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Abstract The motions of wheeled mobile robots are largely governed by contact
forces between the wheels and the terrain. Inasmuch as future wheel-terrain inter-
actions are unpredictable and unobservable, high performance autonomous vehi-
cles must ultimately learn the terrain by feel and extrapolate, just as humans do.
We present an approach to the automatic calibration of dynamic models of arbi-
trary wheeled mobile robots on arbitrary terrain. Inputs beyond our control (distur-
bances) are assumed to be responsible for observed differences between what the
vehicle was initially predicted to do and what it was subsequently observed to do. In
departure from much previous work, and in order to directly support adaptive and
predictive controllers, we concentrate on the problem of predicting candidate trajec-
tories rather than measuring the current slip. The approach linearizes the nominal
vehicle model and then calibrates the perturbative dynamics to explain the observed
prediction residuals. Both systematic and stochastic disturbances are used, and we
model these disturbances as functions over the terrain, the velocities, and the applied
inertial and gravitational forces. In this way, we produce a model which can be used
to predict behavior across all of state space for arbitrary terrain geometry. Results
demonstrate that the approach converges quickly and produces marked improve-
ments in the prediction of trajectories for multiple vehicle classes throughout the
performance envelope of the platform, including during aggressive maneuvering.

1 Introduction

We concentrate in this paper on the problem of calibrating the faster-than-real-time
models that are used in mobile robot predictive control and motion planning. In ob-
stacle avoidance, lane change maneuvers, and path following the predicted motion
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of the vehicle is the basis for the precise specification of the inputs. The mapping
between inputs and resultant behavior depends critically on terrain conditions which
vary significantly over time and space so it cannot be pre-programmed. The map-
ping must be either perceived from non-contact sensing or learned from experience.
We take the latter approach in this paper.

Motion models of ground robots have many uses, but the aspects of wheel-terrain
interaction that are needed for accurate models are neither well known nor easily
measurable in realistic situations. Published methods are mostly concerned with
robust path-following (e.g. [9]), or the estimation of instantaneous wheel slip for
feedback controllers. Some have developed terramechanics-based models for slip
estimation that require knowledge of tire constants and soil parameters. These have
been applied to detect immobilization [13], and to investigate steering maneuvers
for planetary rovers on loose soil [5]. Some methods lump all unknown tire and soil
parameters into slip ratios and angles; extended Kalman filters have been developed
for real-time estimation of slip ratios using velocity measurements [14] [8].

Other researchers have addressed the problem of model identification for ground
robots; [11] provides an algorithm to learn soil parameters, and [2] learns a map-
ping between slip ratios and visual terrain classes. However, there is little precedent
in the literature for the calibration of predictive models despite the fact that they
are fundamental to virtually every decision that a mobile robot makes. The only
precedent known to us is [3] where our colleagues constructed an artificial neural
network that was trained offline. Our method learns a predictive model by capturing
the underlying dynamics as a function of all of input space and it is calibrated online
based on trajectories executed under normal operation.

The literature on identifying stochastic differential equations is even less devel-
oped, at least in robotics applications. In statistics literature there are regression
techniques for parameterized (or heteroscedastic) covariances (e.g. [4]), but not in
the context of a differential equation. One of the authors [7] presented methods for
calibration of odometry error models which are similar to the methods used here.
By contrast, [1] presents offline coordinate ascent methods for tuning Kalman fil-
ters automatically. Other than these two references, we can find nothing that even
slightly anticipates our efforts here to calibrate stochastic dynamics online. In this
paper we present a kind of meta Kalman filter, running in real time, which calibrates
the uncertainty in the system model used in the pose estimation filter.

Classical model identification techniques often require the numerical differentia-
tion of measurements. For example, the Springer Handbook of Robotics explains
a method of identifying the inertial parameters of a manipulator which requires
the bandpass filtered 1st and 2nd derivatives of joint angle data [12]. Unlike these
classical techniques, our method exploits the excellent short term accuracy of pose
sensing that is available on mobile robots (inertial navigation, real-time kinematic
GPS, or visual odometry) by using measurements of relative pose rather than veloc-
ity. In effect, we integrate the model rather than differentiate the measurements. In
our recent initial work, we have developed online calibration techniques for learning
vehicle slip rates [10]. In this paper, we extend those techniques to a more elegant
formulation of the perturbative dynamics that incorporates all of initial condition
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errors, 3D terrain, and stochastic disturbances, all using the same underlying model.
We first develop a somewhat general 3D kinematic vehicle model in Section 2. This
model, along with the pose residual observations, is integrated into an EKF in Sec-
tion 3 to calibrate deterministic slip and in Section 4 to calibrate residual random
disturbance covariance. The results are presented in Section 5 along with the exper-
imental set-up which is followed by brief conclusions in Section 6.

2 System Modeling

Our fundamental approach is to linearize the system dynamics in order to capture, in
a dynamical model, the first order evolution of pose prediction error caused by input
disturbances. The disturbances are inputs to deterministic and stochastic differential
equations and their values depend on the state of the environment and of the vehicle.
Once the model is linearized, the perturbative dynamics provide a derived system
model describing the mean behavior of deterministic error. Likewise, stochastic cal-
culus provides the first order evolution of the state covariance, so the same lineariza-
tion can be used to estimate the remaining random error in a probabilistic sense. In
both cases, the calibration process is performed online using a Kalman filter and, in
this way, the system can adapt rapidly to changes in the terrain. The state vectors in
the identification systems are the parameters which characterize the disturbances as
functions over the terrain, the inputs, and the applied forces.

For any vehicle moving over a terrain surface, ignoring the suspension deflec-
tions, there are three instantaneous degrees of freedom of motion as long as the
vehicle remains in contact with the terrain, (Figure 1).

Fig. 1 Vehicle Dynamics. Three degrees of freedom remain in the general case after terrain contact
is enforced. Disturbances and inputs are expressed in the body frame.

The true inputs to a vehicle motion model typically have dimensions of power,
force, linear velocity, and curvature or angular velocity. However, we are interested
in predictive models of the platform under the influence of its control system, so the
system boundary encloses the controller as well. We find a velocity driven model
to be most appropriate. This choice also simplifies the perturbative dynamics by
making them driftless and making the transition matrix available in closed form.
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Given the vehicle’s commanded linear and angular velocities, we have the fol-
lowing unconstrained kinematic differential equation for the time derivatives of the
position and yaw with respect to a ground fixed frame of reference. ẋ

ẏ
θ̇

=

cθcβ cθsβ sγ− sθcγ 0
sθcβ sθsβ sγ + cθcγ 0

0 0 cγ

cβ

Vx
Vy
Vθ

 (1)

c = cos(),s = sin(),γ = roll,β = pitch,θ = yaw

A more precise model would be a 6 degree of freedom differential equation subject
to 3 constraints requiring the suspension and the roll γ , pitch β , and altitude z to
adjust the wheel contact patches to remain in contact with the terrain. This level
of precision would complicate the formulation and require a numerical solution for
a kind of constrained transition matrix. Such precision is also unwarranted here
because the above model is the nominal model only. The context is already one of
characterizing deviations from this nominal model.

The terrain is assumed to be rigid and the predicted attitude angles above are
computed by a perception system. If the terrain is not rigid, attitude and altitude dis-
turbances can be added to the model, but note that such disturbances do not have the
dimensions of velocities so their effects do not compound with time as do errors in
dead reckoning. In plainer terms, the attitude error at the end of a 3 second predic-
tion depends, to first order, on the terrain model at that instant rather than the history
of attitude errors to that point. Conversely, wheel slip is a velocity disturbance which
must be integrated to ascertain its first order effect on terminal position error. For
this reason, we omit attitude and altitude errors from the perturbative model and
thereby avoid the need to linearize (or even represent) the constraints at all.

Subject to the above caveats, this model is the general case for a vehicle moving
on an arbitrary rigid surface with the (maximum possible) three degrees of velocity
freedom. The model is relevant to rough terrain motion prediction because it is the
inputs, rather than the state, which are confined to 3 degrees of freedom. Our general
motion model, with pose vector ρ =

[
x y θ

]T and input vector u =
[
Vx Vy Vθ

]T , is
therefore a differential equation of the form:

ρ̇ = f (ρ,u) (2)

2.1 Linearized Dynamics

We will now develop the linearized perturbation dynamics of this system. The first
and most crucial step is to compute the linear relationship, known as the transition
matrix, between the pose at any point in time and that at any later point in time.
We can estimate the effects of the disturbances δu(t) on the pose errors δρ(t) by
writing the linear perturbation dynamics:
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δ ρ̇ = F(t)δρ(t)+G(t)δu(t) (3)

The Jacobians F(t) and G(t) depend on the reference trajectory and are taken
with respect to the variables defined in Eq. (1). The attitude angles are treated as
known inputs based on earlier comments so the system dynamics are really of the
form ρ̇ = f (ρ,u,Ω) for attitude angles Ω . After a little manipulation (see [6] for
detail), the Jacobians reduce to:

F(t) =
∂ f
∂ρ

=

0 0 −ẏ
0 0 ẋ
0 0 0

 (4)

G(t) =
∂ f
∂u

=

cθcβ cθsβ sγ− sθcγ 0
sθcβ sθsβ sγ + cθcγ 0

0 0 cγ

cβ

 (5)

The transition matrix of the system is easy to derive in this case because all
powers of the system Jacobian F vanish. Consider the matrix integrating factor:

Ψ(t,τ) =
∫ t

τ

F(ζ ) dζ =

0 0 −∆y
0 0 ∆x
0 0 0

 (6)

The predicted history point displacements are defined as ∆x(t,τ) = x(t)− x(τ) and
∆y(t,τ) = y(t)−y(τ). It is well-known in linear systems theory that when the above
matrix commutes with itself, as it does in this case, its matrix exponential is the
transition matrix:

Φ(t,τ) = eΨ(t,τ) ≈ I +Ψ(t,τ) =

1 0 −∆y
0 1 ∆x
0 0 1

 (7)

It will also be convenient to define the input transition matrix:

Γ (t,τ) = Φ(t,τ)G(τ) (8)

Now the main result for this section is given by what we will call the vector
superposition integral:

δρ(t) = Φ(t, t0)δρ(t0)+
∫ t

t0
Γ (t,τ)δu(τ) dτ (9)

This result expresses how the effects of errors in initial conditions δρ(t0) and
the (systematic) input disturbances δu(τ) are projected forward and integrated over
time to produce the errors in the pose.
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3 Systematic Model Identification

This section formulates a system identification solution which utilizes the linearized
perturbation dynamics. Because the system state is always the integral of its velocity,
producing the correct velocity will produce the correct state, whether the velocity
errors are caused by slip or some other phenomena. We will therefore, without loss
of generality, represent errors in motion prediction in terms of instantaneous values
of forward slip rate δVx, lateral slip rate δVy, and angular slip rate δVθ . Such input
perturbations are additive to the inputs so they are expressed in the coordinates of
the body frame where they are likely to be constant under steady state conditions.

Of course, the slip rates will certainly depend on the terrain and the trajectory so
they will not be constant under non steady-state conditions. Therefore, the general
relationship between time varying slip rates and pose errors is not a function; it is the
functional given by Eq. (9) that depends on the entire error history. In this case, the
relevant theory for finding an unknown function is variational optimal control. The
real-time solution of the resulting Euler-Lagrange (partial differential) equations
seems ill-advised, so we will use parameterization to convert to a more conventional
estimation problem. The small disturbance inputs will be assumed to depend on an
unknown set of parameters α , so that δu(α) = [δVx δVy δVθ ]

T . Substituting into
Eq. (9):

δρ(α, t) = Φ(t, t0)δρ(t0)+
∫ t

t0
Γ (t,τ)δu(α,τ) dτ (10)

Once the reference trajectory is specified, this is a vector-valued function of a
vector of parameters and time. A suggested parameterization over the terrain and
inputs is provided in Section 3.3.

3.1 Linearizing the Perturbation Integral

For the identification system, we will need the linear algebraic relationship between
the error inputs δu and the error pose δρ(t) that is predicted to occur at the end of the
prediction interval (t− t0). For our parameterized pose errors, the derivative of Eq.
(10) is a Jacobian matrix. Since differentiation can be moved inside the integral sign
by Leibniz rule and inside the matrix product by the rules of matrix differentiation,
the derivative of Eq. (10) is:

Jα =
∂δρ(α, t)

∂α
=
∫ t

t0
Γ (t,τ)

∂δu(α,τ)

∂α
dτ =

∫ t

t0
Γ (t,τ)Uα(τ)dτ (11)
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3.2 Formulating the Kalman Filter

This section formulates a Kalman filter that calibrates the predictive model online
based on experience. We will reinterpret the system dynamics in Eq. (1) (with slip
velocities added) as a measurement process where the change in pose ∆ρ is reinter-
preted as an observation of an unknown δu.

h(x) = ∆ρ
pred

=
∫ t

t0

cθcβ cθsβ sγ− sθcγ 0
sθcβ sθsβ sγ + cθcγ 0

0 0 cγ

cβ

Vx(τ)+δVx(τ)
Vy(τ)+δVy(τ)
Vθ (τ)+δVθ (τ)

dτ (12)

Note that the prediction is a nonlinear function of the angular slip δVθ (τ) because
it affects the yaw angle in the rotation matrix inside the integral. It is for this reason
that we chose to use the full nonlinear prediction in an extended Kalman filter rather
than use the linearized dynamics in Eq. (9). We used the linearized dynamics, rather,
to compute the Jacobian. We have used the notation ρ(t) for the system motion
state, and called it a pose, in order to distinguish it from the state vector x of the
identification Kalman filter.

The overall approach is to predict, at regular intervals, given the input trajectory
u(t) for the last few seconds, a prediction of the change in pose ρ(t)−ρ(t0). This
prediction is then compared to an actual measurement of the pose change to form
an innovation that the filter must explain in terms of errors in the slip parameters.
It would be possible to use recently produced terrain models in order to calibrate
perception errors as well, but we have chosen to provide the attitude angles from the
historical state as known inputs.

Note that our integrated dynamics formulation introduces the three gauge free-
doms of motion in the plane due to the introduction of the initial conditions. If all
measurements were transformed by a rigid planar transform, the innovations would
be unaffected because they must use the initial pose measurement as initial con-
ditions. One approach is to define error states that absorb the error of the initial
measurement relative to the others, but we have chosen instead to form the innova-
tion in the coordinates of the initial body frame to eliminate the initial conditions
altogether.

3.3 Systematic Model

Our models are predictive, so they must be formulated in terms of predictable quan-
tities regardless of whatever measurements of recent motions may be available.
Measurements of applied forces at the wheels are not typically available, but the
inertial forces caused by wheel reactions can be measured directly or computed
from velocities.

Slip velocities are represented as functions of linear and angular velocity, their
products (representing lateral acceleration), and applied gravitational force (com-
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puted from attitude angles). This representation includes the slip angle of automo-
tive engineering as the coefficient relating lateral slip to longitudinal velocity, but
it permits other linear relationships to be learned as well. The approach allows us
to learn a model for how slip depends on arbitrary terrain and inputs - even as they
vary over time. Such a general model is a prerequisite for identifying the system
online based on any trajectories it executes. None of our vehicles accept a lateral
velocity command, so the slip velocity is parameterized over commanded speed Vx,
and angular velocity Vθ . The result of these formulation decisions is a slip surface
defined over this input space, expressed in coordinates fixed to the body. Of course,
this model can be modified arbitrarily to suit different situations.

δVx = α1Vx +α2 |Vθ |+α3Vx|Vθ |+α4gx

δVy = α5Vx +α6 Vθ +α7VxVθ +α8gy (13)
δVθ = α9Vx +α10 Vθ +α11VxVθ +α12gx +α13gy

The quantity |Vθ | appears in order to force longitudinal slip to be an even function
of turn direction. The components of gravity gx and gy are computed from the known
magnitude of gravity and the attitude angles.

The identification filter state vector comprises the parameters, α:

x =
[
α1 α2 . . . αN

]T (14)

The elimination of the gauge freedoms comes at the cost of introducing a mea-
surement transformation. The transformed measurement is the difference between
the pose estimation system measurements of terminal and initial pose (ρ

f ,meas
and

ρ
i,meas

respectively), converted to initial pose coordinates.

z = ρ
i
f ,meas

= (Rw
i )
−1(ρ

f ,meas
−ρ

i,meas
) (15)

The Jacobian is H = Jα , a 3×N matrix derived above in Section 3.1. The measure-
ment uncertainty is derived from the uncertainty in the pose estimation system, be-
ing careful to express any needed correlations, including the correlation introduced
in Eq. (15) by the conversion of coordinates.

4 Stochastic Model Identification

The random error behavior of the system can be “calibrated” in the sense that the
covariance of pose predictions can be required to agree with the observed scatter of
earlier predictions. Such an approach can be confusing because we are calibrating
the equation that normally serves as the covariance dynamics in a Kalman filter -
with another Kalman filter.

The underlying system dynamics are not linear as described above. It was possi-
ble to compute a nonlinear predictive measurement h(x) in the systematic case, but
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here we must be content with a linear approximation or attempt nonlinear covariance
propagation online. We chose a linear approximation because the computation must
be fast and the trajectories are always relatively short. Once the decision of a linear
filter is made, the random error dynamics are easy to derive from the systematic.
Recall that the relationship between input noise covariance Ξ(t) and pose covari-
ance Π(t) in continuous time is given by what we will call the matrix superposition
integral:

Π(t) = Φ(t, t0)Π(t0)Φ(t, t0)T +
∫ t

t0
Γ (t,τ)Ξ(τ)Γ (t,τ)T dτ (16)

All of the (trajectory dependent) matrices above are known except for the input ran-
dom disturbance covariance Ξ(t) = Exp[δu(t)δu(t)T ]. Once it is known, the pose
prediction covariance Π(t) = Exp[δρ(t)δρ(t)T ] can be computed. The notation is
chosen to distinguish these matrices from analogous ones called P and Q in the
Kalman filter used to estimate them.

The linearization of the prediction integral proceeds analogously to the determin-
istic case. To save space, we will present only the highlights. The Jacobian of the
pose covariance Π taken with respect to the input covariance Ξ is the derivative of
a matrix with respect to a matrix - a 4th order tensor. In the simplest case, the noise
sources are constants, assumed not to depend on the trajectory, and Ξ(t) is a 3× 3
symmetric positive definite matrix with 6 independent elements. The Jacobian can
also be regarded as a set of six matrices. The derivative of Π(t) with respect to the
(i, j) element of Ξ is:

Jξi j =
∂Π(t)
∂ξi j

=
∫ t

t0
γ

i
(t,τ)γ

j
(t,τ)T dτ (17)

where γ
i
(t,τ) is the ith column of Γ (t,τ).

While a Kalman filter with a “state matrix” can be defined, it is conceptually
simpler to collect the 6 independent elements of Π into a state vector and the in-
dependent elements of Ξ into a measurement vector and reorganize the Jacobian as
appropriate. The Kalman filter is then analogous to the deterministic case where the
measurement is the sample covariance matrix S computed from the pose innovations
after the systematic component of error has been removed.

S(tk) =
1

(n−1)

k=n

∑
k=1

δρ(tk)δρ(tk)T , δρ = ρ
i
f ,meas

−ρ
i
f ,pred

(18)

When calibrating online, the luxury of repeating the same path multiple times to
observe scatter is unavailable. It takes just a little effort to define the predicted vari-
ance of n samples taken from n different distributions. It can be shown from the
total probability theorem [7] that the average of all of the predicted covariance ma-
trices for each of the trajectories is the predicted covariance for the sample. How-
ever, our experiments have produced very consistent estimates of covariance based
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on presenting innovations to the stochastic identification filter one single predicted
covariance Π(t) at a time.

5 Results

Experiments were conducted on Crusher, a six-wheeled skid-steered vehicle with
an advanced active suspension. Crusher is capable of autonomously driving through
deserts, mountains, forests, wetlands, and other extreme environments. In order to
show applicability to other platforms, tests were also conducted on the LandTamer
(skid-steered, hydraulic) and RecBot (Ackerman-steered, electric). In all cases, a
high-end IMU and differential GPS unit were used for ground truth motion mea-
surement. Our method should work just as well with visual odometry or any other
system that measures motion, on the scale of a few seconds, with error significantly
less than the prediction errors being resolved.

Fig. 2 From left to right: Crusher, LandTamer, RecBot

The first results presented are for the Crusher vehicle driving on rough, grassy
terrain at Camp Roberts in California. In this dataset Crusher traverses steep slopes
of up to 29◦ (see Fig. 3) which enables the identifier to learn the dependence of slip
on the x and y components of the gravity vector, as well as commanded forward
and angular velocities. The vehicle is commanded to drive at speeds up to 6 m/s
and angular velocities up to 4 rad/s. The improvement in predicted change in pose
at the end of two-second path segments is shown in Fig. 4. The standard deviation
of along track error and cross track error are reduced by 71% and 81% respectively.
The standard deviation of heading prediction error is reduced by 90%. Note that
the mean error is also reduced from 1.9 meters to near zero. In these and all other
scatter plots, all of the data is processed but only 1000 data points are plotted. The
data points are equally spaced in time and span the entire experiment.

The time to converge depends primarily on the initial parameter estimates and the
diversity of input path segments. Fig. 5(a) shows the pose prediction performance
on holdout Camp Roberts data after calibrating for limited periods ranging from 0 to
300 seconds. Based on pose prediction error, the filter converges within 4 minutes of
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Fig. 3 Left. The path of the Crusher vehicle in the Camp Roberts test. During the test Crusher
traverses steep slopes; roll angles range from -28 to 29◦ and pitch ranges from -22 to 17◦. Right.
Image captured by one of Crusher’s cameras; Crusher traverses both a dirt road and tall dry grass.
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Fig. 4 Scatter plots of along track and cross track error for the Crusher vehicle at Camp Roberts.
Each point represents predicted pose error at the end of a two-second path segment. The left figure
shows predicted pose error with no slip calibration, the right figure shows online prediction error
during calibration. The three standard deviation error ellipse of the points is shown by the solid
red line. The dashed green line ellipse (just inside the red ellipse) is the average pose uncertainty
predicted by the stochastic calibration filter.

driving when starting from the uncalibrated case (i.e. all slip parameters initialized
to zero). When starting from the mean calibration for the Crusher vehicle on other
datasets, the filter converges in only seconds, Fig. 5(b).

The slip surfaces learned by the filter on the Camp Roberts dataset are shown
in Fig. 6. Note that forward slip is negatively correlated with the absolute value of
the commanded angular velocity, |Vθ |. Lateral slip depends primarily on centripetal
acceleration (VxVθ ) as expected. Angular slip is predominantly a linear function
of the commanded angular velocity. As expected, the filter learned a positive cor-
relation between forward slip and the x component of the gravity vector (δVx =
· · ·+0.256gx) and between lateral slip and the y component (δVy = · · ·+0.043gy).
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Fig. 5 Plots of the mean and standard deviation of pose prediction error vs. calibration time on
the Camp Roberts dataset. The model is calibrated for 0-300 seconds of driving then evaluated
on holdout data (the remainder of the 13 minute data log). Figure (a) shows results when starting
from a completely uncalibrated model (all slip parameters initialized to zero), and Figure (b) shows
results when starting from the average calibration on other Crusher datasets.
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Fig. 6 Plots of the slip surfaces for the Crusher Camp Roberts dataset. These surfaces show the
predicted forward, lateral, and angular slip as a function of the commanded forward and angular
velocity (Vx and Vθ ), according to (13). These surfaces correspond to zero x and y components of
the gravity vector (i.e. driving on flat ground).

Figure 7 provides a visual summary of the extreme cases that are being predicted
well in the Crusher datasets. First, it is important to note that Crusher’s effective
turn rate is only a third of the commanded rate. This is partly due to the fact that
four of six wheels are slipping sideways and resisting motion in a tight turn. There is
evidently no yaw rate feedback used to compensate these gross errors. Furthermore,
when turning on a hill, the wheels on the high side carry no load and are therefore
unable to generate traction. The result is that turning becomes impossible and turn
commands cause more or less translational motion perpendicular to the terrain gra-
dient. These effects and others depend on the orientation of the terrain gradient in
the body frame, just as our model is formulated to learn them.
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Fig. 7 Predicted and measured paths under different conditions for Crusher. The plan views show
predicted paths without slip modeling (dash-dot red) with slip modeling (dashed blue) and mea-
sured path (solid green). Attitude signals roll (solid red) and pitch (dash-dot blue) are shown un-
derneath. The paths are ten seconds long. The ellipses are estimates of uncertainty at two second
intervals. Left. Crusher diving at Camp Roberts with a -20◦ roll. Commanded turns in either direc-
tion are correctly predicted to be impossible. Right. Crusher driving uphill at Gascola on 15◦ to
20◦ slope. 25% longitudinal wheel slip is correctly predicted.

Crusher was also driven on muddy slopes during a rainstorm at Gascola, Penn-
sylvania (see Fig. 8). Large reductions in motion prediction error were observed
similar to the Camp Roberts results despite the difficult weather conditions (see
Fig. 9). The standard deviation of along track, cross track, and heading error were
reduced by 71%, 82%, and 87% respectively.

Fig. 8 Left. Path of the Crusher vehicle in the Gascola test. During the test, roll angles range from
-25 to 25◦ and pitch ranges from -26 to 16◦. Right. Image captured by one of Crusher’s cameras;
Crusher traverses muddy terrain and vegetation. Note the raindrops on the lens in the image.

In another experiment, data was collected on the LandTamer vehicle in a muddy
gravel lot after a heavy rain. Data was collected as the vehicle was commanded to
drive in circles at various speeds and curvatures (0.25-1.0 m/s and 0.4-0.6 m−1). As
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Fig. 9 Scatter plots of along track and cross track error for the Crusher vehicle at Gascola. Each
dot represents predicted pose error two seconds in the future.
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Fig. 10 Scatter plots of along track and cross track error for the LandTamer vehicle driving circles
on wet gravel. Each dot represents predicted pose error two seconds in the future.

seen in the error scatter plot, Fig. 10, the large cross track error bias was almost
completely removed by the calibration of wheel slip.

Finally, tests were also conducted on the RecBot vehicle, a medium size drive-by-
wire UGV. The vehicle is Ackerman-steered in contrast to the previous skid-steered
data sets. Data was collected as the RecBot was driven randomly on a grass lawn for
just over five and half minutes at speeds up to 4.8 m/s. The grass was mostly level
and flat, except for large tractor treads that added variance to the slip rates. Results
for the RecBot vehicle are presented in Fig. 11.

In addition to learning models of wheel slip, our formulation can be used to learn
models of the vehicle powertrain. The powertrain model maps nominal velocity
commands (Vx, Vθ ) to actual wheel angular velocities (as measured by encoders)
and is learned online in parallel with the slip model. The powertrain modeling is
not the dominant effect in our experiments, so we omit the details due to space
limitations.
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Fig. 11 Scatter plots of along track and cross track error for the RecBot vehicle driving in a grassy
yard. Each dot represents predicted pose error four seconds in the future. Improvements are not as
pronounced here because the terrain and the trajectories are less extreme.

6 Conclusion

The capacity to adapt to changes in traction while predicting aggressive maneuvers
accurately is a fundamental requirement of self-sufficient, high-performance robots.
Because the relevant mechanical properties of the terrain are not directly observ-
able, predicting motion accurately has always been regarded as a difficult problem.
We undertook it anyway because we felt that even a poor model was better than the
present state of the art which ignores such issues completely. We have developed a
capacity to enable mobile robots to be much more informed about their own mo-
bility, both in terms of the mapping from their inputs to outputs and in terms of the
residual random error in that mapping.

While our black box approach teaches us little about the underlying terrame-
chanics, it has been quite successful in predicting motion under conditions of sig-
nificant wheel slip, on steep slopes, during aggressive maneuvers. In the presented
experiments, Crusher experienced lateral accelerations of up to 0.5 g’s as a result of
slopes, and 0.3 g’s as a result of maneuvers. Our approach applies without modifi-
cation across multiple vehicle classes including Crusher which represents the pos-
sible worst case of high speed skid steer platforms. Because our vehicle model is
velocity-based and not force-based, skidding with locked brakes and certain other
slip scenarios are not predicted, but will be investigated in future work.

The implementation is straightforward and lightweight from a processing point
of view. Path integrals are the same computations already performed in model pre-
dictive control, but we need only the path followed and only one path segment every
few seconds. The systematic and stochastic Kalman filters are of 13 and 6 states re-
spectively and can run at frequencies in excess of 100 Hz. In effect, the computations
are negligible compared to the processing load of motion control and pose estima-
tion. We hope to show in future work how our identification system can coexist with
a model predictive control system and a pose estimation system so that both benefit
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from continuously calibrated, more accurate models of the platform motion during
aggressive maneuvering.
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