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Abstract

For autonomously navigating vehicles, the automatic gen-
eration of dense geometric models of the environment is a
computationally expensive process. Yet, analysis suggests
that some approaches to mapping the environment in mobil-
ity scenarios can waste significant computational resources.
This paper proposes arelatively simple method of approach-
ing the minimum required perceptual throughput in aterrain
mapping system, and hence the fastest possible update of the
environmental model. We accomplish this by exploiting the
constraints of typical mobility scenarios. The technique pro-
posed will be applicable to any application that models the
environment with a terrain map or other 2-1/2 D representa-
tion.

1 Introduction

In this paper, we address one of the typical speed limi-
tations of autonomous outdoor vehicles of the present gener-
ation - perceptual throughput. This quantity can be expressed
in units of range or intensity pixels measured per second, or
its equivalent. From the days of the Stanford Cart [11] to the
Autonomous Land Vehicle [2], vehicle speed has been lim-
ited, at least in part, by limited perceptua throughput
[61091[8]-

In this paper, we will exploit several assumptions that
arevalid in most outdoor mobility scenariosin order to selec-
tively process only the data that mattersin range imagery. In
doing so, we will achieve near minimum perceptual through-
put and hence, near maximum safe vehicle speeds.

Selective processing of visua data is not a new idea.
This work falls into the research area of active or selective
vision [1][15]. Active perception systems tightly couple per-
ceptual components to the tasks that they support. They con-
trol aspects of the perception sensors or software in response
to the needs of the task or to external stimuli. Previous work
in active perception can be classified in terms of tracking,
servoing, and homing systems [13][7], driving [14], sensor
planning and object search [16], and mapping [5].
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Our work falls into the mapping category though ele-
ments of all active vision applications are common. We will
concentrate on selective data processing rather than sensor
control and we will introduce several useful refinements to
the obvious idea of continually looking somewhere new. In
particular, by incorporating knowledge of vehicle motion and
using justified geometric assumptions we are able to use
fairly trivial image space search to massively reduce the
computation required to map the environment.

The technique we use to selectively process datawill be
known as adaptive perception because it will adapt to
changes in the speed of the vehicle, the attitude of the vehi-
cle, and the slope of the terrain.

1.1 Terrain Mapping

When attempting to navigate over rough terrain, few
assumptions about the shape of the terrain ahead can be
made. It can be necessary to convert images into a full
description of the geometry of the scene at relatively high
rates. Asaresult, the speed of rough terrain navigationistyp-
ically limited by the throughput of the perception system. We
will call this predicament the perceptual throughput prob-
lem.

For autonomous navigation purposes, natural outdoor
terrain is well approximated by a surface expression of the
form z = f(x, y) where the z axis is aligned with the local
gravity vector and the x and y axes are parallel to the local
earth tangent plane. An important exception to this assump-
tion is trees and other large vegetation which overhang their
own supports. We assume either that the terrain is barren or
that we can safely fill in the space beneath the branchesin our
models.

The surface of surrounding terrain can be sensed by any
number of means, but the two most common ones are laser
rangefinders and stereo vision. We represent the surface of
the surrounding terrain by a sampled, uniform density data
structure called aterrain map or cartesian elevation map.



1.2  Perceptual Inefficiency

Luckily, analysis suggests [ 7] that much of the compu- Image
tational resources used to image and interpret the environ- Plane
ment can be awaste of resources in mobility scenarios. This
waste occurs for three principle reasons: Sfor}teirﬂgfn Grou““‘r‘]‘a ~

» Obstacles and other hazards normally appear in the field / Plane
of view long before they can be resolved, and long after

they cannot be avoided. Figure 1. Regions of Interest. A region of interest in the
* The sensor vertical field of view is normally aligned with ground plane forms a corresponding image in the image

the direction of travel so that image sequences normallp|ane,
contain much redundant information.

* The projection of image pixels on the groundplane isnor- A, ROI defined on the groundplane will be called a

gI]g ltljyegg[;gﬁtggdnn:i?]?mvnrr%nt%r%'&%%t;)%r: for robust ObSta‘@]round plane ROI. Such a region will have an image in the

We will show how to eliminate much of this ineffi- IMmage plane which will be called amage plane ROI.

ciency in order to generate perceptual throughput requiré1.2 Differential Relationships
ments that can be met easily. Let 8 andy be the elevation and azimuth coordinates

One approach to reducing redundant information is tH @ image pixel. Computing derivatives of the range image
use of laser and video line scanners. These have seen us¥ fit terrain leads to the differential relationships between
specialized high-speed inspection applications for songéoundplane (x,y) resolution and image plane resolution

time. In satellite applications, synthetic aperture radar he8 W):
used vehicle motion to provide the scanning motion of the
sensor along the direction of travel. The essential principle
involved in these examples is to avoid scanning the sensor

when either the motion of the vehicle or the motion of thﬁ1e local terrain gradients. These are unknown a priori

environment already acgomphsh the scanning. because terrain geometry is the very thing the sensor is sup-
The approach of using line-scanned sensors suffers B8sed to measure.

rough terrain because abrupt attitude changes of the vehiﬁlf3 Response Distance

body cause holes in the coverage of the sensor. Software . . .
y 9 A quantity of central concern to us will be the distance

adaptation provides the best of both worlds because it gives . )
P P g t 8t the vehicle requires to react to an external event such as

:22 \I/Si?iaelll}i/efl(c)jcgf Sg\j’vantigusosgrnig?Srziryhfgrg?nh speed Eme appearance of an obstacle in the sensor field of view. This
y g ' distance will be called theesponse distance and its precise
2 Prdiminaries value will depend on:

We will use two primary techniques for reduction of the® the speed of the vehicle when the event happens
perceptual inefficiencies mentioned above: « when the response is considered to be complete

. . L . « the maneuver chosen as the response
« We will actively maintain docus of attention and pro-
cess perceptual data only inregion of interest that 22  Subproblems
contains the most useful information. We have, at this point, nominatadaptive perception
+ We will actively andintelligently subsample the data as a solution to the perceptual throughput problem. Unfortu-
within that region of interest for adequate - but Nof ae)y this leads to a new set of problems, but we will be able

nn rily high - resolvin wer. ) o X . o
unhnecessarily nigh - resolving powe : to solve them with additional strategies and clearly identified
These two strategies will be referred to collectively as

adaptive perception - the organizing principle of our 2>oUMPHonS.

approach to terrain mapping for high speed mobility. 2.2.1 Response- Resolution Tradeoff Problem
. From the point of view of responding robustly to obsta-
2.1 Terminology

cles, it is best to detect obstacles early, or equivalently, at
We will call a region of space for which sensory data ijgh range from the vehicle. However, from the point of
required aregion of interest, abbreviated ROI. view of sensor resolving power, it is best to detect obstacles
2.1.1 Regionsof Interest as close as possible to the vehicle where data quality and spa-
It also will be important to distinguish the coordinateial resolution tends to be highest. In other words, the farther
system implied by the sensor image - calledthemeplane  away an obstacle is detected, the easier it is to avoid, but the
from a set of coordinates attached to the terrain - called tharder it is to detect it robustly. When either resolution or
ground plane. range is limited, we can detect an obstacle robustly or avoid

- —

dx = Rdy dy = (R°/h)do

The completely correct transformations also depend on
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it robustly, but not both. This is the response-resolution
tradeoff.

We will manage this tradeoff by explicitly computing
the minimum distance required for robust obstacle avoid-
ance and looking for obstacles only beyond this distance.
This technique will be called adaptive |lookahead.

2.2.2 Selection Problem

The mapping from the groundplane ROI to the image
plane ROI is both nonlinear (a projective transform) and a
function of the unknown shape of the terrain. It seems, there-
fore, that it isnot at all straightforward to efficiently find the
image plane ROI. Consider, for example, the straightforward
solution of converting coordinates of al pixelsin the image
and then comparing their positions to the groundplane ROI.
After pixels that are not in the groundplane ROI are elimi-
nated, oneisleft with theimage plane ROI. Whilethiswould
certainly work, it can be far too inefficient to be useful.

The largest computational cost of a range pixel is the
conversion of its coordinates from the image plane to the
ground plane. In attempting to select only the data of interest
by converting the coordinates of all pixels, one has already
done most of the perception task anyway. Any straightfor-
ward attempt to selectively process datain a region of inter-
est apparently falters because the problem of selectionis as
difficult as the problem of perception.

We will use assumptions to decouple these problems.
When the assumptions are combined with an appropriate
choice of the groundplane ROI, we will be able to partialy
infer the shape of theimage plane ROI and compute its posi-
tion by very efficient image plane search. The algorithm for
doing this will be called adaptive sweep.

2.2.3 Sampling Problem

The sampling problem isthe nonuniform and anisotro-
pic distribution of pixels on the groundplane which corre-
sponds to a uniform and isotropic distribution of the
corresponding pixels in the image plane. The Jacobian
matrix which relates the two distributions depends on both
the image projective transform and the local terrain slope at
each point. The impact of this problem is that not only isthe
shape of the image plane ROI distorted and of unknown
position but the loca pixel density required to sample the
groundplane uniformly is both unknown and different every-
where in the image plane ROI.

This variation in pixel density is shown below for flat
terrain. Each ellipse represents the footprint of a pixel. It is
thevariationin density which we areillustrating, not theden-
sity itself, so the images were subsampled to avoid clutter.

We will solvethis problem to some degree by choosing
the best compromize and, at other times, by actively comput-
ing the required image plane resolution from extrapol ation.
The agorithm for doing thiswill be called adaptive scan.
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Figure 2. Sampling Problem. Equally spaced image
pixels are not equally spaced on the groundplane - even for
flat terrain. The situation is worse for rough terrain.

2.3  Assumptions

Certain assumptions will be key components of our
approach - either because they must be made or because they
can be made with little or no loss of generality.

2.3.1 Sationary World

One of our most fundamental assumptions will be that
the environment is self stationary. That is, the environment
will be supposed to consist of rigid bodies whose relative
positionsarefixed - at least whilethey areinthefield of view
of the environmental sensor. While the bodies comprizing
the environment are self stationary, our vehicle isin motion
with respect to them. The value of this assumption is that it
allows us to image a point in the environment only once and,
because only the vehicle moves, its subsequent position rel-
ative to the vehicle at any later time can be inferred solely
from the vehicle motion.

2.3.2 Small Incidence Angle

We will use the term small incidence angle assump-
tion to refer to the situation where image pixels intersect a
theoretical flat world at glancing angles. Thisis guaranteed
to be the caseiif:

* the sensor is mounted on the vehicle roof, and
« pixels inside the response distance are ignored, and
« the vehicle speed is relatively high

because, under these conditions, the sensor height is

small relative to the range of any pixel.
Y

i N
| oY .

Y +n’ = R

Figure 3: Imaging Geometry. The height of the sensor
above the ground plane is normally small compared to the
ranges measured.

In the figure above, this assumption implies the validity



of the following approximations:

h «1 and Y=R
R
Wewill call R therangeand Y therange projection.

Itis easy to show that the relative error incurred in assuming
that these two quantities are the same is the square of the
ratio h/R. We will concentrate now on a specific class of
region of interest - one that can be specified in terms of two
range extremes. Let usdefinearangewindow or range gate
asaninterval givenby R .., and R, or, equivaently, by
its corresponding range projection extremes Y .. and
Ymin '

Suppose a pixel whose range projection is y isin a
range projection gate:

Ymi n<Yy< Ymax
Then, to first order, we have, under our assumption:
Rmi n<Yy< Rmax

Which is to say that we can directly compare range
pixel values (an image plane ROI) to aregion of interest on
the groundplane (a groundplane ROI) while incurring very
little relative error. The small incidence angle assumption
allows us to efficiently implement a test in the image plane
of membership in a groundplane ROI. Under our assump-
tion, it is not necessary to convert range pixel coordinates so
itinexpensively decouplesthe problem of selection from that
of perception. Only those pixels which satisfy the inexpen-
siveimage plane ROl membership test need have their coor-
dinates converted.

2.3.3 Near Monotone Range Assumption

At this point, we have an efficient test for membership
in a groundplane ROI. However, it is still expensive to test
every pixel in a range image against a range gate. A final
important assumption isthe assumption that the environment
is2-1/2 dimensiona with respect to the direction of gravity.
That is, a al points, aline aligned with gravity pierces the
first reflecting surface of the environment at most once. This
assumption justifies a terrain map representation and it also
allows us to assume that range is a near monotonic function
of image elevation angle. The worst case violation of this
monotone range assumption is the reduction in range that
occurs when avertical surface is scanned as shown bel ow.

The computational advantage of the assumption is that
once the maximum range is found in an image, all pixels
above it in the same column of the image can be safely
assumed to be beyond that range. It will turn out later that
this assumption will only be used in laser rangefinder imple-
mentations of adaptive perception. Stereo vision will not
requireit.
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Figure 4. Nonmonotone range. Range is a
nonmonotone function of image elevation angle at a
vertical or near vertical surface.

24 Design
Our adaptive perception agorithm confines the pro-
cessing of range geometry in any cycle of computationsto an
image plane ROI with the following properties:
« It extends beyond the vehicle response distance.
« Its size is the distance moved since the last cycle.

The algorithm has three conceptual parts as outlined
below.
2.4.1 Adaptive Lookahead

Adaptivelookahead means the process of adapting the
position of the groundplane ROI to assure that there is suffi-
cient time to react to hazards. There is some minimum range
inside of which it is unnecessary to look because the vehicle
is already committed to travel there. Also, there is some
maximum range beyond which it is unnecessary to look
because there will be time to look there later. In detail imple-
mentation, the algorithm can set the minimum range to the
response distance, or alternately, set the maximum range to
response distance plus the distance travelled per cycle.
2.4.2 Adaptive Sweep

Adaptive sweep is the process of adapting the width of
the groundplane ROI to assure that there are no holes or
execssive overlaps in the coverage of the sensor. The ROI
width is set to the distance travelled since the last computa-
tional cycle. This determines both the maximum and minu-
mum range projections in the groundplane and they are
trivially converted to the image plane ROI based on assump-
tions mentioned earlier.
2.4.3 Adaptive Scan

Adaptive scan is the process of managing resolution
within the image plane ROI in order to achieve uniform
groundplane resolution. For the data of interest, it will be
possible to compute an approximate mapping from ground-
plane resolution to image plane resolution and images will
be subsampled by appropriate factors to achieve near uni-
form groundplane resolution.

2.5 Implications

Certain implications of using the adaptive perception
algorithm are worth noting here.



251 Minimum Computational Cost Implies Highest
Speeds

The minumum computational cost of this approach to
perception hasimplications for the real-time performance of
autonomous vehicles. The maximum useful range of a per-
ception sensor is often limited by reasons of eye safety, com-
putational cost, limited angular resolution etc. Given this
limit, the highest safe vehicle speeds are normally achieved
by minimizing reaction times. The only element of reaction
time that can be changed easily is often the component due
to the time required to process imagery or perform other
computations. Therefore, to the degree that our approach
minimizes the computational cost of perception, it also
increases the vehicle speeds that can be achieved.
2.5.2 Adaptive Sweep Implies I mage Stabilization

Our software adaptive approach to perception has the
side effect of computationally pointing the sensor vertical
field of view by responding to both changes in the vehicle
attitude and changes in the shape of the imaged terrain.
While the shape of the range window may be very irregular
in image space, it aways corresponds to a regular semi-
annulus in the ground plane. If the vertical field of view is
wide enough and the range sensor is fast enough in terms of
range pixel rate, this software adaptation is superior to the
technique of physically stabilizing the sensor because it
responds instantaneously.

3 AdaptivelL ookahead for Range and Stereo
Imagery

The three techniques described in the previous section
can be applied to any range image generated by an imaging
laser or radar sensor or a stereo vision system. It is also pos-
sible to embed adaptive perception into a stereo vision algo-
rithm - which will be the subject of a specia section. For
both classes of imagery, range imagery and stereo pairs, the
adaptive lookahead algorithm is common.

A vehicle may attempt to turn to avoid obstacles and
maintain its forward speed, it may elect to stop completely,
or it may choose any other arbitrary trajectory. The choice of
trajectory determines the details of computing the response
distance. For our purposes, adaptive lookahead is imple-
mented by computing the distance required to execute a 90E
turn at the current speed. This gives the maximum range of
the range window.

The groundplane ROI must be defined very precisely in
terms of distances from some specific point on the vehicle at
some specific time. The problem of finding the data in this
region in animage taken previously involves several aspects
of time delays and geometric offsets.

so the ROI is adjusted for this offset.

enlarged to provide data at the positions of the wheels
forward and aft of the reference point.

« There may be significant delay associated with the acqui-
sition of an image, so the ROI must be adjusted for the
age of the image.

* The most recent vehicle state estimate is itself somewhat
old and computation takes finite time. The ROI may
need to be adjusted for these effects depending on the
instant with respect to which the ROI is defined.

4

Adaptive Sweep and Scan in Range
Imagery
If one starts with a dense range image, the algorithm

consists of the mapping of the range window into image
space and the extraction of the data.

41

the

Adaptive Sweep
Terrain roughness and nonzero vehicle roll mean that
position of the range window in the image is different for

each column so the range window is processed on a per col-
umn basis. In order to robustly find the range window, each
column is processed in the bottom-to-top direction.

A conceptual C code fragment is as follows. The image

itself is of dimensions rows by cols. A constant rectangular
subwindow of the image is searched which is delimited by

the

image plane coordinates start_row, start_col, end_row,

and end_col. This region is known to always contain the ROI

but

it is NOT responsible for most of the improvement in

efficiency.

j = start_col;
while (j <= end_col+col_skip )

i = end_row;
while (i >= start_row-row_skip )

{
R =range(i,));
if (R > Rmax )
break;
else if(R < Rmin)
{i -= row_skip; continue;}
else process_pixel_into_map();
i -= row_skip;

j += col_skip;

Figure 5: Adaptive Sweep Algorithm. The range window

is

processed on a per column basis in order to robustly

extract the data of interest.

Themonotonerange assumption appears as the break

statement after the first conditional of the inner loop. The
start_col and end_col variables implement a fixed azimuth
and elevation angle window within which the range window
always lies on typical terrain.

* The sensor is not mounted at the vehicle reference point.»

« The vehicle is not itself a point, so the ROl must be
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Adaptive Scan
The variables row_skip and col_skip have values cor-



responding to the constant image subsampling factors that  directly to the output of a stereo vision system. Yet, because
give the most acceptable groundplane resolution. Inthecase  stereo also consumes computational resources, it seems
of range images, adaptive scan is implemented by a literal  worthwhile to investigate whether similiar techniques can be
subsampling of the image. Also, this subsampling appliesto  employed inside of the stereo algorithm itself in order to
both the data in the ROI and the data below the ROI that is avoid computing range pixels that subsequently would be
not processed. That is, adapting the resolution can benefitthe  eliminated anyway.
speed of handling both the processed and the unprocessed Traditionally, the stereo problem is cast as one of deter-
data. mining the range for every pixel in the image. Traditional
Because the differential transformation from theimage  stereo finds the range for each possible angular pixel posi-
plane to the groundplane is unknown, a perfectly robust, tion. Conversely, our adaptive approach to stereo finds the
optimal subsampling solution is not available. However, a angular positions in the image plane of each possible range
spectrum of approaches to resolution management are avail-  value. It determines those pixels whose range value falls
able based on the frequency of update of the row_skip and  within a small range window, and it does so without comput-
col_skip variables and how they vary with range for an  ing the ranges of pixels which are not of interest. This prin-

assumed flat world. They can be computed based on: ciple is sometimes calladnge gating in laser rangefinders
« the highest projected value of the ROl maximum rangévhich employ it.
Rmax, based on the known speed limits of the vehicle. The motivation for the approach in the case of stereo is

* the Va“get.Of R|O| n?aximum range, Rmax, for the currenghe observation that the region of terrain which is beyond the
computational cycle. . vehicle response distance usually corresponds to a very nar-
« the instantaneous value of range, R, at the current pixel, . : . . .
: ; ; . - fow range in stereo disparity space. The nonlinear relation-
These options have been listed in order of increasi

ng. " . oo
speed and decreasing robustness. sgup between range and disparity also implies that range

i ) resolution is relatively poor at high ranges, so the computa-
Inthe least adaptive form of adaptive scan, the NUMbgg, of the range of low range pixels can be wasteful. How-
of pixels skipped in the horizontal and vertical directions cat\,er as before. the problem of selection, of determining

be set b_ased on the average or worst case expected Va'%%bership in a range gate without computing the range,
the maximum range. seems difficult.

0 0 . . ..
dy = ERl EHX 46 = oD _tly 51 Embedded A.daptlveS\Neep in Stc'areo'vlgon
max [Rmax 0 For stereo ranging systems, the basic principle of the

_ _ range window can be converted tdigparity window? for
In the next most adaptive form, the image plane resolg-stereo system because the range and disparity are related by
tions are recomputed for each image based on the currgf stereo baseline.

ROl maximum range. In the most adaptive form, imagg 4 1 Disparity Window
plane resolutions can be recomputed based on the instanta- The basic stereo configuration for perfectly aligned

heous range image values. However, it can be aWkwardcT?Qmeras is given below. It is useful to remove the depen-

vary the azimuth resolution as a function of range if ONfence of disparity on the focal length by expressing disparity

chooses to process the image bY (_:olumns. _ as an angle. Define thmr malized disparity thus:
The ratio of maximum to minimum range is normally

small, so the variationidy  (row_skip) is also small. Under 5=d_Db

this assumption, a good compromise is to use the worst case fy

azimuth resolution and the instantaneously computed eleva- Then, for a range window between 25 meters and 30
tion resolution. meters, and a stereo baseline of 1 meter, the angular width of

the corresponding disparity window is:
1 h
dy = ER Hix de = H;Z%Jy

_ 1 1 _ _
max = 55730 - 0.0067= 0.38

Ad

Although the flat world assumption may seem inappro-
priate on rough terrain, the use of it in adaptive scan wor][<s i
well in practice. yp

Thus, the range of disparities which corresponds to a
cal range window is roughly 1% of a typical camera field

5 Adaptive Sweep and Scan for Stereo here is a glight difference in the geometry of a stereo range image
Im agery (perspective) compared to arangefinder image (spherical polar . Therefore,

adisparity window corresponds to awindow on they coordinate and not the

The principles of the earlier section could be applietiue polar range. In most circumstances, this distinction can be safely
ignored.
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Figure 6: Stereo Triangulation. The relationship
between disparity d, range Y, baseline b, and focal
length f is derived from similiar triangles.

of view. In other words, the image coordinates of corre-
sponding points in both images are very close to each other
if the range of the point is beyond the response distance.
5.1.2 Local Minimum Problem

In traditional area-based stereo, correlations (or any of
anumber of other measures of similiarity of two image sub-
windows) are computed for awide range of disparities. Then
the algorithm searches along the curve generated for each
pixel for the disparity, d*, corresponding to the global cor-
relation maximum. The case for normalized image crosscor-
relation isillustrated below.

a4 d.. d d

min max

Figure 7. Disparity Search. The global maximum
correlation is the best match. Limiting the search can lead
to the wrong answer.

If, however, the search were limited to the disparity
window whose boundaries are d, ., and d;,, in the above
figure, the point of maximum correlation that would be
found would only be alocal minimum. No information other
than the absolute value of the measure of similiarity would
indicate this. If arange image were generated based on the
results of thislimited disparity search, the image would con-
tain:

* correct ranges for pixels whose true range happened

fall within the range window searched.

« incorrect ranges for pixels like the one illustrated abov
which defeated our best attempts to identify them at th

stage of processing.

illustrated below.

) ﬂ'
va 4

Figure 8: Spurious Disparities. Correctly ranged pixels
tend to form large connected smooth regions. Incorrect
ones do not.

Legend

Y

Correct
Range

Incorrect
Range

No
Range

It is well known that spurious matches occur fundamen-
tally because regions which do not correspond physically
actually look more or less the same. Several solutions to this
repetitive texture problem help the situation somewhat but
the simple technique of computing connected components
and removing small regions [9] works effectively and is
computationally free because a disparity image cleanup pass
is required even when a wide disparity range is searched.

52 Embedded Adaptive Scan in Stereo Vision

In the case of stereo vision, the situation for adaptively
changing resolution is more complex because range resolu-
tion and angular resolution are coupled. That is, once angular
resolution is fixed, range resolution is also fixed, yet each
has independent constraints imposed on it by the application.
It is not possible, for instance, to aggressively reduce hori-
zontal image resolution (as would be done with a range
image) at the input to stereo because range resolution will
also be dramatically and unacceptably degraded.

The least that can be done, however, is to compute the
degree to which the output range image would be subsam-
pled and then the latter stages of stereo (the stages past the
correlation computation) can simply ignore the unwanted
pixels. Before correlation, those unwanted pixels may be
needed to participate in computing the correlations.

6 Results

The following two sections present performance results
for adaptive perception based on laser range images and ste-
@ vision. For these results, the vehicle speed is 3 meters/
gecond and the resolution of the generated terrain map is 0.75
jeters in both horizontal directions. An oversampling factor
of 2 is also incorporated into adaptive scan as a safety margin

Nevertheless, the environment is often smooth, and tisprotect against terrain undersampling.
smoothness leads to the property that correct ranges tend to While adaptive perception resamples a range image for
form large smooth regions whereas incorrect ones do not@simum coverage of the terrain, the specific attributes of the
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range sensor and cameras used for the following results are

given in the table below:

Table 1; Sensor Parameters

Attribute rEaEIgl\eAfilr?jgrr CCD camera

Image Rows 64 640

Image Cols 256 486

Hor. Field of View 80~ 20"

Vert. Field of View 30" 20"

Hor. Angular Resolution  [0.3125" 0.0412°

Vert. Angular Resolution  [0.4688~ 0.0312°
Frame Rate 2Hz 30 Hz

6.1 Rangelmage Adaptive Perception

Inatypical image, the pixelsthat are actually processed
by the adaptive perception agorithm form a horizontal band
that is jagged-edged and of varying width. The width of the
band decreases if the vehicle speed increases because adap-
tivelookahead will move the window up in theimage where
asmaller width projects onto the same groundpl ane di stance.

The following figure gives a sequence of range images
for arun of our navigation system simulator? on very rough
terrain using a simulated rangefinder where the pixels that
were actually processed fall between the thin black lines. On
average, only 75 range pixels out of the available 10,000 (or
2%) were processed per image. In terms of areasimaged per
second, the system throughput isincreased by afactor of 100
times, or two orders of magnitude.

There are five range images arranged vertically on the
left. These are rendered as intensity images where darker
greys indicate increasing distance from the sensor. The ter-
rain map constructed by the perception systemisrendered on
the right. The top figure shows the map as an image where
lighter greys indicate higher elevations. In the center of the
map is the vehicle at the position where the 5th image was
captured. The lower right figure is the same terrain map ren-
dered as a wireframe surface from the vantage point of the
initial position.

There are three hills in the scene whose range shadows
are clearly visible in the terrain map. In the first image, the
vehicle is accelerating but still travelling relatively slowly.
The range window isrelatively wide and positioned near the
bottom of the image. Thefirst hill isin the range window. In
the second image, the second hill isin the range window and
the first hill has already been processed. Indeed, none of the
left side of the image is processed because the data in the
range window is occluded. In the third image, thethird hill is
now in the range window. In the fourth image, the vehicleis

°The system performsidentically on real images but simulated oneswere
used herein order to illustrate several pointsin limited space.
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driving past the first hill and isrolled to the right because of
it. Thisrolls theimage to the | eft and the al gorithm compen-
sates appropriately. In the fifth image, the range window has
moved past the third hill to the flats beyond and afourth hill
is barely visible in the distance.

Image 1 il 3

Figure 9: Adaptive Rangefinder Perception. The
processing of five range images is illustrated as the vehicle
drives through an obstacle course of three hills.

Actual perception performance is given in the tables
below for a series of images of flat terrain. In the table, the
nonadaptive value corresponds to the result obtained by pro-
cessing al pixels in the ERIM range image. The adaptive
value is the value obtained by our range image agorithm:
Table 2: Rangefinder Adaptive Perception Performance

(SPARC 20)
Attribute Nonadaptive Adaptive
PixelsProcessed [16384 75
Per Image
Run Time 0.352 secs 0.022 secs

The results do not scale linearly with pixels processed
because the adaptive result includes a constant setup time.
Nonetheless, the adaptive result is 16 times faster than the
nonadaptive result and if the ERIM sensor had higher angu-
lar resolution, the improvement would be proportionally bet-
ter. The system uses barely adequate spatial resolution and
eliminates redundant measurements and hence achieves
minimum throughput.

6.2 Stereo Vision

The following figureillustrates the operation of embed-
ded adaptive stereo on two horizontal baseline input images.
These are images of a barren ravine road near CMU taken
from inside theravine. Theinitia input images appear at the
left. To the right of these are the nonadaptively processed
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