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Abstract

While visual odometry has unbounded error, navigation
from pre-existing consistent scene models can generate
extremely repeatable position estimates. This paper dis-
cusses a new approach to localization motivated by the fact
that many man-made environments constain substantially
flat, visually textured surfaces of persistent appearance.
For this important class of vision-based navigation prob-
lems the scene model can be reduced to a 2D surface
painted with real textures - in other words, an image
mosaic. Sraightforward techniques from image-based
localization and mosai cking are used to produce a field rel-
evant AGV guidance system based on only vision and
odometry. The visual tracking and localization aspects of
the approach are described. \We show that this approach to
localization isable to exceed the speed barriers dueto dis-
tortion and image overlap that areintrinsic to visual track-
ing and odometry. Speed can, however, become limited by
a new mechanism - the inherent instability of visual track-
ing when operating in the regime beyond the overlap spped
limit. Field trials currently demonstrate that the particular
simplifications resulting from a downward |ooking camera
configuration produce a guidance system repeatable to 1
mm throughout a 50,000 square foot facility withan MTBF
(corresponding to loss of visual lock) of 10° images or five
days of operation.

1 Introduction

Imagine yourself flying over acity in asmall airplane. Let
the airplane be restricted to level flight and let the terrain
below be assumed to be essentially flat. That is, let the ter-
rain undulations be small relative to the aircraft altitude.
You can see the ground below through a small viewfinder
in the floor. You have a map of the city in the form of a
large, high resolution photograph constructed by mosaick-
ing. Your task isto locate yourself, to the nearest building,
by matching the viewsin the viewfinder to the mosaic.

This scenario illustrates the technique of mosaic-based
localization described in this paper. Replace the view-
finder with a camera; replace the airplane with any vehicle
travelling parallel to a mostly flat surface; restrict vehicle
motion to the streets; and you have the general idea. This
approach to localization has shown itself to be both robust
and of high performance in the environmentsto which it is
targeted.
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1.1 M osaic-Based L ocalization

We will represent the environment as an appearance model
- in all its photorealistic richness and we will use mosai ck-
ing techniques to construct this model. Our technique dif-
fers from visual odometry [18] in that considerable effort
is expended to create a globally consistent model. It differs
from landmark-based localization in that the scene is rep-
resented in an iconic form rather than as alist of landmark
locations.

The steps of our mosaic-based approach to localization
are:
« Construct a mosaic of an appropriate area.
» Render it globally consistent and store it in persistent
memory.
» Subsequently track motion over the mosaic using a
visual tracker which computes camera pose.
While straightforward in principle, actual construction of
such a system raises such issues as memory capacity, qual-
ity of visual texture and processing power. These issues
have been discussed in previous papers [12] [13].

Although there are clear alternatives, we will exploit the
particular advantages of using floor imagery rather than
images of other surfaces:

* the camera can be mounted closer to this surface

* suitable camera to scene geometry is assured

« shielding from ambient lighting is easy
Also, while many other applications satisfy our scene con-
straints, we will discuss the details of an application to
industrial AGVs.

1.2 Rationale

Given that a mosaic scene model can be constructed in
principle, it still remains to explain why it is even worth
such effort. For our purposes, a mosaic is a particularly
convenient and appropriate form of prior scene model.
This conclusion can be rationalized as follows:

e Prior Models Enable Higher Tracking Velocities:
When speed exceeds levels at which successive
images overlap in the scene, there is no information
that can be tracked from image to image. However,
referencing a prior model eliminates the image overlap
constraint so long as some part of the model remains in
view.

» Global Consistency Imparts Repeatability: If the

model is globally consistent, reported position
becomes a one-to-one function of actual position and
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When cameras are used for vision-based localization, the
ability to render a scene permits navigation from real-time

the system becomes as repeatable as its fundamental
resolution.

Iconic Models are Best in Featureless Scenes: If fea-

tures are rare, spatially distributed and/or subtle, an
iconic representation (rather than a feature-based one)

encodes the maximum useful information in terms of
providing the best immunity from false correspon-

dence matches and highest spatial (sub-pixel) resolu-

tion.
Geometry Assumptions Simplify Processing:  Of

course, when scene geometry can be regarded as
known, algorithms need not recover shape as well as

motion, and the distortion of iconic features due to
motion can be predicted.

Key Assumptions

imagery [22]. While it is certainly possible to compute

unrestricted 3D camera motion in an (even unknown) 3D
scene [27], our application will make and exploit several

more simplifying assumptions:

Persistent AppearanceThe use of a persistently
stored model of scene appearance assumes that the
actual appearance of the scene will not change signifi-
cantly over operationally significant periods of time.
Exceptions to this assumption are common, but the
appearance change needs to be significant and it needs
to occur everywhere in order to render the present
technigque inoperable.
2D SceneWe will use appearance models constructed
from real imagery. While completely general 3D poly-
gon models are certainly possible, we will assume that
the scene can be represented by a mosaic mapped onto
a 2D surface. This assumption applies, at least locally,
to most man-made indoor and outdoor environments.

Substantially Flat Scene: While the assumption can be
completely relaxed in general (e.g. in computer graph-

ics), we will assume that the scene is flat enough that

self occlusion and depth discontinuities cannot occur.

This assumption also applies, at least locally, to most

man-made indoor and outdoor environments.

Restricted Camera Motion: While arbitrary camera
motion is computable, we will restrict motion to be

consistent with a camera being mounted under a ter-

rain-following vehicle as shown in Figure 1. Under
these conditions, the general problem of “rendering”
the scene is reduced literally to that of extracting the
pixels in the rectangular region predicted to be in view.

Restricted Mosaic Topologyhile not necessary in
genera, we will confine our attention to environments
where vehicle motion is restricted to roadways or
guidepaths, rather than regions wider than an image in
more than one direction, except at intersections. To do
so simplifies considerably the problem of constructing
globally consistent mosaics.

Primary Position EstimateSince we will confine the
application to that of vehicles, it is useful and not
overly restrictive to assume the avail ability of an inde-
pendent estimate of camera motion between frames.
This primary position estimatean be used to increase
reliability and very significantly increase tracking per-
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formance and therefore vehicle speed.

Camera Motion

Surface

Figure 1: Simplest Scenario. Here a camera is
mounted normal and at constant height with respect
to a surface and it moves parallel to the surface.
Assumptions imply that variations in foreshortening
over the image do not occur.

1.4 Prior Work

While the notion of localization from large scale mosaics
seemsto be new, itsimplementation is based upon decades
of related computer vision and computer graphics work.
Many different techniques have been proposed for local-
ization in general [2]. Certainly, navigating from imagery
is a basic technique in robotics [26]. Techniques may use
appearance (cameras [1]) or shape (radar [5], sonar [4] or
lidar [6]), or both [17].

Automated mosaicking is often useful in its own right.
Applications include station keeping [24], video coding
[11], image stabilization [19], and visualization [25]. Only
recently have near real-time [21] and globally consistent
[20] mosaicking solutions emerged.

The literature on determining the motion of a camera and/
or the geometry of a scene is extensive. Motion can be
recovered from a known scene [29] and this problem is
related to visua odometry. Scene structure can be deter-
mined from camera motion [28][16]. Shape and motion
can also be determined simultaneously [27] and all shape
and motion assumptions seem ultimately unnecessary.

Once a camera is permitted to move relative to a scene,
one can observe correspondence or flow. For correspon-
dence, the related problem of visual tracking [9][23]
becomes important.

It is well-known that relatively few correspondences
between the image and the scene are necessary to con-
strain the relative pose of a camera and a known object or
scene [10]. Fairly general 3D solutions for finding the rel-
ative pose have been known for some time[8].

Since we will render predicted imagery, this work is aso
peripherally related to image-based rendering [3][15][30].
This problem is itself related to visual tracking in that the
motions and deformations of al regions of the image are
being predicted.

2 Performance and Reliability Analyses

This section explores some figures of merit that are partic-
ularly relevant to a mosaic-based approach to localization.
After some simple analyses, it becomes clear that our
scene geometry assumptions, a prior model, and odometry
aiding lead to levels of tracking performance that are not



possible in visual odometry and visual tracking. Several
different regimes of operation exist which indicate clearly
why mosaic-based localization achieves relatively high
levels of tracking performance.

21  Projective Mapping

In mapping quantities in the scene to their associated
guantities in the image plane, scene geometry dependence
and projective loss of information can, of course, compli-
cate matters. Figure 2 indicates the simplest case of
motion confined to a single axis parallel to the image
plane and defines notation for this section.

image -7
plane e -

Figure 2: Simplified Projection. NotaIic;n for a
projection from 2D to 1D.

Let X denote the image coordinate and X denote the cor-
responding scene coordinate while Z denotes depth. If the
focal length is f, the basic projective mapping to the
image plane is elementary:

x = (1/2)X

In this restricted case, if depth is constant over a small
motion in the scene, differential motions and hence veloci-
ties scale linearly from the scene to the image:

Ax = (f/Z)AX

So, depth in units of focal length is an important scaling
parameter. Limits on the feature velocities that can be
tracked give rise to corresponding limits on associated
camera-to-scene relative velocity in the direction parallel
to the image plane.

22 Performance Attributes Related to Geometry

Of course, one of the many implications of the above map-
ping isthat points at different depths have different image
velocities, and therefore, depth gradient in a template
implies distortion as the template moves. If we aso allow
depth to vary across atemplate, the total differential is:

Ax = (f/Z)AX = (f/Z%)Z,AX

and a dependence on depth gradient in the scene Zx (infi-
nite at occluding boundaries) is thereby introduced. Divid-
ing by a small time increment it becomes clear that while
the first term indicates template motion due to camera
motion, the second indicates a distortion effect.
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2.2.1 Distortion Speed Limit

When the range to features varies substantially over an
image, severe limits on speed of tracking can be intro-
duced by the distortion and/or occlusion of features from
frame to frame. A small patch of scene of width AX
projects onto an image template of width:

w = (f/2)AX

From the second term above, we can derive that, as the
template moves across the image due to camera motion at
speed V, for atime period of TCyC , itswidth changes by:

2
Aw = (1/2°)Z VT

Hence, the change in template sizein relation to size is:

Aw _ fxVTeve - XUy
w  OzOAx — OzOwO cye

where U isthe template velocity in the image plane.

If distortion is to be reduced in order to make feature
matching easier, the only way to do so for given geometry
is to reduce the nondimensional U/ (w/T,.) which
represents the template velocity in units of templates per
cycle. If template size is determined by texture content or
available computation, this can only be accomplished by
reducing speed, or cycle time.

Of course, the expression also shows that distortion is
eliminated if there is no depth gradient across the tem-
plate. When geometry is such that features can be tracked
across a significant portion of the image in a single cycle,
another limit comesinto play. This elementary observation
isimportant here because our scene geometry assumptions
allow usto break the distortion speed barrier.

2.2.2 Overlap Speed Limit

In many visual tracking applications, tracking features in
successive frames implies a fundamental speed limit
induced by the geometric constraint of overlapping fields
of view. If the image width at the feature depth is /\ , and
[ is the fraction of image overlap required for matching,
the camera speed V must satisfy:

A
V<%rc—ycg(1—[3)

The velocity of the camera in units of images moved per
cycle is thereby limited to a value somewhat less than
unity. If no feature is to be skipped over, the calculation
must be performed for the feature at the minimum depth -
whose velocity in theimage is highest.

This observation is important because the use of prior
models such as mosaics alow us to aso break this speed
barrier when tracking.

2.2.3 Geometric | nstability

Exceeding the overlap speed limit has important implica
tions on the stability of tracking. Suppose for simplicity



that depth is constant, and that the camera moves parallel
to the image plane. The heading can be determined from
the positions of two features sufficiently separated in the
image. Let one feature be mislocated by an error AX, .
The resulting effect on the computed heading is:

A8, = AX,/ N

Suppose further that the camera travels a distance S
before another visual fix is attempted. At this point, the
error of the origina fix causes a position error normal to
the direction of travel at the new position of:

DX, = (S/N)AX,

Since the nondimensional ratio of distance travelled to
image width exceeds unity beyond the overlap speed limit,
visual tracking becomes unstable. Hence, errors of accept-
able magnitude in a given visua fix can cause loss of
visual lock in the next cycle. Such errors might be due, for
example, to false feature matches or mosaic distortions.
Pragmatic strategies to manage this issue include redun-
dant sensing of intervening motion, estimates of accrued
error, higher update rates, consistent mosaics, robust
matching, and outlier rejection in pose determination.

3 Mosaic Tracker Design

The overall architecture of our position estimation system
isas shown in Figure 3.

Requested
State

el

State
Estimate

Mosaic
Tracker,

Position Estimation

Encoders Camera

Figure 3: Position Estimation System. The system
model integrates the equations of motion to interpolate
to the instant of time requested. The odometry system
and mosaic tracking system provide two complementary
estimates of state. For large scale mosaics, a cache is
needed to store part of the mosaic in RAM.
As long as the system is operating, camera imagery is
acquired as fast as processing can manage. Simulta-
neously, an odometry thread of execution continues to
read the wheel encoders to provide position estimates
between image acquisitions.
Position estimates between encoder readings are supplied
by integrating the equations of motion under a constant
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linear and angular velocity assumption. This system model
runs continuously whether or not state requests have been
received.

The inner circle delineates the mosaic tracker. The job of
the mosaic tracker algorithm is the core problem of
mosaic-based localization. It must determine where the
camera is over the map. Following the localization litera-
ture, this section will use the more generic term map to
mean the mosaic.

3.1 Mapping and Localization Modalities

The position estimator is coordinated with a mapping pro-
cess which operatesin a number of useful modes.

3.1.1 Visual Odometry

When the camera is continuously moving over an
unknown area, provided successive images overlap, visual
odometry, perhaps aided by the encoders, can be per-
formed. At such times, evolving position error is
unbounded.

3.1.2 Automatic Mapping

While traversing unknown areas, the acquired imagery can
optionally be added to the mosaic. If it is, the position
reported for the location becomes repeatable. While this
process can produce mosaics automatically, they are not
guaranteed to be globally consistent unless they are (both
apparently and actually) acyclic. At such times, the over-
lap speed limit applies. Rendering large scale mosaics glo-
bally consistent is normally an off-line process due to its
excessive computational requirements.

3.1.3 Simultaneous Localization and Mapping

When both visual odometry and automatic mapping are
being performed, the system is performing a restricted
form of simultaneous localization and mapping [14].

3.1.4 Automatic Map Updates

In principle, an image which appears sufficiently different
from expectations, but is nonetheless confidently posi-
tioned, can be used to overwrite the data in the map to
reflect a change in appearance.

3.1.5 Automatic Mode Switching

It is possible for the system to automatically switch from
one mode to another. Conceptual logic is as follows:

if (the current image has m ni mal
overlap with the npsaic)

add it to the npsaic;

eseif (the current image | ooks
very different fromthe nosaic,
but is confidently positioned)

overwite the nbsaic with the
new i nage;
}

ese

{

conput e pose and discard the i mge;



Of course, the last case is the mosaic tracking case where
repeatable position estimates beyond the overlap speed
limit are achievable.

3.2 Pose Refinement

The fact that a mosaic can be constructed means that
image registration and pose determination are equivalent
problems. Many approaches to a solution are possible.
Anticipating future work, we have used a Kalman filter [7]
which determines the planar pose which aligns a set of
corresponding planar point features. While the assumption
can be easily relaxed to an affine transform, we presently
expect severa featuresto move asarigid unit. To compute
the pose of the image, attach a model frame M to an arbi-
trary location on it. Similarly, attach a world frame W to
an arbitrary location on the mosaic.

The predicted positions of the point features with respect
to the modd frame ™ come from their positions in the
image. The observed positions of the corresponding fea-
tures Wr come from their positions in the mosaic. The
problem is to fipd the pose p = (&, b, 8) ", or associ-
ated transform . T(p) which best aligns the correspond-
ing points. The situation is summarized in Figure 4:.

predicted o

A U < observed
locations >

o o locations

w

Figure 4: IgRbserver Formulation. Given a set of point
positions T expressed in the model frame ,and a
corresponding set of point positions "I expressed in
the arbitrary frame called “world”, find the best
pose of frame with respect to frame W which
brings the points most nearly into coincidence.

The prediction equation, or observer, tells us how to pre-
dict the locations of the pointsin the mosaic (world frame)
from their locationsin the image (model frame).

Wy _ W m
r =[Pl
If we denote the Kalman state vector thus:
T
X = (ab,0)

then this relationship is of the form Z = h(X) of the
standard observer where the pose is the state vector, the
model locations of the points are constant, and the predic-
tion is the world locations of the points.

4 Reaults

A working version of a mosaic-based navigation system-
system has been in operation for about 4 years. It repre-
sents a free-ranging automated guided vehicle exhibiting
excellent repeatability in afacility where no infrastructure
has been installed to supports its operations.The system
functions like GPS, laser or wire guidance in that it pro-
vides a position fix, when requested, to be used to damp
the growth of errors that unavoidably occurs in a primary
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position estimation system such as odometry.

The system has been in operation in our 40,000 square
foot facility at the National Robotics Engineering Consor-
tium and it has also been tested in two others. It has been
installed on tug, unit load, and forked AGVs - including
thetug AGV shown in Figure 5.

Figure 5: Tug AGV. This automated guided vehicle is
one of three with mosaic positioning installed.

A network of guidepaths has been mapped and rendered
geometrically consistent for our testing purposes. This
map is shown in Figure 6. Our installation process cali-
brates cameras to produce images of idea geometry so
that one vehicle can generate a mosaic on behalf of all.
The short horizontal segments of the map are areas where
the vehicle interfaces with racks and loads.

Figure 6: Network Mosaic and Exploded View of
Component Imagery. This network of images covers
part of our test facility floor.

On this particular mosaic, the system has operated for
four years producing 1 mm repeatability at speeds some-
times exceeding 15 mph - more than safety regulations
would allow outside our controlled laboratory setting. We
have recently achieved a milestone of 40 hours of error-
free operation in order to demonstrate commercially relev-
ent levels of reliability.

We have observed excellent noise immunity in the tem-
plate correlation algorithm used to match features. It oper-
ates robustly in the face of months of cumulative dust and
grime which can hide the underlying floor texture that was



originally mapped. This level of noise immunity is partly
due to the ability to use very large feature templates when
the sceneisflat, and partly due to the excellent noise rejec-
tion performance of cross-correlation.
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	2.2.2 Overlap Speed Limit

	In many visual tracking applications, tracking features in successive frames implies a fundamenta...
	The velocity of the camera in units of images moved per cycle is thereby limited to a value somew...
	This observation is important because the use of prior models such as mosaics allow us to also br...
	2.2.3 Geometric Instability

	Exceeding the overlap speed limit has important implications on the stability of tracking. Suppos...
	Suppose further that the camera travels a distance before another visual fix is attempted. At thi...
	Since the nondimensional ratio of distance travelled to image width exceeds unity beyond the over...
	Pragmatic strategies to manage this issue include redundant sensing of intervening motion, estima...
	3 Mosaic Tracker Design

	The overall architecture of our position estimation system is as shown in Figure 3.
	Figure 3: Position Estimation System. The system model integrates the equations of motion to inte...

	As long as the system is operating, camera imagery is acquired as fast as processing can manage. ...
	Position estimates between encoder readings are supplied by integrating the equations of motion u...
	The inner circle delineates the mosaic tracker. The job of the mosaic tracker algorithm is the co...
	3.1 Mapping and Localization Modalities

	The position estimator is coordinated with a mapping process which operates in a number of useful...
	3.1.1 Visual Odometry

	When the camera is continuously moving over an unknown area, provided successive images overlap, ...
	3.1.2 Automatic Mapping

	While traversing unknown areas, the acquired imagery can optionally be added to the mosaic. If it...
	3.1.3 Simultaneous Localization and Mapping

	When both visual odometry and automatic mapping are being performed, the system is performing a r...
	3.1.4 Automatic Map Updates

	In principle, an image which appears sufficiently different from expectations, but is nonetheless...
	3.1.5 Automatic Mode Switching

	It is possible for the system to automatically switch from one mode to another. Conceptual logic ...
	if (the current image has minimal
	overlap with the mosaic)
	{
	add it to the mosaic;
	}
	else if (the current image looks
	very different from the mosaic,
	but is confidently positioned)
	{
	overwrite the mosaic with the
	new image;
	}
	else
	{
	compute pose and discard the image;
	}
	Of course, the last case is the mosaic tracking case where repeatable position estimates beyond t...
	3.2 Pose Refinement

	The fact that a mosaic can be constructed means that image registration and pose determination ar...
	The predicted positions of the point features with respect to the model frame come from their pos...
	Figure 4: Observer Formulation. Given a set of point positions expressed in the model frame , and...

	The prediction equation, or observer, tells us how to predict the locations of the points in the ...
	If we denote the Kalman state vector thus:
	then this relationship is of the form of the standard observer where the pose is the state vector...
	4 Results

	A working version of a mosaic-based navigation systemsystem has been in operation for about 4 yea...
	The system has been in operation in our 40,000 square foot facility at the National Robotics Engi...
	Figure 5: Tug AGV. This automated guided vehicle is one of three with mosaic positioning installed.

	A network of guidepaths has been mapped and rendered geometrically consistent for our testing pur...
	Figure 6: Network Mosaic and Exploded View of Component Imagery. This network of images covers pa...

	On this particular mosaic, the system has operated for four years producing 1 mm repeatability at...
	We have observed excellent noise immunity in the template correlation algorithm used to match fea...
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	6 Hardware

	Describe vision box and mapping rig.
	7 Future Work

	Of the many improvements that have been proposed over the project thus far, the following seem at...
	7.1 Extensions to The Filter

	Several extensions to the existing system are potentially useful. When the floor is not entirely ...
	7.2 Accomodating Less Texture

	When the system was first installed, some of the floors were unfortunately newly painted and comp...
	Exposed aggregate particles such as small stones in untreated concrete as well as the scratches a...
	If necessary in future, the system can be extended to profit from one-dimensional texture when it...
	Extensions to permit the system to work effectively in more nearly featureless environments and i...
	7.3 Near Perfect Mosaics

	The earlier paper has shown that performance is significantly enhanced if the mosaic is accurate ...
	Mosaics may be linear, arbitrary curves, networks of curves, or regions. A planned sequel paper w...
	8 Conclusions

	While the system can be used to create maps by registering the regions of overlap between success...
	One motivation for the work is to reduce both the unit cost and the installation cost of vehicle ...
	• service robots in homes, offices, and facilities performing such duties as food and mail delive...
	• container and material handling in paved outdoor rail, trucking, and shipping yards
	• small materials handling in factories and order picking in warehouses
	9 Appendix: Template Rotational Search

	An earlier section noted that a template has three degress of freedom in motion over a mosaic. Ye...
	9.1 Rotation from Primary Position Estimate

	When a primary position estimate is available, it is not necessary to search template orientation...
	Which is 7 degrees for . For a system cycling several times a second, such a rotation error in th...
	9.2 Determining Camera Orientation

	Even though it is not necessary to search template orientation, it is still necessary to damp err...
	Figure 7: Determing camera orientation from point feature correspondences. Any mechanism which se...

	The expected resolution of angular measurement is roughly given by the ratio of a pixel to the se...
	For an image whose size is 0.2 meters and a pixel size of 2.5 mm, this gives about 1/2 degree ang...
	as shown in Figure 8.
	Figure 8: Instability of the Pose Estimate. Small mislocations of features are amplified from fra...
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