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Abstract. The DARPA PerceptOR program implements a rigorous evaluative test program 
which fosters the development of field relevant outdoor mobile robots. Autonomous ground 
vehicles are deployed on diverse test courses throughout the USA and quantitatively 
evaluated on such factors as autonomy level, waypoint acquisition, failure rate, speed, and 
communications bandwidth. Our efforts over the three year program have produced new 
approaches in planning, perception, localization, and control which have been driven by the 
quest for reliable operation in challenging environments. This paper focuses on some of the 
most unique aspects of the systems developed by the CMU PerceptOR team and the most 
immediate challenges that remain to be addressed. 

1 Introduction 

The potential applications of robotic ground vehicles have long been 
recognized. Off road mobile robots must operate effectively under forest canopy 
which occludes positioning satellite signals while the trees themselves present 
natural mazes to challenge motion planning. They must function in alpine areas 
where terrain slopes require safe operation in constant proximity to tipover, while 
precipitous ledges persistently threaten to end the mission in an instant. They must 
function in fields and forests where ground covering vegetation obscures both the 
shape of the ground and any occluded hazards. In short, off road autonomy is 
among the most ambitious of our aspirations for mobile robot technology.  

Much of the work to date has been motivated by military [2][8] and space [1], 
[10], applications although agriculture [5], mining [4], and forestry have received 
more recent attention. The system described in this paper has evolved from local 
[6] and global [9], planning systems that we developed for the Demo II program. 

Unlike most or perhaps all historical work on outdoor autonomous mobility, the 
PerceptOR program emphasizes independently administered evaluative testing as 
the primary mechanism to drive progress. The overall goal has been to 
simultaneously maximize autonomy, reliability, and speed.  
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Tests are conducted on an unrehearsed basis, meaning the development team 
has no detailed knowledge of specific terrain before the test. While the 
development team may see the test courses during the conduct of the tests, 
individuals who operate the system are prevented from seeing the test courses until 
all tests are complete. The overall intent is to simulate the conditions of actual 
deployment of UGVs. This paper outlines the final design of the system produced 
by the CMU PerceptOR team, results achieved, and some of the most immediate 
challenges that remain to be addressed 

2 System Design 

The UGV hardware design is based on the Honda Rubicon All Terrain Vehicle 
(ATV). Elements for man-aboard driving were removed entirely and replaced with 
an autonomy retrofit. SICK ladars were custom modified to scan in a second axis 
to convert them to 2D imaging devices. Up to four of these devices have been used 
per vehicle at various times to generate forward and rearward perception for 
obstacle avoidance and omnidirectional views for operator interface purposes. 
Two stereo pairs developed by Sarnoff Corporation provide passive forward range 
imaging. Several monochrome teleop cameras are provided. Monocular digital 
color and analog FLIR cameras are used for estimating terrain composition. A 
Smiths land inertial navigation system and GPS receiver provide global position 
estimates. 

 
Over a three year period, the objectives and our experiences in field tests have 

driven us to implement new approaches at all levels of the traditional autonomy 
software hierarchy – from gross motion planning to reactive low level control. 
Some of the new elements are discussed below. 

 
Fig 1: Autonomous Ground and Air Vehicles.  A Honda ATV and Yamaha Rmax 
Helicopter were retrofitted for autonomy. 
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3 Position Estimation and Mapping 

Various disappointments in field experiments have driven us to redesign the 
position estimation and mapping approach in order to respond to the challenges of 
generating high fidelity perception on a moving platform. While some of the 
following techniques have been used in earlier work, we take them to new 
extremes and organize the principles in this work. 

3.1 Accumulation – Distortion Tradeoff 

Nonideal pose estimates cause distortions in environmental models that are 
created with them. Pose error accumulation rate often increases with motion, 
motion is more difficult to measure on rough terrain, and sensitivity to these errors 
increases as the desired fidelity of perception increases. 

There may at times be a fundamental requirement to accumulate data in a 
region; for example, in order to compute a region property the size of a wheel or of 
a vehicle. Nevertheless, the value of excess data accumulation (beyond the 
fundamental requirements) is at odds with the cost of the cumulative effects of 
pose error. Ironically, despite good intentions, too much oversampling eventually 
incorporates enough distortion to make it impractical to reliably resolve the 
features of interest at the scale of interest. Several design principles have emerged 
to manage this tradeoff. The impact of distortion can be minimized by … 

 
• Minimum Accumulation … accumulating no more data than necessary. 
Hence, when obstacle signatures can be computed from one scan line of ladar data 
they should be.  When a few lines are necessary, then only a few lines should be 
used.  
• Exploit Signal Properties … exploiting the best properties of pose estimate. 
It is better to compute region properties within ladar scan lines than across them.  
If two sets of consecutive lines must be accumulated, then the computation is 
organized to compute high fidelity local results in each set first, and then merge 
them in a manner consistent with the larger error accumulated between the sets. 
• Engineer the Distortion Signal. … providing the best possible pose signal(s). 
Ladar(s) can be oriented to extract preferred information from the faster of the two 
rotation axes. Multiple custom-designed pose estimates can easily be generated for 
multiple purposes.  

 
These principles drive our approach to position estimation and mapping. A 

hierarchical arrangement of data structures provides decreasing periods of data 
accumulation and increasing levels of detail as the hierarchy is descended. An 
associated hierarchy of position estimates trade absolute accuracy for relative as 
the hierarchy is descended. Data is accumulated with one pose estimate but 
localized with the next highest estimate and, if necessary, re-localized to track the 
growing mis-registration between the two. 
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3.2 Multiple Pose Estimates and Maps 

At the global level, a global pose estimate is computed from all available 
sensing several times a second. This estimate is used to control motion with 
respect to globally specified waypoints, and to fuse onboard and externally 
provided geo-referenced data. 

At the local level, a local pose estimate is computed based only on sensing 
which does not project onto position states. It does not process GPS readings, nor 
would it process terrain aids like absolute landmarks if they were available. This 
estimate drifts with respect to the global estimate but it is completely immune to 
the characteristic jumps in GPS position which occur before loss of lock on 
satellite(s) and at their reacquisition. This estimate is used to provide feedback to 
motion control and to estimate motion relative to obstacles for obstacle avoidance 
purposes. Neither of these uses requires an absolute sense of position on the earth. 

At the perceptual level, we have not yet invested in a different estimate. 
However, the assessment of local shape does not require a sense of absolute 
attitude or heading and errors in these quantities need not be passed to shape-level 
processing. An estimate based only on integrating gyros might be valuable. 

Fig 2 illustrates the operation of the two highest levels of mapping during a GPS 
jump. The local map is re-registered to the global map at high rates so that while 
the relative position (local-level shape) of perception-derived data remains stable, 
its global position is adjusted continuously. 

 
Fig 2: Dual Maps and Position Estimates.  Overhead renderings of the local map 
(top) and corresponding global map (bottom) are shown at four closely spaced 
periods of time. Over this time, the global estimate moves the vehicle to the right by 
one vehicle width due to GPS drift. In the global map, the dark roadway is geo-
registered and does not move. The obstacles, however, were located by perception 
and placed in the local map so they shift right with the vehicle. In this way, obstacle 
avoidance becomes immune to GPS jumps. 
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4 Perception 

In addition to the aspects of perception which are implied above, a few other 
design approaches have emerged in order to address the challenges of vegetated 
and forested terrain.  

4.1 3D Volumetric Density Mapping 

While, in many earlier works, systems have been able to function using an 
overhead planar projection of the robot and the environment, and while we 
continue to do so at the global level, the overhead projection of the local map is 
derived from a more detailed 3D representation (Fig 3). Like the planar local map, 
this data structure is implemented as a circular queue which wraps around in 3 
dimensions in order to avoid the need to move the data in memory as the vehicle 
moves over distances much larger than the size of the map. Both the 2D and 3D 
local maps have coordinates aligned with and orthogonal to gravity to facilitate 
attitude predictions.  

In this data structure, the entire volume swept by the vehicle during candidate 

motions can be tested for collisions. While the height of the column of data 
intersected by the vehicle does not vary, its vertical position in the 3D map does 
vary. Nonetheless, given the vertical position of the column, it is possible to 
identify the relevant data and collapse its net assessment into a 2D cell in the 
planar representation. 

The basic attribute extracted in each cell is the “density” computed as the ratio 
of the number of hits to hits plus misses. A cell gets a hit if the ladar beam 

 
Fig 3: 3D Perception.  Left: The colorized point cloud to the left indicates the typical 
3D structure of a forested scene on a trail. Red regions are nontraversable; blue ones are 
traversable. Right: Density scores in a vertical column through the point cloud. 
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terminates inside it and a miss if it was passed through. This calculation requires 
that each cell in the line from the sensor to the returning cell be identified in a ray 
tracing process. 

4.2 Learning to Estimate the Ground Plane 

Of course, the problem of identifying the ground plane, or more precisely the 
shape of the load bearing surface, is not straightforward in environments with 
vegetative ground cover. In meadows and under forest canopy, we have found it 
necessary to estimate the supporting surface based on the density scores. 

Based on the learning principle originally developed for agricultural robots in 
[11] we developed a neural network which learned how to adjust a preliminary 
estimate of the load bearing surface elevation based on observing the ground truth 
data generated when the vehicle drives over terrain in the learning phase. Fig 4 
shows the operation of the neural net in a typical scene.  

5 Motion Planning 

In order to manage computational complexity, the planning system is also 
arranged hierarchically. It is composed of the Dstar global planner [9] and the 
Ranger local planner [6]. These elements were integrated for the first time on 

 
Fig 4: Computing the Load Bearing Surface Under Ground Cover.  The yellow line in 
the inset image represents the slice through the world model density scores which is 
being processed. The neural net lowers the grass and raises the tree which is the correct 
adjustment of the load bearing surface. 
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PerceptOR. The basic principle used is the assumption that high fidelity models of 
vehicle dynamics and maneuverability are less important farther from the vehicle 
than near it (Fig 5.)  

 
Paths between waypoints of hundreds of meters separation are generated 

autonomously. Routinely, the system comes to a stop while following the best 
available plan because there are apparently no safe options for proceeding.  A set 
of behaviors are then used to verify the assumption of no safe forward path and 
implement various recovery mechanisms. 

First, a slow speed perception scan to regenerate the area in view is performed 
while the vehicle is stationary. If this mechanism does not generate a way forward, 
the system next executes a very effective reactive backup maneuver attempting to 
align the vehicle with the direction preferred by global planning. Dense 
surrounding obstacles will rarely cause this step to fail. A nonholonomic motion 
planner was developed to address these cases. If it fails, the system asks the 
operator for help. 

Goal

Start

Goal

Start

 
Fig 5: Hierarchical Motion Planner. Candidate trajectories are produced by forward 
simulation of the vehicle dynamics out to some distance after which the optimal remaining 
path in an 8-conneced grid with expanded obstacles is used. An elevation grid is used in the 
high fidelity portion of the motion simulation and the total line integral over a cost field of 
both portions of each optimal path is used to select the option to execute. 

 
Fig 6: Nonholonomic Motion Planner.  Left: In this zero heading slice (restricted to 
forward motions for display), steering functions to a regular array of neighboring poses 
are encoded. Right: A custom 5 point turn is generated to turn after detecting a natural 
cul-de-sac 
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 This planner is based on a generalization of a grid which we call a pose lattice. 
The space of robot poses (x,y,heading) is discretized into a dense 3D grid and the 
trajectory generator described in [7] is used to connect every node to every 
reachable neighboring node out to some practical radius. The pose lattice structure 
can then be interpreted as a graph for purposes of implementing heuristic search 
(A* is implemented at the moment). The structure itself can be represented 
implicitly in terms of a repeated template. The result is a regular sampling of state 
space which encodes, to finite resolution, all possible motions between 
neighboring states using only feasible motions. Complex motions respecting the 
constraints of local obstacles are then generated by optimal network search. 

6 Project Results 

Test results on the PerceptOR program are tallied at the system level in order to 
focus effort on overall performance. Among the data collected is the number of 
times field safety personnel intervened in order to prevent vehicle damage, the 
communications bandwidth used, system ability to reach desired waypoints, speed, 
distance, and time. The number of operators was reduced to one near the middle of 
the program and at times, tests have been performed to evaluate the viability of 
restricting operator intervention to those cases when the robot asks for help. 

Test courses were chosen by DARPA at each of four army bases in the north 
east, south central, south west and north west of the United States. Systems were 
thereby exposed to forested, desert, and mountainous terrains under varying 
weather conditions in different seasons. Exercises, consisting of several partially 
repetitive runs per day, were normally conducted over a one week period at each 
site. Two sites were visited twice in order to assess improvement over time. 
Approximate cumulative data for all six exercises are summarized below in Table 
1 A rough sense of improvement over time can be obtained by comparing the 
cumulative scores for all 6 exercises with those of the final one. One of the tests of 
the fifth exercise is illustrated in detail in Fig 7. 

 
Item Unit Cumulative Last Test 

Number of Runs  183 36 
Distance Traveled m 81,094 29,376 
Test Duration s 230,606 49,172 
Average Speed m/s 0.35 0.60 
Uplink Distance Density Kb/m 34.5 4.8 
Downlink Distance Density Kb/m 705 327 

 

Table 1: Cumulative and Final Data for PerceptOR Program Exercises 
(CMU Team Only) 
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7 Conclusions and Outlook 

The PerceptOR program has been unprecedented in its rigorous approach to 
evaluative testing of unmanned ground vehicles. System performance has clearly 
improved over time in response to test results, and many opportunities for more 
performance improvements obviously remain.  

Among those improvements are immediate issues in perception and planning. 
We remain dissatisfied with the level of adaptability of perception algorithms to 
varying terrain. Less manual tuning of algorithms could potentially be achieved by 
creating a higher level understanding of overall context (forest, trail) in the system. 
Issues relating to the interplay between perception and planning are becoming 
more significant. The advantages of real time replanning come at the cost of a 

 
Fig 7: Test Run with Forest, Meadow, and Trail.  After driving perhaps 50 meters 
through a forest, the system collides harmlessly with a small tree. The remote operator 
takes control to clear the error and move the vehicle away from the hazard. The system 
acquires a trail and follows it autonomously for a long distance before determining that 
the trail is no longer heading toward the goal. It then executes a multi point turn 
maneuver, retraces its path, and exists the trail at an appropriate place. The operator 
reconfigures the software to tolerate tall grass (assessor change) near the end of the run 
and it terminates at a fallen log visible as the bright streak in the lower left cost image. 
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system which can change the global plan too radically and too often. A lack of 
aggregate understanding of the local situation can lead to futile struggles to forge a 
way through a stand of trees immediately beside a perfectly good trail. 

Some of the grand challenges of outdoor autonomy are well understood. A few 
are detecting small obstacles at high speeds, detecting negative ones at any speed, 
passive operations and night, and perceiving the groundplane and hazards hidden 
beneath obscuring vegetation. In addition to some progress on some of these 
fronts, the main contribution of the PerceptOR program has been the most rigorous 
attempt to date to quantify the present state of the art.  
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