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ABSTRACT 
 
The problem of generating continuous trajectories for 
motion over general 3D terrain is important. The more 
naïve and common approach of compensating, in the 
execution phase, via feedback control, for an incorrect 
flat terrain assumption, is not always viable. The flat 
terrain assumption is also almost never necessary since 
the terrain shape must already be known for 
autonomous vehicles to operate competently in 3D 
terrain. We propose a fairly general constrained 
optimization approach to trajectory generation over 
arbitrary terrain, for arbitrary vehicles, which optimizes 
arbitrary utility/cost functionals while satisfying 
arbitrary constraints. The approach achieves its 
generality, in part, by numerically linearizing and 
inverting forward kinematic and dynamic models of 
propulsion, suspension, and motion prediction. It 
achieves efficiency by adopting a parametric optimal 
control approach from earlier related work. An 
implementation of this algorithm is exhibited using a 
model based on the Rocky 7 Mars rover platform. 
Several utility functions minimizing time and/or slope 
dwell are illustrated, while demonstrating convergence 
in a variety of terrain shapes. 
 

1. INTRODUCTION AND NOTATION 
 
Trajectory generation for mobile robots is related to the 
two point boundary problem of classical differential 
equation theory.  It can be defined as the problem of 
finding a set of controls which satisfy initial and 
terminal position, pose, or state constraints.  Position is 
defined as a location in space, pose adds orientation, 
and state includes, for example, rates of orientation: 
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1.1 Motivation 
 
While the present generation of mobile robots are 
content to move globally from A to B and perhaps 
avoid obstacles along the way, truly useful machines 
must interact with the world in ways more general than 

simply driving over it. Although more or less 
continuous motion is the core capacity of 
contemporary mobile robots, future machines will be 
required to address specific places in the environment, 
at specific attitudes and headings, and deploy 
implements to do something ultimately useful. 
 
Competent operations in cluttered environments 
require the capacity to understand relatively precisely 
the entire space of feasible motions and search it for a 
(or a best) solution. 
 
Continuous trajectories can have certain advantages. 
Often the time to complete the mission or the exposure 
to risks such as wheel slip increases when the vehicle 
must stop and even change direction discontinuously. 
 
For autonomous vehicles, trajectory generation 
algorithms form the basis of any capacity to achieve a 
designated state. Further, real-time ones are needed to 
do so in response to information gathered on-the-fly by 
perception. 
 
In the context of semi-autonomous operations, 
trajectory generation can be used to drive the vehicle to 
an operator-designated waypoint. This approach 
reduces operator workload and potentially provides a 
better solution than might be achieved otherwise. 
 
For autonomous operations, trajectory generation can 
be used to acquire specific terminal states when the 
context is one of acquiring a point goal. When 
following a path, trajectory generation can correct for 
path following errors by reacquiring a goal path at 
some forward position. 
 
Some of our related work involves the use of trajectory 
generation as a mechanism to encode the connectivity 
of state space in lattice-like networks such as the one 
shown later in Fig 4. In this context, trajectory 
generation is the key to encoding a search space which 
intrinsically meets all operative mobility constraints. 
Global path planning thereby becomes reduced to 
heuristic graph search but the obtained paths are 
directly executable. 
 
 
 



1.2 Background 
 
Traditionally, the trajectory generation problem has 
been formulated with at least three assumptions: that 
the environment is flat, that there is a single solution 
between states, and that the vehicle follows its 
commands perfectly.  
 
Terrain shape affects the motion of the vehicle because 
the vehicle steers and moves only in the instantaneous 
tangent plane of the terrain – not a horizontal plane. 
While neglecting the influence of attitude (roll and 
pitch) in motion prediction simplifies the problem, it 
also leads to large errors in rough terrain.  These errors 
have often been compensated by feedback control, but 
underactuation and nonholonomic constraints often 
mean that such model error disturbances cannot be 
removed entirely after the fact.  On the other hand, the 
terrain shape is often well known and its effect on 
motion is entirely predictable so such errors are 
unnecessary. By incorporating terrain shape into the 
motion prediction model, these errors can be 
eliminated during generation rather than treating them 
as an unknown disturbance to be addressed by control. 
 
A fully constrained formulation generates a unique 
solution. While this is advantageous computationally, it 
can be limiting in applications where the problem is 
more complicated than simply achieving the terminal 
state. If the problem is cast in an optimization context, 
the machinery of variational methods can be used to 
search a space of many feasible alternatives for one 
solution which is best in some overall sense. Within 
this mathematical context, trajectories which minimize 
time, energy consumption, risk, wheel slip, slope dwell 
and any number of other factors, in any combination, 
can be generated by simply modulating the utility field 
through which the generator is planning. 
 
Real robots, of course, are unable to follow commands 
precisely for various reasons – but the degree to which 
they do not is often predictable. Steering actuators do 
not move instantaneously, and many interfaces can 
incorporate significant delay. Once the wheels do 
achieve the angles and speeds requested, the capacity 
of the terrain to generate the requested reaction forces 
is limited and dependent on terrain slope. 
 

1.3 Prior Work 
 
Prior work in [6] approached trajectory generation 
using a composite of clothoids to satisfy initial and 
terminal states. Based using an intermediate state at the 
intersection of two circles, this method was not able to 
solve for a path between any two arbitrary states.  A 
method using higher-order curvature polynomials was 
developed in [5]. This method used energy 

minimization to successively deform a curve until it 
satisfied the constraints but it was not suitable for real 
time use.   
 
A near real-time optimal control trajectory generator is 
presented in [4], which solves eleven first-order 
differential equations subject to state constraints.  In 
[3], our group developed a fully real-time algorithm 
which solves the planar trajectory generation problem 
between two states by inverting a forward model of an 
idealized, curvature-actuated point vehicle in the plane. 
 
Variational (optimization) methods of trajectory 
generation are as old as optimal control theory and they 
have been used in most fields which employ automatic 
control. For example, in the field of UAVs, [9] 
proposed a method for fast trajectory generation based 
on solving an approximate linearized problem (when 
systems are input-output linearizable). Our real-time 
method was extended to an optimization context in [1], 
where a cost function is minimized subject to meeting 
the terminal state constraints.  
 
An early use of dynamic models of terrain interaction 
in motion planning is exhibited in [8]. Our method is 
adapted to rough terrain in [2], where attitude is 
determined from a particular more realistic vehicle 
model developed in [7] and dynamic models of such 
matters as actuator response and terrain interaction can 
also be accommodated. 
 

1.4 Technical Approach 
 
The methods in [1] and [2] are combined and adapted 
here to create a variational optimization method which 
is applicable to both arbitrary terrain and arbitrary 
vehicle dynamic models. The conversion to 
accommodate arbitrary terrain leads to a coupling of 
the motion prediction equations and a shift to 
differential equation methods rather than quadratures.  
 
The associated increasingly numerical nature of the 
approach happens also to increase the level of 
generality with no extra effort.  Although the method is 
broadly applicable, we will present specific results for 
a fairly complicated planetary rover model while 
optimizing a few illustrative utility functionals. 

 

2. FORMULATION 

2.1 Kinetic Motion Model 
 
As in [2], a kinetic motion model which maps linear 
and angular velocities in the body frame to linear 
velocities and Euler angle rates in the world frame 
based on the SAEJ670e convention is used.  The world 
frame velocity and Euler angle rates are defined as 



functions of the vehicle attitude (φ,θ), heading (ψ), 
linear (v) and angular velocities (ω).  Our method uses 
a terrain-following mobile robot whose controls are 
yaw rate (ωz) and body-frame linear velocity aligned 
with the forward axis of the robot (vx). This assumption 
of a single component of each velocity simplifies the 
kinetic motion model to:   
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Any rigid body possesses linear and angular velocity, 
so such a formulation approaches the completely 
general case. Extensions to admit three arbitrary 
components of both velocities in the body frame are 
quite straightforward. 
 
The attitude and elevation (z) are computed by 
enforcing a terrain contact constraint, at a given pose, 
using a suspension model.  For terminal state, an error 
vector ∆P(q) is defined as the difference between the 
terminal state achieved by the linear and angular 
velocity controls and the terminal state required by the 
constraints: 
 
               ( ) ( ) fPPP −=∆ qq                           (3) 
 
In this formulation, linear and angular velocity controls 
can take the form of any parameterized control 
primitives with sufficient degrees of freedom.  The set 
of linear and angular velocity controls is designated by 
U(q).  We continue to favour the choice of polynomials 
as the assumed form of solution: 
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2.2 Optimal Control Formulation 
 
In the optimal control formulation of the problem, a 
(linear and angular velocity) control must be found 
which satisfies a set of state constraints and minimizes 
a utility functional J(q).  As shown in [1], this can be 
accomplished using the method of Lagrange 
multipliers.  The Hamiltonian is defined as the sum of 
the cost function and the product of the Lagrange 
multiplier vector with the constraints: 
 
                ( ) ( ) ( ) eqnsnqPqJqH T ∆+= λλ,             (5) 

The first-order necessary conditions for optimality are 
well-known: 
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There are n+m equations for this system, where n is the 
number of variables in the system (length of q) and m 
is the number of constraints in the system.   
 
This system is solved by linearizing the first-order 
necessary conditions. This is the well-known Newton’s 
method and we will use it again in its fully-constrained 
form for computing vehicle attitude on the terrain. The 
initial guess of control parameters q and Lagrange 
multipliers λ are adjusted at each iteration by ∆q and ∆λ 
respectively until a local optimal trajectory is found 
when the gradient of the Hessian and the error in 
terminal states approaches zero. Each iteration involves 
a solution of: 
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Notice that the Hessian of the Hamiltonian is an n by n 
matrix.  The Hessian of the constraint equations P(q) is 
n by n by m (a third-order tensor), but when multiplied 
by the m-length Lagrange multiplier vector λ, it 
reduces to an n by n matrix. 
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2.3 Utility Functional 
 
The utility functional J(q) is a description of what we 
want to optimize over the path.  In general, it takes the 
form: 
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In optimal control, this functional J(q) is conceived as 
a line integral of a potentially time-varying utility 
function Y(q,t) along an unknown path. Equivalently, 
the problem can be formulated in terms of cost rather 
than utility. Y(q,t) can be consider to be a field over the 
state vector. It represent any weighted combination of 
utilities or costs which are properties of a given 
position. It may include instantaneous energy 



consumption, wheel slip, loss of mobility, risk, slope, 
proximity to a position in space, or anything else of 
interest.  
The weights used inevitably represent tradeoffs - like 
how far the system should be willing to go around an 
obstacle in order to reduce risk at the cost of 
lengthening the time to the goal. 

2.4 Numerical Approximations of the Jacobian and 
the Hessian 
 
Quadrature computation of the Jacobian and the 
Hessian as in [1] cannot be accomplished because of 
the coupling of attitude in the state equations.  We 
proceed therefore using finite differences to 
approximate the Jacobian and the Hessian. Where e is a 
very small number (10-6): 
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This method is based on finding forward solutions. 
Such computations can be expensive - depending on 
the complexity of the vehicle model and the terrain 
roughness. The Hessian is symmetric, so all terms 
below the diagonal need not be re-computed.  m(n+1) 
forward solutions are required for the numerical 
approximation of the Jacobian and m(∑n+n+1) forward 
solutions are required for the Hessian.   
 

2.5 Inversion of the Trajectory Kinematics 
 
Trajectory generation is the problem of determining the 
set of controls which will satisfy a set of state 
constraints, and in this paper, optimize some utility 
criterion.  A general method for solving this set of 
postures using the optimal control formulation is 
presented in Fig. 1.  Given an initial guess of 
parameters (defining the input controls parametrically) 
q, the motion prediction model is based on integrating 
the response of the vehicle and the terrain following 
models. Its predictions are then used to calculate 
terminal posture error.  A correction term [∆q, ∆λ]T is 
calculated based on the inversion of the system in Eqn. 
(7) until the terminal posture errors and the magnitude 
of the gradient of the Hessian approach zero. 
 
The forward vehicle model may encode a variety of 
phenomena including models of the suspension, 
actuator dynamics, and even wheel slip.  Given a set of 
controls U(q), we find the response U(q)* subject to 
these models. 
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Fig. 1. Trajectory Generation Flow Diagram. 
 
The terrain following model (Fig. 2) models the 
interaction of the suspension model and the terrain to 
determine attitude, elevation, and suspension 
configuration (B) for a given pose (X).  The forward 
suspension model determines estimates of the positions 
of the wheel contact points and measures the distance 
between the wheel contact point (Zc) and the terrain (Z) 
at the wheel contact point’s (Xc, Yc).  A correction to 
the attitude (∆φ,∆θ), elevation (∆z), and suspension 
configuration (∆B) is determined from the product of 
the Jacobian of the forward suspension model and the 
magnitude of the elevation errors (∆Z).  The correction 
terms are added to the guess and this process continues 
iteratively until the elevation errors approach zero. 
 

 
Fig. 2. Terrain Following Flow Diagram. 

 
 
 
 
 

 



3. IMPLEMENTATION 
 

3.1 Control Primitives and Satisfying the Terminal 
Linear and Angular Velocity Constraints 
 
To demonstrate the algorithm, we will use a 4th order 
polynomial in angular velocity and a linear angular 
velocity control (Eqn. 11). Higher order controls could 
also be used with no modifications.  The initial linear 
and angular velocities are known and trivially equal to 
the a1 and a2 unknowns.  The vector of control 
coefficients is represented by q = [b1,2,…tf]T.   
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In this formulation, we will neglect actuator dynamics, 
and wheel slip models, although including them 
presents no difficulty.  Doing so allows the terminal 
linear and angular velocity to be determined in closed 
form from the other variables and the constraints: 
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This is advantageous because the terminal linear and 
angular velocity constraints are satisfied in each 
iteration. The size of the system is also reduced (three 
constraints Pf=(xf,yf,ψf) and four controls q=(b1,c1,d1,tf)) 
.   
 
According to our approach of satisfying these 
constraints in closed form, new values for e1 must be 
computed from the terminal angular velocity constraint 
whenever the Jacobian or Hessian are computed.  The 
b2 control parameter happens not to depend on any 
value in q, so it does not need to be re-computed. 
 
3.3 Terrain Following Model 
 
A terrain following model is required in arbitrary 
terrain to determine the vehicle roll and pitch at a given 
pose.  We will use a kinematic model based on the 
Rocky 7 Mars rover prototype to illustrate.  This 
model, depicted in Fig. 3, employs a rocker-bogie 
suspension with three degrees of freedom 
(B=[ρ,β1,β2]T) corresponding to the major and two 
minor rocker-bogie angles respectively. 

 

 
Fig. 3. Suspension Kinematics Model. 

3.4 Motion Prediction 
 
Motion prediction takes the form of three coupled, 
nonlinear equations. Euler integration is employed: 
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It is important to use a step size small enough to both: 
 

a) provide good estimates of the integrals of the 
linear and angular velocity controls, and  

b) capture the effects of the profile of the terrain.  
 
Notice that for flat terrain ((φ,θ)=(0,0)), the forward 
solution for the terminal heading integral can be found 
in closed form.  Doing so allows another variable to be 
determined explicitly in terms of the other controls (q) 
and the initial and terminal constraints (ψ0,ψf,ω0,ωf) 
and it reduces the overall number of constraints to two.   
 

3.5 Initialization/Termination 
 
Ideally, we would like to seed the optimization 
algorithm with a set of linear and angular velocity 
controls which satisfy the terminal state constraints.  
Using heuristics previously developed for the flat-plane 
trajectory generator in [3], a proper set of controls can 
be found by solving the fully-determined problem as in 
[5].  Once this is found, a good initial guess for the 
Lagrange multiplier vector λ can be determined by 
solving the underconstrained system in equation 15 
using the right-pseudoinverse: 
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The algorithm considers convergence to have occurred 
at millimeter accuracy in position and milliradian 
accuracy in heading. It must also achieve magnitudes 
of the gradient of the Hessian less than 0.1.  The 
suspension model requires millimeter residuals in 
wheel contact elevation. 
 

4. RESULTS 
 
In order to demonstrate the advantages of the 
formulation, minimum time and minimum time/slope 
dwell utility functionals are illustrated, but in general 
any utility functional can be accommodated.  The 
minimum time utility functional generates the shortest 
time path between states.  The minimum time/slope 
dwell formulation shows a trade-off between avoiding 
high attitudes along the path and finding the shortest 
path which satisfies the boundary conditions. 

 

4.1 Minimum Time Performance Index 
 
To find a minimum time path, the utility functional 
J(q) is defined that minimizes the time integral to 
achieve the terminal state: 
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Figure 4 shows the minimum time solution for 
connecting trajectories in a uniformly spaced lattice 
overlaid on rough terrain.  This result demonstrates that 
even in the face of large terrain undulations, an optimal 
continuous path consistent with the assumed 
polynomial form of the solution controls can be found. 
The network in Figure 4 has 35 nodes connected via 94 
minimum time trajectories.  Most achieved millimeter / 
milliradian error in fewer than 5 iterations of the 
algorithm with an average runtime per trajectory under 
2 seconds. 
 
 

 
Fig. 4. Connected state lattice generated over rough 
terrain. 
 
A second test of the algorithm involved solving for a 
variety of trajectories with different terminal states 
from a single initial state.  Figure 5 shows paths 
planned to 9 terminal positions at each of 5 distinct 
terminal headings (the rovers are drawn at one of the 5 
headings).  Similar runtime and convergence results 
were achieved in this test. 
 

 
Fig. 5. A variety of terminal states in rough terrain, 
solved with the present method.  Note that terminal 
positions and headings are correct despite the 
cumulative effect of terrain undulations.  Note also 



that the terrain shape compensation leads to paths 
which are not mirror images in 3D. 

4.2 Minimum Slope Dwell Performance Index 
 
For planetary rovers operating in rough terrain, a utility 
function which also penalizes high roll and pitch values 
can be used to solve for short paths which avoid slopes: 
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The “1” term in the integral represents the time that it 
takes to achieve the terminal posture and the α 
coefficient is a tuning parameter which represents the 
trade-off between finding the shortest path and the path 
which minimizes the amount of time spent on slopes – 
here called “slope dwell”.  As α approaches zero, the 
minimum-time path will be found. Conversely as α  
approaches infinity, the minimum slope dwell path will 
be found. 
 
To demonstrate the use of this utility functional, we try 
to find the shortest path that satisfies the relative 
terminal state (x,y,ψ) = (4.0,0.0,0.0).  A large hill has 
been placed between the initial and final states and a 
safe alternate route (Figs. 6 and 7) must be found.  The 
minimum time formulation (α = 0) generates a straight 
line which drives over the side of the hill.  When the 
tuning parameter is increased (α = 1), the algorithm 
converges to a path which moves around most of the 
hill. It still does not plan entirely around it because 
shortest time also matters.  By again increasing the 
tuning parameter (α = 2), the path avoids the hill 
entirely at the cost of increased time-to-goal.   
 

 
Fig. 6. Top view of solutions to the minimum slope 
dwell problem with varying α.  Here, the α = 0 
solution is highlighted in white to show that the 
minimum time solution is the most direct path to 
the goal. 
 

 
Fig. 7. Perspective view of solutions to the 
minimum slope dwell formulation with varying α.  
Notice how as α is increased, the terrain 
disturbance is avoided more aggressively. 
 

5. CONCLUSIONS 
 
An approach to trajectory generation has been 
presented which is both highly general and relatively 
efficient. Here, generality means at least two things. 
First, the constrained optimization approach subsumes 
several other problems (like the fully-constrained and 
unconstrained variants) as special cases. Second, the 
algorithm admits arbitrary terrain and vehicle models 
that plug in at specific points in the computation while 
making no assumptions about their form. The models 
are required in only their (relatively easy to generate) 
forward forms, and inversion of these models, when 
needed, is accomplished numerically. All of the 
published results of our group leading to this result are 
special cases of it. 
 
Runtimes under 2 seconds have been achieved on 
contemporary laptop computers, for a highly complex 
vehicle and arbitrary terrain, after paying little attention 
to optimizing the code. Of course, we have also 
published less capable variants of the method which 
run in a few milliseconds, by assuming flat terrain, 
simpler vehicles, and fully-constrained formulations. 
 
Our results indicate that there are no remaining 
barriers, and there are likely advantages, to 



implementing such highly capable algorithms in 
applications even as demanding as planetary rovers. 
The computations are supportable even on the rover. A 
new level of intelligence emerges with regard to local 
motion planning, in terms of understanding the 
vehicle’s capacity to move, the effect of terrain, and 
the intelligent management of tradeoffs.  Motions can 
be executed in a manner which is best in some overall 
sense related to increased efficiency and reduced risk.  
 
Our intended future work involves the use of predictive 
terrain following models in the generation of corrective 
trajectories in feedback control. We are also pursuing 
efficient global motion planning results based on state 
lattices whose states are connected using the 
techniques described herein. 
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