
Abstract

We propose a principled method to create a search space for
constrained motion planning, which efficiently encodes only
feasible motion plans. The space of possible paths is
encoded implicitly in the connections between states, but
only feasible and only local connections are allowed. Fur-
thermore, we propose a systematic method to generate a
near-minimal set of spatially distinct motion alternatives.
This set of motion primitives preserves the connectivity of
the representation while eliminating redundancy -- leading
to a very efficient structure for motion planning at the cho-
sen resolution.

1 Introduction
Discrete representation of states is a well-established
method of reducing the computational complexity of plan-
ning at the expense of reducing completeness. However, in
motion planning, such discrete representations complicate
the satisfaction of differential constraints which reflect the
limited maneuverability of many real vehicles. We propose
a mechanism to achieve the computational advantages of
discretization while satisfying motion constraints.
To this end we introduce a search space, referred to as the
state lattice, which is the conceptual construct that is used
to formulate a nonholonomic motion planning query as
graph search. The state lattice is a discretized set of all
reachable configurations of the system. It is built here in an
inverse manner by using an inverse path generator. For a
moment, let us imagine that an ideal inverse path generator
exists that, given initial and final configurations in an
obstacle-free C-space, generates a feasible path between
them or reports that no path exists.
The lattice is constructed by discretizing the C-space into a
hyperdimensional grid and attempting to connect the origin
with every node of the grid using a feasible path, an edge.
The lattice in general is also assumed to contain all feasible
paths, up to a given resolution, which implies that if it is
possible for a vehicle to travel from one node to another
node, then the lattice contains a sequence of paths to per-
form this maneuver. Hence, it is possible to conclude that
this formulation allows resolution complete planning que-
ries.
Like a grid, the state lattice converts the problem of plan-
ning in a continuous function space into one of generating a
sequence of decisions chosen from distinct alternatives.
Unlike a grid, the state lattice encodes no default assump-
tions about how states are connected. Conversely, it is typi-
cal to assume that adjacent cells in a grid are connected in a

4-connected or 8-connected arrangement.
Such default connectivity fails to capture nonholonomic
constraints, leaving them to be considered heuristically in
the optimization process during planning, or as an after-
thought in plan post-processing. The lattice, however, has
an important property that each connection represents a
feasible path. A connectivity scheme that intrinsically rep-
resents mobility constraints leads to superior motion plan-
ning results because no time is wasted either generating,
evaluating, or fixing infeasible plans.
As a time-unlimited reachability graph, the state lattice
includes every node in the grid. We can visualize this by
imagining growing the state lattice from the origin; at some
time enough paths will be contained in the lattice to per-
form a parallel parking maneuver, essentially allowing the
robot to move sideways. Thus, in order to encode nonholo-
nomic constraints, it is important to capture local connec-
tivity of the state lattice, within a limited radius from the
origin.
We use this intuition to define a finite subset of the state lat-
tice that only includes paths from the origin out to some
radius. This control set is desired to be a minimal set of
primitive paths that, when concatenated, can re-generate
any other path in the lattice. We seek to make this control
set minimal because it is used as a set of alternatives, out-
degree, at every node during search, and it is important to
minimize it for efficiency.
Thus, the control set can be viewed as a time-limited reach-
ability graph. The state lattice is used implicitly to define
such a set. An important part of this paper is the discussion
on how to construct the set of controls such that it is small
in size (to minimize the branching factor of graph search),
yet preserves the connectivity of the state lattice.

1.1 Prior Work
The utility of the lattice is hinged on the assumption that it
is possible to determine a feasible path between any two
configurations in a C-space without obstacles. While this is
itself a very difficult problem, it has been the objective of
much research in the past century. Frazzoli et al. in [3] sug-
gest that there are many cases where efficient, obstacle-free
paths may be computed analytically, e.g. the systems with
linear dynamics and a quadratic cost (double or triple inte-
grators with control amplitude and rate limits). The cases
that do not admit closed-form solutions can be approached
numerically by solving an appropriate optimal control
problem.
A fast nonholonomic trajectory generator was described in
[6]. It generates polynomial spiral trajectories, such that a
Generating Near Minimal Spanning Control Sets for Constrained Motion Planning in
Discrete State Spaces

Mihail Pivtoraiko and Alonzo Kelly
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

email: mihail@cs.cmu.edu, alonzo@ri.cmu.edu

path is specified by a continuous control function: curva-
ture as a function of path length. Another method for gener-
ating continuous curvature paths is presented in [13].
In the case of systems that can be expressed as
and are not underactuated, it was shown that through care-
ful discretization in control space it is possible to force the
resulting reachability graph of system to be a lattice [10]. It
was also shown in [12] that this technique can be applied to
a large class of nonholonomic systems. That approach pre-
sents a way to generate a path given its terminal points and
shows how under suitable conditions a regular lattice of
reachable points can be achieved. However, this is usually
difficult to achieve, and under most quantizations the verti-
ces of the reachability graph are unfortunately dense in the
reachable set [10]. By using an inverse path generator, we
can choose a convenient discretization in control and state
space, one that makes the search more efficient. This also
allows us to use continuous control functions that are natu-
ral for real systems.
The importance and difficulty of enforcing differential con-
straints also has a long history [8]. Barraquand and
Latombe encoded nonholonomic constraints in the dis-
cretized configuration space and incrementally explored
that space by discretizing control space, choosing a control
and integrating the system kinematics [1]. Similar ideas
were utilized in Probabilistic Roadmap (PRM) methods
that were very influential in motion planning [4]. However,
a recent trend appears to favor more deterministic variants
of the PRM [11]. In [2], Quasi-PRM and Lattice Roadmap
(LRM) are introduced by using low-discrepancy Halton/
Hammersley sequences and a regular lattice, respectively,
for sampling. These approaches were shown to make plan-
ning more efficient by more uniform sampling of the state
space and achieved more efficient exploration. Both meth-
ods were shown to be resolution-complete; the LRM
appeared especially attractive due to its properties of opti-
mal dispersion and near-optimal discrepancy.
Also, a “Lazy” variant of these methods was discussed that
avoided collision checking during the roadmap construc-
tion phase. In this manner the same roadmap could be used
in a variety of settings, at the cost of performing collision
checking during the search. An even “lazier” version is
suggested, in which “the initial graph is not even explicitly
represented” [2]. In this regard, our approach of using an
implicit lattice and searching it by means of a pre-com-
puted control set that only captures local connectivity is
very similar to the Lazy LRM. Our contribution is in
exploring the conjecture made in that work and success-
fully applying it to nonholonomic motion planning.
In the development of Rapidly-exploring Dense Trees
(RDT) for motion planning with differential constraints, the
importance of designing off-line a family of motion primi-
tives that captures the specifics of the system under consid-
eration is noted [10]. In this light, our proposed control set
is precisely that set of primitives that reflects symmetries of
wheeled vehicles and encodes nonholonomic constraints.
Thus, this work is aligned with the latest in developments
of RDT and new deterministic sampling methods devel-
oped for them, while borrowing the efficiencies of “Lazy”
exploration of state space.
Initial concepts of this work were explored in a successful
field implementation of a nonholonomic motion planner
built using the state lattice of limited size represented

explicitly [5].
2 State Lattice
In order to proceed with the construction of the control set,
it is helpful to explore the properties of the search space
that it is designed to represent, i.e. the implicit state lattice.

2.1 Control Model For a Car-Like Robot
We consider a car-like robot as a 4D system from a kine-
matic perspective and as a 3D system from a geometric per-
spective. We assume to denote the reference point of
the vehicle, its orientation, and the angle of steering
wheels. The configuration space is . The
two controls of the car are its velocity and the time deriv-
ative of the steering angle. A configuration

 is considered admissible if , i.e.
the steering angle is constrained by some mechanical
bounds [7]. Thus, a car-like vehicle obeys the following
control model.

This system was proven in [9] to be small-time controllable
at any point. Thus, starting from any configuration, the set
of configurations reachable by moving with bounded
velocity in finite time always contains a neighborhood of
the initial configuration. This result enables us to consider
some finite neighborhood of the state lattice, a control set,
to be a good representative of all motions that are reachable
in finite time.
An important class of wheeled robots, such as differential
drive, obey a more general system definition. By setting

 and we obtain the following 3D
control system:

where and can be considered as translational and
angular velocity, respectively [7]. By constraining these
two variables, this system formulation can be utilized for
car-like robots, so henceforth we use it in our discussion.
For path planning purposes it is convenient to relate the two
velocities by

where is curvature of the path. Curvature is defined for
all motions of non-zero translational velocity, and thus is a
convenient representation of paths.

2.2 Inverse Path Generation
Among several approaches discussed in Section 1.1 that
allow finding a sequence of controls from a given initial
configuration to a final configuration, we evaluated the one
described in [6]. This approach allows fast generation of
nonholonomic trajectories. The assumed form of the solu-
tion path is a curvature polynomial of arbitrary order. The

q·· g q u,()=

x y,()
θ ζ

C R2 S1()×
2

=
v

ω
q x y θ ζ, , ,()= ζ ζmax≤

x
y
θ
ϕ

ϕ θcoscos
ϕ θsincos
ϕsin

0

v

0
0
0
1

ω+=

ṽ v ζcos= ω̃ v ζsin=

x·

y·

θ·

θcos
θsin

0

ṽ
0
0
1

ω̃+=

ṽ ω̃

κ ω
ṽ
----= (1)

κ

Page 2

method was shown to provide good results and in principle
allows optimization w.r.t. several criteria. In particular, a
convenient feature was that computed paths contain the
least curvature variation. The continuous specification of
paths was convenient to manipulate and execute in vehicle
controllers. The method executes practically in real-time: a
query is computed in about 1 millisecond.

2.3 Constructing the State Lattice
To elucidate our idea of the state lattice, we give an exam-
ple of constructing it for the Reeds-Shepp Car.
We illustrate building the lattice by noting its similarity to a
reachability graph of a system. Figure 1 shows a reachabil-
ity graph for the Reeds-Shepp Car with three actions, suit-
ably discretized for clarity. As the car travels infinitely, the
graph is constructed by “compiling” all feasible motions.
The state lattice, however, is constructed by using the
inverse path generator to find paths between any node in
the grid and the origin (black square in Figure 2). Although
for this simple example, the lattice structure can be
achieved without using inverse path generation (i.e. by
choosing a special discretization of state and control space
[10]), this is much more difficult to do in the general case
of wheeled robots. Since the choice of the origin in con-
structing the lattice was arbitrary (because the same set of
motions is available from any node) we can copy the entire
set of feasible paths to any node in the lattice (we will for-
mally define this in Section 2.5).
In the limit, as both the graph in Figure 1 is expanded by
the Reeds-Shepp car traveling infinitely long, and the lat-
tice in the Figure 2 is built by including the feasible paths
from the origin to any node (and copying the resulting set
to all nodes), both the graph and the lattice will be identical
by virtue of representing all feasible paths (Figures 1c and
2d). Without loss of generality, we henceforth consider the
state lattice to be a valid representation of the system’s
reachability graph.
Next we look more closely at two important properties of
the lattice and its utility for formulating nonholonomic path
planning as graph search.

2.4 Discretization
Discretization converts the motion planning problem into a
sequential decision process. We adopt the typical strategy
of assuming that decisions are made only at discrete states.

The states are the nodes in the lattice and the motions that
connect the states are the edges.
While the state vector can certainly have arbitrary dimen-
sion, for this paper we have implemented the state lattice in
4 dimensions. Each node of the lattice therefore represents
a 4-dimensional posture that includes 2D position, heading
and curvature. This representation allows the lattice to be
general enough to satisfy typical nonholonomic and holo-
nomic constraints for automobiles.
We assume that position is discretized into rectangular grid
of separation . Any useful heading discretization is
admissible, and in Section 4.1 we introduce a heading dis-
cretization scheme that leads to maximizing straight line
motion plans. For now, let us assume uniform division of
the interval . The same holds for discretizing curva-
ture in the interval , where

is maximum curvature, a reciprocal of , minimum
turning radius, expressed in the same units of length as .
We assume that this value is defined for a planning prob-
lem.

2.5 Regularity
If the discretization exhibits any degree of regularity, then
the spatial relationships between two given states will reoc-
cur often due to the existence of other identically arranged
pairs of states. A discretization exhibiting some degree of
regularity leads to a set of motion options which is simi-
larly regular.
For the balance of the paper, we adopt the assumption that
the state space discretization is regular in at least the trans-

Figure 1: Reachability graph for the Reeds-Shepp Car. Various
stages of construction of the reachability graph are shown. A
Reeds-Shepp Car of three actions specially discretized is allowed
to move anywhere in the workspace.

Figure 2: Constructing the lattice for the Reeds-Shepp Car. In
a) we define a discretization in C-space (an grid is chosen
here, arrows indicate allowed headings), an origin is chosen; b) for
8 neighbor nodes around the origin, feasible paths are found; c)
same query is extended outward to 24 neighors, only a few direct
paths shown; d) complete lattice.

x y,()

∆l

0 2π,[]
κmax– κmax,[]

κmax
1

Rmin
-----------=

Rmin
∆l
Page 3

lational coordinates . Specifically, if the path between
two postures:

is feasible, then so is the path

for any value of the integer . While the starting and end-
ing states for two such motions are distinct, the motion
itself (perhaps encoded as a steering function) is not.
Indeed, we can now consider only the set of motions ema-
nating from the origin. Only that canonical set needs to be
represented explicitly. The entire lattice can be obtained by
repeating this representation at any other node (Fig. 2b).

2.6 Equivalence of Paths in the Lattice
State space discretizations associate small regions of space
surrounding the center of a cell with the cell itself. If space
is to be discretized, it is consistent to ask whether paths
through space should be similarly discretized.
We will consider two paths (with identical endpoints)
which are sufficiently far apart to be distinct. If the paths
are “sufficiently” close together, we can consider them to
be equivalent. We define a path to be equivalent to if
the path is contained in the interior of a certain region

 around , defined as a set of configurations within a
certain distance of :

given some metric and constant .
All paths that satisfy this criterion are considered to belong
to the same equivalence class (Figure 3).
It is important to note that this definition of path equiva-
lence is consistent with applications to mobile robotics.
Typically, there is a certain error of path following for real-
istic vehicles. By exploiting this error, motion planning can
be made more efficient, as presented below.

2.7 Lattice as a Search Space
The state lattice presented thus far possesses the properties
necessary to express nonholonomic motion planning as
graph search.
A cost-map can be overlaid on the lattice to represent
obstacles or other criteria with respect to which we want to
find an optimum obstacle-free motion plan (energy, slope
hazard, etc.). We also assume a path sampling procedure
that returns the cost of traversal of a path given the cost of

cells spanned by the path. By virtue of containing all feasi-
ble motions, the lattice is a cyclic graph. Any standard sys-
tematic heuristic graph search algorithm can be applied.
An implementation of a nonholonomic motion planner
based on the state lattice has been successfully constructed
for an off-road robotics application [5]. This application of
generating complicated start-stop motions in dense tree
mazes motivated the original investigation into a regular
state lattice encoding constraints directly.
In that work, a further simplification was made in consider-
ing only a unique path between two lattice nodes. Also,
only a finite subset of the lattice was considered. Despite
the latest computing hardware on-board the robot, the sub-
set of the lattice that could be represented and processed (to
produce plans in 20 seconds) allowed motion plans within a
rather limited area around the robot.
Nevertheless, the real-time implementation of the planner
was shown to work very well for navigating a mobile robot
in natural cluttered environments. Figure 4 depicts an
example motion plan that allowed the vehicle to avoid a
natural cul-de-sac. The greyscale portion in the figure rep-
resents the cost-map, pink indicates obstacles, and orange
is the area of unknown cost. Yellow line represents the gen-
erated plan.

3 Control Set
Whereas the state lattice was used as a search space for a
motion planner, there are considerable limitations to this
approach in the case of planning over a large area in a
workspace. Memory requirements for storing the entire lat-
tice and the number of alternatives a search algorithm must
consider (outdegree) impose a significant limit to applica-
bility of this method.
Similar issues arise in applications of Lazy LRM to non-
holonomic motion planning. In many off-road scenarios it
is desired to consider a large area of the workspace during
planning, which results in a prohibitively large explicit rep-
resentation of the roadmap. Hence there is special value in
considering even a “lazier” version that considers the
underlying lattice implicitly, which is what we advocate
here.
Also, the majority of the literature on PRM and its variants
considers a rather arbitrary choice of the neighborhood in
order to pick to expand a node. Often a constant radius
around a node that is to be expanded is used. Here we
present a principled method of choosing the neighborhood
in question that both offers practical guarantees of best

x y,()

x1 y1 θ1 κ1, , ,[] x2 y2 θ2 κ2, , ,[]→

x1 n∆l+ y1 n∆l+ θ1 κ1, , ,[] x2 n∆l+ y2 n∆l+ θ2 κ2, , ,[]→

n

Figure 3: Path Equivalence. A variety of paths between two
configurations (thin black lines) that are contained in the
boundary (blue lines) are considered to be equivalent and
represented by a canonical path (red line).

p2 p1
p2

Q p1
p1

q∀ p1∈ q'∀ C∈ Q, , q' ρ q' q,() δe<〈 | 〉=

ρ δe

Figure 4: A non-holonomic planner based on the state lattice.
A 5-point turn maneuver is generated by the state lattice based
planner to avoid a natural cul-de-sac.
Page 4

exploration of the lattice and keeps the neighborhood size
small to preserve search efficiency.

3.1 Path Decomposition
With the insights obtained in Section 2.6, we again look at
the lattice as a concept derived from a grid. The regularity
property of the grid implies that it is possible to isolate a
certain representative set of connections which is repeated
everywhere in the grid. As is illustrated in Fig. 6, for the
case of a 4-connected rectangular grid, it is easy to identify
a minimal set of connections. If we cast the grid in the con-
text of motion planning, we understand connections as ele-
mentary motions between two nodes. This minimal set of
connections is the (finite) set of controls that is identical for
every state and that allows us to generate arbitrarily long
motion plans in the infinite grid. This concept has been
used in motion planning for some time [8].
In a similar fashion, if we could identify such a control set
for a lattice, we could use it to address the computational
issues mentioned above and essentially create a finite rep-
resentation of the lattice.
By invoking the notion of path equivalence class and some
non-zero , we can substitute a path with two other paths
such that their concatenation generates a motion that
belongs to the same equivalence class as the original path.
We define path decomposition as the problem of finding
two such constituents of a path (Figure 7).
By definition of path decomposition, the two constituent
paths must meet at a lattice node. Intuitively, the longer a
path is, the more lattice nodes it comes “close” to, hence
the easier it is to find a decomposition because there are
more “opportunities” to do so. Hence, it may be possible to
decompose all motions in the lattice and create a finite con-
trol set, as was done for a grid. However, whereas in case of
the grid, the nodes are equidistant and hence component
paths have constant length, no such assumptions can be
made regarding paths in the lattice. Due to this generality, it
is difficult to create a rigorous proof that the entire infinity
of motions, of infinite length, of the lattice can be decom-
posed in this fashion.

However, through a simulation study we concluded that
this is possible for realistic vehicle parameters (and
path following error). We considered over 2000 differ-
ent (relatively long) paths in the lattice and showed that all
of them could be decomposed into at least two (usually
more) smaller paths.
Thus, the control set allows us to eliminate redundancies of
the lattice both in terms of the variety of paths between
nodes (through the notion of path equivalence), and in
terms of generally unlimited path length (path decomposi-
tion).

3.2 Properties of the Control Set
As a representation of the state lattice as a search space, the
control set contains motion alternatives that a search algo-
rithm has to consider at each node. There are several impor-
tant properties of the control set that make it attractive for
nonholonomic motion planning.
3.2.1 Minimal Set of Feasible Motions
The process of path decomposition can be implemented in
a variety of ways. Our formulation of decomposition
admits constructing a decomposition algorithm that gener-
ates the smallest possible set of motion alternatives. That is,
given some control set, if there exists another set that has
fewer motion alternatives, then the algorithm chooses it.
Inductively, the algorithm will arrive at the smallest repre-
sentation of motions of the lattice. This result implies that
the resulting control set is the most efficient search space
satisfying the original constraints applied to its construc-
tion. However, given that we make no assumptions about
the nature of paths, verifying that a control set is indeed
minimal requires comparing it to all possible templates,
which is intractable.
Nevertheless, in Section 4 we discuss control set generation
algorithms that operate on a finite, but large, subset of the
lattice, use realistic vehicle parameters, and generate near-
minimal motion templates. Such templates were shown to

Figure 6: Isolating a minimal set of motions in a 4-connected
grid. The minimal set of motions, a control set, can be used to re-
generate the entire grid.

Figure 7: An illustration of path decomposition.

δe

κmax
δe

Figure 8: An illustration of identifying a control set in the
lattice. The same set of motion options (top left corner) is
centered at every node. This set is repeated at the nodes in
the lattice in order to generate the path (thick black curve).
Page 5

preserve the valuable quality of being able to re-generate,
through concatenation, any feasible path in the lattice.
3.2.2 Control Set Radius
We define control set radius, denoted as , as a measure
of the size of the control set. If we visualize a smallest
square outline (bounding box) that encloses 2D workspace
projections of all paths in the control set, then denotes
half of the length of the squares sides.
3.2.3 Relative Minimum Turning Radius
An interesting property of the control set is that it couples
the vehicle-dependent parameter, , and resolution of
the lattice, . Thereby, the size of the control set is related
to maneuverability of the vehicle in terms of . To capture
this relationship, we define the notion of relative minimum
turning radius, :

We use this notion later as a scale-invariant characteristic of
a control set (i.e. the measure of “curviness” of its paths).
4 Generation of the Control Set
Here we provide an example of generating and using con-
trol sets in practical scenarios.

4.1 Inverse Generation
Given a method to generate the set of distinct feasible paths
to a single state, the control set can be generated by a pro-
cess of structured elimination. First, paths to all states one
unit from the origin are generated, then, paths to all states
two units from the origin, etc. When a path is considered, it
is tested for passing sufficiently close to an intermediate
state, and if so, it is removed from the control set because it
can be decomposed into the path to this state from the ori-
gin and the path from this state to the end-point. Since we
are moving radially outward, any path that can be decom-
posed may be removed from the control set because its
“ingredients” have already been considered. Each of them
is either in the control set already or does not need to be
because it itself is decomposable.
This process terminates at the certain radial distance from
the origin when all paths at that distance can be decom-
posed. Through simulation studies similar to the one men-
tioned in Section 3.1 we verified that this termination
condition is a good heuristic for obtaining a control set that
spans the entire state lattice.
This inverse generation strategy was implemented for an
Ackerman steer vehicle. We discuss several important

design decisions and the results of this control set genera-
tion.
Although a uniform discretization of heading is an option,
we found it useful to discretize heading differently. Dis-
crete headings that point directly to another state encode
straight lines in many more directions than equally spaced
headings (Fig. 9).
Motion alternatives were expressed as polynomial steering
(curvature) functions of cubic order:

Such functions possess exactly the 5 degrees of freedom
required to join any two poses with arbitrary initial and ter-
minal curvatures. An algorithm to generate the steering
function between two arbitrary states is described in [6].
This choice also implies that the computed path between
any two given states with specified curvatures is unique.
It was confirmed that, given choices of (similar to val-
ues used in a previous mobile robot project [5]), there
exists a control set radius beyond which all trajectories pass
sufficiently close to some intermediate state and are
decomposed. Table 1 presents some experimental values of
the generated control sets. Also, we include the time
required to generate each set, which appears to be quite rea-
sonable for an off-line process that can be utilized in a vari-
ety of motion planning scenarios.

4.2 Experimental Results
We used the control set generated in the previous section to
solve an instrument placement problem for a planetary
rover (Figure 11). Here the environment is very cluttered as
it includes a variety of difficult terrain on the slope of the
crater; the background is a pseudocolor of ground height,

Rcs

Rcs

κmax
∆l

∆l

R'

R'
Rmin
∆l

----------- 1
κmax∆l
-----------------= =

Figure 9: Heading discretization. A discretization of heading is
chosen such that we implicitly represent straight paths whenever
it is possible.

Figure 10: An Example Control Set. This set of paths was
generated at . Paths in this set can be combined to
generate any other spatially distinct feasible motion in the state
lattice emanating from the origin at the initial heading and
curvature. Only three sets of paths with initial heading of 0, 26.6
and 45 deg. are specified; all others are obtained by reflection
around x- and y-axes, and the two diagonals.

R' 20=

κ s() a bs cs2 ds3+ + +=

R'
Page 6

such that the slope is downward from right to left. The
rover must approach each target at a specified heading.
Two paths are shown for each of the five targets: actual
paths (solid lines) and one of other consider paths (dotted
lines). This illustrates how the planner takes into account
energy considerations. Selecting lower curvature path is
important, but going over hills (e.g. in the middle of figure)
has higher cost.
The planner was able to handle this problem quite easily.
The experiment was performed 100 times, and the average
run-time was 3.5 seconds for each path segment.
5 Applications
A fast and efficient implementation of heuristic search can
be built using the control set to search the space of feasible
motions (the state lattice) in a systematic fashion.
In the discussion we focused on applying this technique to
wheeled mobile robots. However, the concept of the control
set is portable in principle to any motion planning problem.
The presented method can be viewed as a steering planning
component that can be combined with a velocity planning
component to create a kinodynamic motion planner, similar
to [14]. If the capability of the vehicle to follow a path at
high speed can be roughly related to a maximum angular
velocity the vehicle can experience, then the maximum
velocity of traversal at any point along the path can be
directly obtained from path specification as using (1).
This is in accord with the intuition that the curvier the path,

the slower a vehicle must traverse it.
6 Conclusions and Future Work
This work has proposed a generative formalism for the con-
struction of motion templates for constrained motion plan-
ning. The inherent encoding of constraints in the resulting
representation re-renders the problem of motion planning
in terms of unconstrained heuristic search. As the outdegree
of nodes becomes comparable to that of a grid, similar effi-
ciencies can be expected in the generation of plans of equal
numbers of states. Also, the encoding of constraints is an
offline process that does not affect the efficiency of on-line
motion planning.
Ongoing work includes designing a motion planner based
on dynamic heuristic search which would allow it to con-
sider arbitrary moving obstacles, the extension of trajectory
generation to rough terrain, and hierarchical approaches
which scale the results to be applicable to kilometers of
traverse.
7 References
[1] J. Barraquand and J.-C. Latombe, “On nonholonomic mobile robots

and optimal maneuvering,” in Proc. of the IEEE Int. Symp. on Intel-
ligent Control, 1989.

[2] M.S. Branicky, S. LaValle, S. Olson and L. Yang, “Quasi-randomized
path planning,” in Proc. of the IEEE Int. Conf. on Robotics and Auto-
mation, Seoul, Korea, May 2001.

[3] E. Frazzoli, M.A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” in Proceedings of the American
Control Conference, Arlington, VA, June 2001.

[4] D. Hsu, R. Kindel, J.-C. Latombe and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” Int. J. of Robotics
Research, vol. 21(3), pp. 233-255, March 2002.

[5] Kelly, A., et al., “Toward Reliable Off-Road Autonomous Vehicle
Operating in Challenging Environments”, International Symposium
on Experimental Robotics, June, 2004, Singapore.

[6] Kelly, A., Nagy, B. "Reactive Nonholonomic Trajectory Generation
via Parametric Optimal Control". International Journal of Robotics
Research, 22, (7-8), 2003.

[7] F. Lamiraux and J.-P. Laumond, “Smooth motion planning for car-
like vehicles,” IEEE Transactions on Robotics and Automation, vol.
17(4), pp. 498-502, August 2001.

[8] Latombe, J.-C. Robot Motion Planning. Kluwer Academic Press,
Boston, 1991.

[9] J.-P. Laumond, S. Sekhavat and F. Lamiraux, “Guidelines in non-
holonomic motion planning,” in Robot Motion Planning and Con-
trol, J.-P. Laumond, Ed., New-York: Springer-Verlag, 1998.

[10] S. LaValle, Planning Algorithms, online: http://msl.cs.uiuc.edu/plan-
ning .

[11] S. LaValle, M. Branicky, and S. Lindemann, “On the relationship
between classical grid search and probabilistic roadmaps,” Int. J. of
Robotics Research, vol. 23(7-8), pp. 673-692.

[12] Pancanti, S., et al. “Motion Planning through Symbols and Lattices”.
In Proc. of the IEEE Int. Conf. on Robotics and Automation, New
Orleans, 2004.

[13] Scheuer, A., Laugier, Ch. “Planning Sub-Optimal and Continuous-
Curvature Paths for Car-Like Robots”. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pages 25-31, October 1998.

[14] Wang, D., Feng, Q., “Trajectory Planning for a Four-Wheel-Steering
Vehicle”. In Proc of the IEEE Int. Conf. on Robotics and Automation,
May 2001.

Table 1Experimental Results of Generating Control Set

outdegree time

20 12 15 20 min.

10 12 13 11 min.

5 9 10 4 min.

R' Rt

Figure 11: Example application. Here a planetary rover
instrument placement problem is solved. The rover must
approach five science objects at specified heading in cluttered
environment on the slope of a crater.

κ s()
Page 7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

