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Worms: Who Cares?

• Internet worms have been costly and destructive
• Traffic causes network collapse.
• Infected hosts are often unusable.
• Repair is labor-intensive.
• Code Red v.2 and Slammer estimated to cost

$2bn and $1bn, respectively.
• . . . by accident.
• A truly malicious worm could do much worse.
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Why Automated Worm Detection

• Worms can spread incredibly quickly.
• Slammer reached its peak infection rate in 3

minutes.
• Theoretical worms: 15 seconds.
• Time window for useful response even smaller.

• Human-mediated analysis and response are not
fast enough.
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Intrusion Detection Today

• Signature-based:
• Monitors keep database of known attacks.
• Works, after a signature’s created.

• Anomaly-based:
• All traffic is compared to statistical profiles of

"normal" traffic.
• False positive rate is too high to allow automatic

responses.
• Specification-based:

• Rules describe acceptable behavior.
• Deviant traffic is flagged.
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Specification-based Worm Detection

• (Fast) worms are not terribly subtle
• Infected hosts initiate many connections.

• Possibly to addresses with no host.
• Or services which aren’t running.

• Infected hosts start acting like the host which
infected them.

• We can observe that a worm exists, but that isn’t
enough information to do anything.

NETSEC Presentation c©Eric Anderson – p.5/64



Our Approach

• A network of monitors:
• Maintain (shared) set of known worm

signatures.
• Detect “worm-like” events heuristically.
• Create new signatures from events not

matching existing ones.
• Maximize matches with worms.
• Minimixe matches with other.

• Sharing signatures and data.
• Individually, monitors may not have enough

data.
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Approach Overview
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Limitations of Isolated Monitors

• A worm monitor can try to detect new worms
• Monitor local traffic
• Create candidate worm signatures
• Take proper actions

• False positives and false negatives
• Monitor’s view of network traffic may not be

representative
• Or comprehensive

• Slow detection
• Won’t know a 0-day worm before seeing actual

worm traffic
• Or seeing "enough" of the worm’s trafficNETSEC Presentation c©Eric Anderson – p.8/64



Worm Monitor Collaboration

• After a monitor finds a local candidate worm
signature, it can report that signature to other
monitors
• and info for deriving the signature

• The receiving monitor uses its data to validate &
re-optimize that signature
• Verify against combined data set
• Fit with worm propagation models
• Gather accuracy statistics

• Repeated until a global consensus is reached
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Tree-structured Monitor Overlay

AnalysisDetection
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Event History Graphs
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Events and Causation

• Represent obseved events and their causal
connections as a graph

• Nodes are events (network connections)
• Node labels describe event

• Source, destination, start time
• Protocol, ports, duration, size
• (payload hash, byte distribution, ?)

• Edges are (possible) causation.
• . . . Lamport happened-before relation.
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Events Cause Other Events

• Later event in same
process

• Or in one
communicated with

• Transitive
• Closure ⊇ actual

causes

a -> b 
 http

a -> c 
 smtp

b -> d 
 icq

b -> e 
 http
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Why Event History Graph?

• Represents pattern of events
• GrIDS[3] introduced “activity graph:” Hosts are

nodes and edges are communication.
• The same host is multiple nodes in the graph,

though.
• Less clean semantics.

• Worm behavior pattern guaranteed to precede
infection event
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Generating E.H. Graph - Input

Observed Events
Time Src Dst Port

0 65.213.217.241 32.18.124.102 25

1 128.223.4.21 65.312.217.241 1434

2 65.213.217.243 65.213.217.241 80

2 65.213.217.244 65.213.217.241 80

3 65.213.217.241 216.239.57.99 1434

4 65.213.217.241 123.253.101.18 1434

5 128.223.4.21 65.213.217.244 21

6 65.213.217.241 66.218.71.95 1434
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Generating E.H. Graph - Output

Observed Events

src:128.223.4.21 
 dst:65.312.217.241 

 port:1434 @1

src:128.223.4.21   
 dst:65.213.217.244 

 port:21 @5

src:65.213.217.241 
 dst:216.239.57.99  

 port:1434 @3

src:65.213.217.243 
 dst:65.213.217.241 

 port:80 @2

src:65.213.217.244 
 dst:65.213.217.241 

 port:80 @2

src:65.213.217.241 
 dst:123.253.101.18 

 port:1434 @4

src:65.213.217.241 
 dst:66.218.71.95   

 port:1434 @6

src:65.213.217.241 
 dst:32.18.124.102 

 port:25 @0
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Subsection: Self-Similarity
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Self-Similarity Outline

• Background
• Worm models
• Detecting scanning
• . . . and spreading

• Causation and Self-Similarity
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Worm Models

• “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.

• Improved scanning: Prune non-routable or
low-probability address space, coordinate scans.
Faster, fewer wasted scans.

• “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

• (Well, maybe one)
• “Topological” detect victim hosts on the fly. More

subtle.
• [2, 5]
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Detecting Scanning

Scanning worms do unusual, detectable things:
• Contact unassigned IP addresses
• Contact hosts on closed ports
• Few are chosen, so many are called.

But ...
• Not all worms are scanning
• Not all scans are worms

• (e.g.) Gnutella peer probing cached hosts.
• Fake worm as DoS attack.
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Detecting Spreading

Birds gotta fly, worms gotta spread
• Track the rate of increase of . . . and react if it’s too

great.
• But, you need some suspect event to be count in

the first place.
• Thus, tracking the rate of increase of scans help to

separate worm scans from non-worm scans. [6, 5]

• We thought of this before those came out. Too bad
we didn’t publish sooner!
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Causation and Self-Similarity

• One worm infection causes another (and
another...)

• Worm processes are “the same” on every infected
host

• ... processes are abstractions

• Events are the manifestation of processes
• Network connections are observable events
• Look for connection events that cause other similar

ones.[4]
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Similarity

What does it mean that connections (might) cause
“similar” ones?

• Worms can vary behavior as much as they like.
• ...but they have to use the vulnerabilities they’re

given.
• May fix port number(s), TCP options, message

sizes.
• How trustworthy is this constraint?

• No idea!
• But at least it’s not up to the worm author.
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Self-Similarity in a Worm

Examining v = e->g http

• Infections and noise
causally precede
connection.

• Two-(or more) vector worm
• Matches v′ = a->b
http

• Infection rate =
((t2 − t0)/2)−1

a->b @ t0 
 http

a->c 
 smtp

b->d 
 icq

b->e @t1 
 smtp

...

e-> f 
 icmp

e->g @ t2 
 http

...
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A Naïve Similarity Measure σ

To score event v:
• For each v′ in

causal history:
1. Compare each

field
2. Sum similarity

scores
• Crude but

conservative
• Event score =

max
v

′|v′
 wv

σ(v, v′)

Field Type

protocol nominal

destination port nominal

duration cardinal

total bytes sent by sender cardinal

total bytes sent by receiver cardinal

payload bytes sent by sender cardinal

payload bytes sent by receiver cardinal

sender TCP SYN seen nominal
... nominal
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Signature Generation
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Signatures

• Event (sub-)graph with
added constraints.

• A signature matches if
there is a subgraph iso-
morphism which satisfies
the constraints (when con-
straint variables are set to
node-specific values.)

a->b @ t0 
 http

a->c 
 smtp

b->d 
 icq

b->e @t1 
 smtp

...

e-> f 
 icmp

e->g @ t2 
 http

...
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Signature Generation

• Happens when (the detection component of) a
monitor notices a worm-like event which is not
matched by any existing signature.

• Candidate signature is created “dumbly” and then
optimized using a best-first search through the
space of possible generalization.

• If two candidate signatures overlap excessively,
the lower-scoring one is deleted.
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Signature Generation

• Snapshot of graph preceding flagged node
• Literals replaced with (bound) variables
• Binding dropped for exact time, host addresses
• Variable bindings, relational expressions are

constraints
• “Relaxed” by removing nodes and constraints.
• Goal: Maximize α * (# of newly-matched worm

events) β * (# of matched non-worm events) + γ *
(# of nodes, constraints).
• β, γ < 0.
• |γ| � |α| < |beta|
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Example - Possible Worm Traffic

Heuristic has already identified worm events:

src:128.223.4.21 
 dst:65.312.217.241 

 port:1434 @1

src:128.223.4.21   
 dst:65.213.217.244 

 port:21 @5

src:65.213.217.241 
 dst:216.239.57.99  

 port:1434 @3

src:65.213.217.243 
 dst:65.213.217.241 

 port:80 @2

src:65.213.217.244 
 dst:65.213.217.241 

 port:80 @2

src:65.213.217.241 
 dst:123.253.101.18 

 port:1434 @4

src:65.213.217.241 
 dst:66.218.71.95   

 port:1434 @6

src:65.213.217.241 
 dst:32.18.124.102 

 port:25 @0

NETSEC Presentation c©Eric Anderson – p.35/64



Signature Extraction

src=host_a 
 dst=host_b  

 port=p_a @t_a

src=host_a   
 dst=host_c 

 port=p_b @t_b

src=host_b 
 dst=host_e  

 port=p_a @t_e

src=host_d 
 dst=host_b 

 port=p_c @t_c

src=host_c 
 dst=host_b 

 port=p_c @t_d

src=host_b 
 dst=host_f 

 port=p_a @t_f

src=host_b 
 dst=host_h   

 port=p_a @t_h

src=host_b 
 dst=host_g 

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25, host_a 6=

host_b 6= host_c 6= . . . , t_a ≤ t_b ≤ t_c = t_d ≤ . . .
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Signature Optimization - Remove
nodes & Constraints

src=host_a 
 dst=host_b  

 port=p_a @t_a

src=host_a   
 dst=host_c 

 port=p_b @t_b

src=host_b 
 dst=host_e  

 port=p_a @t_e

src=host_d 
 dst=host_b 

 port=p_c @t_c

src=host_c 
 dst=host_b 

 port=p_c @t_d

src=host_b 
 dst=host_f 

 port=p_a @t_f

src=host_b 
 dst=host_h   

 port=p_a @t_h

src=host_b 
 dst=host_g 

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25,host_a 6=

host_b 6= host_c 6= . . . , t_a ≤ t_b ≤ t_c = t_d ≤ . . .
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Signature Optimization - Remove
nodes & Constraints

src=host_a 
 dst=host_b  

 port=p_a @t_a

src=host_a   
 dst=host_c 

 port=p_b @t_b

src=host_b 
 dst=host_e  

 port=p_a @t_e

src=host_d 
 dst=host_b 

 port=p_c @t_c

src=host_c 
 dst=host_b 

 port=p_c @t_d

src=host_b 
 dst=host_f 

 port=p_a @t_f

src=host_b 
 dst=host_h   

 port=p_a @t_h

src=host_b 
 dst=host_g 

 port=p_d @t_g

p_a = 1434, p_b = 21, p_c = 80, p_d = 25, host_b 6=

host_f 6= host_h
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Signature Optimization - Remove
nodes & Constraints

src=host_a 
 dst=host_b  

 port=p_a @t_a

src=host_a   
 dst=host_c 

 port=p_b @t_b

src=host_b 
 dst=host_e  

 port=p_a @t_e

src=host_d 
 dst=host_b 

 port=p_c @t_c

src=host_c 
 dst=host_b 

 port=p_c @t_d

src=host_b 
 dst=host_f 

 port=p_a @t_f

src=host_b 
 dst=host_h   

 port=p_a @t_h

src=host_b 
 dst=host_g 

 port=p_d @t_g

p_a = 1434, host_b 6= host_f 6= host_h. Over-

generalization: Matches non-worm nodes, lowers

score. Backtrack! NETSEC Presentation c©Eric Anderson – p.39/64



Distributed Signature Optimization

• False positive problem - Monitor’s local view of
network traffic is not necessarily representative

• After a monitor finds a local optimum, the
candidate signature is disseminated to a larger set
of monitors

• Signature is re-optimized using combined data
• Repeated with increasingly large groups until a

global consensus is reached
• Monitors are arranged in a tree-structured overlay
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Distributed Signature Optimization
Protocol - Synchronous

1. Monitor (detector) observes a worm event

2. Monitor (detector) extracts a candidate signature

3. Monitor optimizes signature (repeated):
(a) Compute k plausible relaxations
(b) Send relaxation set query to child nodes(if any)
(c) Computer score for set using local data (if any)
(d) Wait for score responses from all child nodes.
(e) Combine scores
(f) Choose next k relaxations

4. Monitor sends candidate signature search state to
parent
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Example - 1

AnalysisDetection

Red detector observes an un-matched worm-like event
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Example - 2

AnalysisDetection

Red analysis node optimizes candidate signature
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Example - 3

AnalysisDetection

Red analysis node passes state to parent

NETSEC Presentation c©Eric Anderson – p.44/64



Example - 4

AnalysisDetection

Red analysis node recursively queries children
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Example - 5

AnalysisDetection

Children reply with real and false positive counts, total

data set size
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Example - 6

AnalysisDetection

Repeat until local optimum found
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Example - 7

AnalysisDetection

Process repeats at parent
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Example - 8

AnalysisDetection

Process repeats at parent (root)
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Example - 9

AnalysisDetection

Final signature is disseminated
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Problems with Synchronicity

• Slows entire process to rate of slowest node
• Broken links or overloaded nodes are quite

plausible

AnalysisDetection ?

? !

! !

! !

! !

! ! !

! ! !

! !

! !

! !

! !

! !
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Asynchronous Signature Optimiza-
tion

• As with synchronous protocol, but:
• Monitor (analysis node) does not wait for

children to respond
• Tracks most-recently-acted on values
• Acts whenever local current values change by

hysteresis value ε.
• (with a rate limit)
• “Act” means computing promising relaxations or
• reporting an answer to a (recursive) query
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System Evaluation
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Evaulation thus far

• Self-similarity-based Detection
• Worm Monitor Communication
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Measurement Evaluation of Self-
Similarity

We’ve argued that worms will show high
max

v
′|v′
 wv

σ(v, v′) values. Does that set them apart?

Goals:
• Determine score distribution for real non-worm

traffic for various time windows w.
• For each w, find the relation between score and

confidence that traffic is non-worm.
• Offer sensible w and worm score threshold τ .
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Approach - In Theory

• Process 2 months of headers from U. of Auckland.
• Aggregate packet events into connection events.
• Exclude known worms from normal traffic.
• Maintain a sliding window of event records.
• Score all recorded events.
• Find score distribution, and confidence levels for

each threshold.

Internet

Univ. of Auckland

OC−3c
Border Router

Files
Trace
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Results
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• Results from local test traces.
• ≈ 95% of connections differ clearly from worms
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Conclusions - Self-Similarity

• ≈ 95% of connections differ clearly from worms
• Is that good enough? Not by itself, no.
• With secondary reasonableness checks? Maybe.
• How can we improve it?

• Prioritized comparison function?
• Heuristics on causation and timing?
• Hacks to lower false positives break coverage

claims! Hmmm...
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Communication Structure Evaluation

• Developed “connection-level” network simulator
• ALPYNES - Application-Level PYthon NEtwork

Simulator
• Evaluated the network delay of distributed

monitoring structure.
• Results for synchronous protocol suggested

development of asynchronous one.
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Network Model

• Network consists of e2e “links.”
• Each link represents a path in the Internet
• Path properties are generated randomly using

parameters derived from empirical studies. [1, ?]
• Paths are domestic or international

• Domestic mean latency: 10ms, mean b/w:
0.88Mbps

• International mean latency: 110ms, mean b/w:
0.21Mbps
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Tree Structure

• Reasonable scaling
with tree degree

• Not so good with tree
height.
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Algorithmic Performance

• Signature checking time is a critical bottleneck.
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Message Size and Network

• Quick but modest
drop-off for
international links.
• Believed to be

“clocking” to
slowest link.

• Robust to signature
optimization state
message size.
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Conclusions - Tree Structure

• Completion time of well under 15 seconds is
possible.

• Tree height and number of optimization rounds are
critical factors.

• Message size is not.
• . . . Maximize amount of search information per

message.
• Asynchronous communications protocol is

probably better.
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