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Abstract—This paper presents an approach to differentially ~representation results in faster search, but higher fidelity
constrained robot motion planning and efficient re-planning.  results in better quality solutions. The approach is closely
Satisfaction of differential constraints is guaranteed by thestate o|ated to multi-resolution planning [8], but we use the

lattice, a search space which consists of motions that satis o . .

the constraints byIO construction. Any systematic replanning]cy term graduated fidelityto emphasize that the quality of
algorithm, e.g. D*, can be utilized to search the state lattice epresentation is expressed not only as the resolution of state
to find a motion plan that satisfies the differential constraints, discretization, but also as the connectivity of edges between
and to repair it efficiently in the event of a change in the the vertices in the state lattice. Each region of the search
environment. Further efficiency is obtained by varying the — g5506 can be assigned a fidelity arbitrarily, yet practically this

fidelity of representation of the planning problem. High fidelit . . . C .

is ut}[I)i/zed v5here it matters mcr:st, Wh?lep it is Iower%d in th{a choice is guided by .the.r.eg|ons releyance for Fhe planlnmg
areas that do not affect the quality of the plan significantly. The Problem and the availability of the environment information.
paper presents a method to modify the fidelity between replans, In particular, it is often beneficial to utilize a high fidelity
thereby enabling dynamic flexibility of the search space, while of representation in the immediate vicinity of the moving
maintaining its compatibility with replanning algorithms. The robot. Our method meets that need by allowing the regions

approach is especially suited for mobile robotics applications . . o
in unknown challenging environments. We successfully applied of different fidelity to move or change shape arbitrarily.

the motion p|anner to real robot navigation in this Setting. The Contribution Of th|S Work iS an imprOVed State |attice
search space that consists of regions of different fidelities
[. INTRODUCTION of representation and allows the regions to move or change

In recent years there has been a growing interest ghape between replans. This search space remains compatible
efficient motion replanning. Real mobile robot applicationdVith standard search algorithms and is capable of producing
face challenges due to scarce and uncertain perception fRotion plans that satisfy differential constraints without any
formation. In order to facilitate planning a robot’s motionPost-processing. The presented method allowed real-time
given such challenges, dynamic replanning algorithms wefgotion plann_er operation onboard a mobile robot in rough
developed [6] [13]. Such algorithms incorporate updated peRutdoor terrain.
ception mf_orma‘uory and modify the motion plan accordingly, Il. PRIOR WORKS
while reusing previous computation. _ _

This work introduces efficient replanning to motion plan- A Planner based on A* search in the state lattice was
ning under differential constraints that is based on searchirfigyccessfully utilized to guide a car-like robot in challenging
a state lattice a directed cyclic graph that encodes thé'atural environments [11]. '_I'htnT graduated fidelity extension
constraints by construction [11]. Substantial computation i thatwork, presented herein, is related to the general area of
performed off-line to determine the connectivity of edgednulti-resolution planning: [2], [3], [9] and others. One differ-
that represents the differential constraints. This allows fa§'Ce our method has with most multi-resolution predecessors
planning (on-line) by utilizing standard search algorithms ifS that regions of different resolution are allowed to move
this graph, while naturally satisfying the constraints. over time, while the search space remains compatible with

In order to satisfy the differential constraints, relativelySyStématic search. The idea of dividing the search space into
high dimensionality of the state lattice may be required€9iOnS IS related to [14], but our method allows replanning
Deterministic search in this setting can be computationall§? this search space. _ . _
costly. This cost is especially significant in outdoor robotics Satisfaction of differential constraints also has received
applications, as they pose complicated planning problems, # considerable amount qf attention in motion planning re-
particular due to complex environments. search. Powerful probabilistic tec_hmques ha_vg been devel-

This paper addresses this limitation by managing thered [5]_ [71, howe_v_er our method is deterministic and under
complexity of the search through modification of the fidelity@PPropriate conditions can offer a number of guarantees
of representation. The search space consists of one or m&¥@vided by standard search algorithms, including optimality

arbitrary regions of different fidelities. Lower fidelity of @nd resolution-completeness. A number of other approaches
utilize discretization in control space to manage the complex-
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in the state space [8]. This is beneficial to exploring th&inding the best way to arrange the connectivity of vertices in
state space more efficiently, as the search attempts to findhe state lattice is related to the problem of optimal sampling,
path from initial to final state. Unfortunately, reducing stateand a number of approaches have been developed [11].
space dispersion through control space sampling is difficult. The principle of limiting the connectivity between lattice
It was shown in [10] that through careful discretization invertices to make computation manageable can be viewed
control space, it is possible to force the resulting reachabilitgs discretization in the space of motions. Similar to any
graph of a large class of nonholonomic systems to be discretization, it has implications on the completeness of
lattice, however this is usually difficult to achieve. By usingthe planner. However, the proposed approach maintains the
a boundary value problem solver [4], we can choose mesolution-completeness, if we allow the term “resolution”
convenient discretization in the state space, one that mak®s apply to both state and motion discretization. It may
the search more efficient, while maintaining the satisfactione helpful to see that planning in state lattices is a gen-
of differential constraints. eralization of the classical approaches to planning in 2D
grids [6] [13]. The principal difference is the connectivity

IIl. DIFFERENTIALLY CONSTRAINED PLANNING  hoyyeen the vertices. It is trivial in the case of the g (

AS SEARCH IN STATE LATTICES nearest neighbors), while the state lattice requires the system

In this section we develop some nomenclature to define timeodel and a boundary value problem solver to compute the
motion planning problem under differential constraints andonnectivity.
to review a method to solve it using search in state lattices
[11]. .
The motion planning problem we consider is a six-tuple |
(X, X frees Tinit, Tgoal, U, f). The robotstate spaceX C |
R™, is an n-dimensional compact differentiable manifold.
Xrree € X is the set of states that satisfy global constraints
(e.g. control bounds, obstacle avoidance, etc.). The boundary ||
conditions for the planning problem atg,,;: € X ¢r.. and
Zgoal € Xfree. The set of robot controlé/ contains the
control inputs that the system accepts. A functipris the
system model (equation of motion) and encodes kinematics
and dynamics constraints:= f(z,u), wherex € X, u € U.

The solution to the motion planning problem is an input
functionus : [to, tf] — U, wheret, is the starting time and
ty is the final time.

The proposed method to solve the above problem hinges
on a particular discretization of the robot state space, the
state lattice. It is represented as a directed cyclic graph,
where vertices are discrete values of state. An edge between
two verticesz;, z; is an input functionu, : [0,1] — U,
such tat the corresponding pa) : (01l o X e e o e Shons b inmodie. gt of & o
(obtained by integratingf(z;,v;)) satisfiesn;(0) = Ti including 2D prdjections of the edges (workspace path%) leading towards
and m;(1) = ;. Thus, every vertex of the state latticethe neighbors. The overall motion plan (thick black curve) is a sequence of
is connected to one or more other vertices via edges thach edges.
represent feasible motions. Further, finding a motion plan
that satisfies differential constraints is reduced to finding a
path (a sequences of vertices and edges) in the state lattice IV. GRADUATED FIDELITY PLANNING
graph. Each edge can be assigned a cost. Since the statln this section, we describe an approach to reducing the
lattice is a directed cyclic graph, any standard systemat@mmputational complexity of planning with state lattices at
search algorithm can be utilized to find the shortest patthe cost of selectively reducing the quality of representation.
in it, which would correspond to a minimum-cost feasibléSome regions of the workspace, e.g. those that are partially
motion that drives the system fromy,;: t0 xgoq:- or completely unknown, can be represented at lower fidelity,

Generating the input functions (state lattice edges) irand the regions that are best known or most relevant for the
volves solving theboundary value problemand we rely problem are represented at highest fidelity.
on a significant amount of prior work in this area [8]. We extend the above definition of the state lattice by
We successfully used a method of trajectory generation fassuming that it consists of subgraplk;, Gs,. .., Gy.
wheeled mobile robots in [4]. Often it is possible to find aThe arrangement of vertices and edges in each subgraph is
feasible path from any state lattice vertex to infinitely manyassumed to be regular, but this arrangement may be different
other vertices. The branching factor of such a graph would @nong subgraphs to reflect the differences in the fidelity of
unmanageable, and therefore we must limit the connectivityepresentation. This composite search space is maintained to




remain a directed cyclic graph, so that replanning algorithms !nput: graph \{ertemb
can be utilized to reuse previous computation while replan- if v, was previously expandetien

ning. foreach v; € Suce;(vp) do
We definemodifyinga subgraph as arbitrarily changing its L removeu, from Pred(vs);
position (in coordinates that do not affect its connectivity, updatevertex(s);

namely the translational ones) and shape (the extent of its [ updatevertexy);

boundary in state space). After a subgraph is modified, somélgorithm 1: The functionconvertvertexv). It enacts a

of the vertices near its boundary are set to belong to e&hange of subgraph ownership of the vertgx After it

different subgraph. Note that the vertices do not move, theyhas been called on all vertices that changed subgraphs,

simply change ownership from one subgraph to anotherthe search space becomes ready for a standard replanning

For example, as a subgraph changes position, it “gains” thg@rocess. Theupdatevertex function is assumed to be a

vertices on its leading edge and “loses” vertices on its trailingcomponent of the chosen search algorithm that determines

edge. whether a vertex needs to be processed during replanning.
After all subgraphs are modified as desired, a replanning

procedure needs to be executed to repair the plan. This is the

same procedure that repairs the plan due to other changesHg subgraphs.

the search space (e.g. a perception update). To see why, notghe effect of the initial plan is shown in Figure 2a). The
that deterministic replanning algorithms reuse computatiogegrch proceeded from the goal vertgxo the robots,.. The

by storing previously computed costs of vertices in the grapRertices with white centers were expanded during search, and
As aresult of modifying the subgraphs, some vertices changgyid vertices, pointed to by the arrows, remain in the priority

their cost due to new connectivity under a different subgraplgueue. The resulting motion plan is highlighted with a thick
Itis entirely transparent to the replanning algorithm whethesatterned line.

they changed cost due to new edge costs from a perception
update, or due to modification of subgraphs. Thus, the only = u
required change to replanning algorithms to enable graduatena)
fidelity is a process to make them aware of the vertices G,
that have new subgraph ownership. This is performed by
the functionconvertvertex presented in Algorithm 1.

The function convertvertex is executed on each vertex r
v, that changes subgraph ownership. If the vertex has nol
been expanded at all so far, the function returns. Otherwise
we note all vertices that may contaim, as a predeces-

sor — it is exactly the set of successors «f under the — P---joeos p ) v,

edge connectivity of its previous subgra@h, denoted as u : ’i;f@%
Suce;(vy). Further, we remove any back-pointers from these' &@;g??

successor vertices, to v, by examining the predecessors of : AT ® o . ]
vs, Pred(v,). Effectively, we undo the effects of a previous : ’ 1
expansion ofy,. Lastly, if this change resulted in a change of | | [ ]

cost of any successor vertex, we insert the affected vertices

i i A * ; Fig. 2. Maintaining the connectivity between two subgraphs of different
andw, itself into the priority queue. D* variants can d(_:‘temﬁdelities of representation1 is a static subgraph (black square vertices),

this cost change automatically by recomputingthe-value.  angG., (gray circular vertices) moves w.r.t. the former. Arrows are edges.
Note that this procedure is likely to cause replanning frorilollow vertices have been expanded. Subfigure a) shows the initial plan

the farthest affected vertex to the robot (assuming the searftf{ck patterned line), as it originates &1 and proceeds int€xz; b) as
2 moves from left to right, the six crossed out vertices change subgraph

direction from the goal to the robot). Thus, more previougynership, anctonvertvertexis executed on each of them, which results in

computation is reused if such changes occur closer to thedoing the previous expansionswf andvs; c) shows the completion of
robot moving G2: the verticev; andvs now belong toG2 and are available for

. . . . . . ... re-expansion, if necessary, when the search algorithm performs replanning;
This procedure is illustrated in Figure 2, using a simplifieghstly, d) shows the result of replanning in the search space from c), where
search space for ease of visualization. In this example, tldee to re-expansion af; underGz edge connectivity, a new plan is found.

search space consists of two subgrapls, (black square

vertices) andG, (gray circle vertices). Arrows of similar  Next, suppose we mové&, to the right, as shown in
colors are the edgedas is a small subgraph, consisting Figure 2b). The six crossed-out vertices change subgraph
of six vertices, highlighted with a gray bounding box. Theownership due to this move, and we execctavertvertex

rest of the search space belongs@q. In this example, on each of them. The previous expansion of vertices
Sucer (v;), Yv; € Gy is 4 nearest neighbors, astlicea(v;),  andwv, is undone: their edges (dotted arrows) are removed.
Vv; € Go is 8 nearest neighbors. A real implementation ofn Figure 2c), movingG. is completed, and the affected
graduated fidelity under differential constraints would utilizesertices are inserted into the priority queue. When the search
the same algorithm, but a more sophisticated connectivity algorithm begins replanning, these vertices will be expanded,



using the edge connectivity dks, if they are relevant for B. Heuristics
the problem at hand, as deemed by the heuristic. Figure 2d)
completes our example and shows a new motion plan (thick There are a number of heuristics that can be used. The
patterned line) due to movinG:, to the right. simplest one is the Euclidean distanfe(z, z40a1), Where

The same algorithm would work with subgraphs of differ<: Zgoat € X0, @ subset ofXy... consisting of its
ent dimensionalities by using additional “Connecting” edgeé\_/\/o translational dimensions. However, Euclidean distance
They are used as part of the expansion of a vertex thig not a well-informed heuristic because the length of a
lies on the boundary of a subgraph, in order to connect fifferentially constrained path between two points in 2D
with the other Subgraph_ A simp|e examp]e of Connectingan be much greater than the Euclidean distance between
a 2D subgrathl to a 3D subgrap[‘G2 is shown in them. Welghted Euclidean distance metrics Xh can be
Figure 3. Additional edges (gray arrows in the figure)designed to be better heuristics. Other heuristic ideas include
denoted bySucey2(vy) are used in order to generate suitablglistance metrics derived from the Reeds-Shepp result [12]
connectivity from a vertex, in subgraphG; to G-. In this and heuristic look-up tables, containing the pre-computed
case, we have connected this vertex to several vertices fiige-space costs of paths [11]. The latter are especially
G, representing all possible values of the third dimensiorittractive in state lattice planning with graduated fidelity,
Algorithm 1 can be utilized here with a minor modification.since the sizes of the finite subgraphs suggest natural sizes
In addition to using the vertices ifiucc;(vy) in the foreach ~ for the corresponding heuristic look-up tables.
loop, we also use the vertices fraffuce;; (vy,). This addition
certainly increases the branching factor of boundary vertices,
however the complexity effect can be insignificant if only & Processing Edge Cost Updates

small number of vertices require the extra edges. , )
For every change in the cost(x;,z;), of the directed

> Succ,() edge from the vertgxi_ to z;, the D* Lite_ algo_rithm_req_ui_res
Succiz(,ﬁb) recomputing the priority of; and potentially inserting it into
the priority queue. Without loss of generality, we assume that
environment constraints are represented in a 2D cost map.
In order to re-plan due to a change in the cost of a cell
m;; € N? in the cost map, the planner needs to know the set
of verticesV, that potentially need to be re-inserted into the
priority queue with new priority. Thus, the planner requires
a mappingY” : N2 — V... This mapping is simple in the case
of classical applications of D* in 2D grids, but it is nontrivial

Fig. 3. The 2D subgraplix1 (4-connected grid) is connected to anotherin the case of the state lattice.
subgraphG2 of a higher dimension. Black arrows are the standard node . .
expansion (4 nearest neighbors), and gray arrows are additional edges thatl© develop this mapping, we need to compute sheth

connect the two subgraphs. of a motion, a set of cost map celly C N2 that are covered
by the robot as it executes the motion. The cost of an edge
that represents this motion is directly dependent on the costs
V. IMPLEMENTATION DETAILS of map cells inC;;. Once we pre-compute the control set, it
In this section we describe several important details thég also often possible to pre-compute the swaths of the edges
would be helpful in evaluating the proposed approach. lim it.
the next section, we quote the results obtained using theSince the mapping between edges and their terminal
implementation described herein. D* Lite [6] was the searchertices is trivial, it is easier first to develop the mapping
algorithm used in the described implementation, and thg’ : N2 — E,, where E, is the set of edges that are
details below reflect this choice. affected bym;; (e.g. pass through it). Determinirig’ may
still appear as a formidable task, given the high density of
edges in the multi-dimensional state lattice. However, we
By regularity of the state lattice, the set of immediateagain exploit the regularity of the lattice to simplify the
successors of any vertex does not depend on translatiopabblem. If we haveY” : O — E., whereO is the origin,
coordinates of the vertex. This is important, because all bthenY”’ = Y 4n, ¥n € N2, In other words, the set of edges,
translational coordinates of the lattice have finite range. Thuaffected bym,;; = O is identical for any other cell, up to
it is possible to pre-compute and store tbentrol set a the translation coordinates. Further, recall that the swigth
finite set of successors for any vertex in the lattice, up tof each edge inE. is known. In principle,F, contains all
translation. edgesu,., such thatm,; belongs toC; of u.. Hence, the
In Section 1ll, we described the role of designing themappingY” is exactly a set of edges, whose swaths pass
connectivity of the state lattice and its importance for théhrough the 2D origin. Clearly, it can be precomputed for
quality of planning. This is a topic of on-going researchthe same reasons as the control set and can be used readily
and a number of approaches have been developed [11]. to incorporate cost map changes in re-planning.

A. Designing the Connectivity of the State Lattice



VI. EXPERIMENTAL RESULTS S~ runtime| —

In order to evaluate the effect of graduated fidelity in \
differentially constrained motion planning with state lattices, / \
we performed simulated and field experiments with mo- 10 7
bile robots. In all experiments, a planetary rover prototype //
roughly 0.8m by 1.0m in size was used. It was assumed to be /

a nonholonomic vehicle capable of moving forward and back /
with minimum turning radius 0.5m. The vehicle was capable 1020 30 40 50 6070 80 90 100/

of point-turns, although such maneuvers were considered - s of the 1o | duated fidelity. Th

: &ig 4. e results of the robot traversal using graduated fidelity. The
COStIy and used as a I,aSt resc_)rt. The search space ConS,I{ljgrgontal axis is the percentage of the search space (between robot and
of two subgraphs: a high fidelity subgraph that moved witlyoal) occupied by the high fidelity subgraph. For example, 10% denotes
the vehicle and a low fidelity subgraph elsewhere. 'a—dfley) a high fidelity subgraph of radius 10 cells around the robot, given that
resolution of both subgraphs featured square cells of 20 CH.Ptance to the goal is 100 cells. The vertical axis is the ratio of cumulative

) L ruhtime and traversal cost at the given subgraph size to the corresponding
The average outdegree of the 4D high fidelity subgraph wWagantities without graduated fidelity (high fidelity throughout). Averages

45 (a state lattice). The outdegree of the 2D low fidelityver 10 independent trials are presented.
subgraph was 8 (grid connectivity). The dimensions of the
state lattice included the translational coordinatesy),
discretized as a grid, as well as heading and curvaturetrates planner performance in a more realistic setting, where
The planner used the Euclidean distance heuristic, and g robot moves in a challenging environment toward a
improvement in performance can be expected with bettelistant target. In the simulated experiment, the robot has a
informed heuristics. perception region limited to 21x21 cells, centered around
The results of two types of experiments are presentatie robot. No perception information is available outside
below. The first set of experiments attempts to quantify théhis horizon. The size of the high fidelity subgraph is the
effects of the size of the high fidelity subgraph around theame size as the perception region. Otherwise, the setup is
vehicle on both runtime performance and the quality (costhe same as above. For clarity, Figure 5 shows a 40-meter
of the solution. The second set of simulated and real vehickibset of a 500-meter path, traversed in this setting. Grey
experiments demonstrates the performance of the plannerdells are obstacles that have not yet come into view of the
a realistic setting. robot and are unknown to it. Black cells (and red cells in the
The plot in Figure 4 reports the results of the first typénsets) are obstacles that were seen by the robot. The dark-
of experiments. The planner used an environment with ragray line is the path the robot traveled. Note that it appeared
dom single map cell obstacles independently and identicallp many cul-de-sacs due to the limited perception, and the
distributed with probability of 3%. To avoid confounding planner was effective at guiding the robot out of all of them,
the results with simulated perception, the cost map waghile leveraging robot’s maneuverability. The replanning
fully known a priori. For each experiment, the robot wasdue to obstacle discovery and subgraph modification in the
placed at a random location in its environment, and the goakarch space was occurring continuously. This experiment
was chosen approximately 100 cells away. The robot thewmas performed on a conventional laptop computer with 2GHz
navigated toward the goal, while periodically replanning afte€PU and 2GB of RAM. Notice the two peaks in the middle
traversing approximately two cells. The replanning runtimef the runtime plot, bottom of Figure 5: they correspond to
and the costs of traversed edges were accumulated. Edele replans #39 and #53, when significant replanning was
experiment was repeated using a different size of the higequired due to cul-de-sacs.
fidelity subgraph around the robot. Both the runtime and cost The graduated fidelity motion planner was integrated with
measurements were normalized by dividing by the respectivesearch prototype rovers at the Jet Propulsion Laboratory
quantity, featured by the lattice planner without graduated f(JPL). It enabled rovers to navigate in rough rocky terrain
delity (high fidelity throughout). The plot suggests that usinget up in the JPL Mars Yard. Figure 6 shows the results
the high fidelity subgraph of a smaller size appears to offesf the FIDO rover running the graduated fidelity state lat-
a significant performance improvement with a very smaliice planner on-board to navigate autonomously amid dense
increase in traversal cost. For larger sizes of the subgraph, tieeks. In this experiment, the robot featured a single 1.6GHz
runtime increases significantly. Note, however, that graduate®PU and 512MB of RAM, shared among all processes of
fidelity experiments are at a disadvantage in this comparisothe rover. The actual memory usage of the planner was less
since a robot using high fidelity throughout requires nehan 100MB. The rover used a high fidelity region of the
replanning, given known environment. In a realistic settingsame size as above, 21x21 map cells, and a perception region
replanning may still be required due to perception updategsia stereo cameras) 41x41 map cells, both centered around
In evaluating other goal selection schemes and differefite rover. The top part of Figure 6 shows the approximate
environments, we found that the general trends in Figurgath the rover traveled, and the bottom part shows the plot
4 remained unchanged. of the runtimes of the corresponding replans, averaging at
The second set of experiments, simulated and real, demapproximately 10Hz.
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Fig. 5. A simulated experiment of traversing about 500 meters amongig. 6. A field experiment in the JPL Mars Yard. FIDO rover navigated
previously unknown obstacles. Top: the first 40 meters of the path aggtonomously among previously unknown obstacles, while running the
shown for clarity. Note that all motions generated by the planner We;%r?duated fidelity lattice planner on-board. Top: approximate path the rover
globally feasible, and backing up maneuvers were generated automaticadylowed. Bottom: a plot of planner runtime (vertical axis is runtime in
when necessary. Bottom: plot of planner runtime (Vertical axis is runtimgeconds’ and the horizontal axis is rep'an cyc|e number).

in seconds, and the horizontal axis is replan cycle number).
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