
Abstract

Although odometry is nonlinear, it yields sufficiently to
linearized analysis to produce a closed-form transition
matrix and a symbolic general solution for both deterministic
and stochastic error propagation. Accordingly, error propa-
gation in vehicle odometry can be understood at a level of
theoretical rigor equivalent to the well-known Schuler
dynamics of inertial navigation. While response to initial
conditions is path-independent, response to input errors can
be related to path functionals. These trajectory moments are
integral transforms which function like the moment of inertia
or the Laplace transform - enabling many error propagation
calculations to be performed by hand in closed-form.

1. Introduction

The problem of analytically computing the naviga-
tional error expected in odometry from a given set of
sensor errors on a given trajectory seems to be both a
fundamental and an unsolved problem. While a
numerical solution to the problem of computing the
resultant error is trivial, symbolic solutions yield divi-
dends in the form of understanding the general case
that numerical ones cannot. In this paper, the general
solution is derived and validated.

1.1 Motivation

This work is motivated by a recurrent set of questions
which arise for position estimation systems in mobile
robots. Historically they have been answered numeri-
cally or in an ad hoc manner. How good do the sen-
sors need to be? What kind of localization error can be
expected if this particular sensor is used? Under what
conditions do errors cancel out? What is the best way
to calibrate the systematic or stochastic error model of
this sensor? While the essentially dynamic nature of
odometry error propagation is unavoidable, the inte-
gral transforms derived here enable rapid analytical
algebraic solutions to many such design questions.

1.2 Prior work

The aerospace guidance community has enjoyed the
benefits of a theoretical understanding of error propa-

gation for at least five decades [1]. In inertial guid-
ance, the governing differential equations and their
solutions explain the stabilizing influence of gravity -
horizontal errors exhibit oscillation with the character-
istic Schuler period of 84 minutes.

Likewise, the essentially geometric nature of satel-
lite navigation system error relationships was known
before the GPS satellites were in operation [2]. Yet,
the guidance community seems not to have provided
the relevant analytical results for the land navigation
systems which are typical of mobile robots - assem-
blies of wheel encoders, compasses, gyros, etc.

Analytical study of error propagation in mobile
robot odometry appears only rarely in the literature.
Early work in [3] concentrates on improving estimates
for a single iteration of the estimation algorithm by
incorporating knowledge of the geometry of the path
followed between odometry updates. In [4], a geomet-
ric method is presented for the calibration of certain
systematic errors on rectangular closed trajectories.

In [5], a recurrence equation solution is obtained
for non systematic error on constant curvature trajec-
tories. In [6], a one dimensional closed-form solution
for a broader optimal estimation problem is presented.
This paper presents the general solution for linearized
systematic and random error propagation in odometry
in the plane for any trajectory or error model.

1.3 Problem description

Odometry is a form of dead reckoning because the
available measurements must be integrated to provide
a navigation solution. In the common “forced dynam-
ics” formulation of odometry, the measurements, nor-
mally denoted , are identified with the usual
control inputs .

The state vector  and input vector  are:

where the state is the vehicle pose and the inputs
are the linear and angular velocity. The associated
odometry equations in this case are those of the “inte-
grated heading” case:
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The x axis has been implicitly chosen as the head-
ing datum as illustrated below:

Most of the notation used in subsequent sections
follows that used in the classical texts such as [7].
Generally, an observer equation can be introduced to
model how sensor indications project onto the inputs
and states and the general situation is described by:

Many alternative formulations of odometry are
possible. This one and many others have the key prop-
erties of being homogeneous in the inputs, nonlinear
in the states, and reduced to echelon form. Due to the
latter property, the general solution is immediate:

Closed form solutions to these equations are never-
theless available only for the simplest of inputs and
nonlinear error propagation is equally intractable.

This paper addresses the following problem. Let
the inputs (or equivalently, the sensors) to the system
be corrupted by additive errors  as follows:

Using these input errors and the system dynamics,
determine the behavior of the associated errors 
in the computed vehicle pose:

The errors can be systematic or random in nature,
and solutions for either case are sought.

2. Nonlinear Error Dynamics

It is easy to see that substituting equation (3) into
equation (2) generates equations with little hope of
solution - although the simple cases of a zero curva-

ture and constant curvature trajectory are solvable.
Nonetheless, some important properties of odometry,
and in many cases of odometry error propagation, can
be discerned without solving the nonlinear equations.
Based on the following discussion, it can be shown
that odometry is memoryless, reversible, and motion
dependent.

2.1 Homogeneity and reversibility

When the nonlinear system dynamics satisfy:

for some constant , the system is said to be homoge-
neous of degree n with respect to . Such systems
are memoryless - their zero input response is zero.

Systems of odd order homogeneity are odd with
respect to  and hence reversible because they can
be driven precisely back over their original trajectory
with little effort by simply reversing the input signal

 in time. Systems of even order homogeneity are
even with respect to  and monotone because the
sign of the state derivative is invariant under changes
in the inputs.

2.2 Rate inputs and motion dependence

If a particular input  to a homogeneous system
can be written as the time rate of some other parame-
ter such as , it can be divided by the input without
creating a singularity:

Hence, a change of variable becomes possible and
the system can be written in the form:

Such a system is motion dependent - the state
advances only under nonzero velocity conditions. The
distinction is important because inertially derived sen-
sor errors continue to grow when motion stops,
whereas sensor errors for terrain relative indications
do not.

2.3 Closure and path independence

State space trajectories which close on themselves are
of special interest in error analysis. In general, a tra-
jectory closes on the interval  when the closure
condition is satisfied by the state space trajectory: 

In a general solution, the integrand  will

td
d x t( )

y t( )
θ t( )

V t( ) θ t( )cos
V t( ) θ t( )sin

ω t( )
=

θ

x

y

Figure 1: Coordinates for odometry. 
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depend on the inputs but not the state. A few special
cases are important for error analysis.

The first is symmetry. If it is possible to partition
the interval of integration such that every time  can
be paired with another time  such that:

then the closure condition will be satisfied.
The second important special case is path indepen-

dence. When the integrand can be written in the form:

the resulting total differential can be integrated in
closed form:

Such integrals are relevant here because they pro-
vide the conditions for which odometry error must
cancel on closed trajectories of any shape.

2.4 Path independence of velocity scale error

That velocity (e.g encoder) scale errors are path inde-
pendent follows from odometry’s homogeneity in
velocity. If linear velocity is corrupted by additive
errors are follows:

while angular velocity is unchanged, then the per-
turbed position vector must vanish on a closed path:

Both the left side and the first term on the right
vanish identically by definition of position coordi-
nates. Hence, the last term must vanish as well and the
path independent response of odometry (in its full
nonlinear form) to velocity scale errors is established.

3. Linearized Error Dynamics

Here, the governing equations of odometry error
dynamics are developed and described.

3.1 Linearization

Perturbative techniques linearize nonlinear dynamical
systems in order to study their first order behavior.
With reference to equation (1), several Jacobian
matrices are defined which may depend on the state
and the input, and are evaluated on some reference
trajectory:

To be consistent with common notation,  will
be used when discussing systematic error and 
when discussing random error.  and  will
be used similarly. 

Equation (1) is linearized as follows:

Parameters can be considered to be constant inputs.
Subsequently, notational dependence on the state and
the input will be suppressed for brevity but all of these
matrices generally depend on both. These provide a
linear approximation to the propagation of systematic
error as well as a description for the propagation of the
mean of random error.

A second input vector  has been introduced
to differentiate systematic from random error sources.

 is simply the component of the original 
which is random. By superposition, systematic and
random error sources can be treated independently.

For the random errors , equation (14) is used
only in a heuristic sense in stochastic calculus because
direct integration of random signals is beyond the
scope of traditional calculus.

3.2 Deterministic case

For deterministic error, the linearized dynamics take
the form of:

The first is the linear perturbation equation. The
second, the linearized observer, is not a differential
equation. It can be solved and substituted into the state
equations to produce an equation of the same form as
the original perturbation equation. It can be dispensed
with for the balance of the paper and the deterministic
case can be considered to be defined by the linear per-
turbation equation:

Once the matrices are filled in, and error models
are assumed, it is instructive to evaluate equation (16)
for motion dependence, reversibility, etc.
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3.3 Stochastic case

For practical treatment of random errors, the second
moment or “covariance” of the error is considered and
the state covariance and input spectral density matri-
ces are defined:

In the second case, the Dirac delta signifies that the
random sequence  is white and that the units of

 are a time rate of covariance. The solution for lin-
ear variance propagation is derived in several texts
including [7]:

The first is the linear variance equation. The sec-
ond, the linear stochastic observer, is not a differential
equation. It can be substituted into the state equations
to produce an equation of the same form as the origi-
nal variance equation. It can be dispensed with for the
balance of the paper and the stochastic case can be
considered to be defined by the linear variance equa-
tion:

4. Solution to Linearized Systems

Here, the solution equations are developed and
described.

4.1 General solutions

The equations to be solved are equations (16) and
(19). It is well known that the solution to these equa-
tions rests on the knowledge of a very important
matrix called the transition matrix, denoted .
One definition for this matrix is that it is the solution
to:

The general solutions for the propagation of sys-
tematic and random error are respectively of the form
of the vector and matrix convolution integrals:

Once a trajectory and an error model are assumed,
the only unknown in both of these equations is the
transition matrix.

4.1.1 Error propagation behavior

The important behaviors of error propagation are evi-
dent from the structure of these solutions. Both solu-
tions consist of a state (initial conditions  or

) response and an input (  or )
response. The state response is always path indepen-
dent and hence it vanishes on any closed trajectory.
Perhaps surprisingly, this means both general solu-
tions can exhibit extrema and even zeros.

Although the input response may be path indepen-
dent or otherwise vanish under conditions of symme-
try, it is generally path dependent. In other words,
error propagation is a functional defined on the inputs
and it can, in certain cases, be expressed as a func-
tional on the reference state space trajectory. The inte-
grand in the systematic case is signed and can exhibit
zeros. In the stochastic case, the integrand is positive
semidefinite and its contribution is nondecreasing.

4.1.2 Input transition matrix

It is very useful to define the (potentially nonsquare)
input transition matrix as:

This matrix maps a given systematic or random
error at time  onto its net effect on the resultant state
error occurring later at time . Linearization for the
purposes of studying error propagation amounts to
treating errors occurring at different times indepen-
dently of each other - their compounded effects being
higher order. This matrix is the defining matrix for
each form of odometry - capturing both the effects of
system dynamics and of the input measurement errors.

4.1.3 Influence matrices

Let  denote the ith column of the input transition
matrix. Notice that for a given element  of , its
contribution to the solution integrands in equation
(21) is:

Hence, the influence vectors  define the projec-
tion of each individual element of the input (measure-
ment) error vector onto the entire output (state) error
vector. Similarly, the outer product influence matrices

 define the projection of each element of the
input (measurement) covariance matrix onto the entire
output (state) covariance matrix.
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Clearly:

In terms of influence matrices, equation (21) can be
rewritten as:

The columns of the input transition matrix consti-
tute a basis for the time derivative of error because the
result for any error source must reside in the column
space of .

4.1.4 Trajectory moment matrices

The order of integration and summation can be
reversed when convenient. Also, when the errors are
constant or can be rendered so under a change of vari-
able, they can be moved outside the integrals to pro-
duce:

This is the trajectory moment form of the error
propagation equations. The two expressions in square
brackets are respectively the trajectory moment vector
and the trajectory moment matrix. Both are intrinsic
properties of the trajectory - independent of the form
of the errors. Their role in estimation is similar to the
role of the Laplace Transform in control, the Fourier
transform in circuits, the moment of inertia in
mechanics and the moments of probability distribu-
tions (the mean is the first probabilistic moment, vari-
ance the second). 

When errors have simple forms, the effects of
errors and trajectories can be decoupled, and the latter
can be tabulated for specific trajectories and used like
any other integral transform to convert problems in
differential equations into equivalent algebraic ones.

Trajectory moment matrices constitute a basis for
covariance in dynamical systems. Indeed, by setting
any one error source to unity and the rest to zero, it is
clear that they are numerically equal to the covariance
- and so they must behave exactly like covariance

matrices. In this sense, the structure of covariance
itself is exposed in the trajectory moment matrix -
because it is one.

4.2 Solution for commutative dynamics

Given that the system Jacobian of odometry is a time
varying matrix, linear systems theory shows that the
transition matrix exists, but generally provides little
guidance in finding it. Luckily, odometry is a special
case.

Consider the following particular matrix exponen-
tial of a definite integral of the system Jacobian:

It is easy to show that when this matrix commutes
with the system dynamics matrix:

it satisfies equation (20) and therefore is the transi-
tion matrix which solves the associated time-varying
linear system. This property of commutative dynam-
ics is the key to generating a general solution.

5. Application To Odometry

This section derives the error propagation equations
for a few common forms of odometry.

5.1 Direct heading odometry

Direct heading refers to the case where a direct mea-
surement of heading is available rather than its deriva-
tive. For example, a compass could be used to
measure heading directly and a transmission encoder
could be used to measure the linear velocity of the
vehicle.

The heading and error in heading are respectively
equal at all times to the heading measurement and its
error. Considering the heading to be an input, the state
equations are:
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So the linearized error dynamics are:

The rest of the matrices leading to the input transi-
tion matrix are therefore as follows:

Note that  etc. could be substi-
tuted. The transition matrix clearly satisfies (27).

Substituting into the general solution in equation
(21) gives:

This result is the general linearized solution for the
propagation of systematic and random error in 2D
direct heading odometry for any trajectory or error
model. When the velocity error is a scale error (i.e.

), its effects are path independent.

5.2 Integrated heading odometry

In integrated heading odometry, an angular velocity
indication is available and a heading state is necessary
which is then integrated to get the heading. For exam-
ple, a gyro could be used to measure heading rate and
a transmission encoder, groundspeed radar, or fifth
wheel encoder could be used to measure the linear
velocity of the vehicle. This is the case given in equa-
tion (1):

Where:

The Jacobians are:

So the linearized error dynamics are:

The rest of the matrices leading to the input transi-
tion matrix are therefore as follows:

The transition matrix follows from the fact that
 in this case. The following shorthand

expressions for the coordinates of the endpoint from
the perspective of the point  have also
been used:

Integrals involving these quantities in particular
must be manipulated with slightly more care to pre-
serve the distinction between  (the endpoint of the
trajectory) and  (the variable of integration). Substi-
tuting into the general solution in equation (21) gives:

Note, for example, that the translational error
resulting from gyro bias is proportional to the product
of excursion  and time. The initial state
response for this case is:
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This result is the general linearized solution for the
propagation of systematic and random error in 2D
integrated heading odometry for any trajectory and
any error model. Again, the effects of velocity scale
error are path independent.

5.2.1 Intuitive interpretation

It is clear now that the solution could have been writ-
ten by inspection. The initial conditions affect the
endpoint error in a predictable manner and the remain-
ing terms amount to an addition of the effects felt at
the endpoint at time  of the linear and angular errors
occurring at each time  between the start and end as
illustrated in Figure 2.

The matrix relating input systematic errors occur-
ring at time  to their later effect at time t is:

Therefore, the covariance relationship is:

These expressions are exactly what equation (38) is
integrating. Note that the reference trajectory is not
updated to reflect the compounding effect of the input
error histories over time. Linearization amounts to
treating all errors as if they do not compound.

5.3 Differential heading odometry

Differential heading odometry is a special case of
integrated heading odometry where angular velocity is
derived from the differential indications of wheel lin-
ear velocities and the wheel tread . Let there be a
left wheel and a right wheel on either side of the vehi-
cle reference point as shown below:

Let the measurement vector be the velocities of the
two wheels:

The relationship between these and the equivalent
integrated heading inputs is:

The inverse relationship is immediate:

Hence, known errors can be converted to an equiv-
alent set of errors in integrated heading:

This transformation will introduce appropriate cor-
relations between the linear and angular velocity
uncertainties due to their common dependence on two
other variables. Under this substitution, the solution is
identical to the integrated heading case:
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This result is the general linearized solution for the
propagation of systematic and random error in 2D dif-
ferential heading odometry for any trajectory and any
error model.

6. Properties of Trajectory Moments

Individual elements of the trajectory moment matrices
will be called trajectory moments. Trajectory
moments are responsible for many of the interesting
behaviors of error propagation. Many properties can
be defined on these integrals which are related to the
properties of the original differential equations, and
there are additional important properties. A few of the
most important are discussed here.

6.1 Interrelationships

Derivatives (integrals) of trajectory moments are often
equal to lower (higher) order moments. For example,
the following moments arise in equation (46) for
velocity scale errors. They will be referred to respec-
tively as first and second order due to the order of the
integrand. They tend to apply respectively to system-
atic and random error propagation:

Applying Liebnitz rule to the second yields:

Thus, systematic and random error propagation are
inextricably related. Indeed, zeros of the first order
moments can coincide with extrema of the second
order moments, etc.

6.2 Path independence

Certain moments are path independent. For example,
the following moment arises in equation (32) for
velocity scale errors. It is just one of the coordinates
of the endpoint:

This result explains why odometry based on a good
gyroscope exhibits excellent performance at the point
of closure of an arbitrarily shaped trajectory.

6.3 Reversibility and irreversibility

First order motion dependent moments which are even

in the associated input are reversible because revers-
ing the input reverses the moment:

Many systematic error moments are independent of
(hence even in) linear or angular velocity and the
associated systematic errors cancel when the vehicle
is driven back over its original path.

In the case of second order moments, it is usually
appropriate to interpret the differentials as unsigned
quantities in order to ensure that the associated vari-
ance is irreversible - increasing in both directions of
motion:

6.4 Symmetry, centroids and zeros

Some moments may vanish at specific places whether
or not the trajectory closes there. For example, con-
sider the moment  defined earlier. It can be written
in terms of the current position, the distance travelled
and the instantaneous centroid location:

Moments of this type vanish at the centroid of the
associated coordinate. This observation subsumes ear-
lier comments on symmetry as a special case. This
result explains why errors tend to be reduced or even
cancel on symmetric trajectories. Many errors will
cancel on a figure-8 trajectory for instance.

6.5 Monotonicity and conservation

Consider the general symmetric influence matrix
formed from any column of the input transition
matrix:

Let its elements be denoted as follows:

This matrix must be positive semidefinite by con-
struction. Its integral is the associated trajectory
moment matrix :
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This matrix must also be positive semidefinite.
Every eigenvalue of  is a nondecreasing function of
time. The trace of , also equal to the sum of its
eigenvalues, and the “total variance”, is also a nonde-
creasing function of time:

This implies that any decrease in one diagonal ele-
ment of a moment matrix must be accompanied by at
least as great an increase in the others (conservation).

For example, consider the moments:

These two moments are vertically symmetric about
a line whose slope is unity. On any trajectory,
decreases in one relative to the line must be offset by
equivalent increases in the other. Uncertainty ellipses
may rotate in space but they must grow monotonically
when expressed in principal coordinates.

7. Validation

Error propagation results were verified on the inte-
grated heading case by comparing the linearized solu-
tions of the paper with an exact nonlinear numerical
solution for both systematic and random errors. The
input error characteristics were as follows:

These models represent a systematic scale error of
5% on velocity and a motion dependent random walk
stochastic velocity error of equal standard deviation.
A systematic gyro bias of 30 degrees/hr is used as well
as a bias stability of equivalent standard deviation. 

Such error magnitudes are considerably larger than
might be expected in a practical situation. The inten-
tion here is to stress the linearity assumption and pro-
vide a common error magnitude for both systematic
and random sources which is large enough to be
noticeable in the following figures.

In the systematic case, straightforward numerical
quadrature can be used to integrate the nonlinear
dynamics in both the perturbed and unperturbed case
and the difference between the two is obtained as the
exact nonlinear solution within the limits of time dis-
cretization.

For stochastic error, Monte Carlo simulation was

used. Using 500,000 independent, unbiased, Gaussian
random variables, 250 discrete time random signals
for linear and angular velocity errors were generated
and used to corrupt the nominal inputs.

Figure 4 illustrates the result of nonlinear simula-
tion of an arbitrary trajectory chosen to contain a loop
but exhibit no particular symmetry. The velocity for
the test is 0.25 m/s, the total time is 210 secs and the
time step is 0.5 secs.

While there is a single systematic result to plot,
only one representative of the 250 randomly perturbed
trajectories is shown. Due to the tendency of random
error to cancel, the effect of systematic error is more
dramatic when compared to a random error.

The effect of the systematic velocity scale error is
evident in the increase in error magnitude with the
radius from the origin. As predicted by theory, sub-
stantial accumulated systematic errors in the far left
vanish when the loop closes. For random error, the
overall growth rate is more subdued but it nonetheless
accumulates to nontrivial levels over time.

The difference between linearized and nonlinear
deterministic error is shown in Figure 5. 

Table 1: Error Sources for Theory Validation

Error Source Deterministic Random

Linear 
Velocity 

Angular 
Velocity

M
M

td
d φxx φyy φθθ+ +[ ] 0≥

Scc Sss+ θcos 2 θsin 2+[ ] sd
0

s

∫ s= =

δV αV  =
α 0.05 =

σv δV=
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Figure 4: Test Trajectory: Effects of both systematic
and random error are shown. Systematic error is
initially larger but mostly cancels on the closed loop.
Random error is more subdued but more persistent.
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Clearly, the linearized solution is an excellent
approximation even for errors of this magnitude. The
difference between exact and linearized solutions
barely exceeds 1 cm or 2.5% of the actual maximum
error magnitude of 40 cm. This result validates the
systematic part of equation (38).

The results of the Monte Carlo simulation are pro-
vided in Figure 6 for the translational variances and
co-variances. Rotational variance is linear by con-
struction and translational-rotational covariances
agree similarly with theory. 

The agreement between theory and simulation is
excellent. Note how the two translational variances
exhibit conservation behavior by varying symmetri-
cally about an average steady growth curve. 

Overall, three classes of error can be expected in
the stochastic case: linearization, discretization, and
sampling error. The first two classes have been dem-
onstrated to be relatively small by the systematic error
results. These curves show that for a sample size of
250 pairs of input random processes, the sample vari-
ance of the state covariance matrix tracks the linear-
ized theoretical population variance quite well. This
result validates the stochastic part of equation (38).

8. Conclusions

The commutative dynamics condition holds for com-
monly encountered forms of odometry when the equa-
tions are expressed in a forced dynamics manner and
linearized. Given that the system Jacobian is also
upper triangular, a symbolic expression for the transi-
tion matrix is obtained easily. Subsequent application
of the theory of linear systems provides the integrals
for error propagation in closed form.

Resultant state estimation error is always a combi-
nation of the state response and the input response.
The former is always path independent and vanishes
on any closed trajectory. The latter can often be
reduced to expressions involving path functionals or

moments which are analogous to the moments of
mechanics and the Laplace transforms of control the-
ory. 

Trajectory moments are responsible for the path
dependent behavior of odometry error and a one-to-
one correspondence can be established between ele-
ments of the input error covariance matrix and the tra-
jectory moment which projects its value onto the state
covariance. Over time, error evolves as does the tra-
jectory moment, so it represents the driving mecha-
nism behind propagation.

Analytic expressions are important tools in the
development of theory. The present results enable the
symbolic application of linear systems theory, optimal
control, calculus of variations, etc. to any application
which attempts to account in some way for error prop-
agation.

In addition to their pedagogic value, these results
can be used in design to determine acceptable levels
of sensor error. They can be used in development to
accentuate response to individual error sources for on-
line or off-line calibration or evaluative purposes.
They can be used in operation to plan trajectories in
order to minimize exposure to specific error sources,
or determine optimal approaches to error compensa-
tion. The availability of an analytical theory of error
propagation enables many problems to be solved rap-
idly by referring to a table of trajectory moments.
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Figure 6: Monte Carlo Simulation Compared to
Theory: Agreement with theory is excellent. Note how
the two translational variances vary symmetrically
about a steady growth curve.
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