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ABSTRACT

The problem of generating continuous trajectories for
motion over general 3D terrain is important. The more
naive and common approach of compensating, in the
execution phase, via feedback control, for an incorrect
flat terrain assumption, is not always viable. The flat
terrain assumption is also almost never necessary since
the terrain shape must already be known for
autonomous vehicles to operate competently in 3D
terrain. We propose a fairly general constrained
optimization approach to trajectory generation over
arbitrary terrain, for arbitrary vehicles, which optimizes
arbitrary utility/cost functionals while satisfying
arbitrary constraints. The approach achieves its
generality, in part, by numerically linearizing and
inverting forward kinematic and dynamic models of
propulsion, suspension, and motion prediction. It
achieves efficiency by adopting a parametric optimal
control approach from earlier related work. An
implementation of this algorithm is exhibited using a
model based on the Rocky 7 Mars rover platform.
Several utility functions minimizing time and/or slope
dwell are illustrated, while demonstrating convergence
in a variety of terrain shapes.

1. INTRODUCTION AND NOTATION

Trajectory generation for mobile robots is related to the
two point boundary problem of classical differential
equation theory. It can be defined as the problem of
finding a set of controls which satisfy initial and
terminal position, pose, or state constraints. Position is
defined as a location in space, pose adds orientation,
and state includes, for example, rates of orientation:

position (X, Y, Z)
pose (x,y,2,¢, 95.!//? )
state  \x,y,z,4,0,v.,6,0,y

1.1 Motivation

While the present generation of mobile robots are
content to move globally from A to B and perhaps
avoid obstacles along the way, truly useful machines
must interact with the world in ways more general than
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simply driving over it. Although more or less
continuous motion is the core capacity of
contemporary mobile robots, future machines will be
required to address specific places in the environment,
at specific attitudes and headings, and deploy
implements to do something ultimately useful.

Competent operations in cluttered environments
require the capacity to understand relatively precisely
the entire space of feasible motions and search it for a
(or a best) solution.

Continuous trajectories can have certain advantages.
Often the time to complete the mission or the exposure
to risks such as wheel slip increases when the vehicle
must stop and even change direction discontinuously.

For autonomous vehicles, trajectory generation
algorithms form the basis of any capacity to achieve a
designated state. Further, real-time ones are needed to
do so in response to information gathered on-the-fly by
perception.

In the context of semi-autonomous operations,
trajectory generation can be used to drive the vehicle to
an operator-designated waypoint. This approach
reduces operator workload and potentially provides a
better solution than might be achieved otherwise.

For autonomous operations, trajectory generation can
be used to acquire specific terminal states when the
context is one of acquiring a point goal. When
following a path, trajectory generation can correct for
path following errors by reacquiring a goal path at
some forward position.

Some of our related work involves the use of trajectory
generation as a mechanism to encode the connectivity
of state space in lattice-like networks such as the one
shown later in Fig 4. In this context, trajectory
generation is the key to encoding a search space which
intrinsically meets all operative mobility constraints.
Global path planning thereby becomes reduced to
heuristic graph search but the obtained paths are
directly executable.



1.2 Background

Traditionally, the trajectory generation problem has
been formulated with at least three assumptions: that
the environment is flat, that there is a single solution
between states, and that the vehicle follows its
commands perfectly.

Terrain shape affects the motion of the vehicle because
the vehicle steers and moves only in the instantaneous
tangent plane of the terrain — not a horizontal plane.
While neglecting the influence of attitude (roll and
pitch) in motion prediction simplifies the problem, it
also leads to large errors in rough terrain. These errors
have often been compensated by feedback control, but
underactuation and nonholonomic constraints often
mean that such model error disturbances cannot be
removed entirely after the fact. On the other hand, the
terrain shape is often well known and its effect on
motion is entirely predictable so such errors are
unnecessary. By incorporating terrain shape into the
motion prediction model, these errors can be
eliminated during generation rather than treating them
as an unknown disturbance to be addressed by control.

A fully constrained formulation generates a unique
solution. While this is advantageous computationally, it
can be limiting in applications where the problem is
more complicated than simply achieving the terminal
state. If the problem is cast in an optimization context,
the machinery of variational methods can be used to
search a space of many feasible alternatives for one
solution which is best in some overall sense. Within
this mathematical context, trajectories which minimize
time, energy consumption, risk, wheel slip, slope dwell
and any number of other factors, in any combination,
can be generated by simply modulating the utility field
through which the generator is planning.

Real robots, of course, are unable to follow commands
precisely for various reasons — but the degree to which
they do not is often predictable. Steering actuators do
not move instantaneously, and many interfaces can
incorporate significant delay. Once the wheels do
achieve the angles and speeds requested, the capacity
of the terrain to generate the requested reaction forces
is limited and dependent on terrain slope.

1.3 Prior Work

Prior work in [6] approached trajectory generation
using a composite of clothoids to satisfy initial and
terminal states. Based using an intermediate state at the
intersection of two circles, this method was not able to
solve for a path between any two arbitrary states. A
method using higher-order curvature polynomials was
developed in [5]. This method wused energy

minimization to successively deform a curve until it
satisfied the constraints but it was not suitable for real
time use.

A near real-time optimal control trajectory generator is
presented in [4], which solves eleven first-order
differential equations subject to state constraints. In
[3], our group developed a fully real-time algorithm
which solves the planar trajectory generation problem
between two states by inverting a forward model of an
idealized, curvature-actuated point vehicle in the plane.

Variational (optimization) methods of trajectory
generation are as old as optimal control theory and they
have been used in most fields which employ automatic
control. For example, in the field of UAVs, [9]
proposed a method for fast trajectory generation based
on solving an approximate linearized problem (when
systems are input-output linearizable). Our real-time
method was extended to an optimization context in [1],
where a cost function is minimized subject to meeting
the terminal state constraints.

An early use of dynamic models of terrain interaction
in motion planning is exhibited in [8]. Our method is
adapted to rough terrain in [2], where attitude is
determined from a particular more realistic vehicle
model developed in [7] and dynamic models of such
matters as actuator response and terrain interaction can
also be accommodated.

1.4 Technical Approach

The methods in [1] and [2] are combined and adapted
here to create a variational optimization method which
is applicable to both arbitrary terrain and arbitrary
vehicle dynamic models. The conversion to
accommodate arbitrary terrain leads to a coupling of
the motion prediction equations and a shift to
differential equation methods rather than quadratures.

The associated increasingly numerical nature of the
approach happens also to increase the level of
generality with no extra effort. Although the method is
broadly applicable, we will present specific results for
a fairly complicated planetary rover model while
optimizing a few illustrative utility functionals.

2. FORMULATION
2.1 Kinetic Motion Model

As in [2], a kinetic motion model which maps linear
and angular velocities in the body frame to linear
velocities and Euler angle rates in the world frame
based on the SAEJ670e convention is used. The world
frame velocity and Euler angle rates are defined as



functions of the vehicle attitude (p,d), heading (),
linear (v) and angular velocities (w). Our method uses
a terrain-following mobile robot whose controls are
yaw rate (w,) and body-frame linear velocity aligned
with the forward axis of the robot (v,). This assumption
of a single component of each velocity simplifies the
kinetic motion model to:

x0 +j cos( )cos(e)\/xdt_

X
Yo + jo sin(y)cos(6)v, dt Vi
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Any rigid body possesses linear and angular velocity,
so such a formulation approaches the completely
general case. Extensions to admit three arbitrary
components of both velocities in the body frame are
quite straightforward.

The attitude and elevation (z) are computed by
enforcing a terrain contact constraint, at a given pose,
using a suspension model. For terminal state, an error
vector 4P(q) is defined as the difference between the
terminal state achieved by the linear and angular
velocity controls and the terminal state required by the
constraints:

AP(q)=Pla)-P (3)

In this formulation, linear and angular velocity controls
can take the form of any parameterized control
primitives with sufficient degrees of freedom. The set
of linear and angular velocity controls is designated by
Ul(g). We continue to favour the choice of polynomials
as the assumed form of solution:

Q(q)—{!}_{al+b11+6112+..} @
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2.2 Optimal Control Formulation

In the optimal control formulation of the problem, a
(linear and angular velocity) control must be found
which satisfies a set of state constraints and minimizes
a utility functional J(g). As shown in [1], this can be
accomplished using the method of Lagrange
multipliers. The Hamiltonian is defined as the sum of
the cost function and the product of the Lagrange
multiplier vector with the constraints:

H(_,i):J(g)+/_1T£(g) n egns 5)

The first-order necessary conditions for optimality are
well-known:
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There are n+m equations for this system, where n is the
number of variables in the system (length of ¢) and m
is the number of constraints in the system.

This system is solved by linearizing the first-order
necessary conditions. This is the well-known Newton’s
method and we will use it again in its fully-constrained
form for computing vehicle attitude on the terrain. The
initial guess of control parameters g and Lagrange
multipliers A are adjusted at each iteration by 4g and 44
respectively until a local optimal trajectory is found
when the gradient of the Hessian and the error in
terminal states approaches zero. Each iteration involves
a solution of:

= oHla.2) ) el
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Notice that the Hessian of the Hamiltonian is an n by n
matrix. The Hessian of the constraint equations P(g) is
n by n by m (a third-order tensor), but when multiplied
by the m-length Lagrange multiplier vector A, it
reduces to an n by n matrix.

—ZH((M) J(_ +/1 AP(_ 8)

2.3 Utility Functional

The utility functional J(g) is a description of what we
want to optimize over the path. In general, it takes the
form:

Jg)=['Yg.nyar €)

In optimal control, this functional J(g) is conceived as
a line integral of a potentially time-varying utility
function Y(g,?) along an unknown path. Equivalently,
the problem can be formulated in terms of cost rather
than utility. Y(g,¢) can be consider to be a field over the
state vector. It represent any weighted combination of
utilities or costs which are properties of a given
position. It may include instantaneous energy



consumption, wheel slip, loss of mobility, risk, slope,
proximity to a position in space, or anything else of
interest.

The weights used inevitably represent tradeoffs - like
how far the system should be willing to go around an
obstacle in order to reduce risk at the cost of
lengthening the time to the goal.

2.4 Numerical Approximations of the Jacobian and
the Hessian

Quadrature computation of the Jacobian and the
Hessian as in [1] cannot be accomplished because of
the coupling of attitude in the state equations. We
proceed therefore wusing finite differences to
approximate the Jacobian and the Hessian. Where e is a
very small number (10'6):

iy _ fi,j(qk)_fi,j(qk +e) (10)
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This method is based on finding forward solutions.
Such computations can be expensive - depending on
the complexity of the vehicle model and the terrain
roughness. The Hessian is symmetric, so all terms
below the diagonal need not be re-computed. m(n+1)
forward solutions are required for the numerical
approximation of the Jacobian and m(} n+n+1) forward
solutions are required for the Hessian.

2.5 Inversion of the Trajectory Kinematics

Trajectory generation is the problem of determining the
set of controls which will satisfy a set of state
constraints, and in this paper, optimize some utility
criterion. A general method for solving this set of
postures using the optimal control formulation is
presented in Fig. 1. Given an initial guess of
parameters (defining the input controls parametrically)
¢, the motion prediction model is based on integrating
the response of the vehicle and the terrain following
models. Its predictions are then used to calculate
terminal posture error. A correction term [dg, 44]" is
calculated based on the inversion of the system in Eqn.
(7) until the terminal posture errors and the magnitude
of the gradient of the Hessian approach zero.

The forward vehicle model may encode a variety of
phenomena including models of the suspension,
actuator dynamics, and even wheel slip. Given a set of
controls U(g), we find the response U(g) subject to
these models.
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Fig. 1. Trajectory Generation Flow Diagram.

The terrain following model (Fig. 2) models the
interaction of the suspension model and the terrain to
determine  attitude, elevation, and suspension
configuration (B) for a given pose (X). The forward
suspension model determines estimates of the positions
of the wheel contact points and measures the distance
between the wheel contact point (Z,) and the terrain (Z)
at the wheel contact point’s (X, Y,). A correction to
the attitude (4¢p.,46), elevation (4z), and suspension
configuration (4B) is determined from the product of
the Jacobian of the forward suspension model and the
magnitude of the elevation errors (4Z). The correction
terms are added to the guess and this process continues
iteratively until the elevation errors approach zero.
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Fig. 2. Terrain Following Flow Diagram.



3. IMPLEMENTATION

3.1 Control Primitives and Satisfying the Terminal
Linear and Angular Velocity Constraints

To demonstrate the algorithm, we will use a 4™ order
polynomial in angular velocity and a linear angular
velocity control (Eqn. 11). Higher order controls could
also be used with no modifications. The initial linear
and angular velocities are known and trivially equal to
the a; and a, unknowns. The vector of control
coefficients is represented by g = [b;,,, ...tf]T.

@, =, +byt )+ cofty )P +dy(t ) +est)!

(12)
Vg, =V, T+ b2 (tf )

In this formulation, we will neglect actuator dynamics,
and wheel slip models, although including them
presents no difficulty. Doing so allows the terminal
linear and angular velocity to be determined in closed
form from the other variables and the constraints:

—w, —blts)-c P —dyle P
el(@o,@f,bl,clydl,lif-)zwa @y, (J(ft)f)fl(f) l(f)

Ve =V (13)
2

This is advantageous because the terminal linear and
angular velocity constraints are satisfied in each
iteration. The size of the system is also reduced (three
constraints P=(x.y ;) and four controls g=(b,,c;,d;,ty)

According to our approach of satisfying these
constraints in closed form, new values for e; must be
computed from the terminal angular velocity constraint
whenever the Jacobian or Hessian are computed. The
b, control parameter happens not to depend on any
value in g, so it does not need to be re-computed.

3.3 Terrain Following Model

A terrain following model is required in arbitrary
terrain to determine the vehicle roll and pitch at a given
pose. We will use a kinematic model based on the
Rocky 7 Mars rover prototype to illustrate. This
model, depicted in Fig. 3, employs a rocker-bogie
suspension  with  three degrees of freedom
B=[p.p:1.5-]") corresponding to the major and two
minor rocker-bogie angles respectively.
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Fig. 3. Suspension Kinematics Model.

3.4 Motion Prediction

Motion prediction takes the form of three coupled,
nonlinear equations. Euler integration is employed:

Xpons =X+, (t)cos(@(X, ,2(, )))cos(z//, )At

Vieas = Vit vx*(r)cos[e[ﬁ ,z(,>j)sin(w, A (14)
v o *(t) cosi¢iX,,z(,))) o
t+at =Y z _(_(_—))COSGX,,Z(,)

It is important to use a step size small enough to both:

a) provide good estimates of the integrals of the
linear and angular velocity controls, and
b) capture the effects of the profile of the terrain.

Notice that for flat terrain ((¢,6)=(0,0)), the forward
solution for the terminal heading integral can be found
in closed form. Doing so allows another variable to be
determined explicitly in terms of the other controls (g)
and the initial and terminal constraints (wy,wsw0,0y)
and it reduces the overall number of constraints to two.

3.5 Initialization/Termination

Ideally, we would like to seed the optimization
algorithm with a set of linear and angular velocity
controls which satisfy the terminal state constraints.
Using heuristics previously developed for the flat-plane
trajectory generator in [3], a proper set of controls can
be found by solving the fully-determined problem as in
[5]. Once this is found, a good initial guess for the
Lagrange multiplier vector A can be determined by
solving the underconstrained system in equation 15
using the right-pseudoinverse:
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The algorithm considers convergence to have occurred
at millimeter accuracy in position and milliradian
accuracy in heading. It must also achieve magnitudes
of the gradient of the Hessian less than 0.1. The
suspension model requires millimeter residuals in
wheel contact elevation.

4. RESULTS

In order to demonstrate the advantages of the
formulation, minimum time and minimum time/slope
dwell utility functionals are illustrated, but in general
any utility functional can be accommodated. The
minimum time utility functional generates the shortest
time path between states. The minimum time/slope
dwell formulation shows a trade-off between avoiding
high attitudes along the path and finding the shortest
path which satisfies the boundary conditions.

4.1 Minimum Time Performance Index

To find a minimum time path, the utility functional
J(g) is defined that minimizes the time integral to
achieve the terminal state:

Ja)= [ 1dt=t (16)

Figure 4 shows the minimum time solution for
connecting trajectories in a uniformly spaced lattice
overlaid on rough terrain. This result demonstrates that
even in the face of large terrain undulations, an optimal
continuous path consistent with the assumed
polynomial form of the solution controls can be found.
The network in Figure 4 has 35 nodes connected via 94
minimum time trajectories. Most achieved millimeter /
milliradian error in fewer than 5 iterations of the
algorithm with an average runtime per trajectory under
2 seconds.

Fig. 4. Connected state lattice generated over rough
terrain.

A second test of the algorithm involved solving for a
variety of trajectories with different terminal states
from a single initial state. Figure 5 shows paths
planned to 9 terminal positions at each of 5 distinct
terminal headings (the rovers are drawn at one of the 5
headings). Similar runtime and convergence results
were achieved in this test.

Fig. 5. A variety of terminal states in rough terrain,
solved with the present method. Note that terminal
positions and headings are correct despite the
cumulative effect of terrain undulations. Note also



that the terrain shape compensation leads to paths
which are not mirror images in 3D.

4.2 Minimum Slope Dwell Performance Index

For planetary rovers operating in rough terrain, a utility
function which also penalizes high roll and pitch values
can be used to solve for short paths which avoid slopes:

J(g) = I;' 1+ a(¢2 + Gz)dt a7

The “1” term in the integral represents the time that it
takes to achieve the terminal posture and the a
coefficient is a tuning parameter which represents the
trade-off between finding the shortest path and the path
which minimizes the amount of time spent on slopes —
here called “slope dwell”. As a approaches zero, the
minimum-time path will be found. Conversely as a
approaches infinity, the minimum slope dwell path will
be found.

To demonstrate the use of this utility functional, we try
to find the shortest path that satisfies the relative
terminal state (x,y,y) = (4.0,0.0,0.0). A large hill has
been placed between the initial and final states and a
safe alternate route (Figs. 6 and 7) must be found. The
minimum time formulation (« = 0) generates a straight
line which drives over the side of the hill. When the
tuning parameter is increased (a = 1), the algorithm
converges to a path which moves around most of the
hill. It still does not plan entirely around it because
shortest time also matters. By again increasing the
tuning parameter (o = 2), the path avoids the hill
entirely at the cost of increased time-to-goal.

Fig. 6. Top view of solutions to the minimum slope
dwell problem with varying a. Here, the a = 0
solution is highlighted in white to show that the
minimum time solution is the most direct path to
the goal.

Fig. 7. Perspective view of solutions to the
minimum slope dwell formulation with varying a.
Notice how as a is increased, the terrain
disturbance is avoided more aggressively.

5. CONCLUSIONS

An approach to trajectory generation has been
presented which is both highly general and relatively
efficient. Here, generality means at least two things.
First, the constrained optimization approach subsumes
several other problems (like the fully-constrained and
unconstrained variants) as special cases. Second, the
algorithm admits arbitrary terrain and vehicle models
that plug in at specific points in the computation while
making no assumptions about their form. The models
are required in only their (relatively easy to generate)
forward forms, and inversion of these models, when
needed, is accomplished numerically. All of the
published results of our group leading to this result are
special cases of it.

Runtimes under 2 seconds have been achieved on
contemporary laptop computers, for a highly complex
vehicle and arbitrary terrain, after paying little attention
to optimizing the code. Of course, we have also
published less capable variants of the method which
run in a few milliseconds, by assuming flat terrain,
simpler vehicles, and fully-constrained formulations.

Our results indicate that there are no remaining
barriers, and there are likely advantages, to



implementing such highly capable algorithms in
applications even as demanding as planetary rovers.
The computations are supportable even on the rover. A
new level of intelligence emerges with regard to local
motion planning, in terms of understanding the
vehicle’s capacity to move, the effect of terrain, and
the intelligent management of tradeoffs. Motions can
be executed in a manner which is best in some overall
sense related to increased efficiency and reduced risk.

Our intended future work involves the use of predictive
terrain following models in the generation of corrective
trajectories in feedback control. We are also pursuing
efficient global motion planning results based on state
lattices whose states are connected using the
techniques described herein.
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