
System for Worm Observation and Rapid
Detection

17 June 2004
NETSEC Meeting

Eric Anderson

anderson@cs.uoregon.edu

University of Oregon

Network Security Research Group

NETSEC Presentation c©Eric Anderson – p.1/64

Worms: Who Cares?

• Internet worms have been costly and destructive
• Traffic causes network collapse.
• Infected hosts are often unusable.
• Repair is labor-intensive.
• Code Red v.2 and Slammer estimated to cost

$2bn and $1bn, respectively.
• . . . by accident.
• A truly malicious worm could do much worse.

NETSEC Presentation c©Eric Anderson – p.2/64

Why Automated Worm Detection

• Worms can spread incredibly quickly.
• Slammer reached its peak infection rate in 3

minutes.
• Theoretical worms: 15 seconds.
• Time window for useful response even smaller.

• Human-mediated analysis and response are not
fast enough.

NETSEC Presentation c©Eric Anderson – p.3/64

Intrusion Detection Today

• Signature-based:
• Monitors keep database of known attacks.
• Works, after a signature’s created.

• Anomaly-based:
• All traffic is compared to statistical profiles of

"normal" traffic.
• False positive rate is too high to allow automatic

responses.
• Specification-based:

• Rules describe acceptable behavior.
• Deviant traffic is flagged.

NETSEC Presentation c©Eric Anderson – p.4/64

Specification-based Worm Detection

• (Fast) worms are not terribly subtle
• Infected hosts initiate many connections.

• Possibly to addresses with no host.
• Or services which aren’t running.

• Infected hosts start acting like the host which
infected them.

• We can observe that a worm exists, but that isn’t
enough information to do anything.

NETSEC Presentation c©Eric Anderson – p.5/64

Our Approach

• A network of monitors:
• Maintain (shared) set of known worm

signatures.
• Detect “worm-like” events heuristically.
• Create new signatures from events not

matching existing ones.
• Maximize matches with worms.
• Minimixe matches with other.

• Sharing signatures and data.
• Individually, monitors may not have enough

data.

NETSEC Presentation c©Eric Anderson – p.6/64

Approach Overview

NETSEC Presentation c©Eric Anderson – p.7/64

Limitations of Isolated Monitors

• A worm monitor can try to detect new worms
• Monitor local traffic
• Create candidate worm signatures
• Take proper actions

• False positives and false negatives
• Monitor’s view of network traffic may not be

representative
• Or comprehensive

• Slow detection
• Won’t know a 0-day worm before seeing actual

worm traffic
• Or seeing "enough" of the worm’s trafficNETSEC Presentation c©Eric Anderson – p.8/64

Worm Monitor Collaboration

• After a monitor finds a local candidate worm
signature, it can report that signature to other
monitors
• and info for deriving the signature

• The receiving monitor uses its data to validate &
re-optimize that signature
• Verify against combined data set
• Fit with worm propagation models
• Gather accuracy statistics

• Repeated until a global consensus is reached

NETSEC Presentation c©Eric Anderson – p.9/64

Tree-structured Monitor Overlay

AnalysisDetection

NETSEC Presentation c©Eric Anderson – p.10/64

Event History Graphs

NETSEC Presentation c©Eric Anderson – p.11/64

Events and Causation

• Represent obseved events and their causal
connections as a graph

• Nodes are events (network connections)
• Node labels describe event

• Source, destination, start time
• Protocol, ports, duration, size
• (payload hash, byte distribution, ?)

• Edges are (possible) causation.
• . . . Lamport happened-before relation.

NETSEC Presentation c©Eric Anderson – p.12/64

Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b
 http

a -> c
 smtp

b -> d
 icq

b -> e
 http

NETSEC Presentation c©Eric Anderson – p.13/64

Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b
 http

a -> c
 smtp

b -> d
 icq

b -> e
 http

NETSEC Presentation c©Eric Anderson – p.14/64

Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b
 http

a -> c
 smtp

b -> d
 icq

b -> e
 http

NETSEC Presentation c©Eric Anderson – p.15/64

Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b
 http

a -> c
 smtp

b -> d
 icq

b -> e
 http

NETSEC Presentation c©Eric Anderson – p.16/64

Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b
 http

a -> c
 smtp

b -> d
 icq

b -> e
 http

NETSEC Presentation c©Eric Anderson – p.17/64

Why Event History Graph?

• Represents pattern of events
• GrIDS[3] introduced “activity graph:” Hosts are

nodes and edges are communication.
• The same host is multiple nodes in the graph,

though.
• Less clean semantics.

• Worm behavior pattern guaranteed to precede
infection event

NETSEC Presentation c©Eric Anderson – p.18/64

Generating E.H. Graph - Input

Observed Events
Time Src Dst Port

0 65.213.217.241 32.18.124.102 25

1 128.223.4.21 65.312.217.241 1434

2 65.213.217.243 65.213.217.241 80

2 65.213.217.244 65.213.217.241 80

3 65.213.217.241 216.239.57.99 1434

4 65.213.217.241 123.253.101.18 1434

5 128.223.4.21 65.213.217.244 21

6 65.213.217.241 66.218.71.95 1434

NETSEC Presentation c©Eric Anderson – p.19/64

Generating E.H. Graph - Output

Observed Events

src:128.223.4.21
 dst:65.312.217.241

 port:1434 @1

src:128.223.4.21
 dst:65.213.217.244

 port:21 @5

src:65.213.217.241
 dst:216.239.57.99

 port:1434 @3

src:65.213.217.243
 dst:65.213.217.241

 port:80 @2

src:65.213.217.244
 dst:65.213.217.241

 port:80 @2

src:65.213.217.241
 dst:123.253.101.18

 port:1434 @4

src:65.213.217.241
 dst:66.218.71.95

 port:1434 @6

src:65.213.217.241
 dst:32.18.124.102

 port:25 @0

NETSEC Presentation c©Eric Anderson – p.20/64

Subsection: Self-Similarity

NETSEC Presentation c©Eric Anderson – p.21/64

Self-Similarity Outline

• Background
• Worm models
• Detecting scanning
• . . . and spreading

• Causation and Self-Similarity

NETSEC Presentation c©Eric Anderson – p.22/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.
• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.
• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.
• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)

• “Topological” detect victim hosts on the fly. More
subtle.

• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.

• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.
• [2, 5]

NETSEC Presentation c©Eric Anderson – p.23/64

Detecting Scanning

Scanning worms do unusual, detectable things:
• Contact unassigned IP addresses
• Contact hosts on closed ports
• Few are chosen, so many are called.

But ...
• Not all worms are scanning
• Not all scans are worms

• (e.g.) Gnutella peer probing cached hosts.
• Fake worm as DoS attack.

NETSEC Presentation c©Eric Anderson – p.24/64

Detecting Spreading

Birds gotta fly, worms gotta spread
• Track the rate of increase of . . . and react if it’s too

great.
• But, you need some suspect event to be count in

the first place.
• Thus, tracking the rate of increase of scans help to

separate worm scans from non-worm scans. [6, 5]

• We thought of this before those came out. Too bad
we didn’t publish sooner!

NETSEC Presentation c©Eric Anderson – p.25/64

Detecting Spreading

Birds gotta fly, worms gotta spread
• Track the rate of increase of . . . and react if it’s too

great.
• But, you need some suspect event to be count in

the first place.
• Thus, tracking the rate of increase of scans help to

separate worm scans from non-worm scans. [6, 5]
• We thought of this before those came out. Too bad

we didn’t publish sooner!

NETSEC Presentation c©Eric Anderson – p.25/64

Causation and Self-Similarity

• One worm infection causes another (and
another...)

• Worm processes are “the same” on every infected
host

• ... processes are abstractions

• Events are the manifestation of processes
• Network connections are observable events
• Look for connection events that cause other similar

ones.[4]

NETSEC Presentation c©Eric Anderson – p.26/64

Causation and Self-Similarity

• One worm infection causes another (and
another...)

• Worm processes are “the same” on every infected
host

• ... processes are abstractions
• Events are the manifestation of processes
• Network connections are observable events
• Look for connection events that cause other similar

ones.[4]

NETSEC Presentation c©Eric Anderson – p.26/64

Similarity

What does it mean that connections (might) cause
“similar” ones?

• Worms can vary behavior as much as they like.
• ...but they have to use the vulnerabilities they’re

given.
• May fix port number(s), TCP options, message

sizes.
• How trustworthy is this constraint?

• No idea!
• But at least it’s not up to the worm author.

NETSEC Presentation c©Eric Anderson – p.27/64

Similarity

What does it mean that connections (might) cause
“similar” ones?

• Worms can vary behavior as much as they like.
• ...but they have to use the vulnerabilities they’re

given.
• May fix port number(s), TCP options, message

sizes.
• How trustworthy is this constraint?

• No idea!
• But at least it’s not up to the worm author.

NETSEC Presentation c©Eric Anderson – p.27/64

Self-Similarity in a Worm

Examining v = e->g http

• Infections and noise
causally precede
connection.

• Two-(or more) vector worm
• Matches v′ = a->b
http

• Infection rate =
((t2 − t0)/2)−1

a->b @ t0
 http

a->c
 smtp

b->d
 icq

b->e @t1
 smtp

...

e-> f
 icmp

e->g @ t2
 http

...

NETSEC Presentation c©Eric Anderson – p.28/64

A Naïve Similarity Measure σ

To score event v:
• For each v′ in

causal history:
1. Compare each

field
2. Sum similarity

scores
• Crude but

conservative
• Event score =

max
v

′|v′
 wv

σ(v, v′)

Field Type

protocol nominal

destination port nominal

duration cardinal

total bytes sent by sender cardinal

total bytes sent by receiver cardinal

payload bytes sent by sender cardinal

payload bytes sent by receiver cardinal

sender TCP SYN seen nominal
... nominal

NETSEC Presentation c©Eric Anderson – p.29/64

Signature Generation

NETSEC Presentation c©Eric Anderson – p.30/64

Signatures

• Event (sub-)graph with
added constraints.

• A signature matches if
there is a subgraph iso-
morphism which satisfies
the constraints (when con-
straint variables are set to
node-specific values.)

a->b @ t0
 http

a->c
 smtp

b->d
 icq

b->e @t1
 smtp

...

e-> f
 icmp

e->g @ t2
 http

...

NETSEC Presentation c©Eric Anderson – p.31/64

Signatures

• Event (sub-)graph with
added constraints.

• A signature matches if
there is a subgraph iso-
morphism which satisfies
the constraints (when con-
straint variables are set to
node-specific values.)

a->b @ t0
 http

a->c
 smtp

b->d
 icq

b->e @t1
 smtp

...

e-> f
 icmp

e->g @ t2
 http

...

NETSEC Presentation c©Eric Anderson – p.32/64

Signature Generation

• Happens when (the detection component of) a
monitor notices a worm-like event which is not
matched by any existing signature.

• Candidate signature is created “dumbly” and then
optimized using a best-first search through the
space of possible generalization.

• If two candidate signatures overlap excessively,
the lower-scoring one is deleted.

NETSEC Presentation c©Eric Anderson – p.33/64

Signature Generation

• Snapshot of graph preceding flagged node
• Literals replaced with (bound) variables
• Binding dropped for exact time, host addresses
• Variable bindings, relational expressions are

constraints
• “Relaxed” by removing nodes and constraints.
• Goal: Maximize α * (# of newly-matched worm

events) β * (# of matched non-worm events) + γ *
(# of nodes, constraints).
• β, γ < 0.
• |γ| � |α| < |beta|

NETSEC Presentation c©Eric Anderson – p.34/64

Example - Possible Worm Traffic

Heuristic has already identified worm events:

src:128.223.4.21
 dst:65.312.217.241

 port:1434 @1

src:128.223.4.21
 dst:65.213.217.244

 port:21 @5

src:65.213.217.241
 dst:216.239.57.99

 port:1434 @3

src:65.213.217.243
 dst:65.213.217.241

 port:80 @2

src:65.213.217.244
 dst:65.213.217.241

 port:80 @2

src:65.213.217.241
 dst:123.253.101.18

 port:1434 @4

src:65.213.217.241
 dst:66.218.71.95

 port:1434 @6

src:65.213.217.241
 dst:32.18.124.102

 port:25 @0

NETSEC Presentation c©Eric Anderson – p.35/64

Signature Extraction

src=host_a
 dst=host_b

 port=p_a @t_a

src=host_a
 dst=host_c

 port=p_b @t_b

src=host_b
 dst=host_e

 port=p_a @t_e

src=host_d
 dst=host_b

 port=p_c @t_c

src=host_c
 dst=host_b

 port=p_c @t_d

src=host_b
 dst=host_f

 port=p_a @t_f

src=host_b
 dst=host_h

 port=p_a @t_h

src=host_b
 dst=host_g

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25, host_a 6=

host_b 6= host_c 6= . . . , t_a ≤ t_b ≤ t_c = t_d ≤ . . .
NETSEC Presentation c©Eric Anderson – p.36/64

Signature Optimization - Remove
nodes & Constraints

src=host_a
 dst=host_b

 port=p_a @t_a

src=host_a
 dst=host_c

 port=p_b @t_b

src=host_b
 dst=host_e

 port=p_a @t_e

src=host_d
 dst=host_b

 port=p_c @t_c

src=host_c
 dst=host_b

 port=p_c @t_d

src=host_b
 dst=host_f

 port=p_a @t_f

src=host_b
 dst=host_h

 port=p_a @t_h

src=host_b
 dst=host_g

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25,host_a 6=

host_b 6= host_c 6= . . . , t_a ≤ t_b ≤ t_c = t_d ≤ . . .
NETSEC Presentation c©Eric Anderson – p.37/64

Signature Optimization - Remove
nodes & Constraints

src=host_a
 dst=host_b

 port=p_a @t_a

src=host_a
 dst=host_c

 port=p_b @t_b

src=host_b
 dst=host_e

 port=p_a @t_e

src=host_d
 dst=host_b

 port=p_c @t_c

src=host_c
 dst=host_b

 port=p_c @t_d

src=host_b
 dst=host_f

 port=p_a @t_f

src=host_b
 dst=host_h

 port=p_a @t_h

src=host_b
 dst=host_g

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25, host_b 6=

host_f 6= host_h
NETSEC Presentation c©Eric Anderson – p.38/64

Signature Optimization - Remove
nodes & Constraints

src=host_a
 dst=host_b

 port=p_a @t_a

src=host_a
 dst=host_c

 port=p_b @t_b

src=host_b
 dst=host_e

 port=p_a @t_e

src=host_d
 dst=host_b

 port=p_c @t_c

src=host_c
 dst=host_b

 port=p_c @t_d

src=host_b
 dst=host_f

 port=p_a @t_f

src=host_b
 dst=host_h

 port=p_a @t_h

src=host_b
 dst=host_g

 port=p_d @t_g

p_a = 1434, host_b 6= host_f 6= host_h. Over-

generalization: Matches non-worm nodes, lowers

score. Backtrack! NETSEC Presentation c©Eric Anderson – p.39/64

Distributed Signature Optimization

• False positive problem - Monitor’s local view of
network traffic is not necessarily representative

• After a monitor finds a local optimum, the
candidate signature is disseminated to a larger set
of monitors

• Signature is re-optimized using combined data
• Repeated with increasingly large groups until a

global consensus is reached
• Monitors are arranged in a tree-structured overlay

NETSEC Presentation c©Eric Anderson – p.40/64

Distributed Signature Optimization
Protocol - Synchronous

1. Monitor (detector) observes a worm event

2. Monitor (detector) extracts a candidate signature

3. Monitor optimizes signature (repeated):
(a) Compute k plausible relaxations
(b) Send relaxation set query to child nodes(if any)
(c) Computer score for set using local data (if any)
(d) Wait for score responses from all child nodes.
(e) Combine scores
(f) Choose next k relaxations

4. Monitor sends candidate signature search state to
parent

NETSEC Presentation c©Eric Anderson – p.41/64

Example - 1

AnalysisDetection

Red detector observes an un-matched worm-like event

NETSEC Presentation c©Eric Anderson – p.42/64

Example - 2

AnalysisDetection

Red analysis node optimizes candidate signature

NETSEC Presentation c©Eric Anderson – p.43/64

Example - 3

AnalysisDetection

Red analysis node passes state to parent

NETSEC Presentation c©Eric Anderson – p.44/64

Example - 4

AnalysisDetection

Red analysis node recursively queries children

NETSEC Presentation c©Eric Anderson – p.45/64

Example - 5

AnalysisDetection

Children reply with real and false positive counts, total

data set size
NETSEC Presentation c©Eric Anderson – p.46/64

Example - 6

AnalysisDetection

Repeat until local optimum found

NETSEC Presentation c©Eric Anderson – p.47/64

Example - 7

AnalysisDetection

Process repeats at parent

NETSEC Presentation c©Eric Anderson – p.48/64

Example - 8

AnalysisDetection

Process repeats at parent (root)

NETSEC Presentation c©Eric Anderson – p.49/64

Example - 9

AnalysisDetection

Final signature is disseminated

NETSEC Presentation c©Eric Anderson – p.50/64

Problems with Synchronicity

• Slows entire process to rate of slowest node
• Broken links or overloaded nodes are quite

plausible

AnalysisDetection ?

? !

! !

! !

! !

! ! !

! ! !

! !

! !

! !

! !

! !

NETSEC Presentation c©Eric Anderson – p.51/64

Asynchronous Signature Optimiza-
tion

• As with synchronous protocol, but:
• Monitor (analysis node) does not wait for

children to respond
• Tracks most-recently-acted on values
• Acts whenever local current values change by

hysteresis value ε.
• (with a rate limit)
• “Act” means computing promising relaxations or
• reporting an answer to a (recursive) query

NETSEC Presentation c©Eric Anderson – p.52/64

System Evaluation

NETSEC Presentation c©Eric Anderson – p.53/64

Evaulation thus far

• Self-similarity-based Detection
• Worm Monitor Communication

NETSEC Presentation c©Eric Anderson – p.54/64

Measurement Evaluation of Self-
Similarity

We’ve argued that worms will show high
max

v
′|v′
 wv

σ(v, v′) values. Does that set them apart?

Goals:
• Determine score distribution for real non-worm

traffic for various time windows w.
• For each w, find the relation between score and

confidence that traffic is non-worm.
• Offer sensible w and worm score threshold τ .

NETSEC Presentation c©Eric Anderson – p.55/64

Approach - In Theory

• Process 2 months of headers from U. of Auckland.
• Aggregate packet events into connection events.
• Exclude known worms from normal traffic.
• Maintain a sliding window of event records.
• Score all recorded events.
• Find score distribution, and confidence levels for

each threshold.

Internet

Univ. of Auckland

OC−3c
Border Router

Files
Trace

NETSEC Presentation c©Eric Anderson – p.56/64

Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Connection maximum self-similarity

CDF of Maximum Similarity with SimpleCC and all data

600 seconds real
60 seconds real
10 seconds real

all worm

• Results from local test traces.
• ≈ 95% of connections differ clearly from worms

NETSEC Presentation c©Eric Anderson – p.57/64

Conclusions - Self-Similarity

• ≈ 95% of connections differ clearly from worms
• Is that good enough? Not by itself, no.
• With secondary reasonableness checks? Maybe.
• How can we improve it?

• Prioritized comparison function?
• Heuristics on causation and timing?
• Hacks to lower false positives break coverage

claims! Hmmm...

NETSEC Presentation c©Eric Anderson – p.58/64

Communication Structure Evaluation

• Developed “connection-level” network simulator
• ALPYNES - Application-Level PYthon NEtwork

Simulator
• Evaluated the network delay of distributed

monitoring structure.
• Results for synchronous protocol suggested

development of asynchronous one.

NETSEC Presentation c©Eric Anderson – p.59/64

Network Model

• Network consists of e2e “links.”
• Each link represents a path in the Internet
• Path properties are generated randomly using

parameters derived from empirical studies. [1, ?]
• Paths are domestic or international

• Domestic mean latency: 10ms, mean b/w:
0.88Mbps

• International mean latency: 110ms, mean b/w:
0.21Mbps

NETSEC Presentation c©Eric Anderson – p.60/64

Tree Structure

• Reasonable scaling
with tree degree

• Not so good with tree
height.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 3 4 5 6 7 8

R
un

 T
im

e
(S

)

Node branching degree

Varying node degree with fixed tree height

median, quartile bars

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7 8

R
un

 T
im

e
(S

)

Tree height

Varying tree height with fixed degree

median, quartile bars

NETSEC Presentation c©Eric Anderson – p.61/64

Algorithmic Performance

• Signature checking time is a critical bottleneck.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

 T
im

e
(S

)

Signature set checking time (S)

Varying sig. set check time

median, quartile bars

NETSEC Presentation c©Eric Anderson – p.62/64

Message Size and Network

• Quick but modest
drop-off for
international links.
• Believed to be

“clocking” to
slowest link.

• Robust to signature
optimization state
message size.

 10

 12

 14

 16

 18

 20

 22

 24

 0 20 40 60 80 100

R
un

 T
im

e
(S

)

Percent of Domestic Network Paths

Varying proportion of domestic (high-speed) paths

median, quartile bars

 10

 100

 10 100 1000 10000 100000

R
un

 T
im

e
(S

)

Signature search space state size (B)

Varying search state size (log/log scale)

median, quartile bars

NETSEC Presentation c©Eric Anderson – p.63/64

Conclusions - Tree Structure

• Completion time of well under 15 seconds is
possible.

• Tree height and number of optimization rounds are
critical factors.

• Message size is not.
• . . . Maximize amount of search information per

message.
• Asynchronous communications protocol is

probably better.

NETSEC Presentation c©Eric Anderson – p.64/64

R
eferen

ces

[1]
B

O
L

L
IG

E
R

,
J.,

G
R

O
S

S,
T.,

A
N

D
H

E
N

G
A

R
T

N
E

R
,

U
.

B
andw

idth
m

odeling
for

netw
ork-aw

are
applications.

In

IN
F

O
C

O
M

(3)
(1999),pp.1300–

1309.

[2]
S

TA
N

IF
O

R
D,S

.,P
A

X
S

O
N

,V
.,

A
N

D
W

E
A

V
E

R
,N

.H
ow

to
0w

n

the
internetin

your
spare

tim
e.

In
P

roceedings
ofthe

11th

U
S

E
N

IX
S

ecurity
S

ym
posium

(S
ecurity

’02)
(2002).

[3]
S

TA
N

IF
O

R
D

-C
H

E
N

,S
.,

C
H

E
U

N
G

,S
.,

C
R

A
W

F
O

R
D,R

.,
D

IL-

G
E

R
,

M
.,

F
R

A
N

K
,J.,

H
O

A
G

L
A

N
D,J.,

L
E

V
IT

T,K
.,

W
E

E
,

C
.,

Y
IP,

R
.,

A
N

D
Z

E
R

K
L

E
,

D
.

G
rID

S
–

A
graph-based

intru-

sion
detection

system
forlarge

netw
orks.In

P
roceedings

of

the
19th

N
ationalInform

ation
S

ystem
s

S
ecurity

C
onference

(1996).

[4]
T

O
T

H
,

T.,
A

N
D

K
R

U
E

G
E

L,
C

.
C

onnection-history
based

anom
aly

detection.
In

P
roceedings

of
the

2002
IE

E
E

W
orkshop

on
Inform

ation
A

ssurance
and

S
ecurity

(June

2002),pp.30–
25.

[5]
W

U
,J.,V

A
N

G
A

L
A

,S
.,G

A
O

,L
.,

A
N

D
K

W
IA

T,K
.

A
n

effective

architecture
and

algorithm
fordetecting

w
orm

s
w

ith
various

scan
techniques.

In
N

D
S

S
(2004).

[6]
Z

O
U

,
C

.
C

.,
G

A
O

,
L

.,
G

O
N

G
,

W
.,

A
N

D
T

O
W

S
L

E
Y,

D
.

M
on-

itoring
and

early
w

arning
for

internet
w

orm
s.

In
10th

A
C

M

64-1

C
onference

on
C

om
puter

and
C

om
m

unications
S

ecurity

(O
ctober

2003),pp.190–
199.

64-1

	Worms: Who Cares?
	Why Automated Worm Detection
	Intrusion Detection Today
	Specification-based Worm Detection
	Our Approach
	Approach Overview
	Limitations of Isolated Monitors
	Worm Monitor Collaboration
	Tree-structured Monitor Overlay
	Event History Graphs
	Events and Causation
	Events Cause Other Events
	Events Cause Other Events
	Events Cause Other Events
	Events Cause Other Events
	Events Cause Other Events
	Why Event History Graph?
	Generating E.H. Graph - Input
	Generating E.H. Graph - Output
	Subsection: Self-Similarity
	Self-Similarity Outline
	Worm Models
	Detecting Scanning
	Detecting Spreading
	Causation and Self-Similarity
	Similarity
	Self-Similarity in a Worm
	A Na"{i }ve Similarity Measure $sigma $
	Signature Generation
	Signatures
	Signatures
	Signature Generation
	Signature Generation
	Example - Possible Worm Traffic
	Signature Extraction
	Signature Optimization - Remove nodes & Constraints
	Signature Optimization - Remove nodes & Constraints
	Signature Optimization - Remove nodes & Constraints
	Distributed Signature Optimization
	Distributed Signature Optimization Protocol - Synchronous
	Example - 1
	Example - 2
	Example - 3
	Example - 4
	Example - 5
	Example - 6
	Example - 7
	Example - 8
	Example - 9
	Problems with Synchronicity
	Asynchronous Signature Optimization
	System Evaluation
	Evaulation thus far
	Measurement Evaluation of Self-Similarity
	Approach - In Theory
	Results
	Conclusions - Self-Similarity
	Communication Structure Evaluation
	Network Model
	Tree Structure
	Algorithmic Performance
	Message Size and Network
	Conclusions - Tree Structure

