
Differentially Constrained Motion Replanning Using State Lattices with
Graduated Fidelity

Mihail Pivtoraiko and Alonzo Kelly

Abstract— This paper presents an approach to differentially
constrained robot motion planning and efficient re-planning.
Satisfaction of differential constraints is guaranteed by thestate
lattice, a search space which consists of motions that satisfy
the constraints by construction. Any systematic replanning
algorithm, e.g. D*, can be utilized to search the state lattice
to find a motion plan that satisfies the differential constraints,
and to repair it efficiently in the event of a change in the
environment. Further efficiency is obtained by varying the
fidelity of representation of the planning problem. High fidelity
is utilized where it matters most, while it is lowered in the
areas that do not affect the quality of the plan significantly. The
paper presents a method to modify the fidelity between replans,
thereby enabling dynamic flexibility of the search space, while
maintaining its compatibility with replanning algorithms. The
approach is especially suited for mobile robotics applications
in unknown challenging environments. We successfully applied
the motion planner to real robot navigation in this setting.

I. INTRODUCTION

In recent years there has been a growing interest in
efficient motion replanning. Real mobile robot applications
face challenges due to scarce and uncertain perception in-
formation. In order to facilitate planning a robot’s motion
given such challenges, dynamic replanning algorithms were
developed [6] [13]. Such algorithms incorporate updated per-
ception information and modify the motion plan accordingly,
while reusing previous computation.

This work introduces efficient replanning to motion plan-
ning under differential constraints that is based on searching
a state lattice, a directed cyclic graph that encodes the
constraints by construction [11]. Substantial computation is
performed off-line to determine the connectivity of edges
that represents the differential constraints. This allows fast
planning (on-line) by utilizing standard search algorithms in
this graph, while naturally satisfying the constraints.

In order to satisfy the differential constraints, relatively
high dimensionality of the state lattice may be required.
Deterministic search in this setting can be computationally
costly. This cost is especially significant in outdoor robotics
applications, as they pose complicated planning problems, in
particular due to complex environments.

This paper addresses this limitation by managing the
complexity of the search through modification of the fidelity
of representation. The search space consists of one or more
arbitrary regions of different fidelities. Lower fidelity of

This research was conducted at the Robotics Institute of Carnegie Mellon
University, sponsored by NASA/JPL as part of the Mars Technology
Program.

The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA{mihail, alonzo }@cs.cmu.edu

representation results in faster search, but higher fidelity
results in better quality solutions. The approach is closely
related to multi-resolution planning [8], but we use the
term graduated fidelityto emphasize that the quality of
representation is expressed not only as the resolution of state
discretization, but also as the connectivity of edges between
the vertices in the state lattice. Each region of the search
space can be assigned a fidelity arbitrarily, yet practically this
choice is guided by the region’s relevance for the planning
problem and the availability of the environment information.
In particular, it is often beneficial to utilize a high fidelity
of representation in the immediate vicinity of the moving
robot. Our method meets that need by allowing the regions
of different fidelity to move or change shape arbitrarily.

The contribution of this work is an improved state lattice
search space that consists of regions of different fidelities
of representation and allows the regions to move or change
shape between replans. This search space remains compatible
with standard search algorithms and is capable of producing
motion plans that satisfy differential constraints without any
post-processing. The presented method allowed real-time
motion planner operation onboard a mobile robot in rough
outdoor terrain.

II. PRIOR WORKS

A planner based on A* search in the state lattice was
successfully utilized to guide a car-like robot in challenging
natural environments [11]. The graduated fidelity extension
to that work, presented herein, is related to the general area of
multi-resolution planning: [2], [3], [9] and others. One differ-
ence our method has with most multi-resolution predecessors
is that regions of different resolution are allowed to move
over time, while the search space remains compatible with
systematic search. The idea of dividing the search space into
regions is related to [14], but our method allows replanning
in this search space.

Satisfaction of differential constraints also has received
a considerable amount of attention in motion planning re-
search. Powerful probabilistic techniques have been devel-
oped [5] [7], however our method is deterministic and under
appropriate conditions can offer a number of guarantees
provided by standard search algorithms, including optimality
and resolution-completeness. A number of other approaches
utilize discretization in control space to manage the complex-
ity of the planning problem [1]. However, there are important
advantages to using discretization in the state space instead.
In particular, it simplifies reducing dispersion of sampling,
in turn allowing a more uniform distribution of samples



in the state space [8]. This is beneficial to exploring the
state space more efficiently, as the search attempts to find a
path from initial to final state. Unfortunately, reducing state
space dispersion through control space sampling is difficult.
It was shown in [10] that through careful discretization in
control space, it is possible to force the resulting reachability
graph of a large class of nonholonomic systems to be a
lattice, however this is usually difficult to achieve. By using
a boundary value problem solver [4], we can choose a
convenient discretization in the state space, one that makes
the search more efficient, while maintaining the satisfaction
of differential constraints.

III. DIFFERENTIALLY CONSTRAINED PLANNING
AS SEARCH IN STATE LATTICES

In this section we develop some nomenclature to define the
motion planning problem under differential constraints and
to review a method to solve it using search in state lattices
[11].

The motion planning problem we consider is a six-tuple
(X, Xfree, xinit, xgoal, U, f). The robotstate space, X ⊂
Rn, is an n-dimensional compact differentiable manifold.
Xfree ⊆ X is the set of states that satisfy global constraints
(e.g. control bounds, obstacle avoidance, etc.). The boundary
conditions for the planning problem arexinit ∈ Xfree and
xgoal ∈ Xfree. The set of robot controlsU contains the
control inputs that the system accepts. A functionf is the
system model (equation of motion) and encodes kinematics
and dynamics constraints:ẋ = f(x, u), wherex ∈ X, u ∈ U .
The solution to the motion planning problem is an input
function us : [t0, tf ] → U , wheret0 is the starting time and
tf is the final time.

The proposed method to solve the above problem hinges
on a particular discretization of the robot state space, the
state lattice. It is represented as a directed cyclic graph,
where vertices are discrete values of state. An edge between
two verticesxi, xj is an input functionui : [0, 1] → U ,
such that the corresponding pathπi : [0, 1] → Xfree

(obtained by integratingf(xi, ui)) satisfies πi(0) = xi

and πi(1) = xj . Thus, every vertex of the state lattice
is connected to one or more other vertices via edges that
represent feasible motions. Further, finding a motion plan
that satisfies differential constraints is reduced to finding a
path (a sequences of vertices and edges) in the state lattice
graph. Each edge can be assigned a cost. Since the state
lattice is a directed cyclic graph, any standard systematic
search algorithm can be utilized to find the shortest path
in it, which would correspond to a minimum-cost feasible
motion that drives the system fromxinit to xgoal.

Generating the input functions (state lattice edges) in-
volves solving theboundary value problem, and we rely
on a significant amount of prior work in this area [8].
We successfully used a method of trajectory generation for
wheeled mobile robots in [4]. Often it is possible to find a
feasible path from any state lattice vertex to infinitely many
other vertices. The branching factor of such a graph would be
unmanageable, and therefore we must limit the connectivity.

Finding the best way to arrange the connectivity of vertices in
the state lattice is related to the problem of optimal sampling,
and a number of approaches have been developed [11].

The principle of limiting the connectivity between lattice
vertices to make computation manageable can be viewed
as discretization in the space of motions. Similar to any
discretization, it has implications on the completeness of
the planner. However, the proposed approach maintains the
resolution-completeness, if we allow the term “resolution”
to apply to both state and motion discretization. It may
be helpful to see that planning in state lattices is a gen-
eralization of the classical approaches to planning in 2D
grids [6] [13]. The principal difference is the connectivity
between the vertices. It is trivial in the case of the grid (N -
nearest neighbors), while the state lattice requires the system
model and a boundary value problem solver to compute the
connectivity.

Fig. 1. A repeated and regular pattern of vertices and edges comprises
the state lattice. The inset shows the immediate neighbors of a node,
including 2D projections of the edges (workspace paths) leading towards
the neighbors. The overall motion plan (thick black curve) is a sequence of
such edges.

IV. GRADUATED FIDELITY PLANNING

In this section, we describe an approach to reducing the
computational complexity of planning with state lattices at
the cost of selectively reducing the quality of representation.
Some regions of the workspace, e.g. those that are partially
or completely unknown, can be represented at lower fidelity,
and the regions that are best known or most relevant for the
problem are represented at highest fidelity.

We extend the above definition of the state lattice by
assuming that it consists of subgraphsG1,G2, . . . ,Gn.
The arrangement of vertices and edges in each subgraph is
assumed to be regular, but this arrangement may be different
among subgraphs to reflect the differences in the fidelity of
representation. This composite search space is maintained to



remain a directed cyclic graph, so that replanning algorithms
can be utilized to reuse previous computation while replan-
ning.

We definemodifyinga subgraph as arbitrarily changing its
position (in coordinates that do not affect its connectivity,
namely the translational ones) and shape (the extent of its
boundary in state space). After a subgraph is modified, some
of the vertices near its boundary are set to belong to a
different subgraph. Note that the vertices do not move, they
simply change ownership from one subgraph to another.
For example, as a subgraph changes position, it “gains” the
vertices on its leading edge and “loses” vertices on its trailing
edge.

After all subgraphs are modified as desired, a replanning
procedure needs to be executed to repair the plan. This is the
same procedure that repairs the plan due to other changes in
the search space (e.g. a perception update). To see why, note
that deterministic replanning algorithms reuse computation
by storing previously computed costs of vertices in the graph.
As a result of modifying the subgraphs, some vertices change
their cost due to new connectivity under a different subgraph.
It is entirely transparent to the replanning algorithm whether
they changed cost due to new edge costs from a perception
update, or due to modification of subgraphs. Thus, the only
required change to replanning algorithms to enable graduated
fidelity is a process to make them aware of the vertices
that have new subgraph ownership. This is performed by
the functionconvertvertex, presented in Algorithm 1.

The function convertvertex is executed on each vertex
vb that changes subgraph ownership. If the vertex has not
been expanded at all so far, the function returns. Otherwise,
we note all vertices that may containvb as a predeces-
sor – it is exactly the set of successors ofvb under the
edge connectivity of its previous subgraphGi, denoted as
Succi(vb). Further, we remove any back-pointers from these
successor verticesvs to vb by examining the predecessors of
vs, Pred(vs). Effectively, we undo the effects of a previous
expansion ofvb. Lastly, if this change resulted in a change of
cost of any successor vertex, we insert the affected vertices
andvb itself into the priority queue. D* variants can detect
this cost change automatically by recomputing therhs-value.
Note that this procedure is likely to cause replanning from
the farthest affected vertex to the robot (assuming the search
direction from the goal to the robot). Thus, more previous
computation is reused if such changes occur closer to the
robot.

This procedure is illustrated in Figure 2, using a simplified
search space for ease of visualization. In this example, the
search space consists of two subgraphs,G1 (black square
vertices) andG2 (gray circle vertices). Arrows of similar
colors are the edges.G2 is a small subgraph, consisting
of six vertices, highlighted with a gray bounding box. The
rest of the search space belongs toG1. In this example,
Succ1(vi), ∀vi ∈ G1 is 4 nearest neighbors, andSucc2(vj),
∀vj ∈ G2 is 8 nearest neighbors. A real implementation of
graduated fidelity under differential constraints would utilize
the same algorithm, but a more sophisticated connectivity of

Input : graph vertexvb

if vb was previously expandedthen
foreach vs ∈ Succi(vb) do

removevb from Pred(vs);
updatevertex(vs);

updatevertex(vb);
Algorithm 1 : The functionconvertvertex(vb). It enacts a
change of subgraph ownership of the vertexvb. After it
has been called on all vertices that changed subgraphs,
the search space becomes ready for a standard replanning
process. Theupdatevertex function is assumed to be a
component of the chosen search algorithm that determines
whether a vertex needs to be processed during replanning.

the subgraphs.
The effect of the initial plan is shown in Figure 2a). The

search proceeded from the goal vertexvg to the robotvr. The
vertices with white centers were expanded during search, and
solid vertices, pointed to by the arrows, remain in the priority
queue. The resulting motion plan is highlighted with a thick
patterned line.

Fig. 2. Maintaining the connectivity between two subgraphs of different
fidelities of representation.G1 is a static subgraph (black square vertices),
andG2 (gray circular vertices) moves w.r.t. the former. Arrows are edges.
Hollow vertices have been expanded. Subfigure a) shows the initial plan
(thick patterned line), as it originates inG1 and proceeds intoG2; b) as
G2 moves from left to right, the six crossed out vertices change subgraph
ownership, andconvertvertexis executed on each of them, which results in
undoing the previous expansions ofv1 andv2; c) shows the completion of
movingG2: the verticesv1 andv2 now belong toG2 and are available for
re-expansion, if necessary, when the search algorithm performs replanning;
lastly, d) shows the result of replanning in the search space from c), where
due to re-expansion ofv1 underG2 edge connectivity, a new plan is found.

Next, suppose we moveG2 to the right, as shown in
Figure 2b). The six crossed-out vertices change subgraph
ownership due to this move, and we executeconvertvertex
on each of them. The previous expansion of verticesv1

and v2 is undone: their edges (dotted arrows) are removed.
In Figure 2c), movingG2 is completed, and the affected
vertices are inserted into the priority queue. When the search
algorithm begins replanning, these vertices will be expanded,



using the edge connectivity ofG2, if they are relevant for
the problem at hand, as deemed by the heuristic. Figure 2d)
completes our example and shows a new motion plan (thick
patterned line) due to movingG2 to the right.

The same algorithm would work with subgraphs of differ-
ent dimensionalities by using additional “connecting” edges.
They are used as part of the expansion of a vertex that
lies on the boundary of a subgraph, in order to connect it
with the other subgraph. A simple example of connecting
a 2D subgraphG1 to a 3D subgraphG2 is shown in
Figure 3. Additional edges (gray arrows in the figure),
denoted bySucc12(vb) are used in order to generate suitable
connectivity from a vertexvb in subgraphG1 to G2. In this
case, we have connected this vertex to several vertices in
G2 representing all possible values of the third dimension.
Algorithm 1 can be utilized here with a minor modification.
In addition to using the vertices inSucci(vb) in the foreach
loop, we also use the vertices fromSuccij(vb). This addition
certainly increases the branching factor of boundary vertices,
however the complexity effect can be insignificant if only a
small number of vertices require the extra edges.

Fig. 3. The 2D subgraphG1 (4-connected grid) is connected to another
subgraphG2 of a higher dimension. Black arrows are the standard node
expansion (4 nearest neighbors), and gray arrows are additional edges that
connect the two subgraphs.

V. IMPLEMENTATION DETAILS

In this section we describe several important details that
would be helpful in evaluating the proposed approach. In
the next section, we quote the results obtained using the
implementation described herein. D* Lite [6] was the search
algorithm used in the described implementation, and the
details below reflect this choice.

A. Designing the Connectivity of the State Lattice

By regularity of the state lattice, the set of immediate
successors of any vertex does not depend on translational
coordinates of the vertex. This is important, because all but
translational coordinates of the lattice have finite range. Thus,
it is possible to pre-compute and store thecontrol set, a
finite set of successors for any vertex in the lattice, up to
translation.

In Section III, we described the role of designing the
connectivity of the state lattice and its importance for the
quality of planning. This is a topic of on-going research,
and a number of approaches have been developed [11].

B. Heuristics

There are a number of heuristics that can be used. The
simplest one is the Euclidean distanceL2(x, xgoal), where
x, xgoal ∈ X ′

free, a subset ofXfree consisting of its
two translational dimensions. However, Euclidean distance
is not a well-informed heuristic because the length of a
differentially constrained path between two points in 2D
can be much greater than the Euclidean distance between
them. Weighted Euclidean distance metrics inX can be
designed to be better heuristics. Other heuristic ideas include
distance metrics derived from the Reeds-Shepp result [12]
and heuristic look-up tables, containing the pre-computed
free-space costs of paths [11]. The latter are especially
attractive in state lattice planning with graduated fidelity,
since the sizes of the finite subgraphs suggest natural sizes
for the corresponding heuristic look-up tables.

C. Processing Edge Cost Updates

For every change in the cost,c(xi, xj), of the directed
edge from the vertexxi to xj , the D* Lite algorithm requires
recomputing the priority ofxj and potentially inserting it into
the priority queue. Without loss of generality, we assume that
environment constraints are represented in a 2D cost map.
In order to re-plan due to a change in the cost of a cell
mij ∈ N2 in the cost map, the planner needs to know the set
of verticesVc that potentially need to be re-inserted into the
priority queue with new priority. Thus, the planner requires
a mappingY : N2 → Vc. This mapping is simple in the case
of classical applications of D* in 2D grids, but it is nontrivial
in the case of the state lattice.

To develop this mapping, we need to compute theswath
of a motion, a set of cost map cellsCs ⊂ N2 that are covered
by the robot as it executes the motion. The cost of an edge
that represents this motion is directly dependent on the costs
of map cells inCs. Once we pre-compute the control set, it
is also often possible to pre-compute the swaths of the edges
in it.

Since the mapping between edges and their terminal
vertices is trivial, it is easier first to develop the mapping
Y ′ : N2 → Ec, where Ec is the set of edges that are
affected bymij (e.g. pass through it). DeterminingY ′ may
still appear as a formidable task, given the high density of
edges in the multi-dimensional state lattice. However, we
again exploit the regularity of the lattice to simplify the
problem. If we haveY ′′ : O → Ec, whereO is the origin,
thenY ′ = Y ′′+n,∀n ∈ N2. In other words, the set of edges,
affected bymij = O is identical for any other cell, up to
the translation coordinates. Further, recall that the swathCs

of each edge inEc is known. In principle,Ec contains all
edgesuc, such thatmij belongs toCs of uc. Hence, the
mappingY ′′ is exactly a set of edges, whose swaths pass
through the 2D origin. Clearly, it can be precomputed for
the same reasons as the control set and can be used readily
to incorporate cost map changes in re-planning.



VI. EXPERIMENTAL RESULTS

In order to evaluate the effect of graduated fidelity in
differentially constrained motion planning with state lattices,
we performed simulated and field experiments with mo-
bile robots. In all experiments, a planetary rover prototype
roughly 0.8m by 1.0m in size was used. It was assumed to be
a nonholonomic vehicle capable of moving forward and back
with minimum turning radius 0.5m. The vehicle was capable
of point-turns, although such maneuvers were considered
costly and used as a last resort. The search space consisted
of two subgraphs: a high fidelity subgraph that moved with
the vehicle and a low fidelity subgraph elsewhere. The(x, y)
resolution of both subgraphs featured square cells of 20 cm.
The average outdegree of the 4D high fidelity subgraph was
45 (a state lattice). The outdegree of the 2D low fidelity
subgraph was 8 (grid connectivity). The dimensions of the
state lattice included the translational coordinates(x, y),
discretized as a grid, as well as heading and curvature.
The planner used the Euclidean distance heuristic, and an
improvement in performance can be expected with better
informed heuristics.

The results of two types of experiments are presented
below. The first set of experiments attempts to quantify the
effects of the size of the high fidelity subgraph around the
vehicle on both runtime performance and the quality (cost)
of the solution. The second set of simulated and real vehicle
experiments demonstrates the performance of the planner in
a realistic setting.

The plot in Figure 4 reports the results of the first type
of experiments. The planner used an environment with ran-
dom single map cell obstacles independently and identically
distributed with probability of 3%. To avoid confounding
the results with simulated perception, the cost map was
fully known a priori. For each experiment, the robot was
placed at a random location in its environment, and the goal
was chosen approximately 100 cells away. The robot then
navigated toward the goal, while periodically replanning after
traversing approximately two cells. The replanning runtime
and the costs of traversed edges were accumulated. Each
experiment was repeated using a different size of the high
fidelity subgraph around the robot. Both the runtime and cost
measurements were normalized by dividing by the respective
quantity, featured by the lattice planner without graduated fi-
delity (high fidelity throughout). The plot suggests that using
the high fidelity subgraph of a smaller size appears to offer
a significant performance improvement with a very small
increase in traversal cost. For larger sizes of the subgraph, the
runtime increases significantly. Note, however, that graduated
fidelity experiments are at a disadvantage in this comparison,
since a robot using high fidelity throughout requires no
replanning, given known environment. In a realistic setting,
replanning may still be required due to perception updates.
In evaluating other goal selection schemes and different
environments, we found that the general trends in Figure
4 remained unchanged.

The second set of experiments, simulated and real, demon-

Fig. 4. The results of the robot traversal using graduated fidelity. The
horizontal axis is the percentage of the search space (between robot and
goal) occupied by the high fidelity subgraph. For example, 10% denotes
a high fidelity subgraph of radius 10 cells around the robot, given that
distance to the goal is 100 cells. The vertical axis is the ratio of cumulative
runtime and traversal cost at the given subgraph size to the corresponding
quantities without graduated fidelity (high fidelity throughout). Averages
over 10 independent trials are presented.

strates planner performance in a more realistic setting, where
the robot moves in a challenging environment toward a
distant target. In the simulated experiment, the robot has a
perception region limited to 21x21 cells, centered around
the robot. No perception information is available outside
this horizon. The size of the high fidelity subgraph is the
same size as the perception region. Otherwise, the setup is
the same as above. For clarity, Figure 5 shows a 40-meter
subset of a 500-meter path, traversed in this setting. Grey
cells are obstacles that have not yet come into view of the
robot and are unknown to it. Black cells (and red cells in the
insets) are obstacles that were seen by the robot. The dark-
gray line is the path the robot traveled. Note that it appeared
in many cul-de-sacs due to the limited perception, and the
planner was effective at guiding the robot out of all of them,
while leveraging robot’s maneuverability. The replanning
due to obstacle discovery and subgraph modification in the
search space was occurring continuously. This experiment
was performed on a conventional laptop computer with 2GHz
CPU and 2GB of RAM. Notice the two peaks in the middle
of the runtime plot, bottom of Figure 5: they correspond to
two replans #39 and #53, when significant replanning was
required due to cul-de-sacs.

The graduated fidelity motion planner was integrated with
research prototype rovers at the Jet Propulsion Laboratory
(JPL). It enabled rovers to navigate in rough rocky terrain
set up in the JPL Mars Yard. Figure 6 shows the results
of the FIDO rover running the graduated fidelity state lat-
tice planner on-board to navigate autonomously amid dense
rocks. In this experiment, the robot featured a single 1.6GHz
CPU and 512MB of RAM, shared among all processes of
the rover. The actual memory usage of the planner was less
than 100MB. The rover used a high fidelity region of the
same size as above, 21x21 map cells, and a perception region
(via stereo cameras) 41x41 map cells, both centered around
the rover. The top part of Figure 6 shows the approximate
path the rover traveled, and the bottom part shows the plot
of the runtimes of the corresponding replans, averaging at
approximately 10Hz.



Fig. 5. A simulated experiment of traversing about 500 meters among
previously unknown obstacles. Top: the first 40 meters of the path are
shown for clarity. Note that all motions generated by the planner were
globally feasible, and backing up maneuvers were generated automatically
when necessary. Bottom: plot of planner runtime (vertical axis is runtime
in seconds, and the horizontal axis is replan cycle number).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described an approach to improve the
efficiency of motion planning and replanning by varying
the fidelity of representation of the planning problem. In
addition to leveraging dynamic replanning algorithms, this
approach enables dynamic and deliberative flexibility in
search space connectivity to boost efficiency. Standard re-
planning algorithms can be utilized, while the proposed
search space design allows both the automatic satisfaction of
differential constraints and the adjustment of the search space
between replans. The method was successfully demonstrated
in simulation and on real robots. Future work includes a
further investigation into the state and motion space sampling
to further improve planning efficiency.

REFERENCES

[1] J. Barraquand and J.-C. Latombe. On nonholonomic mobile robots and
optimal maneuvering. InProc. of the IEEE International Symposium
on Intelligent Control, 1989.

[2] R. Bohlin. Path planning in practice; lazy evaluation on a multi-
resolution grid. InProc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2001.

[3] D. Ferguson and A. Stentz. Multi-resolution Field D*. InProc.
International Conference on Intelligent Autonomous Systems (IAS),
2006.

Fig. 6. A field experiment in the JPL Mars Yard. FIDO rover navigated
autonomously among previously unknown obstacles, while running the
graduated fidelity lattice planner on-board. Top: approximate path the rover
followed. Bottom: a plot of planner runtime (vertical axis is runtime in
seconds, and the horizontal axis is replan cycle number).

[4] T.M. Howard and A. Kelly. Optimal rough terrain trajectory gener-
ation for wheeled mobile robots.International Journal of Robotics
Research, 26(2):141–166, 2007.

[5] D. Hsu, R. Kindel, and J.-C. Latombe S. Rock. Randomized kinody-
namic motion planning with moving obstacles.International Journal
of Robotics Research, 21(3):233–255, 2002.

[6] S. Koenig and M. Likhachev. D* Lite. InProceedings of the AAAI
Conference of Artificial Intelligence (AAAI), 2002.

[7] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects.Algorithmic and Computational Robotics:
New Directions, pages 293–308, 2001.

[8] S.M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[9] D.K. Pai and L.-M. Reissell. Multiresolution rough terrain motion
planning. IEEE Transactions on Robotics and Automation, 14(1):19–
33, 1998.

[10] S. Pancanti, L. Pallottino, and A. Bicchi. Motion planning through
symbols and lattices. InProc. of the Int. Conf. on Robotics and
Automation, 2004.

[11] M. Pivtoraiko and A. Kelly. Constrained motion planning in discrete
state spaces. InProc. of the Int. Conf. on Field and Service Robotics,
2005.

[12] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both
forwards and backwards.Pacific Journal of Mathematics, 145(2):367–
393, 1990.

[13] A. Stentz. The focussed D* algorithm for real-time replanning. In
Proceedings of the Fourteenth International Joint Conf. on Artificial
Intelligence, August 1995.

[14] R. Szczerba, D. Chen, and J. Uhran. Planning shortest paths among
2D and 3D weighted regions using framed-subspaces.International
Journal of Robotics Research, 17(5):531–546, 1998.


