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Abstract

For autonomously navigating vehicles, the automatic gen-
eration of dense geometric models of the environment is a
computationally expensive process. Yet, analysis suggests
that some approaches to mapping the environment in mobil-
ity scenarios can waste significant computational resources.
This paper proposes a relatively simple method of approach-
ing the minimum required perceptual throughput in a terrain
mapping system, and hence the fastest possible update of the
environmental model. We accomplish this by exploiting the
constraints of typical mobility scenarios. The technique pro-
posed will be applicable to any application that models the
environment with a terrain map or other 2-1/2 D representa-
tion.

1 Introduction
In this paper, we address one of the typical speed limi-

tations of autonomous outdoor vehicles of the present gener-
ation - perceptual throughput. This quantity can be expressed
in units of range or intensity pixels measured per second, or
its equivalent. From the days of the Stanford Cart [11] to the
Autonomous Land Vehicle [2], vehicle speed has been lim-
ited, at least in part, by limited perceptual throughput
[6][9][8].

In this paper, we will exploit several assumptions that
are valid in most outdoor mobility scenarios in order to selec-
tively process only the data that matters in range imagery. In
doing so, we will achieve near minimum perceptual through-
put and hence, near maximum safe vehicle speeds. 

Selective processing of visual data is not a new idea.
This work falls into the research area of active or selective
vision [1][15]. Active perception systems tightly couple per-
ceptual components to the tasks that they support. They con-
trol aspects of the perception sensors or software in response
to the needs of the task or to external stimuli. Previous work
in active perception can be classified in terms of tracking,
servoing, and homing systems [13][7], driving [14], sensor
planning and object search [16], and mapping [5].  

Our work falls into the mapping category though ele-
ments of all active vision applications are common. We will
concentrate on selective data processing rather than sensor
control and we will introduce several useful refinements to
the obvious idea of continually looking somewhere new. In
particular, by incorporating knowledge of vehicle motion and
using justified geometric assumptions we are able to use
fairly trivial image space search to massively reduce the
computation required to map the environment.

The technique we use to selectively process data will be
known as adaptive perception because it will adapt to
changes in the speed of the vehicle, the attitude of the vehi-
cle, and the slope of the terrain. 

1.1 Terrain Mapping
When attempting to navigate over rough terrain, few

assumptions about the shape of the terrain ahead can be
made. It can be necessary to convert images into a full
description of the geometry of the scene at relatively high
rates. As a result, the speed of rough terrain navigation is typ-
ically limited by the throughput of the perception system. We
will call this predicament the perceptual throughput prob-
lem.

For autonomous navigation purposes, natural outdoor
terrain is well approximated by a surface expression of the
form  where the z axis is aligned with the local
gravity vector and the x and y axes are parallel to the local
earth tangent plane. An important exception to this assump-
tion is trees and other large vegetation which overhang their
own supports. We assume either that the terrain is barren or
that we can safely fill in the space beneath the branches in our
models.

The surface of surrounding terrain can be sensed by any
number of means, but the two most common ones are laser
rangefinders and stereo vision. We represent the surface of
the surrounding terrain by a sampled, uniform density data
structure called a terrain map or cartesian elevation map. 
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1.2 Perceptual Inefficiency
Luckily, analysis suggests [7] that much of the compu-

tational resources used to image and interpret the environ-
ment can be a waste of resources in mobility scenarios. This
waste occurs for three principle reasons:

• Obstacles and other hazards normally appear in the field
of view long before they can be resolved, and long after
they cannot be avoided.

• The sensor vertical field of view is normally aligned with
the direction of travel so that image sequences normally
contain much redundant information.

• The projection of image pixels on the groundplane is nor-
mally elongated in the wrong direction for robust obsta-
cle detection and minimum throughput.

We will show how to eliminate much of this ineffi-
ciency in order to generate perceptual throughput require-
ments that can be met easily.

One approach to reducing redundant information is the
use of laser and video line scanners. These have seen use in
specialized high-speed inspection applications for some
time. In satellite applications, synthetic aperture radar has
used vehicle motion to provide the scanning motion of the
sensor along the direction of travel. The essential principle
involved in these examples is to avoid scanning the sensor
when either the motion of the vehicle or the motion of the
environment already accomplish the scanning.

The approach of using line-scanned sensors suffers on
rough terrain because abrupt attitude changes of the vehicle
body cause holes in the coverage of the sensor. Software
adaptation provides the best of both worlds because it gives
the ideally focussed attention necessary for high speed and
the wide field of view necessary for rough terrain.

2 Preliminaries
We will use two primary techniques for reduction of the

perceptual inefficiencies mentioned above:

• We will actively maintain a focus of attention and pro-
cess perceptual data only in a region of interest that
contains the most useful information.

• We will actively and intelligently subsample the data
within that region of interest for adequate - but not
unnecessarily high - resolving power.

These two strategies will be referred to collectively as
adaptive perception - the organizing principle of our
approach to terrain mapping  for high speed mobility.

2.1 Terminology
We will call a region of space for which sensory data is

required a region of interest, abbreviated ROI. 

2.1.1 Regions of Interest
It also will be important to distinguish the coordinate

system implied by the sensor image - called the image plane
from a set of coordinates attached to the terrain - called the
ground plane.

An ROI defined on the groundplane will be called a
ground plane ROI. Such a region will have an image in the
image plane which will be called an image plane ROI. 
2.1.2 Differential Relationships

Let  and  be the elevation and azimuth coordinates
of an image pixel. Computing derivatives of the range image
of flat terrain leads to the differential relationships between
groundplane (x,y) resolution and image plane resolution
( , ):

The completely correct transformations also depend on
the local terrain gradients. These are unknown a priori
because terrain geometry is the very thing the sensor is sup-
posed to measure. 

2.1.3 Response Distance
A quantity of central concern to us will be the distance

that the vehicle requires to react to an external event such as
the appearance of an obstacle in the sensor field of view. This
distance will be called the response distance and its precise
value will depend on:

• the speed of the vehicle when the event happens
• when the response is considered to be complete
• the maneuver chosen as the response
2.2 Subproblems

We have, at this point, nominated adaptive perception
as a solution to the perceptual throughput problem. Unfortu-
nately, this leads to a new set of problems, but we will be able
to solve them with additional strategies and clearly identified
assumptions.

2.2.1 Response - Resolution Tradeoff Problem
From the point of view of responding robustly to obsta-

cles, it is best to detect obstacles early, or equivalently, at
high range from the vehicle. However, from the point of
view of sensor resolving power, it is best to detect obstacles
as close as possible to the vehicle where data quality and spa-
tial resolution tends to be highest. In other words, the farther
away an obstacle is detected, the easier it is to avoid, but the
harder it is to detect it robustly. When either resolution or
range is limited, we can detect an obstacle  robustly or avoid

Figure 1: Regions of Interest. A region of interest in the
ground plane forms a corresponding image in the image
plane.
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it robustly, but not both. This is the response-resolution
tradeoff. 

We will manage this tradeoff by explicitly computing
the minimum distance required for robust obstacle avoid-
ance and looking for obstacles only beyond this distance.
This technique will be called adaptive lookahead.

2.2.2 Selection Problem
The mapping from the groundplane ROI to the image

plane ROI is both nonlinear (a projective transform) and a
function of the unknown shape of the terrain. It seems, there-
fore, that it is not at all straightforward to efficiently find the
image plane ROI. Consider, for example, the straightforward
solution of converting coordinates of all pixels in the image
and then comparing their positions to the groundplane ROI.
After pixels that are not in the groundplane ROI are elimi-
nated, one is left with the image plane ROI. While this would
certainly work, it can be far too inefficient to be useful.

The largest computational cost of a range pixel is the
conversion of its coordinates from the image plane to the
ground plane. In attempting to select only the data of interest
by converting the coordinates of all pixels, one has already
done most of the perception task anyway. Any straightfor-
ward attempt to selectively process data in a region of inter-
est apparently falters because the problem of selection is as
difficult as the problem of perception.

We will use assumptions to decouple these problems.
When the assumptions are combined with an appropriate
choice of the groundplane ROI, we will be able to partially
infer the shape of the image plane ROI and compute its posi-
tion by very efficient image plane search. The algorithm for
doing this will be called adaptive sweep.

2.2.3 Sampling Problem
The sampling problem is the nonuniform and anisotro-

pic distribution of pixels on the groundplane which corre-
sponds to a uniform and isotropic distribution of the
corresponding pixels in the image plane. The Jacobian
matrix which relates the two distributions depends on both
the image projective transform and the local terrain slope at
each point. The impact of this problem is that not only is the
shape of the image plane ROI distorted and of unknown
position but the local pixel density required to sample the
groundplane uniformly is both unknown and different every-
where in the image plane ROI. 

This variation in pixel density is shown below for flat
terrain. Each ellipse represents the footprint of a pixel. It is
the variation in density which we are illustrating, not the den-
sity itself, so the images were subsampled to avoid clutter.

We will solve this problem to some degree by choosing
the best compromize and, at other times, by actively comput-
ing the required image plane resolution from extrapolation.
The algorithm for doing this will be called adaptive scan.

2.3 Assumptions
Certain assumptions will be key components of our

approach - either because they must be made or because they
can be made with little or no loss of generality.

2.3.1 Stationary World
One of our most fundamental assumptions will be that

the environment is self stationary. That is, the environment
will be  supposed to consist of rigid bodies whose relative
positions are fixed - at least while they are in the field of view
of the environmental sensor. While the bodies comprizing
the environment are self stationary, our vehicle is in motion
with respect to them. The value of this assumption is that it
allows us to image a point in the environment only once and,
because only the vehicle moves, its subsequent position rel-
ative to the vehicle at any later time can be inferred solely
from the vehicle motion.

2.3.2 Small Incidence Angle
We will use the term small incidence angle assump-

tion to refer to the situation where image pixels intersect a
theoretical flat world at glancing angles. This is guaranteed
to be the case if:

• the sensor is mounted on the vehicle roof, and
• pixels inside the response distance are ignored, and
• the vehicle speed is relatively high

because, under these conditions, the sensor height is
small relative to the range of any pixel.

In the figure above, this assumption implies the validity

Figure 2: Sampling Problem. Equally spaced image
pixels are not equally spaced on the groundplane - even for
flat terrain. The situation is worse for rough terrain.
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of the following approximations:

  We will call  the range and  the range projection.
It is easy to show that the relative error incurred in assuming
that these two quantities are the same is the square of the
ratio . We will concentrate now on a specific class of
region of interest - one that can be specified in terms of two
range extremes. Let us define a range window or range gate
as an interval given by   and  or, equivalently, by
its corresponding range projection extremes  and

.

Suppose a pixel whose range projection is  is in a
range projection gate:

Then, to first order, we have, under our assumption:

Which is to say that we can directly compare range
pixel values (an image plane ROI) to a region of interest on
the groundplane (a groundplane ROI) while incurring very
little relative error. The small incidence angle assumption
allows us to efficiently implement a test in the image plane
of membership in a groundplane ROI. Under our assump-
tion, it is not necessary to convert range pixel coordinates so
it inexpensively decouples the problem of selection from that
of perception. Only those pixels which satisfy the inexpen-
sive image plane ROI membership test need have their coor-
dinates converted.

2.3.3 Near Monotone Range Assumption
At this point, we have an efficient test for membership

in a groundplane ROI. However, it is still expensive to test
every pixel in a range image against a range gate. A final
important assumption is the assumption that the environment
is 2-1/2 dimensional  with respect to the direction of gravity.
That is, at all points, a line aligned with gravity pierces the
first reflecting surface of the environment at most once. This
assumption justifies a terrain map representation and it also
allows us to assume that range is a near monotonic function
of image elevation angle. The worst case violation of this
monotone range assumption is the reduction in range that
occurs when a vertical surface is scanned as shown below.

The computational advantage of the assumption is that
once the maximum range is found in an image, all pixels
above it in the same column of the image can be safely
assumed to be beyond that range. It will turn out later that
this assumption will only be used in laser rangefinder imple-
mentations of adaptive perception. Stereo vision will not
require it.

2.4 Design
Our adaptive perception algorithm confines the pro-

cessing of range geometry in any cycle of computations to an
image plane ROI with the following properties:

• It extends beyond the vehicle response distance.
• Its size is the distance moved since the last cycle.

The algorithm has three conceptual parts as outlined
below.

2.4.1 Adaptive Lookahead
Adaptive lookahead means the process of adapting the

position of the groundplane ROI to assure that there is suffi-
cient time to react to hazards. There is some minimum range
inside of which it is unnecessary to look because the vehicle
is already committed to travel there. Also, there is some
maximum range beyond which it is unnecessary to look
because there will be time to look there later. In detail imple-
mentation, the algorithm can set the minimum range to the
response distance, or alternately, set the maximum range to
response distance plus the distance travelled per cycle.

2.4.2 Adaptive Sweep
Adaptive sweep is the process of adapting the width of

the groundplane ROI to assure that there are no holes or
execssive overlaps in the coverage of the sensor. The ROI
width is set to the distance travelled since the last computa-
tional cycle. This determines both the maximum and minu-
mum range projections in the groundplane and they are
trivially converted to the image plane ROI based on assump-
tions mentioned earlier.

2.4.3 Adaptive Scan
Adaptive scan is the process of managing resolution

within the image plane ROI in order to achieve uniform
groundplane resolution. For the data of interest, it will be
possible to compute an approximate mapping from ground-
plane resolution to image plane resolution and images will
be subsampled by appropriate factors to achieve near uni-
form groundplane resolution.

2.5 Implications
Certain implications of using the adaptive perception

algorithm are worth noting here.
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2.5.1 Minimum Computational Cost Implies Highest
Speeds

The minumum computational cost of this approach to
perception has implications for the real-time performance of
autonomous vehicles. The maximum useful range of a per-
ception sensor is often limited by reasons of eye safety, com-
putational cost, limited angular resolution etc. Given this
limit, the highest safe vehicle speeds are normally achieved
by minimizing reaction times. The only element of reaction
time that can be changed easily is often the component due
to the time required to process imagery or perform other
computations. Therefore, to the degree that our approach
minimizes the computational cost of perception, it also
increases the vehicle speeds that can be achieved.

2.5.2 Adaptive Sweep Implies Image Stabilization
Our software adaptive approach to perception has the

side effect of computationally pointing the sensor vertical
field of view by responding to both changes in the vehicle
attitude and changes in the shape of the imaged terrain.
While the shape of the range window may be very irregular
in image space, it always corresponds to a regular semi-
annulus in the ground plane. If the vertical field of view is
wide enough and the range sensor is fast enough in terms of
range pixel rate, this software adaptation is superior to the
technique of physically stabilizing the sensor because it
responds instantaneously.

3 Adaptive Lookahead for Range and Stereo 
Imagery
The three techniques described in the previous section

can be applied to any range image generated by an imaging
laser or radar sensor or a stereo vision system. It is also pos-
sible to embed adaptive perception into a stereo vision algo-
rithm - which will be the subject of a special section. For
both classes of imagery, range imagery and stereo pairs, the
adaptive lookahead algorithm is common.

A vehicle may attempt to turn to avoid obstacles and
maintain its forward speed, it may elect to stop completely,
or it may choose any other arbitrary trajectory. The choice of
trajectory determines the details of  computing the response
distance. For our purposes, adaptive lookahead is imple-
mented by computing the distance required to execute a 90E
turn at the current speed. This gives the maximum range of
the range window. 

The groundplane ROI must be defined very precisely in
terms of distances from some specific point on the vehicle at
some specific time. The problem of finding the data in this
region in an image taken previously involves several aspects
of time delays and geometric offsets.

• The sensor is not mounted at the vehicle reference point,
so the ROI is adjusted for this offset. 

• The vehicle is not itself a point, so the ROI must be

enlarged to provide data at the positions of the wheels
forward and aft of the reference point.

• There may be significant delay associated with the acqui-
sition of an image, so the ROI must be adjusted for the
age of the image.

• The most recent vehicle state estimate is itself somewhat
old and computation takes finite time. The ROI may
need to be adjusted for these effects depending on the
instant with respect to which the ROI is defined. 

4 Adaptive Sweep and Scan  in Range 
Imagery
If one starts with a dense range image, the algorithm

consists of the mapping of the range window into image
space and the extraction of the data.

4.1 Adaptive Sweep
Terrain roughness and nonzero vehicle roll mean that

the position of the range window in the image is different for
each column so the range window is processed on a per col-
umn basis. In order to robustly find the range window, each
column is processed in the bottom-to-top direction.

A conceptual C code fragment is as follows. The image
itself is of dimensions rows by cols. A constant rectangular
subwindow of the image is searched which is delimited by
the image plane coordinates start_row, start_col, end_row,
and end_col. This region is known to always contain the ROI
but it is NOT responsible for most of the improvement in
efficiency. 

The monotone range assumption appears as the break
statement after the first conditional of the inner loop. The
start_col and end_col variables implement a fixed azimuth
and elevation angle window within which the range window
always lies on typical terrain.

4.2 Adaptive Scan
  The variables row_skip and col_skip have values cor-

j = start_col;
while ( j <= end_col+col_skip )

{
i = end_row;
while ( i >= start_row-row_skip )

{
R = range(i,j);
if (R > Rmax ) 

break;
else if( R < Rmin ) 

{i -= row_skip; continue;}
else process_pixel_into_map();

i -= row_skip;
}

j += col_skip;
}

Figure 5: Adaptive Sweep Algorithm. The range window
is processed on a per column basis in order to robustly
extract the data of interest.



Page 6

responding to the constant image subsampling factors that
give the most acceptable groundplane resolution. In the case
of range images, adaptive scan is implemented by a literal
subsampling of the image. Also, this subsampling applies to
both the data in the ROI and the data below the ROI that is
not processed. That is, adapting the resolution can benefit the
speed of handling both the processed and the unprocessed
data. 

Because the differential transformation from the image
plane to the groundplane is unknown, a perfectly robust,
optimal subsampling solution is not available. However, a
spectrum of approaches to resolution management are avail-
able based on the frequency of update of the row_skip and
col_skip variables and how they vary with range for an
assumed flat world. They can be computed based on:

• the highest projected value of the ROI maximum range,
Rmax, based on the known speed limits of the vehicle.

• the value of ROI maximum range, Rmax, for the current
computational cycle.

• the instantaneous value of range, R, at the current pixel.
These options have been listed in order of increasing

speed and decreasing robustness.

In the least adaptive form of adaptive scan, the number
of pixels skipped in the horizontal and vertical directions can
be set based on the average or worst case expected value of
the maximum range.

In the next most adaptive form, the image plane resolu-
tions are recomputed for each image based on the current
ROI maximum range.  In the most adaptive form, image
plane resolutions can be recomputed based on the instanta-
neous range image values. However, it can be awkward to
vary the azimuth resolution as a function of range if one
chooses to process the image by columns. 

The ratio of maximum to minimum range is normally
small, so the variation in  (row_skip) is also small. Under
this assumption, a good compromise is to use the worst case
azimuth resolution and the instantaneously computed eleva-
tion resolution.

Although the flat world assumption may seem inappro-
priate on rough terrain, the use of it in adaptive scan works
well in practice. 

5 Adaptive Sweep and Scan for Stereo 
Imagery
The principles of the earlier section could be applied

directly to the output of a stereo vision system. Yet, because
stereo also consumes computational resources, it seems
worthwhile to investigate whether similiar techniques can be
employed inside of the stereo algorithm itself in order to
avoid computing range pixels that subsequently would be
eliminated anyway.

Traditionally, the stereo problem is cast as one of deter-
mining the range for every pixel in the image. Traditional
stereo finds the range for each possible angular pixel posi-
tion. Conversely, our adaptive approach to stereo finds the
angular positions in the image plane of each possible range
value. It  determines those pixels whose range value falls
within a small range window, and it does so without comput-
ing the ranges of pixels which are not of interest. This prin-
ciple is sometimes called range gating in laser rangefinders
which employ it.

The motivation for the approach in the case of stereo is
the observation that the region of terrain which is beyond the
vehicle response distance usually corresponds to a very nar-
row range in stereo disparity space. The nonlinear relation-
ship between range and disparity also implies that range
resolution is relatively poor at high ranges, so the computa-
tion of the range of low range pixels can be wasteful. How-
ever, as before, the problem of selection, of determining
membership in a range gate without computing the range,
seems difficult.

5.1 Embedded Adaptive Sweep in Stereo Vision
For stereo ranging systems, the basic principle of the

range window can be converted to a disparity window1 for
a stereo system because the range and disparity are related by
the stereo baseline. 

5.1.1 Disparity Window
The basic stereo configuration for perfectly aligned

cameras is given below. It is useful to remove the depen-
dence of disparity on the focal length by expressing disparity
as an angle. Define the normalized disparity thus:

Then, for a range window between 25 meters and 30
meters, and a stereo baseline of 1 meter, the angular width of
the corresponding disparity window is:

Thus, the range of disparities which corresponds to a
typical range window is roughly 1% of a typical camera field
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Rmax
------------ 

  dx= dθ h

Rmax
2

---------------
 
 
 

dy=

dψ

dψ 1
Rmax
------------ 

  dx= dθ h

R
2

------ 
  dy=

1There is a slight difference in the geometry of a stereo range image
(perspective)  compared to a rangefinder image (spherical polar . Therefore,
a disparity window corresponds to a window on the y coordinate and not the
true polar range. In most circumstances, this distinction can be safely
ignored.

δ d
f
---

b
Y
---= =

∆δ 1
25
------

1
30
------– 0.0067 0.38°= = =



Page 7

of view.    In other words, the image coordinates of corre-
sponding points in both images are very close to each other
if the range of the point is beyond the response distance.

5.1.2 Local Minimum Problem
In traditional area-based stereo, correlations (or any of

a number of other measures of similiarity of two image sub-
windows) are computed for a wide range of disparities. Then
the algorithm searches along the curve generated for each
pixel for the disparity, , corresponding to the global cor-
relation maximum. The case for normalized image crosscor-
relation is illustrated below. 

If, however, the search were limited to the disparity
window whose boundaries are  and  in the above
figure, the point of maximum correlation that would be
found would only be a local minimum. No information other
than the absolute value of the measure of similiarity would
indicate this. If a range image were generated based on the
results of this limited disparity search, the image would con-
tain:

• correct ranges for pixels whose true range happened to
fall within the range window searched.

• incorrect ranges for pixels like the one illustrated above
which defeated our best attempts to identify them at this
stage of processing.

Nevertheless, the environment is often smooth, and this
smoothness leads to the property that correct ranges tend to
form large smooth regions whereas incorrect ones do not as

illustrated below. 

It is well known that spurious matches occur fundamen-
tally because regions which do not correspond physically
actually look more or less the same. Several solutions to this
repetitive texture problem help the situation somewhat but
the simple technique of computing connected components
and removing small regions [9] works effectively and is
computationally free because a disparity image cleanup pass
is required even when a wide disparity range is searched.

5.2 Embedded Adaptive Scan in Stereo Vision
In the case of stereo vision, the situation for adaptively

changing resolution is more complex because range resolu-
tion and angular resolution are coupled. That is, once angular
resolution is fixed, range resolution is also fixed, yet each
has independent constraints imposed on it by the application.
It is not possible, for instance, to aggressively reduce hori-
zontal image resolution (as would be done with a range
image) at the input to stereo because range resolution will
also be dramatically and unacceptably degraded.

The least that can be done, however, is to compute the
degree to which the output range image would be subsam-
pled and then the latter stages of stereo (the stages past the
correlation computation) can simply ignore the unwanted
pixels. Before correlation, those unwanted pixels may be
needed to participate in computing the correlations.

6 Results
The following two sections present performance results

for adaptive perception based on laser range images and ste-
reo vision. For these results, the vehicle speed is 3 meters/
second and the resolution of the generated terrain map is 0.75
meters in both horizontal directions. An oversampling factor
of 2 is also incorporated into adaptive scan as a safety margin
to protect against terrain undersampling.

While adaptive perception resamples a range image for
optimum coverage of the terrain, the specific attributes of the
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Figure 6: Stereo Triangulation. The relationship
between disparity , range , baseline , and focal
length  is derived from similiar triangles.

d Y b
f

Optical Image
PlanesAxes

Object

Right
Camera

Left
Camera

f

Y

b

d*

Figure 7: Disparity Search. The global maximum
correlation is the best match. Limiting the search can lead
to the wrong answer.

Cd

1.0

dd* dmin dmax

dmax dmin

Figure 8: Spurious Disparities. Correctly ranged pixels
tend to form large connected smooth regions. Incorrect
ones do not.

Correct
Range

Incorrect
Range

No
Range

Legend

Range Image



Page 8

range sensor and cameras used for the following results are
given in the table below:

6.1 Range Image Adaptive Perception
In a typical image, the pixels that are actually processed

by the adaptive perception algorithm form a horizontal band
that is jagged-edged and of varying width. The width of the
band decreases if the vehicle speed increases because adap-
tive lookahead will move the window up in the image where
a smaller width projects onto the same groundplane distance.

The following figure gives a sequence of range images
for a run of our navigation system simulator2 on very rough
terrain using a simulated rangefinder where the pixels that
were actually processed fall between the thin black lines. On
average, only 75 range pixels out of the available 10,000 (or
2%) were processed per image. In terms of areas imaged per
second, the system throughput is increased by a factor of 100
times, or two orders of magnitude.

There are five range images arranged vertically on the
left. These are rendered as intensity images where darker
greys indicate increasing distance from the sensor. The ter-
rain map constructed by the perception system is rendered on
the right. The top figure shows the map as an image where
lighter greys indicate higher elevations. In the center of the
map is the vehicle at the position where the 5th image was
captured. The lower right figure is the same terrain map ren-
dered as a wireframe surface from the vantage point of the
initial position. 

There are three hills in the scene whose range shadows
are clearly visible in the terrain map. In the first image, the
vehicle is accelerating but still travelling relatively slowly.
The range window is relatively wide and positioned near the
bottom of the image. The first hill is in the range window. In
the second image, the second hill is in the range window and
the first hill has already been processed. Indeed, none of the
left side of the image is processed because the data in the
range window is occluded. In the third image, the third hill is
now in the range window. In the fourth image, the vehicle is

driving past the first hill and is rolled to the right because of
it. This rolls the image to the left and the algorithm compen-
sates appropriately. In the fifth image, the range window has
moved past the third hill to the flats beyond and a fourth hill
is barely visible in the distance.

Actual perception performance is given in the tables
below for a series of images of flat terrain. In the table, the
nonadaptive value corresponds to the result obtained by pro-
cessing all pixels in the ERIM range image. The adaptive
value is the value obtained by our range image algorithm:

The results do not scale linearly with pixels processed
because the adaptive result includes a constant setup time.
Nonetheless, the adaptive result is 16 times faster than the
nonadaptive result and if the ERIM sensor had higher angu-
lar resolution, the improvement would be proportionally bet-
ter. The system uses barely adequate spatial resolution and
eliminates  redundant measurements and hence achieves
minimum throughput.

6.2 Stereo Vision
The following figure illustrates the operation of embed-

ded adaptive stereo on two horizontal baseline input images.
These are images of a barren ravine road near CMU taken
from inside the ravine. The initial input images appear at the
left. To the right of these are the nonadaptively processed

Table 1: Sensor Parameters

Attribute
ERIM laser 
rangefinder

CCD camera

Image Rows 64 640

Image Cols 256 486

Hor. Field of View 80° 20°
Vert.  Field of View 30° 20°
Hor. Angular Resolution 0.3125° 0.0412°
Vert. Angular Resolution 0.4688° 0.0312°
Frame Rate 2 Hz 30 Hz

2The system performs identically on real images but simulated ones were
used here in order to illustrate several points in limited space.

Table 2: Rangefinder Adaptive Perception Performance 
(SPARC 20)

Attribute Nonadaptive Adaptive

Pixels Processed 
Per Image

16384 75

Run Time 0.352 secs 0.022 secs

Figure 9: Adaptive Rangefinder Perception. The
processing of five range images is illustrated as the vehicle
drives through an obstacle course of three hills.

Image 2

Image 3

Image 4

Image 5

Image 1

Hill 3

Hill 2

Hill 1

Hill 2

Hill 3

Hill 1
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disparity and range images. To the extreme right are the
adaptively processed disparity and range images. The dispar-
ity images are shown to demonstrate the spurious matches
which are caused by incorrectly chosen extrema in the corre-
lation versus disparity curves. 

A breakdown of this run is shown in the table below:

7 Conclusions
It has been shown that an adaptive approach to percep-

tion based on the techniques of adaptive sweep and adaptive
scan has several advantages. A more complete list of these
advantages is as follows:

• It has the potential to solve or mitigate the perceptual
throughput problem defined earlier. 

• It computationally stabilizes a sensor within the limits of
the sensor field of view. It converts an imaging sensor
into an ideal adaptive scanner by adapting to vehicle
speed, attitude and terrain shape.

• For limited field of view sensors, it provides an obvious
basis for the generation of sensor pointing commands
which keep a region of interest centered in the image.

• It solves the sampling problem for practical purposes
because variation in the range ratio is very low over the
small elevation width of the range window.

8 References
[1] R. Bajcsy, “Active and Exploratory Perception’, Computer

Vision, Graphics, and Image Processing - Image Understand-
ing, Vol 56, No 1, July 1992.

[2] M. Daily et al., “Autonomous Cross Country Navigation with
the ALV”, In Proc. of the 1988 IEEE International Conference
on Robotics and Automation, Philadelphia, Pa, April 1988;
pp. 718-726.

[3] E.D. Dickmanns. “Dynamic computer vision for mobile robot
control”, Proceedings of the 19th International Symposium
and Exposition on Robots, pp. 314-27;  

[4] R. T. Dunlay and D. G. Morgenthaler, “Obstacle Detection
and Avoidance from Range Data”, In Proc. SPIE Mobile
Robots Conference, Cambridge, Mass., 1986

[5] E. Grosso, and M. Tissarelli, “Active/Dynamic Stereo
Vision”, IEEE Trans on Pattern Analysis and Machine Intelli-
gence, Vol 17, No 9, pp. 868-879, Sept 1995.

[6] M. Hebert, T. Kanade, and I. Kweon. “3-D Vision Techniques
for Autonomous Vehicles”, Technical Report CMU-RI-TR-
88-12, The Robotics Institute, Carnegie Mellon University,
1988

[7] E. Huber, “Object Tracking with Stereo Vision”, Proc of Conf.
on Intelligent Robots in Factory, Field, Space and Service.
Houston, Tx, March 1994.

[8] A. J. Kelly, “An Intelligent Predictive Control Approach to the
High-Speed, Cross Country Autonomous Navigation Prob-
lem”, Ph. D. thesis, Robotics Institute, Carnegie Mellon Uni-
versity, June 1995.

[9] In So Kweon, “Modelling Rugged Terrain by Mobile Robots
with Multiple Sensors”, CMU PhD Thesis, 1990

[10] L. Matthies, “Stereo Vision for Planetary Rovers”, Interna-
tional Journal of Computer Vision, 8:1, 71-91, 1992.

[11] H. P. Moravec, “Obstacle Avoidance and Navigation in the
Real World by a Seeing Robot Rover”, Ph. D. Thesis, Stan-
ford University, 1980. 

[12] K. E. Olin and David Tseng. “Autonomous Cross Country
Navigation”, IEEE Expert, August 1991.

[13] N. K. Papanikolopoulos, “The Framework of Controlled
Active Vision”, Mathematical and Computer Modelling, Vol
25, No 5-6, pp. 145-163, Sept 1996.

[14] D. A. Reece and S. A. Shafer, “Control of Perceptual Atten-
tion in Robot Driving”, Artificial Intelligence, Vol 78, No 1-
2, p 397-430, Oct 1995.

[15] M. J. Swain and M. A. Stricker, “Promising Directions in
Active Vision”, International Journal of Computer Vision, Vol
11, No 2. Oct 1993.

[16] J. K. Tsotsos, “On the Relative Complexity of Active Versus
Passive Visual Search”, International Journal of Computer
Vision, Vol 7, Jan 1992.

Table 3: Stereo Adaptive Perception Performance 
(SPARC 20)

Attribute  Nonadaptive Adaptive

 Output Rows 120 48

Output  Cols 128 128

Disparities 60 10

Preprocessing 102 msecs. 41 msecs.

Correlation 683 msecs. 69 msecs.

Postprocessing 754 msecs. 74 msecs.

Total Runtime 1539 msecs. 203 msecs.

Figure 10: Adaptive Horizontal Baseline Stereo. The
incorrect disparities due to incorrect matches are cleaned
up with an efficient filter.
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Range RangeRight
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