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Summary. While spatial sampling of points has already received much attention,
the motion planning problem can also be viewed as a process which samples the
function space of paths. We define a search space to be a set of candidate paths and
consider the problem of designing a search space which is most likely to produce
a solution given a probabilistic representation of all possible environments. We in-
troduce the concept of relative completeness which is the prior probability, before
the environment is specified, of producing a solution path in a bounded amount of
computation. We show how this probability is related to the mutual separation of
the set of paths searched. The problem of producing an optimal set can be related
to the maximum k-facility dispersion problem which is known to be NP-hard. We
propose a greedy algorithm for producing a good set of paths and demonstrate that
it produces results with both low dispersion and high prior probability of success.

1 Introduction

The discretization and sampling of states and actions has a significant impact
on motion planner performance[12]. Motion planning has been concerned with
optimality of sequences of primatives from the very beginning[5] and this topic
is still of interest today|7].

Independent of optimality, the question of whether an existing solution
will be found is typically answered in terms of resolution completeness for de-
terministically sampled approaches such as [2] and probabilistic completeness
for randomly sampled approaches such as [9][11]. These guarantees describe
a search process which incrementally discovers, in progressively finer detail,
the topology of a prespecified environment in an unbounded amount of time.

In a sensor-based real-time replanning context, the environment is partially
unknown and it can only be ascertained by moving through it. It is often
desireable to move continuously, so motion planners must find a solution in
limited time in order to be responsive to continuously updated sensor data. In
this limited time context, it may be impossible to find a solution, even if one
exists, for reasons of insufficient computing resources. For continuous motion,
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the lack of a solution may imply an inevitable collision [6] [10] so safety can
be a valid concern.

Therefore, an equally relevant completeness question is the likelihood that
an existing solution will be found with the limited computation time avail-
able. That question can be framed in terms of an unknown environment whose
properties are known only probabilistically. We define the relative complete-
ness of a set of paths as the probability of finding a solution to a motion
planning query in a fixed period of time (or equivalent amount of compu-
tation). Maximizing this probability can be viewed as a search space design
problem and it is the main concern of this paper.

Many planning algorithms choose to discretize actions (controls, inputs)
in order to reduce computation while inherently respecting differential mo-
tion constraints. An appropriate choice of primitive motions can lead to
benefits with regard to density of the reachable set[3], robustness[8], and
optimality[13]. The question of which actions to use is therefore a related
search space design question because inputs determine the path followed.

In Sect. 2 we address the theoretical relationship between relative com-
pleteness of a set of paths and their mutual separation. Sect. 3 describes an
algorithm which generates a set of paths whose mutual separation is favorable.
Finally Sect. 4 presents the results of simulations which verify the above rela-
tionship and show that it has an impact on performance in motion planning
problems.

2 Obstacle Correlation and Path Dispersion

The design of many motion planning algorithms depends on choices for how to
discretize states and actions. The process of making these choices is a search
space design activity that can be addressed somewhat independently of the
process used to conduct the search. We will show that all search spaces are not
created equal. In particular, this section shows that the finite size of obstacle
regions and/or the spatial correlation of obstacles in space has implications
to optimal search space design.

2.1 Spatial Correlation of Obstacles

While analog cost fields are sometimes used to represent the environment, we
will adopt the popular abstraction of partitioning it into two subsets: obstacles
and free space. Consider a region of the plane containing obstacles. Let o(z, y),
defined over R?, denote the joint probability density that the point (x,y) is
inside an obstacle. Hence o(x,y)dxdy is the probability that a differential
region at (x,y) is contained in an obstacle.

Consider a subregion R C R? and let C(R) denote the event that some
part of R contains some part of an obstacle, in which case we say it is in col-
lision. Let P[C(R)] denote the probability of the event C'(R). By the axioms
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of probability, regardless of the magnitude or the spatial correlation charac-
teristics of P[C(R)], adding more points to R cannot decrease the probability
of collision:

PIC(RUdR)] > P[C(R)] (1)

Consider next two nonempty differential regions dR; and dR» (Fig. 1a)
located arbitrarily in R2. Let them be so small that o(z, y) may be considered
to be uniform everywhere inside and in a small surrounding neighborhood.
The distance between them is defined as the distance between their centers.
Consider the question of how obstacles in one region may affect those in the
other. By the definition of conditional probability:

P[C(dRy) A C(dRs)]

PICWR)ICR)] = ——55 5]

2)

Suppose knowledge of dRy being in collision implies a greater probability
that dR; is also in collision:

P[C(dR,)|C(dR2)] > P[C(dRy)] (3)

Under these conditions, we say that the two events are positively correlated
because the occurrence of one raises the probability of the other. Assuming
that P[C(dR2)] # 0, we have P[C(dRz2)] A 0. Substituting from Equation (2)
and rearranging leads to:

P[C(dRy) AN C(dRp)] > P[C(dR:)|P[C(dR>)] (4)

Hence, positive correlation raises the probability that both regions are
in collision relative to what it would be otherwise. There are two related
situations where such positive correlation may occur: overlap of the regions,
and spatial correlation of o(z,y) as outlined below.

If the regions overlap, (Fig. 1b) let the quantity a(dR;,dR2) denote the
area of their region of overlap. Assume for the moment that o(z,y) exhibits

(SR, Ry a(dR,, dR,) R,
0 R,
' o
P2 ’
’
@) (b) ©

Fig. 1. Regions which may contain obstacles a) two separated differential regions
b) two overlapping differential regions c) two finite regions (swept volumes) that
overlap.
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no spatial correlation and consider variations that allow the regions to deform
while preserving their areas so that the area of overlap changes. An obstacle
point in the region of overlap is in both regions. By Equation (1), for such
variations, we can conclude that the probability that both regions contain an
obstacle is monotone in a:

%P[C(de) > C(dR»)] > 0

Likewise, spatial correlation of o(z, y) may occur, for example, when obsta-
cles tend to occur in contiguous regions. Consider allowing the regions above
to move slightly while retaining their shapes. Let 6(dRy, dR>) denote the dis-
tance between them. This distance can be spanned by all obstacles whose
width along the line between them exceeds the gap. For any distribution of
obstacle sizes, there are fewer obstacles able to do this as d increases. We
conclude that the probability that both regions contain an obstacle point is
monotone in §:

%P[C(de) AC(dR2)] <0

For two finite regions Ry and Ry, P[C(R1)|C(Rz2)] depends on the influence
of every element of Ry on every element of R;. For finite sets, the notion
of distance between the two sets is more difficult to define, particularly if
it must satisfy the triangle inequality. Note however, that if two compact
separated regions are further separated along the line between their centroids,
the individual distances between every subregion of R; and every subregion
of Ry all increase, so we would still expect the probability of an obstacle
spanning both regions to decrease with their separation.

2.2 Probability Of Solving A Query

The above analysis is useful for comparing different search spaces in motion
planning. Let a search space be defined simply as a set of paths, whether
encoded explicitly or generated during a search process that sequences states
or actions. As a trivial motivating case, suppose a motion planner were able
to search only two paths in the available time. Consider the swept volumes
that would be occupied by a vehicle if it traversed each of these two paths and
let Ry and R represent these volumes (Fig. 1c). Based on the above analysis,
it would be a poor choice if these swept volumes overlapped unnecessarily or
were even unnecessarily close to each other. If one were in collision, the other
would also be highly likely to be in collision. Furthermore, if one were not
in collision, the other is likely to be a redundant solution whose presence is
probabilistically of little value from the perspective of completeness — because
only one safe path is required.

The relative completeness of a set of paths is the prior probability that
at least one of them will not intersect an obstacle. If the size of the set is
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related to some bounded amount of computation, this quantity provides the
prior probability of finding a solution to a motion planning problem within
the specified computational bound.

Relative completeness is a prior probability because it is computed over the
set of all possible environments encoded in the joint obstacle density o(z,y).
It is not conditioned on the specification of a particular planner but is rather
a property of a set of paths (i.e. a search space) independent of how it is
represented or searched.

It was argued above that the probability that one of a pair of paths is not
in collision increases with path separation. This implies that the relative com-
pleteness of a set of n paths is related to how they all are mutually separated
(from each other in some holistic sense). In order to formalize this notion, we
turn now to the concept of dispersion of a set of points.

2.3 Path Dispersion
The dispersion[14] of a finite set P of points is given by

d(P; X) = sup mind(z,p)
zeX PEP

for the metric space (X, d) consisting of a set of points in X and an associated
metric d(x,y) which defines the distance between all pairs of points x and
y. In our case X will be a finite set of paths and P will be a search space
constituting some subset of X . Intuitively, dispersion computes the size of the
largest sphere centered at a point in X which does not contain a point in P.
This concept will be used to quantify the degree of mutual separation of a set
of candidate paths. Note that, counterintuitively, the definition is such that
lower dispersion implies a more disperse set as the word ”disperse” is used in
everyday communication.

Our intuitive notion of path separation suggests that the area between
two paths [AreaBetween(R1, Rz)] behaves roughly correctly. As it decreases
toward zero, the swept volumes of two paths approach each other [6(R1, R2)
decreases] and then begin to overlap [a(R1, R2) increases] until they overlap
completely and their separation becomes zero.

It is not clear that the conditional probability P[C(R;1)|C(Rz2)] is neces-
sarily monotone in this distance for finite regions of arbitrary shape. Nor is it
clear that it satisfies the triangle inequality required of a metric space. In any
case, we will use this notion of distance as a computational expedient in the
remainder of this paper and note that our results rest more fundamentally
on probabilistic concepts which require no concept of distance between finite
regions. Given this definition for the distance between two paths, and the con-
cept of dispersion, we are now in a position to measure the mutual separation
of a set of paths and to choose those sets which are most separated.
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3 Search Space Selection Algorithm

This section presents an off-line algorithm for generating a mutually sepa-
rated set of paths. In order to conveniently exhibit the relationship between
dispersion and mutual separation, the approach used is to find a good subset
P of an explicit and much larger set of paths X.

3.1 Path Generation

For this work we consider two different classes of search spaces, useful for
two different classes of motion planners. All paths in a goal directed search
space (identified later by subscript GD) start at the same start location and
terminate at the same goal region. All paths in a depth limited search space
(identified later by subscript DL) start at the same start and radiate arbitrar-
ily outward from there.

A goal directed search space is suitable for analysing the standard mo-
tion planning problem where it is possible to search all the way to the goal
in the available time. A limited depth search space is suitable for analysing
the case when this is not so. The latter case occurs in sensor based obstacle
avoidance when the goal is relatively far from the present position or when
the combination of maps and sensor data cannot be trusted beyond some
maximum distance. Under these circumstances, the paths which radiate away
from the direction to the goal are provided in case this direction is blocked by
an obstacle.

The set of paths X is produced by elaborating a reachability tree for
a simple vehicle model incorporating limits on curvature and curvature rate.
Any set of discrete inputs could be used in combination with any vehicle model
but a large number of Dubins car-like motions[5] were chosen for simplicity. At
each level in the tree a hard left, hard right, and a set of lower curvature turns
in between are used to expand the leaves of the tree into successor states. For
Xep, paths which achieve a goal position (within a threshold) are included
in the set, and all other paths are pruned. For Xpr, the tree is used as is.
Example sets are shown in Fig. 2.

3.2 Separation Based Greedy Algorithm

The problem of finding the subset P of maximum dispersion is the “maximum
k-facility dispersion” problem, an optimization problem which is known to be
NP hard[1]. Given a set of facilities X, the problem is to find a subset P with
| P| = n which maximizes the minimum distance between any two facilities.
Given the difficulty of finding a true optimum, we settle on a simple algo-
rithm, which attempts to greedily minimize dispersion. It is used to generate
a set P*, an approximation of some optimal set of paths P*. P+ is seeded
with either the minimum length path to the goal (for X p), or the zero cur-
vature path (for Xppr). Next, paths from X are added to P* one by one such
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Fig. 2. Example sets of paths. a) X¢p, contains 667 paths. b) Xpr, contains 640
paths.

that each has maximal distance between it and its closest neighbor already
contained in P* or arg max,cx min, 5 d(z,p). This has the effect of filling
the largest hole in function space at each step.

It is important to distinguish the off-line search over function spaces, pre-
sented above, from the on-line search of a set of paths that is conducted by
a motion planner. In order to enforce the condition of limited computation
during the on-line search, the total cumulative length of all paths in P* is
fixed. Paths are added to P* until the set accumulates the specified total
path length.

Later results will require a capacity to compute billions of distances be-
tween two paths. For efficiency, the area between two paths is approximated
as the sum of the distances between pairs of points at equal path length along
each path times the distance between subsequent points. 5-10 point pairs are
used in this computation. Since this is an approximation of area its units are
in m? and dispersion will refer to the area between two paths.

The incremental nature of this algorithm provides the additional benefit
that the sequence of paths in a set of size n encodes all sets of size < n.
Specifically, for a set of size n, Vk < n, the set of size k which this algorithm
would generate is simply the first & paths in the set. This property is very
useful in the context of varying computing time budgets which might result,
for example, from varying vehicle speeds. -

For the Xgp and Xpr shown in Fig. 2, the resulting P, is shown in

Fig. 3a, and the resulting Igf,\L is shown in Fig. 3b.

3.3 Random Search Space Generation

This section serves the dual purpose of describing aspects of our experimen-
tal setup as well as demonstrating the quality of the P* produced by the
above algorithm. Around 400,000 P’s were generated by randomly selecting
paths from each of X¢p and Xpr and the dispersion was computed for each
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Fig. 3. The sets a) 155\,3 and b) 1§,§\L which approximate the optimal set P*. Both
sets contain 25 paths.
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Fig. 4. A plot of the probability distribution over dispersions computed from
a)400,000 random Pgp and b)400,000 Ppr sets of paths. The circles represents the
uniformly sampled dispersion that will be used in the simulations and the square
(bottom, far left in each graph) represents the dispersion of P*.

set. Each set P contains a constant total path length and around 100 paths.
Figure 4 shows the probability distribution over dispersion for the randomly
generated P’s, as well as the dispersion for P*. As shown, P, has a 30%
lower dispersion than the best of the randomly generated Pgp’s and ﬁ;\%
has a 20% lower dispersion than the best of the randomly generated Ppy’s.
Again, because of the definition of dispersion, lower dispersion implies a more
disperse set.

4 Results

This section empirically verifies the relationship between relative completeness
and path dispersion and it shows how it impacts performance in two mobile
robot motion planning applications.
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4.1 Relating Path Dispersion and Relative Completeness

The first set of tests are concerned with the relative completeness of a random
sample of Pgp search spaces and the P}, generated above. For each of 17
values of dispersion, 7 sets Pgp are selected for testing at or very near that
dispersion. Each is tested in 1,250,000 randomly generated obstacle fields to
determine its relative completeness. Obstacle fields consist of a number of
circular obstacles of random size (drawn from a Normal distribution with a
lower bound) which are placed in a simulated environment at random posi-
tions (drawn from a uniform distribution). For any set Pgp placed in this
environment, if at least one path is obstacle free, the set is considered to have
succeeded in that particular obstacle field. Results are shown in Fig. 5. Error
bounds provide the spread from minimum to maximum probability of success
for the 7 sets tested at each dispersion. P}, has no error bounds since no
other Pgp’s were found with dispersion close to it.

Probability of success
o
°d
S

0 5 10 15 20 25
Dispersion (m)
Fig. 5. The results from the simulations of P/g;) and various Pgp’s in random
worlds. The error bars in the graph represent the min and max values observed
for 7 different P’s with very similar dispersions. The data point furthest to the left
represents the simulation of P,

The point of this experiment was to examine the relationship between
dispersion and relative completeness, and the results do follow the expected
trend of decreasing dispersion leading to higher relative completeness. It is
also interesting that Pf, (the lowest dispersion point in the figure) does not
follow the preceding trend. Instead it performs better than expected based on
its dispersion. This likely indicates that our dispersion metric is not completely
capturing the behavior of the underlying probabilities.

4.2 Relating Path Dispersion and Obstacle Avoidance Competence

The second set of simulations are concerned with the Ppr’s and FTE\L depth
limited search spaces. In this simulation there is no specific goal to be reached,
but rather during each planning cycle, the vehicle follows the path which was
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sensed as obstacle free for the longest length in the last planning cycle. That
selected path is followed for a distance corresponding to how far the vehicle
would travel during the next planning cycle. In the case of a tie, the path
which terminates with the largest x coordinate is selected. This has the effect
of guiding the vehicle towards = co. The paths are each of length 17 m. The
method of evaluating a constant set of paths has been applied to the obstacle
avoidance problem at least as far back as[4].

The world is random and infinite, so new areas of the world are populated
with obstacles as the vehicle drives through them. The obstacles are circular
and have a randomly generated size, giving the world the feel of a forest or
boulder field. Obstacle positions are drawn from a uniform distribution and
obstacle size is drawn from a bounded uniform distribution.

For simplicity, the vehicle cannot adjust its speed during a test. Instead,
if the vehicle is in a position where it cannot avoid an obstacle at its fixed
speed then the test is terminated. This represents a situation where a real
planning system would have to stop the vehicle and reverse, which is often
undesirable. There is no guarantee that a fixed speed plan exists (with any
search space) at the point of failure, but on average variations in the distance
travelled will be an indication of the quality of the search space. Similarly,
stopping the vehicle to reverse direction is not always a bad idea but since
this planner is not evaluating the benefits of stopping this still represents a
failure of the search space. These tests were performed for P};; and 17 different
values of dispersion. For each of these 17 values of dispersion, 7 Ppy, sets are
selected for testing at or very near that dispersion. Approximately 200 runs
were performed for each set (using different random worlds) and the average
distance to failure was computed for each set. For each set of 7 Pp; with
similar dispersions, the results for those sets was averaged to generate the
final results. The results from this investigation are shown in Fig. 6. The error
bars in this figure represent o computed for different Ppr’s. The results
indicate that the final distance travelled followed a downward trend as the
dispersion of the search space increases.

5 Conclusions and Future Work

Motion planner performance depends on both the quality of the search space
and the quality of the algorithm which searches it. While it is intuitively clear
that searching a large number of nearly identical paths is a poor approach
to motion planning, it is not so clear how we should characterize an optimal
search space. This paper has taken some steps toward defining these charac-
teristics when search time is limited.

One practical motivation for this work is the case of an outdoor mobile
robot which is trying to move as quickly as possible toward some distant goal.
Our own field experiments for high speed outdoor vehicles on our PerceptOR
and UPI programs have measured average speed of travel over very difficult
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Fig. 6. The results from a dynamic vehicle simulation in an infinite world for selected
Ppr’s and P}y, . Results are shown for the average distance the simulated vehicle
traveled before the selected search space failed to find a safe path. The error bars in
the graph represent the o values computed for 7 different Ppr’s with very similar
dispersions. The data point furthest to the left represents the simulation of P,

terrain as the most basic performance metric among many others. The time
required to stop, reverse, and avoid an obstacle that was not avoided more
gracefully had a substantial effect on our performance scores. In many cases,
it was clear that an elegant solution might have been found if a more complete
planner could be fit into the available computing resources. This observation
was the original motivation for the work. All other things being equal, a plan-
ner less likely to stop would clearly be preferable in a competitive situation.

Although our simulation results are based on very simple planners this is
because we are interested here in establishing the connection between relative
completeness and mutual separation. During an online elaboration of a search
space, most planners will focus the search based on what is observed during
the search. The relative completeness of such planners can be improved by
off-line optimization of the connectivity of the search space based on prior
obstacle probabilities (to minimize correlation).

The trend toward the use of primitives in motion planning leads naturally
to the question of which ones should be used and this work provides a degree
of guidance in answering this question. We are in the process of extending
this work to produce optimal symmetric state lattices for use in Mars rover
motion planning.

Optimality of the solution is not considered in this paper although exten-
sions to rank search spaces based on the expected optimality of a solution
relative to continuum search are equally interesting. In this work we have
identified an important characteristic in search space design. The online ap-
plication of this idea to new and existing motion planning algorithms is likely
to be an interesting research area.
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