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Worms: Who Cares?

 Internet worms have been costly and destructive
 Traffic causes network collapse.
* Infected hosts are often unusable.
* Repalr Is labor-intensive.

* Code Red v.2 and Slammer estimated to cost
$2bn and $1bn, respectively.

* ...by accident.
A truly malicious worm could do much worse.
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Why Automated Worm Detection
o —

* Worms can spread incredibly quickly.

» Slammer reached its peak infection rate in 3
minutes.

* Theoretical worms: 15 seconds.
* Time window for useful response even smaller.

* Human-mediated analysis and response are not
fast enough.
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Intrusion Detection Today
o ————

Signature-based:
Monitors keep database of known attacks.
Works, after a signature’s created.

Anomaly-based:

All traffic Is compared to statistical profiles of
"normal” traffic.

False positive rate is too high to allow automatic
responses.
Specification-based:
Rules describe acceptable behavior.
Deviant traffic is flagged.

NETSEC Presentation (©)Eric Anderson — p.4/64



Specification-based Worm Detection
o ————

* (Fast) worms are not terribly subtle

* Infected hosts Initiate many connections.
* Possibly to addresses with no host.
* Or services which aren’t running.

* Infected hosts start acting like the host which
Infected them.

* We can observe that a worm exists, but that isn’t
enough information to do anything.
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Our Approach

* A network of monitors:

* Maintain (shared) set of known worm
signatures.

* Detect “worm-like” events heuristically.

* Create new signatures from events not
matching existing ones.
* Maximize matches with worms.
* Minimixe matches with other.

* Sharing signatures and data.

¢ Individually, monitors may not have enough
data.
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Approach Overview
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Limitations of Isolated Monitors

A worm monitor can try to detect new worms
Monitor local traffic
Create candidate worm signatures
Take proper actions

False positives and false negatives

Monitor’s view of network traffic may not be
representative

Or comprehensive

Slow detection

Won't know a 0-day worm before seeing actual
worm traffic

L Or seeing "enough" of the worm’s, {rafflG o .. i oae




Worm Monitor Collaboration

After a monitor finds a local candidate worm
signature, it can report that signature to other
monitors

and info for deriving the signature

The recelving monitor uses its data to validate &
re-optimize that signature

Verify against combined data set
Fit with worm propagation models
Gather accuracy statistics

Repeated until a global consensus is reached
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Tree-structured Monitor Overlay

<@ O
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Event History Graphs
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Events and Causation

* Represent obseved events and their causal
connections as a graph

* Nodes are events (network connections)

* Node labels describe event
* Source, destination, start time
* Protocol, ports, duration, size
* (payload hash, byte distribution, ?)

* Edges are (possible) causation.
 ...Lamport happened-before relation.
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Events Cause Other Events

L ater event in same

process
Or In one

communicated with

Transitive

Closure
causes

2

actual
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Events Cause Other Events

* Later event iIn same
process

* Orin one
communicated with

* Transitive

 Closure > actual l :
causes
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Events Cause Other Events
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Wwhy Event History Graph?
o —

* Represents pattern of events

* GrIDS[3] introduced “activity graph:” Hosts are
nodes and edges are communication.

* The same host is multiple nodes in the graph,
though.

* Less clean semantics.

* Worm behavior pattern guaranteed to precede
Infection event
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Generating E.H. Graph - Input

Observed Events

Time | Src Dst Port
0 65.213.217.241 | 32.18.124.102 25
1 128.223.4.21 65.312.217.241 | 1434
2 65.213.217.243 | 65.213.217.241 | 80
2 65.213.217.244 | 65.213.217.241 | 80
3 65.213.217.241 | 216.239.57.99 1434
4 65.213.217.241 | 123.253.101.18 | 1434
5 128.223.4.21 65.213.217.244 | 21
6 65.213.217.241 | 66.218.71.95 1434
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Generating E.H. Graph - Output

Observed Events

srC:128.223.4.21
dst:65.312.217.241

port:1434 @1

src:128.223.4.21

dst:65.213.217.244
port:21 @5

src.65.213.217.241
dst:32.18.124.102
port:25 @0

src:65.213.217.241
dst:216.239.57.99
port:1434 @3

src:65.213.217.241
dst:123.253.101.18
port:1434 @4

SrC:65.213.217.241
dst:66.218.71.95
port:1434 @6

src:65.213.217.243
dst:65.213.217.241

port:80 @2

src:65.213.217.244
dst:65.213.217.241
port:80 @2
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Subsection: Self-Similarity
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Self-Similarity Outline

* Background
* Worm models
* Detecting scanning
* ...and spreading

* Causation and Self-Similarity
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Worm Models

* “Scanning” Worm probes random addresses,
hoping for a hit. Scans are not so subtle.
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Worm Models

* “Scanning” Worm probes random addresses,
noping for a hit. Scans are not so subtle.

* Improved scanning: Prune non-routable or
ow-probability address space, coordinate scans.
Faster, fewer wasted scans.
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Worm Models

* “Scanning” Worm probes random addresses,
noping for a hit. Scans are not so subtle.

* Improved scanning: Prune non-routable or
ow-probability address space, coordinate scans.
~aster, fewer wasted scans.

» “Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

* (Well, maybe one)
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Worm Models

“*Scanning” Worm probes random addresses,
noping for a hit. Scans are not so subtle.

mproved scanning: Prune non-routable or
ow-probability address space, coordinate scans.
~aster, fewer wasted scans.

“Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

(Well, maybe one)

“Topological” detect victim hosts on the fly. More
subtle.
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Worm Models

“*Scanning” Worm probes random addresses,
noping for a hit. Scans are not so subtle.

mproved scanning: Prune non-routable or
ow-probability address space, coordinate scans.
~aster, fewer wasted scans.

“Hit list” Pre-determined list of likely vulnerable
hosts. No conspicuous scans!

(Well, maybe one)

“Topological” detect victim hosts on the fly. More
subtle.

[2, 5]
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Detecting Scanning
o ——

Scanning worms do unusual, detectable things:
» Contact unassigned IP addresses
» Contact hosts on closed ports
* Few are chosen, so many are called.
But ...
* Not all worms are scanning

» Not all scans are worms
* (e.g.) Gnutella peer probing cached hosts.
* Fake worm as DoS attack.
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Detecting Spreading
O —

Birds gotta fly, worms gotta spread

* Track the rate of increase of ... and react If it's too
great.

* But, you need some suspect event to be count In
the first place.

* Thus, tracking the rate of increase of scans help to
separate worm scans from non-worm scans. [6, 5]
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Detecting Spreading
e ———

Birds gotta fly, worms gotta spread

Track the rate of increase of ... and react If it’s too
great.

But, you need some suspect event to be count In
the first place.

Thus, tracking the rate of increase of scans help to
separate worm scans from non-worm scans. [6, 5]

We thought of this before those came out. Too bad
we didn’t publish sooner!
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Causation and Self-Similarity
I —_“ ,

* One worm infection causes another (and
another...)

* Worm processes are “the same” on every infected
host

° ... processes are abstractions

NETSEC Presentation (©)Eric Anderson — p.26/64



Causation and Self-Similarity
o ——

* One worm infection causes another (and
another...)

* Worm processes are “the same” on every infected
host

° ... processes are abstractions
* Events are the manifestation of processes
* Network connections are observable events

* Look for connection events that cause other similar
ones.[4]
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Similarity
O ———

What does it mean that connections (might) cause
“similar’ ones?

* Worms can vary behavior as much as they like.

* ...but they have to use the vulnerabilities they’re
given.

* May fix port number(s), TCP options, message
sSizes.

* How trustworthy is this constraint?
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Similarity
o ————

What does it mean that connections (might) cause
“similar’ ones?

* Worms can vary behavior as much as they like.

* ...but they have to use the vulnerabilities they’re
given.

* May fix port number(s), TCP options, message
sizes.
* How trustworthy is this constraint?
* No idea!
* But at least it's not up to the worm author.
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Self-Similarity in a Worm

Examining v =e->g http

* |Infections and noise
causally precede
connection.

* Two-(or more) VECtor worm

* Matches v/ = a->b
http

* Infection rate
(12 — t0)/2) "}
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A Nalve Similarity Measure o
O ——

To score event v:

* For each ¢/ In Field Type
causal history: protocol nominal
1. Compare each destination port nominal

fleld duration cardinal
.. } total bytes sent by sender cardinal

2. .Sum Slmllal'lty total bytes sent by receiver cardinal
SCOres payload bytes sent by sender cardinal

* Crude but payload bytes sent by receiver | cardinal
conservative sender TCP SYN seen nominal

* Event score = 1 nominal
maxv’|v’wwv0(va U/)
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Signature Generation
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Signatures

* Event (sub-)graph with
added constraints.

* A signature matches |f
there Is a subgraph Iiso-
morphism which satisfies
the constraints (when con-
straint variables are set to
node-specific values.)

e>g@t2
http
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Signatures

* Event (sub-)graph with
added constraints.

* A signature matches |f
there Is a subgraph Iiso-
morphism which satisfies
the constraints (when con-
straint variables are set to
node-specific values.)
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Signature Generation
e ————

Happens when (the detection component of) a
monitor notices a worm-like event which is not
matched by any existing signature.

Candidate signature Is created “dumbly” and then
optimized using a best-first search through the
space of possible generalization.

If two candidate signatures overlap excessively,
the lower-scoring one is deleted.
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Signature Generation
T ————

Snapshot of graph preceding flagged node
Literals replaced with (bound) variables
Binding dropped for exact time, host addresses

Variable bindings, relational expressions are
constraints

“Relaxed” by removing nodes and constraints.

Goal: Maximize o * (# of newly-matched worm
events) 3 * (# of matched non-worm events) + ~ *
(# of nodes, constraints).

5,y <O.
V] < |a| < |betal
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Example - Possible Worm Traffic

Heuristic has already identiflied worm events:

src:65.213.217.241
dst:32.18.124.102
port:25 @0

src:65.213.217.243
dst:65.213.217.241
port:80 @2

src:65.213.217.244
dst:65.213.217.241
port:80 @2

src:128.223.4.21
dst:65.213.217.244
port:21 @5

srC:65.213.217.241
dst:216.239.57.99
port:1434 @3

SrC:65.213.217.241
dst:123.253.101.18
port:1434 @4

src:65.213.217.241
dst:66.218.71.95
port:1434 @6
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Signature Extraction

" scshosta src=host_b

' src=host_d src=host_c
dst=host_b . dst=host_g dst=host_b dst=host_b
port=p_d @t_g port=p_c @t_c port=p_c @t_d

src=host_a
dst=host_c
port=p b @t b

src=host_b
dst=host_e
port=p_a@t_e

src=host_b
dst=host_f
port=p_a @t_f

src=host_b
dst=host_h
port=p_a@t_h

Ppa=1434,p b=21,p ¢c =80, p d =25, host a #
host b A4host c#4...,t a<tb<tc=td<...
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Signature Optimization - Remove
nodes & Constraints

src=host_b
dst=host_g
port=p_d @t_g

src=host_c
dst=host_b
port=p_c @t_d

src=host_b
dst=host_e
port=p_a@t_e

src=host_b
dst=host_f
port=p_a @t_f

src=host_b
dst=host_h
port=p_a@t_h

P a = 1434, p c =80, pd-= 25,
host b A4host c#4...,t a<tb<tc=td<...
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Signature Optimization
nodes & Constraints

src=host_b
dst=host_f
port=p_a @t_f

src=host_b
dst=host_h
port=p_a@t_h

p a= 1434,
host f £ host _h

Remove

host b #
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Signature Optimization - Remove
nodes & Constraints

src=host_b
dst=host_f
port=p_a @t_f

\

src=host_b
dst=host_h
port=p_a@t_h

p—a—31434; host b # host f # host h. Over-

generalization: Matches non-worm nodes, lowers

S C O re . B aC kt ra_C k ! NETSEC Presentation (©)Eric Anderson — p.39/64



Distributed Signature Optimization
o ————

False positive problem - Monitor’s local view of
network traffic is not necessarily representative

After a monitor finds a local optimum, the
candidate signature is disseminated to a larger set

of monitors
Signature Is re-optimized using combined data

Repeated with increasingly large groups until a
global consensus is reached

Monitors are arranged in a tree-structured overlay
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Distributed Signature Optimization

Protocol - Synchronous
o —

1. Monitor (detector) observes a worm event
2. Monitor (detector) extracts a candidate signature

3. Monitor optimizes signature (repeated):
(a) Compute k plausible relaxations
(b) Send relaxation set query to child nodes(if any)
(c) Computer score for set using local data (if any)
(d) Wait for score responses from all child nodes.
(e) Combine scores
I (f) Choose next £ relaxations
L

4. Monitor sends candidate signature search state to
parent
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Example - 1
e —_

L4 A 4 <&
OO

Red detector observes an un-matched worm-like event
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Example - 2
O ——

L 4 A 4
O®

Red analysis node optimizes candidate signhature

<&
@
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Example - 3

L4 A 4 <&
OO

Red analysis node passes state to parent




Example - 4
O ——

<& <&
| @

Red analysis node recursively queries children
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Example - 5
O —"

<& <&
| @

Children reply with real and false positive counts, total

.data set size
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Example - 6
e —_

<&
|

Repeat until local optimum found
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Example - 7

<&
@

Process repeats at parent
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Example - 8
O ——

Process repeats at parent (root)
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Example - 9
e —_

Final signature is disseminated
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Problems with Synchronicity
O ——

» Slows entire process to rate of slowest node

* Broken links or overloaded nodes are quite
plausible

FER
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Asynchronous Signature Optimiza-

tion

As with synchronous protocol, but:

Monitor (analysis node) does not wait for
children to respond

Tracks most-recently-acted on values

Acts whenever local current values change by
hysteresis value e.

(with a rate limit)
“Act” means computing promising relaxations or
reporting an answer to a (recursive) query
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System Evaluation
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Evaulation thus far

» Self-similarity-based Detection
* Worm Monitor Communication
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Measurement Evaluation of Self-

Similarity
C I ——-

We’ve argued that worms will show high
MaT, |y -,0(v,v") values. Does that set them apart?

Goals:

Determine score distribution for real non-worm
traffic for various time windows w.

For each w, find the relation between score and
confidence that traffic Is non-worm.

Offer sensible w and worm score threshold r.
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Approach - In Theory

* Process 2 months of headers from U. of Auckland.
» Aggregate packet events into connection events.

* Exclude known worms from normal traffic.

* Maintain a sliding window of event records.

» Score all recorded events.

* Find score distribution, and confidence levels for
each threshold.
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CDF of Maximum Similarity with SimpleCC and all data

600 seconds real —+—
/60/seconds real <
« % 10 seconds real ---x---
- allworm &
UK
P
‘ o
0.6 [ 7><7JX,,X,X,,X,,X,,><——><——>e—><——><f><——><——>e—><——><—><——><——><—"X""X _

D= X

cumulative frequency

15 20 25 30 35 40
Connection maximum self-similarity

* Results from local test traces.
* ~ 95% of connections differ clearly from worms
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Conclusions - Self-Similarity

* ~ 95% of connections differ clearly from worms

* |s that good enough? Not by itself, no.

» With secondary reasonableness checks? Maybe.

* How can we improve it?
* Prioritized comparison function?

C

euristics on causation and timing?

acks to lower false positives break coverage
aims! Hmmm...
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Communication Structure Evaluation

* Developed “connection-level” network simulator
* ALPYNES - Application-Level PYthon NEtwork

Simulator

» Evaluated the network delay of distributed

monitoring structure.

* Results for synchronous protocol suggested

development of asynchronous one.
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Network Model

* Network consists of e2e “links.”
» Each link represents a path in the Internet

» Path properties are generated randomly using
parameters derived from empirical studies. [1, ?]
» Paths are domestic or international

* Domestic mean latency:. 10ms, mean b/w:
0.88Mbps

 International mean latency: 110ms, mean b/w:
0.21Mbps
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Tree Structure

* Reasonable scaling
with tree degree

* Not so good with tree
height.

Run Time (S)

Run Time (S)

24

Varying node degree with fixed tree height

22

median.

, quartile bars ——+—
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NETSEC Presentation (©)Eric Anderson — p.61/64




Algorithmic Performance

* Signature checking time is a critical bottleneck.

Run Time (S)

100

90 -

80 -

70 |-

60 -

50 -

40 (-

30 G-

20 |-

10 |-

Varying sig. set check time

T T
ian, quartile bars —+— |

I
15

1 1 1
2 25 3
Signature set checking time (S)

I
35

I I
4 4.5 5
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Message Size and Network

* Quick but modest
drop-off for
International links.

* Believed to be
“clocking” to
slowest link.

* Robust to signature
optimization state
message size.

16 \I/
14 \j
0
etwork Pat
size (log/log scale; )
edia —

00000000000
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Conclusions - Tree Structure

» Completion time of well under 15 seconds is
possible.

* Tree height and number of optimization rounds are
critical factors.

* Message size Is not.

* ...Maximize amount of search information per
message.

* Asynchronous communications protocol Is
probably better.
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