the ERWS [4, 24]. However, again all these papers assume that the speed level
can be switched without any setup costs, and hence are mainly applicable to single stand-alone
devices, since in multi-server systems setup costs are required to increase capacity.
The work on powering down devices is more relevant to the problem we consider, and due to
sample path guarantees, these results naturally lead to traffic-oblivious powering down schemes.
In [15] the authors consider the problem of minimizing total energy consumed under the con-
straint that a device must instantly turn on when a job arrives. Further, [15] assumes that there is
no setup time while turning on a device, only an energy penalty.

3. Model

(t)λ

ON (BUSY)

ON (BUSY)

IDLE

SLEEP

OFF
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Poisson

1

2
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Figure 1: Illustration of our server farm model.

Figure 1 illustrates our server farm model. We assume n homogeneous servers, where each
server can process any job, and thus the servers are interchangeable. Jobs arrive from outside
the system, to a central queue, according to a Poisson process. In Sections 4 and 5, we consider
a fixed arrival rate, λ. However, in Section 6, we consider a time-varying arrival rate, λ(t). We
assume the job sizes are independent and identically distributed according to an Exponentially
distributed random variable S , with rate µ. The quantity ρ(t) = λ(t) · E[S ] is used to denote the
instantaneous load, or the rate at which work is entering the system at time t. In Sections 4 and
5, where we assume λ(t) = λ, we have ρ = λE[S ]. In the case of a multi-server system with
n servers, 0 ≤ ρ < n. Here ρ represents the minimum number of servers needed to maintain a
stable system.
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Each server can be in one of the following states: on (busy)1, idle, off, or any one of N − 1 sleep
states: S 1, S 2, . . ., S N−1. For convenience, we sometimes refer to the idle state as S 0 and the
off state as S N . The associated power values are PON , PIDLE = PS 0 , PS 1 , . . ., PS N = POFF . We
shall assume the ordering PON > PIDLE > PS 1 > . . . > PS N−1 > POFF = 0. The server can
only serve jobs in the on state 2. The time to transition from initial state, S i, to final state, S f ,
is denoted by TS i→S f and is a constant (not a random variable). Rather obviously, we assume
TON→IDLE = TIDLE→ON = 0. Further, the average power consumed while transitioning from state
S i to S f is given by PS i→S f .
Model Assumptions: For analytical tractability, we will relax the above model a little. We will
assume that the time to transition from a state to any state with lower power is zero. Therefore,
TON→OFF = TS i→OFF = 0, for all i. This assumption is justified because the time to transition
back to a higher power state is generally considerably larger than the time to transition to the
lower power state, and hence dominates the performance penalties. Further, we will assume that
the time to transition from a state S i to any higher power state is only dependent on the low power
state, and we will denote this simply as TS i . Therefore, TOFF→IDLE = TOFF→S i = TOFF , for all
i. Note that 0 = TIDLE < TS 1 < . . . < TS N−1 < TOFF . This assumption is justified because in
current implementations there is no way to go between two sleep states without first transitioning
through the IDLE state. Regarding power usage, we assume that when transitioning from a lower
power state, S i, to a higher power state S f , we consume power PS i→S f = PON .
The results of this paper are derived under the Model Assumptions. We have validated these
assumptions within an experimental data center in our lab.

3.1. Simulation methodology

We use a discrete event simulator written in the C++ language to verify our theoretical results
for the various dynamic capacity provisioning policies used in the paper. Our simulator models
a server farm based on the above Model Assumptions.
Throughout the paper, we use simulation results based on the following server characteristics:
TOFF = 200s, TS LEEP = 60s, POFF = 0W, PS LEEP = 10W, PIDLE = 150W and PON = 240W.
These parameter values are based on measurements for the Intel Xeon E5320 server, running the
CPU-bound LINPACK [13] workload.

4. Optimal Single Server policies

As the first step towards our goal of finding policies for efficiently managing server pools, we
analyze the case of a single server system. Recall that our aim is to find the policy that minimizes
ERP under a Poisson arrival process of known intensity. Theorem 1 below states that for a single
server, the optimal policy is included in the set {NEVEROFF, INSTANTOFF, SLEEP} (defined
in Section 1), and hence there is no need to consider any other capacity provisioning policy.

1We use italicized on to denote the state when the server is busy, and without italics when we are colloquially referring
to either the busy or idle state.

2PON need not necessarily denote the peak power at which a job is served, but is used as a proxy for the average
power consumed during the service of a job. Indeed, while applying our model, we would first profile the workload to
measure the average power consumed during a job’s execution, and use it as PON .
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Theorem 1. For the single server model with a Poisson(λ) arrival process and i.i.d. Exponen-
tially distributed job sizes, the optimal policy for minimizing ERP is one of NEVEROFF, IN-
STANTOFF or SLEEP(S), where S is the optimally chosen sleep state among the existing sleep
states.

Before we prove Theorem 1, we would like to point out that this is quite a non-intuitive result,
and in general we do not expect it to hold for other metrics such as ERWS. The theorem rules
out a large class of policies, for example those which may randomize between transitioning to
different sleep states, or policies which move from one sleep state to another, or those which
may wait for a few jobs to accumulate before transitioning to the on state. While ERP, being a
product of expectations, is a difficult metric to address analytically, for the single-server case we
are able to obtain tight optimality results by deriving explicit expressions for ERP.
Proof of Theorem 1: We give a high-level sketch of the proof in terms of four lemmas, whose
proofs are deferred to Appendix A. These lemmas successively narrow down the class of optimal
policies, until we are left with only NEVEROFF, INSTANTOFF and SLEEP.

Definition 1. Let Πmixed denote the class of randomized policies whereby a server immediately
transitions to power state S i (i ∈ {0, . . . ,N}) with probability pi on becoming idle. Given that
the server went into power state S i, with probability qi j it stays in S i and waits until j jobs
accumulate in the queue, where

∑∞
j=1 qi j = 1. Once the target number of jobs have accumulated,

the server immediately begins transitioning to the on state, and stays there until going idle.

Lemma 1. Under a Poisson arrival process and general i.i.d. job sizes, the optimal policy lies
in the set Πmixed.

Lemma 2. Consider a policy π ∈ Πmixed with parameters as in Definition 1. The mean response
time for policy π under a Poisson(λ) arrival process with i.i.d. Exp(µ) job sizes is given by:

E[T ] =

∑N
i=0 pi

∑∞
j=1 qi jri j∑N

i=0 pi
∑∞

j=1 qi j
(
j + λTS i

) (1)

where,

ri j =
j + λTS i

µ − λ
+

 jTS i +
j( j − 1)

2λ
+
λT 2

S i

2

 (2)

and the average power for policy π is given by:

E[P] =

∑N
i=0 pi

∑∞
j=1 qi j

(
j(ρPON + (1 − ρ)PS i ) + λTS i PON

)∑N
i=0 pi

∑∞
j=1 qi j

(
j + λTS i

) . (3)

Lemma 3. The optimal strategy for a single server must be pure. That is, pi = 1 for some
i ∈ {0, . . . ,N}, and qini = 1 for some integer ni ≥ 1.

Lemma 4. The optimal pure strategy dictates that ni = 1, if the optimal sleep state is S i.

Lemma 1 is proved using a sample path argument and crucially depends on the Poisson arrival
process and the Model Assumptions for the sleep states of the server, and in fact holds for any
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metric that is increasing in mean response time and mean power. Lemma 3 relies on the structure
of ERP metric. While Lemma 3 also holds for the ERWS metric (with a much simpler proof),
it does not necessarily hold for general metrics such as the product of the mean power and the
square of the mean response time. Lemma 4 also relies on the structure of the ERP metric and
does not hold for other metrics such as ERWS.

Lemma 5. Assuming a Poisson(λ) arrival process, and Exp(µ) job sizes, the mean response time
and mean power for NEVEROFF, INSTANTOFF and SLEEP are given by:

E[T ] =
1

µ − λ
+

TS i (1 + λTS i/2)
1 + λTS i

(4)

E[P] =
ρPON + (1 − ρ)PS i + λTS i PON

1 + λTS i

(5)

where S i = IDLE for NEVEROFF, S i = OFF for INSTANTOFF, and S i is the sleep state that
we transition to in SLEEP.

Proof: Follows by substituting pi = 1 and qi1 = 1 in Lemma 2.
The expressions in Lemma 5 allow us to determine regimes of load and mean job sizes for which
each of NEVEROFF, INSTANTOFF and SLEEP policy is best with respect to ERP. Although
not shown (for lack of space), we find that NEVEROFF is typically superior to the other policies,
unless the load is low and the mean job size is high, resulting in very long idle periods. In the
latter case, INSTANTOFF or one of the SLEEP policies is superior, depending on the parameters
of the sleep and off states. Eqs. (4) and (5) are also helpful for guiding a server architect towards
designing useful sleep states by enabling the evaluation of ERP for each candidate sleep state.

5. Near-Optimal Multi-server policies

In this section, we extend our results for single server systems to the multi-server systems with
a fixed known arrival rate, with the goal of minimizing ERP. Inspired by the results in Section 4,
where we found the best of NEVEROFF, INSTANTOFF and SLEEP to be the optimal policy,
we intuit that in the multi-server case, one of NEVEROFF, INSTANTOFF and SLEEP will be
close to optimal as well. We make this intuition precise in Section 5.1, and in Section 5.2, we
provide simple guidelines for choosing the right policy from among this set, depending on the
system parameters.

5.1. Near-optimality conjectures

Conjecture 1. Let ΠOFF denote the class of policies which only involve the states on, idle and
off. The ERP of the best of NEVEROFF and INSTANTOFF is within 20% of the ERP of the
optimal policy in ΠOFF when ρ ≥ 10. When ρ ≥ 20, the performance gap is smaller than 13%.

Conjecture 2. Let ΠS i denote the class of policies which only involve the states on, idle and the
S i sleep state. For arbitrary S i (that is PS i and TS i ), the ERP of the best of NEVEROFF and
SLEEP with sleep state S i is within 30% of the ERP of the optimal policy in ΠS i when ρ ≥ 10.
When ρ ≥ 20, the performance gap is smaller than 23%.
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The main idea behind Conjectures 1 and 2 is obtaining reasonably good lower bounds on the
ERP for the optimal policy, and then numerically optimizing the performance gap with respect
to the lower bound. We present justification for Conjecture 1 in Appendix B. The justification
for Conjecture 2 is similar, and we omit it due to lack of space (see [10]).
We believe that in reality, the simple NEVEROFF, INSTANTOFF, and SLEEP policies are better
than our Conjectures suggest. To justify this claim, we perform the following simulation experi-
ment. We focus on the case in Conjecture 1 of policies involving on, idle and off states. Note that
as we mentioned earlier, due to the metric of ERP, we can not utilize the framework of Markov
Decision Processes/Stochastic Dynamic Programming to numerically obtain the optimal policy.
Instead we limit ourselves to the following class of threshold policies:
THRESHOLD(n1, n2): At least n1 servers are always maintained in on or idle state. If an arrival
finds a server idle, it begins service. If the arrival finds all servers on (busy) or turning on, but
this number is less than n2 ≥ n1, then the arrival turns on an off server. Otherwise the arrival
waits in a queue. If a server becomes idle and the queue is empty, the server turns off if there are
at least n1 other servers which are on.
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Figure 2: Comparison of the performance of THRESHOLD policy against the best of NEVEROFF and INSTANTOFF
policies. The y-axis shows the percentage improvement in ERP afforded by the THRESHOLD policy.

The THRESHOLD policy can be seen as a mixture of NEVEROFF with n1 servers, and IN-
STANTOFF with (n2 − n1) servers. Thus, THRESHOLD represents a broad class of policies
(since n1 and n2 can be set arbitrarily), which includes NEVEROFF and INSTANTOFF. In Fig-
ure 2, we show the gain in ERP afforded by the optimal THRESHOLD policy over the best of
NEVEROFF and INSTANTOFF for various values of ρ, TOFF and PIDLE

PON
. We see that if TOFF

is small (Figure 2 (a)), the ERP gain of the THRESHOLD policy over the best of NEVEROFF
and INSTANTOFF is marginal (< 7%). This is because in this case, INSTANTOFF is close to
optimal. At the other end, when TOFF is large (Figure 2 (c)), the ERP gain of the THRESHOLD
policy over the best of NEVEROFF and INSTANTOFF are again marginal (< 6%), because now
NEVEROFF is close to optimal. We expect the optimal THRESHOLD policy to outperform
the best of NEVEROFF and INSTANTOFF when TOFF is moderate (comparable to PIDLE ·E[S ]

PON
).

In Figure 2 (b), we see that this is indeed the case. However, the gains are still moderate (an
improvement of 10% when ρ ≥ 10 and at most 7% when ρ ≥ 20 when PIDLE is high).

5.2. Choosing the right policy

Based on the results of Section 5.1, to provision a multi-server system with a fixed known arrival
rate, it suffices to only consider the policies NEVEROFF, INSTANTOFF and SLEEP. The goal
of this section is to develop a series of simple rules of thumb that help a practitioner choose
between these policies. The specific questions we answer in this section are:
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Question 1: What is the optimal number of servers, n∗, for the NEVEROFF policy?
Question 2: What is the optimal number of servers, n∗, for the SLEEP policy?
Question 3: How can an administrator choose between the INSTANTOFF, NEVEROFF, and the
various SLEEP policies?
Before presenting the rules of thumb to answer the above questions, we present a well-known
result regarding the M/M/K queueing system which will form the basis of further analysis.

Lemma 6 (Halfin and Whitt [12]). Consider a sequence of M/M/sn systems with load ρn in
the nth system. Let αn denote the probability that an average customer finds all servers busy in
the nth system. Then,

lim
ρn→∞

αn = α(β) if and only if lim
ρn→∞

sn − ρn
√
ρn

= β. (6)

The function α(β) is given by

α(β) =

[
1 +
√

2πβΦ(β)e
β2

2

]−1
(7)

where Φ(·) is the c.d.f. of a standard Normal variate. Under the above conditions, the mean
number of jobs in the nth system, E

[
NM/M/sn

]
, satisfies:

lim
ρn→∞

E
[
NM/M/sn

]
− ρn

√
ρn

=
α(β)
β

. (8)

Rule of Thumb #1: Choosing n∗ for NEVEROFF
For the parameter regime where NEVEROFF is the chosen policy,

n∗ = ρ + β∗(PIDLE/PON)
√
ρ + o(

√
ρ) (9)

where β∗(·) is the following function:

β∗(x) = arg minβ>0

(
α(β)
β

+ β · x
)
. (10)

A very good approximation β∗(x) ≈ 0.4105x2+0.8606x+0.0395
x2+0.5376x+0.01413 is obtained via the MATLAB curve

fitting toolbox, with a maximum absolute relative error of < 0.75%.
Justification: Consider a sequence of M/M/sn systems with load ρn in the nth system. Let
sn ∼ ρ + g(ρn) + o(g(ρn)). From [12], we have that E

[
NM/M/sn

]
∼ ρn +

ρn
g(ρn)αn where αn denotes

the stationary probability that all sn servers are busy in the nth system. Also, E
[
PM/M/sn

]
∼

ρPON + g(ρn)PIDLE , which gives

E
[
NM/M/sn

]
· E

[
PM/M/sn

]
= ρ2

nPON

(
1 +

αn

g(ρn)
+

g(ρn)
ρn

PIDLE

PON
+ o() terms

)
.

When g(ρn) = ω(
√
ρn), αn → 0, and the expression in the parenthesis is 1 + ω

(
1/
√
ρn

)
. When

g(ρn) = o(
√
ρn), αn → 1, and the expression in the parenthesis is again 1 +ω

(
1/
√
ρn

)
. Thus, the

optimal choice is g(ρn) = β
√
ρn + o(

√
ρn) for some constant β. This yields:

ERPNEVEROFF ∼ ρnE[S ]PON

1 +

α(β)
β

+ β PIDLE
PON

√
ρn

 (11)
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Optimizing the above yields the expression for β∗.
For the ERWS metric, the rule n∗ = ρ + β

√
ρ is known to be near-optimal in practice. It is

popularly known as the “square-root staffing rule”, or the Quality and Efficiency Driven regime
because it balances the sub-optimality in the performance (Quality) and resource utilization (Ef-

ficiency), both being Θ

(
1
√
ρ

)
, and hence optimizing the ERWS metric. Here we have shown that

the square-root staffing rule also optimizes the ERP metric, albeit with a different β.

Rule of Thumb #2: Choosing n∗ for SLEEP
For the parameter regime where SLEEP with sleep state S i is the chosen policy,

n∗ = ρ′ + β∗(PS i/PON)
√
ρ′ + o(

√
ρ′) (12)

where ρ′ = ρ
(
1 +

TS i
E[S ]

)
and β∗(·) is given by (10).

Justification: The justification for Rule of Thumb #2 is along the same lines. We expect the
SLEEP(Si) policy to outperform NEVEROFF when TS i is small enough so that almost all jobs
turn on a sleeping server and get served there. This is equivalent to an M/G/∞ system with
G ∼ S + TS i . However, since PS i > 0, we optimize the number of servers by following Rule of
Thumb #1, but with mean job size replaced by E[S ] + TS i , or equivalently ρ′ ← ρ

(
1 +

TS i
E[S ]

)
, and

PIDLE ← PS i . This gives us:

ERPS LEEP(S i) ∼ ρE[S ]
(
1 +

TS i

E[S ]

)2

PON

1 +

α(β)
β

+ β
PS i
PON√

ρ
(
1 +

TS i
E[S ]

)
 (13)

Rule of Thumb #3: Which policy to use?
We associate each policy with an index, and choose the policy with the smallest index. The index

for INSTANTOFF is given by
(
1 +

TOFF
E[S ]

)2
. The index for NEVEROFF is given by

(
1 +

γ(PIDLE/PON )
√
ρ

)
,

and for SLEEP with state S i by
(
1 +

TS i
E[S ]

)2

1 +
γ(PS i /PON )√
ρ
(
1+

TS i
E[S ]

)
. The function γ(·) is given by

γ(x) = min
β>0

(
α(β)
β

+ β · x
)

(14)

with α(β) given by (7). A very good approximation γ(x) ≈ 5.444x2+2.136x+0.006325
x2+4.473x+0.9012 is obtained via

the MATLAB curve fitting toolbox, with a maximum relative error of < 0.6% for x ≥ 0.025.
Justification: We justify the heuristic rule of thumb by proposing approximations for the
ERP metric under INSTANTOFF, NEVEROFF, and the SLEEP policies. We expect the IN-
STANTOFF policy to outperform NEVEROFF and SLEEP when TOFF is small enough com-
pared to E[S ], so that the penalty to turn on an off server is negligible compared to the neces-
sary cost of serving the job. In this regime, we can approximate the ERP of INSTANTOFF by
ERPINS T ANTOFF ≈ λPON (E[S ] + TOFF)2, which is an upper bound obtained by forcing every job
to run on the server that it chooses to turn on on arrival. The ERP of NEVEROFF with optimal
number of servers is approximated by Eq. (11), with ρn = ρ and β = β∗(PIDLE/PON). For SLEEP,
we again expect SLEEP(Si) policy to outperform NEVEROFF when TS i is small enough so that
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almost all jobs turn on a sleeping server and get served there. In this regime, we can approximate
the ERP of SLEEP by Eq. (13), with β = β∗(PS i/PON). Using the above approximations for ERP,
we can choose between the INSTANTOFF, NEVEROFF and SLEEP policies.
If we compare INSTANTOFF and NEVEROFF, Rule of Thumb #3 says that if TOFF is suf-
ficiently small compared to E[S ] and 1

√
ρ
, then one should choose INSTANTOFF. Figure 3(a)

verifies the accuracy of the above rule of thumb. Observe that in the region where our rule of
thumb mispredicts the better policy, the gains of choosing either policy over the other are min-
imal. Similarly, the dashed line in Figure 3(b) indicates that the theoretically predicted split
between the NEVEROFF and SLEEP policies is in excellent agreement with simulations.
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Figure 3: Verifying the of accuracy Rule of Thumb #3. This figure shows the relative performance of NEVEROFF,
INSTANTOFF and SLEEP policies for a multi-server system, as a function of load, ρ, and mean job size, E[S ], based
on simulations. Figure (a) shows NEVEROFF vs. INSTANTOFF. The crosses indicate the region of superiority of
INSTANTOFF over NEVEROFF. Figure (b) shows NEVEROFF vs. SLEEP. The crosses indicate the region of superi-
ority of SLEEP over NEVEROFF. The numbers associated with each point denote the % improvement of the superior
algorithm over the inferior. The dashed lines indicate the theoretically predicted split based on Rule of Thumb #3.

6. A Traffic-oblivious dynamic capacity provisioning policy

Thus far we have considered a stationary demand pattern. Our goal in this section is to propose a
server farm management policy with near-optimal ERP when the demand pattern is time-varying
and unknown. We propose a policy, DELAYEDOFF, which we prove is asymptotically optimal
when the arrival process is Poisson, but with an unknown mean intensity. Further, we provide
empirical evidence towards favorable performance of our proposed policy when the arrival pro-
cess is Poisson with an unknown non-stationary arrival rate λ(t), with ρ(t) = λ(t)E[S ].
The previous policies that we have considered, NEVEROFF, SLEEP and INSTANTOFF, do not
satisfy our goal. NEVEROFF and SLEEP are based on a fixed number of servers n∗, and thus do
not auto-scale to time-varying demand patterns. INSTANTOFF is actually able to scale capacity
in the time-varying case, since it can turn on servers when the load increases, and it can turn off

servers when there isn’t much work in the system. However, when TOFF is high, we will see that
INSTANTOFF performs poorly with respect to ERP.
We now define our proposed traffic-oblivious auto-scaling policy, DELAYEDOFF.
DELAYEDOFF: DELAYEDOFF is a capacity provisioning policy similar to INSTANTOFF,
but with two major changes. First, under DELAYEDOFF, we wait for a server to idle for some
predetermined amount of time, twait, before turning it off. If the server gets a job to service in this
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period, its idle time is reset to 0. The parameter twait is a constant chosen independent of load,
and thus DELAYEDOFF is a truly traffic-oblivious policy. Second, if an arrival finds more than
one servers idle on arrival, instead of joining a random idle server, it joins the server that was
most recently busy (MRB). We will later see that MRB routing is crucial to the near-optimality
of DELAYEDOFF.
We will demonstrate the superiority of DELAYEDOFF by comparing it against two other poli-
cies, the first being INSTANTOFF, and the second being an offline, traffic-aware hypothetical
policy, LOOKAHEAD. LOOKAHEAD runs the NEVEROFF policy, with n∗ changing as a func-
tion of time. LOOKAHEAD smartly calculates n∗(t) for each time t, given the ρ(t) forecast. To
do this, we use the idea proposed in [16]. The crux of the idea in [16] is to compute what we will
call the “effective load” at time t, ρeff(t), as:

ρeff(t) =

∫ t

−∞

e−µ(t−u)λ(u)du.

The quantity ρeff(t) denotes the mean number of jobs in the system at time t under the assumption
that every job in the system can have its own server. The number of servers to have on at time t,
n∗(t), is then chosen to be n∗(t) = ρeff(t) + β∗

√
ρeff(t), where β∗ is given by (10).

Figure 4 illustrates the performance of INSTANTOFF, LOOKAHEAD and DELAYEDOFF in
the case of a time-varying arrival pattern that resembles a sine curve with a period of 6 hours. In
all the simulations, we set E[S ] = 1sec, and TOFF = 200secs (hence TOFF is high). Figure 4(a)
shows that INSTANTOFF auto-scales poorly as compared to the other policies, in particular
ERPINS T ANTOFF ≈ 6.8× 105Watts · sec, with E[T ] ≈ 13.17sec and E[P] ≈ 5.19× 104Watts. By
contrast, LOOKAHEAD, shown in Figure 4(b), scales very well with the demand pattern. The
ERP of LOOKAHEAD is ERPLOOKAHEAD ≈ 1.64 × 104Watts · sec, with E[T ] ≈ 1.036sec and
E[P] ≈ 1.58 × 104Watts. Unfortunately, as pointed out above, LOOKAHEAD requires knowl-
edge of the future arrival pattern to be able to have n∗(t) servers on at time t (in particular, it
needs knowledge of the demand curve TOFF units in advance). Thus, while LOOKAHEAD per-
forms very well in a time-varying situation, it is not an online strategy, and is thus, not practical.
Figure 4(c) illustrates the excellent auto-scaling capability of DELAYEDOFF for the sinusoidal
arrival pattern. Here, twait = 320s is chosen according to Rule of Thumb #4 presented later
in this section. For the case in Figure 4(c), ERPDELAYEDOFF ≈ 1.89 × 104Watts · sec with
E[T ] ≈ 1.002sec and E[P] ≈ 1.89 × 104Watts. The ERP for DELAYEDOFF is only slightly
higher than that of LOOKAHEAD, and far lower than that of INSTANTOFF. DELAYEDOFF
slightly overprovisions capacity compared to LOOKAHEAD due to its traffic-oblivious nature.
We verify this last observation analytically.
While analyzing DELAYEDOFF under time-varying traffic is a formidable challenge, we justify
its excellent auto-capacity-scaling capabilities in Corollary 1, which shows that under a Poisson
arrival process with unknown intensity, DELAYEDOFF achieves near-optimal ERP. Thus, if the
rate of change of the arrival rate is less than TOFF (as was the case in Figure 4(c)), we expect
DELAYEDOFF to still achieve near-optimal ERP. This is because we are able to turn servers on
before the queue builds up.

Theorem 2. Consider a server farm with Poisson arrival process and Exponential job size dis-
tribution. Let ρ denote the average load. Under DELAYEDOFF with MRB routing and any con-
stant twait, with probability 1−o(1), the number of servers on is given by ρ+

√
ρ log ρ+o(

√
ρ log ρ),

as ρ→ ∞.
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(a) INSTANTOFF
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(b) LOOKAHEAD
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(c) DELAYEDOFF
Figure 4: Dynamic capacity provisioning capabilities of INSTANTOFF, LOOKAHEAD and DELAYEDOFF. The
dashed line denotes the load at time t, ρ(t), the crosses denotes the number of servers that are busy or idle at time t,
nbusy+idle(t), and the dots represent the number of jobs in the system at time t, N(t).

Corollary 1. If TOFF = 0, then DELAYEDOFF achieves optimal ERP asymptotically as ρ→ ∞.
Specifically, the ERPDELAYEDOFF → (ρ ∗ PON ∗ E[S ])−1 as ρ→ ∞.

Proof of Corollary 1: From Theorem 2, we know that asymptotically with probability 1, we will
end up with ρ +

√
ρ log ρ + o(

√
ρ log ρ) number of servers on. As mentioned in the justification

for Rule of Thumb #1 (Section 5.2), the mean response time for DELAYEDOFF will approach
E[S ] as ρ → ∞, since it keeps ρ + ω(

√
ρ) servers on. Further, the ratio of power consumed

by DELAYEDOFF to the minimum power needed to serve jobs (ρ · PON), is 1 +

√
log ρ
ρ

, which
approaches 1, as ρ→ ∞. Thus, the ERP of DELAYEDOFF, with any non-zero twait, approaches
the theoretical lower bound of (ρ · PON · E[S ])−1 as ρ→ ∞.
Proof of Theorem 2: We first provide an alternate way of viewing the MRB routing. Consider a
server farm with infinitely many servers, where we assign a unique rank to each server. Whenever
there are n jobs in the server farm, they instantaneously move to servers ranked 1 to n. We now
claim that there are m servers on at time t under MRB routing and DELAYEDOFF if and only
if there are m servers on at time t in the alternate model under DELAYEDOFF. To see this, let
the rank of servers at time t under MRB be defined by the last time they were idle (rank 1 server
has been idle the shortest and so on). Once a server goes idle and gets rank n (thus the number
of jobs in the system drops to n − 1), its rank remains n until the number of jobs in the system
increases to n.
Define the idle period for server n + 1, I(n), to be the time that elapses between the instant that
the number of jobs in the system transitions from n + 1 to n until it next reaches n + 1. It is easy
to see that the setup delay, TOFF does not affect the distribution of I(n). A rank n + 1 server turns
off when I(n) > twait. The next lemma implies that for any constant ε > 0, the mean idle period
of ρ + (1 + ε)

√
ρ log ρ ranked server goes to∞, and that of the ρ + (1 − ε)

√
ρ log ρ ranked server

goes to 0. Due to lack of space, we defer the proof of Lemma 7 to Appendix C.

Lemma 7. Consider an M/M/∞ system with load ρ. Then, for any constant ε > 0:

lim
ρ→∞

E
[
I(ρ + (1 + ε)

√
ρ log ρ))

]
= ∞

lim
ρ→∞

E
[
I(ρ + (1 − ε)

√
ρ log ρ))

]
= 0

Further, for any constant β > 0: limρ→∞
√
ρE

[
I(ρ + β

√
ρ))

]
=
√

2πeβ
2
Φ(B).



/ Performance Evaluation 00 (2010) 1–23 15

Therefore, clearly, for any ε > 0, the idle period of server ρ + (1 − ε)
√
ρ log ρ converges in

distribution to 0, and this server is on with probability 1 − o(1). It is also easy to show that the
mean busy period of server n = ρ + δ

√
ρ log ρ for any δ > 0 is E[B(n)] = 1

λ
+ o

(
1
λ

)
→ 0.

Thus the probability that for any ε > 0, the server n = ρ + (1 + ε)
√
ρ is on is upper bounded by

twait+E[B(n)]
E[I(n)]+twait+E[B(n)] → 0.
We now address the question of choosing the optimal value of twait, which we denote as t∗wait.
Rule of Thumb #4: Choosing t∗wait.
A good choice for the twait parameter for DELAYEDOFF is t∗wait ≈ TOFF ·

PON
PIDLE

. The rule of thumb
is along similar lines as the power down strategy proposed in [15] and is based on an amortization
argument. Once the server has wasted PIDLE · t∗wait units of power in idle, it amortizes the cost of
turning the server on later and paying the penalty of PON · TOFF . 3
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Figure 5: (a) Verifying the accuracy of Rule of Thumb #4. The graph shows the effect of twait on ERP for the DELAYED-
OFF policy, in the case of a sinusoidal demand curve, with average ρ = 60 and E[S ] = 0.1, 1, 10s. Different values of
twait result in different ERP values. However, t∗wait = TOFF ·

PON
PIDLE

= 320s does well for all values of E[S ]. (b) The graph
shows the difference in ERP of the DELAYEDOFF and LOOKAHEAD policies. The ERP values are normalized by the
theoretical lower bound. (c) The graph shows the effect of decreasing the period of the sinusoidal demand curve on the
ERP. Results suggest that decreasing the period of the demand curve does not effect the ERP significantly.

Figure 5(a) verifies Rule of Thumb #4, for different E[S ] values. Figure 5(b) compares the ERP
of DELAYEDOFF against the ERP of LOOKAHEAD for different TOFF values. We normal-
ize the ERP values with the theoretical upper bound of ρPON · E[S ]. Throughout the range of
TOFF values, we see that DELAYEDOFF, with twait chosen based on Rule of Thumb #4, per-
forms within 10% of LOOKAHEAD, based on the ERP. The ERP of both, DELAYEDOFF and
LOOKAHEAD are within 70-80% of the ERP values of the theoretical lower bound. Figure 5(c)
shows the effect of decreasing the period of the sinusoidal demand curve on the ERP. We see that
the ERP of DELAYEDOFF increases as the period decreases, but this change is not very signifi-
cant. Thus, we can expect DELAYEDOFF to perform well for time-varying demand patterns, as
long as the rate of change of demand is not too high.

Trace-based simulation results:. Thus far we have only looked at simulation results for arrival
patterns that look like a sinusoidal curve. However, not all demand patterns are sinusoidal. We

3While a reader familiar with work on powering down scheme might find our DELAYEDOFF policy not novel, we
would like to point out a conceptual difference between the use of DELAYEDOFF in our work and in the prior literature.
The prior literature uses DELAYEDOFF type schemes for stand-alone devices, obtaining constant factor sub-optimality.
However, we are applying DELAYEDOFF to each device in a server farm, and are artificially creating an arrival process
via MRB so as to make the idle periods of the servers highly variable. This allows DELAYEDOFF to perform near-
optimally as ρ increases, that is, the competitive ratio approaches 1. This is not necessarily true under alternate routing
schemes, such as probabilistic routing, which would yield a competitive ratio bounded away from 1.
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Figure 6: DELAYEDOFF simulation results based on a subset of arrival traces collected from the Internet Traffic
Archives, representing 15 hours of bursty traffic during the 1998 Soccer world cup finals. Observe that DELAYED-
OFF scales very well even in the case of bursty traffic.

now consider a real-life demand pattern based on traces from the 1998 World Cup Soccer web-
site, obtained from the Internet Traffic Archives [1]. The trace contains approximately 90 days
worth of arrival data, with more than 1.3 billion arrivals. The data contains very bursty arrivals,
with the arrival rate varying by almost a factor of 10, between periods of peak demand and
low demand. In particular, the rate of change of arrival rate is sometimes much higher than
TOFF = 200s. We run DELAYEDOFF on this trace, and compare our results against LOOKA-
HEAD. Throughout, we assume Exponentially distributed job sizes, with mean 1 second.
Figure 6 shows our simulation results for a subset of the arrival traces, corresponding to the
most bursty traffic. We see that DELAYEDOFF (with optimally chosen twait = 320s) adapts
extremely well to the time-varying traffic. In fact, over the entire duration of 90 days, the ERP
of DELAYEDOFF was within 15% of the ERP of LOOKAHEAD. Thus, we conclude that DE-
LAYEDOFF performs very well even in the case of unpredictable and bursty traffic.

7. Conclusions

This paper address the issue of energy-performance tradeoff in server farms. We utilize the
metric of Energy-Response Time Product (ERP) to capture the aforementioned tradeoff. Finding
optimal policies to minimize ERP in server farms is an almost intractable problem due to the high
dimensionality of the search space of policies, made worse by the numerous sleep states present
in today’s servers. Via the first analysis of the ERP metric, we prove that a very small natural
class of server farm management policies suffices to find the optimal or near-optimal policy.
We furthermore develop rules of thumb for choosing the best among these policies given the
workload and server farm specifications. The impact of our results is two-fold: (i) Our results
eliminate the complexity of finding an efficient server farm management policy, and (ii) Our
analytical evaluation of the policies advocated in this paper with respect to ERP can guide server
designers towards developing a smaller set of sleep states with the most impact.
We first prove that for a single server under a Poisson arrival process, the optimal policy with
respect to ERP is either to always keep the server on or idle (NEVEROFF), or to always turn
a server off when idle and to turn it back on when work arrives (INSTANTOFF), or to always
put the server in some sleep state when idle (SLEEP). Next, based on analysis and numerical
experiments, we cojecture that for a multi-server system under a Poisson arrival process, the
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multi-server generalizations of NEVEROFF, INSTANTOFF and SLEEP suffice to find a near-
optimal policy. Finally we consider the case of a time-varying demand pattern and propose a
simple traffic oblivious policy, DELAYEDOFF, which turns servers on when jobs arrive, but
waits for a specific amount of time, twait, before turning them off. Through a clever routing
policy, DELAYEDOFF is shown to achieve asymptotic optimality for a stationary Poisson arrival
process with an unknown arrival rate, as the load becomes large.
In order to prove the optimality results in this paper, we have made some assumptions: (i) The
servers are interchangeable (any job can serve on any server), (ii) The server farm is homoge-
neous, (iii) The job-sizes are Exponentially distributed (although the asymptotic optimality of
DELAYEDOFF extends to general job size distributions). If some or all of these assumptions
were to be relaxed, then our optimality results might look different. For example, we might
consider policies that treat servers based on their specific characteristics, such as PON , PIDLE

or TOFF . Proving optimality results without the above assumptions is beyond the scope of this
paper, and we hope to address some of these issues in a future paper.

Appendix A. Proof of Theorem 1

Proof of Lemma 1: We first note that if the server is in the on state and there is work in the
system, then the optimal policy never transitions into a sleep state. Suppose, by contradiction,
an optimal policy π transitioned into a sleep state at time t0 with work in the queue and then
later transitioned through some sleep state until finally transitioning to the on state at time t1.
We could transform this into a policy π′ with equivalent power consumption, but lower mean
response time by deferring the powering down until all the work present in the system at t0 has
finished (say at t2), and then transitioning through the same sleep states as π, finally transitioning
to the on (or idle) state at time t2 + (t1 − t0).
Next, we prove that the only instants at which an optimal policy takes actions will be job com-
pletions, job arrivals, or when the server finishes transition from a low power state to a higher
power state. Here we assume that once a transition to a sleep, idle or on state has been initi-
ated from a lower power state, it can not be interrupted. We have already argued that no actions
happen during a busy period when the server is in the on state. Therefore to prove that control
actions only happen at the claimed events, it remains to show that actions do not occur while the
server is in idle or sleep states (and not in transition or on) and an arrival has not occured. To
achieve this, it suffices to show that there exists a Markovian optimal control for the ERP metric.

Note that E[T ] = limT→∞
1
λT E

[∫ T
t=0 N(t)dt

]
and E[P] = limT→∞

1
T E

[∫ T
t=0 P(t)

]
, where N(t) and

P(t) denote the number of jobs and power consumption, respectively, at time t. Thus the optimal
decision at time t depends only on the future evolution of the system, and not on the finite history
in [0, t]. (Note that these statements are not true if we replace E[T ] and E[P] by their discounted
versions, e.g. E

[
Pγ

]
=

∫ ∞
t=0 γ

tP(t)dt for some 0 < γ < 1.) By the memoryless property of the
Poisson arrival process, the claim follows.
Finally, we will show that once a policy goes into a sleep state when the server goes idle, the
only other state it will transition to next is on. To see this, suppose the server went into sleep
state S i. Now, the server will not go into sleep state S j for j > i (and hence to a state with lower
power) on a job arrival, otherwise it would have been better to transition to S j when the server
first went idle. If the server transitions to a sleep state S k for k < i (thus a state with higher
power) but not the on state, and later transitions to the on state, it would instead have been better
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to transition directly to the on (since the transition times are the same by the Model Assumptions),
finish processing the work and then transition to state S k instantaneously.
So far, we have argued that the optimal policy must (i) immediately transition to idle or a sleep
state when the work empties (recall that we have assumed these transitions to be instantaneous),
(ii) immediately transition to the on state on some subsequent arrival, and (iii) is Markovian.
However, the optimal control need not necessarily be a deterministic function of the current
state. We therefore use pi and qi j to denote the class of possible optimal control policies Πmixed.

Proof of Lemma 2: The proof proceeds via renewal reward theory. We define a renewal cycle
for the server as the time from when a server goes idle (has zero work), until it next goes idle
again. Thus we can express:

E[T ] =
E
[
total response time per cycle

]
E
[
number of jobs per cycle

] ; E[P] =
E
[
total energy per cycle

]
E
[
duration per cycle

] .

Now consider a specific case, where the server goes into sleep state S i on becoming idle, and
starts transitioning to the on state when ni jobs accumulate. There can be more arrivals while the
server is turning on. We denote the number of arrivals during transition from S i by Xi, and note
that Xi is distributed as a Poisson random variable with mean λTS i . Thus, after the server turns
on, it has ni + Xi jobs in the queue, and thus the time until the server goes idle is distributed as a
sum of ni + Xi busy periods of an M/M/1 system. The sum of the response times of jobs that are
server during this renewal cycle has two components:
1. Sum of waiting times of all jobs before the server turns on (term 1 below): The waiting time of
the jth of the first ni jobs is

∑ni
k= j+1 Tλ(k) + TS i , where {Tλ(·)} are i.i.d. Exp(λ) random variables,

and Tλ(k) denotes the time between the (k− 1)st and kth arrival of the cycle. By the properties of
the Poisson arrival process, the (unordered) waiting time of each of the Xi jobs is an independent
U([0,TS i ]) random variable. Adding an taking expectation, we get the term 1 as shown below in
(A.1).
2. Sum of the response times from when the server turns on until it goes idle (term 2 below):
Since the sum of response time of the jobs that are served during the renewal cycle is the same
for any non-preemptive size-independent scheduling policy, we will find it convenient to sched-
ule the jobs as follows: We first schedule the first of ni + Xi arrivals and do not schedule any of
the ni + Xi − 1 remaining jobs until the busy period started by the first job completes. Then we
schedule the second of the ni + Xi jobs, holding the remaining jobs until the busy period started
by this job ends, and so on. The sum of the response times is thus given by the sum of response
times in ni + Xi i.i.d. M/M/1 busy periods, and the additional waiting time experienced by the
initial ni + Xi arrivals. By renewal theory, the expectation of the sum of response times of the jobs
served in an M/M/1 busy period with arrival rate λ and service rate µ is given by the product

of the mean number of jobs served in a busy period
(

1
1− λ

µ

)
and the mean response time per job(

1
µ−λ

)
. This gives the first component of term 2. The additional waiting time of the jth of the

ni + Xi initial arrivals due to our scheduling policy is given by the sum of durations of j − 1
M/M/1 busy periods, each of expected length 1

µ−λ
. Adding this up for all the ni + Xi jobs and

taking expectation, we get the second component of term 2.

ni

(
ni − 1

2λ
+ TS i

)
+ E[Xi]

TS i

2︸                               ︷︷                               ︸
term 1

+
1

1 − ρ
·

ni + E[Xi]
µ − λ

+ E
[
(ni + Xi)(ni + Xi − 1)

2(µ − λ)

]
︸                                                       ︷︷                                                       ︸

term 2

(A.1)
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=
1

1 − ρ

ni + E[Xi]
µ − λ

+

niTS i +
ni(ni − 1)

2λ
+
λT 2

S i

2

 =
rini

1 − ρ

The final expression in (1) is obtained by combining the above with the renewal reward equation,
and noting that the mean number of jobs served in this renewal cycle is given by ni+E[Xi]

1−ρ .

E[T ] =
E
[
total response time per cycle

]
E
[
number of jobs per cycle

] =

∑N
i=0 pi

∑∞
ni=1 qini

rini
1−ρ∑N

i=0 pi
∑∞

ni=1 qini

ni+λTS i
1−ρ

=

∑N
i=0 pi

∑∞
j=1 qi jri j∑N

i=0 pi
∑∞

j=1 qi j( j + λTS i )

The proof for E[P] is analogous. The duration of a cycle is composed of three different times:
1. Time spent waiting for ni jobs to queue up: The expected duration is ni

λ
, with expected total

energy consumed given by ni
λ

PS i .
2. Time to wake up the server: This is TS i , with total energy consumed by the server during this
time as TS i PON .
3. (ni + Xi) busy periods: The expected time it takes for the server to go idle again is the expected
duration of ni + Xi busy periods, given by ni+λTS i

µ−λ
with total energy consumed being ni+λTS i

µ−λ
PON .

Thus, we have:

E[P] =
E
[
total energy per cycle

]
E
[
duration per cycle

] =

∑N
i=0 pi

∑∞
j=1 qi j

[
j
λ
· PS i + TS i · PON +

j+λTS i
µ−λ

· PON

]
∑N

i=0 pi
∑∞

j=1 qi j

[
j
λ

+ TS i +
j+λTS i
µ−λ

]
=

∑N
i=0 pi

∑∞
j=1 qi j

(
j(ρPON + (1 − ρ)PS i ) + λTS i PON

)∑N
i=0 pi

∑∞
j=1 qi j

(
j + λTS i

) .

Proof of Lemma 3: To prove that the optimal strategy is pure, we only need to note that the
expressions for both the mean response time and average power are of the form

E[T ] =
q1t1 + . . . + qntn

q1m1 + . . . + qnmn
; E[P] =

q1u1 + . . . + qnun

q1m1 + . . . + qnmn
,

where n is the number of pure strategies that the optimal strategy is randomizing over. for some
discrete probability distribution {q1. . . . , qn}. We will show that when n = 2, the optimal strategy
is pure, and the proof will follow by induction on n. For n = 2, we consider E[T ] and E[P] as a
function of q1 over the extended domain q1 ∈ (−∞,+∞), and show that there is no local minima
of E[T ] · E[P] in q1 ∈ (0, 1). Further, note that both E[T ] and E[P] are of the form a + b

c+dq1
for

some constants a, b, c, d. While the lemma would trivially follow if the product of E[T ] and E[P]
were a concave function of q, this is not true in our case because one/both of E[T ] and E[P] may
be convex, and hence we proceed through a case analysis:
Case 1: Both E[T ] and E[P] are increasing or decreasing in q1, except for a shared discontinuity
at q1 = m2

m2−m1
. In this case, trivially, E[T ]E[P] is also increasing/decreasing in the interval

q1 ∈ [0, 1] as both the functions are positive in this interval, and thus the minimum of E[T ] ·E[P]
is either at q1 = 0 or at q1 = 1.
Case 2: One of E[T ] and E[P] is an increasing function and the other is a decreasing function of
q1 (except for the shared discontinuity at q1 = m2

m2−m1
). In this case, as q1 →

m2
m2−m1

, E[T ] ·E[P]→
−∞. Second, due to the form of E[T ] and E[P], it is easy to see that their product has at most one
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local optimum. Finally, we can see that as q1 → ±∞, E[T ]E[P] → (t1−t2)(m1−m2)
(u1−u2)2 , which is finite.

Combining the previous three observations, we conclude that there is no local minima in the
interval q1 ∈ (0, 1). In other words, in the interval q1 ∈ [0, 1], the minimum is achieved at either
q1 = 0, or q1 = 1. The inductive case for n follows by considering only two variables, qn and q′,
where q′ is a linear combination of q1, q2, . . . , qn−1, and applying the inductive assumption.
Proof of Lemma 4: We now know that the optimal power down strategy is of the following
form: the server goes into a fixed sleep state, S i, on becoming idle. It then waits for some
deterministic ni arrivals before transitioning into the on state. We will show that under optimality,
ni = 1. The basic idea is to minimize the product of Eqs. (1) and (3). We omit the proof due to
lack of space but mention the key steps (see [10] for details):

• We first show that if λTS i > 1, then the policy where the server goes to idle state (recall
TIDLE = 0) has a lower E[T ]E[P] than going into sleep state S i with any ni. Thus λTS i < 1 is
a necessary condition for optimality of sleep state S i.

• Next, we show that when λTS i < 1, the optimal value of ni is in fact ni = 1. The proof
proceeds by first finding two continuous differentiable functions g(x) and h(x) that agree with
E[T ] and E[P], respectively, at integral values of ni. Then by investigating the asymptotes,
discontinuities, and sign changes of the second derivative of g(x)h(x), we conclude that it
suffices to show that the derivative of g(x)h(x) at x = 1 is positive to prove that there is no
local minima of g(x)h(x) (and hence for E[T ]E[P]) for x > 1. The last inequality is shown via
some tedious algebra.

Appendix B. Justification for Conjecture 1

The core problem is in coming up with a tight lower bound for E[T ]E[P] for the optimal policy.
We have a trivial lower bound of E[T ] ≥ E[S ], and E[P] ≥ ρPON . However, this is very loose
when ρ is small and TOFF is large.
There are a few key ideas to obtaining the lower bound. The first is to give the optimal policy
additional capability. We do so by allowing the optimal policy to turn a server on from off

instantaneously (zero setup time). Consequently, each server is either on (busy), idle, or off.
However there is still an energy penalty of PONTOFF . Secondly, we use an accounting method
where we charge the energy costs to the jobs, rather than to the server. Thus, each job contributes
towards the total response time cost and to the total energy cost. Thirdly, we obtain a lower
bound by allowing the optimal policy to choose the state it wants an arrival to see independently
for each arrival. This allows us to decouple the decisions taken by the optimal policy in different
states. We make this last point clearer next.
An arrival that finds the n jobs in the system (excluding itself) could find the system in one of the
following states:

1. At least one server is idle: Here, the optimal policy would schedule the arrival on the idle
server. In this case, we charge the job E[S ] units for mean response time. Further, the server
would have been idle for some period before the arrival, and we charge the energy spent
during this idle period, as well as the energy to serve the arrival, to the energy cost for the
job. However, if under the optimal policy, there is an idle server when the number of jobs
increases from n to n + 1, there must have been a server idle when the number of servers last
went down from n + 1 to n. Furthermore, some server must have remained idle from then
until the new arrival which caused the number of jobs to go to n + 1 (and hence there were
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no jobs in the queue during this period). Thus, this idle period is exactly the idle period of an
M/M/n + 1 with load ρ, denoted by I(n), where the idle period is defined as the time for the
number of jobs to increase from n to n + 1.

2. No server is idle, arrival turns on an off server: Here, we charge the arrival E[S ] units for
mean response time, and PONE[S ] + TOFF PON for energy.

3. No server is idle, arrival waits for a server to become idle: This case is slightly non-trivial
to handle. However, we will lower bound the response time of the job by assuming that the
arrival found n servers busy with the n jobs. Further, until a departure, every arrival turns on a
new server and thus increases the capacity of the system. Thus, this lower bound on queueing
time can be expressed as the mean time until first departure in an M/M/∞ system starting
with n jobs. We denote this by D(n). The energy cost for the job will simply be PONE[S ].

We will give the optimal strategy the capability to choose which of the above 3 scenarios it wants
for an arrival that occurs with n jobs in the system. Since the response time cost of scenario 1
and 2 are the same, only one of them is used, depending on whether PIDLEE[I(n)] > PONTOFF or
not. Let Pwaste(n) = min{PIDLEE[I(n)], PONTOFF}. Let qn denote the probability that the optimal
policy chooses the best of scenarios 1 and 2 for an arrival finding n jobs in the system, and with
probability 1 − qn it chooses scenario 3. Since we are interested in obtaining a lower bound, we
will further assume that the probability of an arrival finding n jobs in the system, pn, is given by
the pdf of a Poisson random variable with mean ρ, which is indeed a stochastic lower bound on
the stationary number of jobs in the system. We thus obtain the following optimization problem:

E
[
T OPT

]
E
[
POPT

]
≥ λmin

{qn}

E[S ] +
∑

n

pn(1 − qn)E[D(n)]

 PONE[S ] +
∑

n

pnqnPwaste(n)


≥ λmin

{qn}

∑
n

pn
√

(E[S ] + (1 − qn)E[D(n)])(PONE[S ] + qnPwaste(n))

2

(By Cauchy-Schwarz inequality)

= λ

∑
n

pn

√
min {PONE[S ] + Pwaste(n), PON(E[S ] + D(n))}

2

The last equality was obtained by observing that the minimum occurs at qn = 0 or qn = 1.
The rest of the argument is numerical. We have written a program that computes the above
lower bound for a given ρ, TOFF , PIDLE and PON values. We then compare it against the cost
of the NEVEROFF with optimal n∗, and against the following upper bound on the cost of IN-
STANTOFF: λPON (E[S ] + TOFF)2. This upper bound is obtained by forcing every job to run
on the server that it chooses to setup on arrival. For each value of ρ, we then search for the
TOFF value that maximizes the ratio of the cost of the best of NEVEROFF and INSTANTOFF
to the above lower bound, and bound the relative performance of the best of NEVEROFF and
INSTANTOFF against the theoretical optimal as a function of ρ and the ratio PIDLE

PON
. The above

comparison yields the curve shown in Figure B.7 for the upper bound on the suboptimality of the
best of NEVEROFF and INSTANTOFF versus the optimal policy as a function of ρ.



/ Performance Evaluation 00 (2010) 1–23 22

2 6 10 15 20 25 30
1

1.2

1.4

1.6

ρ

Pe
rfo

rm
an

ce
 R

at
io

Figure B.7: Upper bound on the performance ratio of best of NEVEROFF and INSTANTOFF to that of the optimal
policy as function of the load ρ, obtained via Conjecture 1. The performance gap for ρ = 10 is 20%, and for ρ = 20 is
13%.

Appendix C. Proof of Lemma 7

Without loss of generality, we assume E[S ] = 1. Thus ρ = λ. We begin by writing the recur-
rences for solving E[I(n)]:

E[I(0)] =
1
ρ

; E[I(i)] =
1

ρ + i
+

i
ρ + i

(E[I(i − 1)] + E[I(i)]) .

or equivalently,

E[I(i)] =
1
ρ

+
i
ρ
· E[I(i − 1)] =

1
ρ

+
i
ρ2 +

i(i − 1)
ρ3 +

i(i − 1)(i − 2)
ρ4 + · · · +

i!
ρi+1

=
i!
ρi+1

(
1 +

ρ

1
+
ρ2

2!
+ · · · +

ρi−2

(i − 2)!
+

ρi−1

(i − 1)!
+
ρi

i!

)
Now consider i = ρ + β

√
ρ. We get:

E[I(i)] =
(ρ + β

√
ρ)!eρ

ρi+1

ρ+β
√
ρ∑

k=0

e−ρ
ρk

k!

 ∼ (ρ + β ·
√
ρ)!eρ

ρi+1 Φ(β)

∼

√
2π
ρ

(
1 +

β
√
ρ

)ρ+β
√
ρ

e−β
√
ρΦ(β) =

√
2π
ρ

(
1 +

β
√
ρ

)β√ρ
e
ρ log

[
1+

β
√
ρ

]
e−β

√
ρΦ(β)

=

√
2π
ρ

eβ
2
eρ( β

√
ρ
−
β2

2ρ +o(1/ρ))e−β
√
ρΦ(β) ∼

√
2πeβ

2
Φ(B)

√
ρ

which proves the second part of the theorem.
Now consider i = ρ + η

√
ρ log ρ for some constant η > 0:

E[I(i)] ∼
(ρ + η

√
ρ log ρ)!eρ

ρρ+η
√
ρ log ρ+1

∼

√
2π
ρ

1 +
η
√
ρ log ρ
ρ

ρ+η
√
ρ log ρ

e−η
√
ρ log ρ

=

√
2π
ρ

e
(ρ+η
√
ρ log ρ) log

(
1+

η
√
ρ log ρ
ρ

)
e−η
√
ρ log ρ
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=

√
2π
ρ

e
(ρ+η
√
ρ log ρ)

 η√ρ log ρ
ρ −

η2ρ log ρ
2ρ2 +θ

 (η√ρ log ρ)3

ρ3

−η√ρ log ρ
∼

√
2π
ρ

e
η2ρ log ρ

2ρ =
√

2πρ
η2−1

2

Thus for η2 > 1, E
[
I(ρ + η

√
ρ log ρ)

]
→ ∞, and for η2 < 1, E

[
I(ρ + η

√
ρ log ρ)

]
→ 0 as ρ→ ∞.
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