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Abstract

A method of odometry calibration is proposed and validated
which is designed to be as convenient as possible. Conve-
nience is enhanced by reducing both the amount of sofiware
to be written and the amount of measurements to be made to
a minimum. The path dependent nature of odometry can be
exploited to reduce the amount of ground truth information
to as little as a single known point. The odometry and cova-
riance estimation functions themselves will be used to
extract first order parameter variation. Linearization will
be performed about the approximate available trajectory
rather than the unknown ground truth one. While multiple
trajectories will be required to calibrate variance models, it
will not be required that they be the same or even similiar.
The technique is general enough to apply to any form of
odometry and it is general enough to be used for the extrac-
tion of unknown parameters of either systematic odometry
models or stochastic error models. The derivation and
experimental validation of the technique are presented.

1 Introduction

Let odometry be defined as dead reckoning from terrain
relative velocity indications. Odometry calibration is
important not only because it is the only way to determine
pose between fixes which may be rare in some environ-
ments. It can be very important during the process of map-
building because it can reduce the difficulty of detecting
loop closure. It is also important simply because it repre-
sents an opportunity to improve performance significantly.

1.1 Prior Work

Calibration in practice often falls into two distinct catego-
ries. One approach is to drive specific trajectories in order
excite error sources and determine the values of kinematic
parameters [2][1] or random error model parameters [3] or
both [6]. This approach requires the ability follow a prede-
termined path sufficiently well.

A more involved approach is to calibrate the system while
it runs [4][8]. While this approach is likely to generate
excellent results it also comes at the cost of high complex-
ity. It still may not be adviseable to identify too many
parameters, and it assumes that the rest of the sensors are
sufficiently accurate to serve as references for calibration.

All previous work cited is based on closed form solutions
for particular trajectories. Only a few works deal with sto-
chastic error models, All are peculiar to a specific form of
odometry and all require a second specialized algorithm to
accomplish the actual calibration. By contrast, the tech-

nique presented here applies to any error model whether
systematic or stochastic, regardless of complexity. It does
not require specific trajectories or the ability to execute
them and it applies to any form of odometry. The only
external algorithm required is the solution to an overdeter-
mined linear system.

1.2 Notational Conventions

It will be important to recognize that the functions f{( ) and
g() are used throughout to denote arbitrary functions.
They may mean different things in each occurrence except
where otherwise noted. This convention is used because it
avoids the proliferation of dozens of distinct symbols in the
paper which would have been used used only once.

2 Representing Odometry as a Nonlinear
Dynamical System

In its most general form, we can write the equations of
odometry as an abstract nonlinear dynamical system with
observer thus:

x(0) = f(x(0),u(®), 1)
z(1) = h(x(2), u(1), 1)

(1

Where:

* the first equation is the state equation and the second is
the observer equation.

* x(7) is the state vector, normally consisting of position
and orientation states.

* u(t) is the input vector consisting of the signals which
‘comprise the forcing functions.

We will concentrate on the 2D case but 3D odometry can
be accomplished in environments, such as the outdoors,
which may require it.

We will find it convenient to explicitly represent the depen-
dence on some assumed parameters, denoted p. Also, we
can often substitute the observer into the dynamics to elim-
inate the inputs and get the simpler form:

(1) = f&x(@0),z(),p, 1) @

where the function f{ ) is now different from in equation 1
and measurements now play the same role as the original
inputs. This will be the standard form of system dynamics
used in the sequel.

3 Systematic Odometry Calibration

The process of implementing odometry to determine state



(pose) from measurements comes down to integration:
t

x(0) = x(0) + [ £ (x(2),2(0), p, D)t ®)
0

In practice, the inevitable errors in the estimated parameter
values and the partial falsehood of embedded assumptions
(flat floors, no wheel slip) lead to errors 8x(#) in the com-
puted robot pose. The systematic model calibation problem
is to determine the values of the parameters which cause
the computed trajectory to agree with some externally pro-
vided ground truth trajectory as closely as possible. Equiva-
lently, we could also seek to determine the errors in the
parameters 5p which are most consistent with the observed
errors in the computed pose 8x(7) .

31 First Order Response to Parameter Variation

The equations to be calibrated are generally nonlinear and
we will be required to linearize them and solve them itera-
tively. Hence, the first order response of the computed pose
to errors in parameters is of central importance.

It has been shown [5] that the general solution to the pertur-
bative dynamics of Equation (3) can be generated. This
general solution can be written in the form of an integral
whose precise form does not concern us here:

t

ox() = [f[x(0), 5J£(0)]+I§(3£(T), z(1), p, 8p, t)dr (4)
0

This solution relates errors in parameters dp to the result-
ing errors in computed pose 5x(¢) - for a given trajectory.
Such an expression can be obtained by linearizing either
the original nonlinear dynamics with respect to parameter
errors or by linearizing the linear (with respect to input
error) error dynamics again with respect to parameter varia-
tions. In any case, by Leibnitz rule, we must end up with an
integral of a derivative to compute.

However, we will, in the interest of convenience, take the
more straightforward approach of computing the first order
response of equation (3) to parameter variation because:

« either equation will ultimately be integrated numeri-
cally so there may be little justification to prefer an
iterative numerical solution to the exact linearized
error dynamics (second equation) over an iterative
numerical solution to the exact nonlinear dynamics
(first equation).

* both equations (3) and (4) are integrals of nonlinear
integrands but the second is more complex and the
first must be implemented anyway - because it is the
odometry solution itself.

In practice, odometry usually takes the form of a discrete
time recursive version of equation (3):

Xeor = Xt Y S (B 2 P)AY, )
A

Where x, = x(¢;) etc. This is usually implemented recur-
sively:

(6)

Y1 = X%t S (5 2 DAY

3.2 Linearized Parameter Error Observer

Consider equation (3). If we use the notation z( ) to mean
the entire input function rather than its value at time 7, we
can suppress the integral notation and avoid the need to
express the state in terms of itself. Equation (3) thus rewrit-
ten is:

x(6) = g(x(0), (), p, 1) @

For a specified entire input time history z( ) we can differ-
entiate this with respect to the parameters by just running
odometry (however it is implemented - for example, by
equation (6)) twice for each parameter. One at a time, let a
single element of the parameter vector be slightly adjusted
to produce a numerical derivative of the form:

og _ 8(x(0).20), p +0p, 1) - g(x(0), 20). p, 1)
op; 8p; ®)

where the vector dp, in the numerator is related to the sca-
lar 3p; in the denominator:

5p, =00 ... ¥, 00| ©)
ith position

That is, it is zero everywhere except for the occurrence of
8p, in the ith position. Also, this derivative depends on all
of the arguments of g( ) - the initial conditions, the input
history, the parameters, and time.

Equation (9) is a numerical approximation for the ith col-
umn of the Jacobian matrix dg/dp . If we collect all of
these columns together, we can express how a change in
computed pose depends linearly on the associated change
in parameters:

og
Sx(1) = —8p = J5 (10)
¥(0) = 5,92 = Jop

If we are willing to further assume that some observed
errors are caused solely by such a set of parameter errors,
this system can be solved for the magnitudes of the errors.
Assuming enough constraints are present, the solution can
be obtained from the pseudoinverse:

p = [JTJ]*IJTS)_c(t) an

33 Benefit of Path Dependence of Odometry

While it is often a source of difficulty that odometry is a
path dependent (integration) process, this property can be
used to great advantage in calibration problems. Indeed,
because the above Jacobian is itself path (z( ) or more pre-
cisely the associated x(¢r)) dependent, each independent
path to the same terminal point leads to an independent
observation of the effect of parameter errors on terminal
computed pose. Indeed, even two separated points along
the same path generates independent observations - a tech-
nique exploited by all on-line identification methods.

In the end, only the conditioning of the Jacobian itself mat-
ters in determining whether the system can be solved so we
can use just a few, or even just one known point to calibrate
any number of unknown parameters provided the paths



used are sufficiently different:

og
8)_c(tf) = 561_7 = Jop

(12)

34 Benefit of Using Computed Trajectory as
Reference Trajectory

In practice, another important principle is critical to making
odometry calibration convenient. While we often view per-
turbation in terms of how the correct answer is corrupted to
produce the incorrect one, it is equally valid to view pertur-
bation as the process of adjusting the incorrect answer to
produce the correct one. Indeed, this is the basic difference
between the linearized and extended Kalman filters [7].

The last section precludes the need to have ground truth all
along test trajectories in order to compute observed errors.
Likewise, the evaluation of the parameter Jacobian with
respect to the computed trajectory precludes the need for
any ground truth in the linearization.

When the arguments of both this section and the previous
are invoked, it is clear that equation (12) amounts to a com-
pletely general way to calibrate any number of parameters
from observed errors at any number of points along any
number of trajectories. Only the rank and the conditioning
of the stacked Jacobian matters.

4 Stochastic Odometry Calibration

Of course, once the best fit parameters are determined from
the data set, there is still likely to be a certain amount of
error remaining. This remaining error after systematic cali-
bration can often be profitably modelled as if it was ran-
dom.

Parameters of a stochastic error model may be determined
in like fashion to the preceeding systematic derivation. Any
number of moments of a probability distribution can be
determined, in principle, using modifications of the follow-
ing technique but we will concentrate on the second
moment, or variance.

The response of equation (2) in its nonlinear form to ran-
dom parameter variations requires either Monte Carlo anal-
ysis or significant analytic complexity. We will therefore
restrict ourselves to linearized models of stochastic error
propagation. It is well known [9] that the response of equa-
tion [2] to random input variations is given, to first order,
by the linear variance equation:

P(1) = F(t)P(1) + P()F(1)" + L(1)O(t)L(1)" 13)

where, with reference to equation (2), we define the partic-
ular expectation:

P = Exp(3x(1)3x(t)") (14)
as the state covariance and:
0 = Exp(82(1)32(1)") (1)

as the measurement covariance. The Jacobians are those of
the nonlinear system dynamics with respect to the state and

the inputs:

F(1) = %4 L(t) = %4 (16)

4.1 First Order Response to Parameter Variation

The general solution to equation (13) can be written in the
form of an integral whose precise form does not concern us
here:

t

P(t) = fIP(O)]+ [ g(P(x), 0(0), p ) (17

0

These expressions also depend in general on the state, and
possibly, the inputs. The stochastic model calibation prob-
lem is to determine the parameters p which are most con-
sistent with the observed variance P(¢) of some data set.

The first order response of the computed variance to errors
in parameters is of central importance. The computed vari-
ance P(¢) is already linear in the measurement variance
O(1), so if Q(¢) is linear in the parameters, the state covari-
ance will also be linear in the parameters and they can be
solved in a single iteration. In any case, we can once again
proceed by seeking an expedient path to parameter linear-
ization based on software which is likely to be written
already.

In analogy to the systematic case, we might have a numeri-
cal integration of equation (13) available or a quadrature of
the general solution in equation (17). However, the most
likely situation is that equation (17) has been discretized to
be of the form:

Priy = Pyt f(Pr Qi(AL). p)

and then implemented recursively in the form of the system
model covariance update in a Kalman filter:

- T
Piy = OP@ +T 0] (18)

We assume that, in this case, the forcing covariance Q,
represents the errors in all odometric sensing - which is to
say that the filter has been implemented so that the system
model is forced rather than autonomous. In the autonomous
case, the odometry measurements would also have to be
processed using the measurement update:

P, = [I-K.H,]P}, a9

In either case, it only matters that the resulting computed
covariance represent the estimate of error which is to be
calibrated - however it is computed. As we did in the sys-
tematic case for Jacobians, we will use the computed trajec-
tory for computing the covarainces.

4.2 Linearized Parameter Error Observer
Consider equation (17). If we use the notation Q() to
mean the entire input error function rather than its value at

time ¢, we can suppress the integral notation and avoid the
need to express the state covariance in terms of itself. Equa-



tion (17) thus rewritten is:

P oD = g(P(0),00), p, ) @0)

For a specified entire input error time history Q( ) we can
differentiate this with respect to the parameters by just run-
ning the covariance update (however it is implemented - for
example, by equation (18)) twice for each parameter as was
done in the systematic case.

Although covariance is a matrix, the above function g( )
was considered to be vector-valued because it is usefil to
avoid redundant computation by accounting for the sym-
metric nature of P(¢). In 2D we would map the P matrix
onto a vector thus:

GX)C
(e}
vy
Oy ny Oxo p @I
x| =
Oxy Oyy Oyo| {)pred(t)
Oxo
00 Cy0 Co0
Oy0
y
[Co0]

4.3 Observations of Variance

Unlike for the systematic case, it is not a straightforward
matter to make observations of actual state covariance. To
observe the parameters of a random process we will
undoubtedly have to execute multiple paths and use the
variance of a point or points along the path to measure
actual variance. To simply execute the same path multiple
times would introduce the requirement that we ensure
somehow that it is physically the same so that the spread in
computed poses at corresponding points would be solely
due to the measurement error we are trying to calibrate.

However, in the absence of fixtures to physically guide the
robot, being able to execute repetitive motion is tantamount
to repetitive position estimation. Unless there is a separate
ground truth position estimation system, repetitive position
estimation is contrary to the original assumption that there
is random error to be calibrated.

In the interest of maximal convenience, we would prefer
not to have to make any ground truth measurements and not
to use any special fixturing. In fact, it would be ideal if the
remaining errors after the systematic calibration process is
is applied to the original data set could be used.

To accomplish this, we must define a new random process
which is the selection of multiple randomly perturbed tra-
jectories where each is selected from its own ensemble.
Within each ensemble, the reference trajectory being per-
turbed is the same but the reference trajectories of different
ensembles are not necessarily the same. Figure 1 illustrates

this new random process.
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Figure 1: Visualization of Calibration Random Process
Ensembles. Three ensemles are illustrated and only one of
the trajectories in each is randomly selected. The reference
trajectories of all ensembles must have one or more points in
common to be used for calibration. This is only true of the
endpoints in the figure.

Let 7, denote the event that a trajectory from ensemble i is
selected. Let 3x, denote the event that the vehicle state has
a particular error value at time step k. Then, by Bayes rule
we have for n equally likely ensembles:

- -1 2)
p(dxy) E p(0x,| T)p(T;) " E p(dx,| T))
The covariance of this distribution is:
T 1
= = - . 23
P = Exp(dn) = 1S PAT) @3)

where P, (T,) is the covariance of pose error at time step k
for ensemble i. In plain terms, the covariance of pose error
for the compound process is just the weighted sum (aver-
age) of the individual covariances. As the figure illustrates,
the merged covariance of a highly positive correlated a
highly negative correlated and a decorrelated ensemble
produces a decorrelated merged ensemble.

Multiple ensembles are introduced to relieve the need to
execute repetitive motions. If two trajectories are the same
or almost the same, our technique of using the computed
trajectory to compute covariance will automatically
account (to first order) for the degree of change in the tra-
jectory.

To use this technique the covariance estimate is computed
for each test trajectory and the average of all of these cova-
riances is used as the predicted covariance of the model
based on the present parameters values. This average result
is to be used in equation (20).

Once the systematic biases are removed from the data set,
the observed covariance in the data is computed from the
scatter matrix of the n points used:

dx;8x; 8x,8y; 6x;60;

1
= mz dx,8y; 8y;8y; 8,80,
53,60, 57,60, 50,50,

@4

This computation provides the 6 measured values P~ of



covariance. The differences between these measured values
and the values computed in equation (20) is denoted

gp=pP P (25)

—meas —pred

The model is then linearized numerically as in the system-
atic case:

og B g(P(0), 9(),p+8p,1)—g(P(0), 0(),p, 1)
5% - op;

It may be more convenient to compute each of these param-
eter partials as matrices. In any case, we then solve the
square system of six simultaneous equations for the
required parameter changes p :

og
3P = [EJ 3p (206)

For convenience, it is possible to reuse almost all of the
parameter solution algorithm for the systematic case in the
stochastic case. As mentioned earlier, the linear variance
equation is linear in Q( ) which is iteself often linear in the
parameters, so the above solution may not need to be iter-
ated.

5 Example: Differential Heading Odometry

Further suppose that we have a differentially steered vehi-
cle whose two wheels are instrumented with encoders as
shown in Figure2.

V(1) o(t)
1(t) r(t)

——

Figure 2: Differential Heading Odometry. Velocity
measurements of both wheels are used to determine the
linear and angular velocity of the control point.

We can consider that the encoders measure wheel velocities
rather than distance by invoking the justified assumption of

an available measurement of time. Let the inputs be defined
as the angular velocities of the wheels:

u() = [0, 00| @

The state vector will be the position and orientation of the
vehicle thus:

50 =[x () 0] @8)

Further, let the vector of linear and angular velocty be
denoted thus:

v = [1) o) @

The left /() and right »(z) wheel velocities are related to
the linear and angular velocities thus:

_ w
r(t) = V(t)+ 2(0(t) G0)

(1) = V(D) - S o)

We can also represent the fact that the encoders actually

measure angular velocity and introduce the two assumed
wheel radii:

r(t 1

(’)r(t) = L_ = -

r, r,

h—

W
[V(t) +2 m(t)} o

o) = %2 = H[vw-Fow]

Ty

Any amount of additional unknown parameters can be
introduced at the discretion of the modeller. For example,
we can permit wheel radius to vary as a function of speed
and/or curvature as a first order model of wheel slip. How-
ever, let this be the final form of the observer for our illus-
trative purpose here. We therefore have the parameter
vector:

p= [W ry rr} (32)

5.1 Odometry Equations

The observer can be substituted in to the dynamics to pro-
duce the odometry equations. First, inverting equation (31):

V() = 300,00+ 1o (1)) -

1
o(t) = 7o) - o)
Then, the odometry equations are simply:
Xpy = X+ Vicos(0,)AL
Viw1 = Vit Vysin(0) Az (34
0,11 = 0, 0AL

5.2 Covariance Propagation Equations
The transition matrix for this system is:

1 0 —V;sin(0,)At,
Q= I+ F AL = 101 Vycos(0,)At,
00 1

(39

where F, is the system Jacobian. The input noise distribu-
tion matrix I is:

) . cos(0,) 0 T
r-2 % sin(e)o22 36)
u Ov Ou k reor
0 1 wow



The covariance propagation equations are therefore:

- T 37
Py = O D, +T,0, 1] S

We need Q, to depende on some parameters which are to
be calibrated. For illustrative purposes, let the variances of
each wheel encoder be assumed to grow linearly with dis-
tance travelled. Thus their time derivative Q is propor-
tional to velocity and is given by:

Q _ G, Oyt _ OerVr OLer (38)
O, Oy oV oo,V
and then:

Qk = QAtk 39)

The parameters to be solved for are:

p= |:0“rr 7 arlj| ' 0

This effective variance accounts also for aspects of terrain/
wheel interaction. Some correlation of the errors observed
at the two wheels is to be expected. Having no basis to pre-

fer one wheel velocity to the other, this correlation is mod-
elled to grow based on the mean velocity of both wheels.

6 Results

This above technique was implemented for the case of dif-
ferential heading odometry. A reference layout was con-
structed as follows. Three points were marked on the floor
and the lengths of the lines between them were measured.
The resulting triangle was then solved to determine the
locations of the second and third points with respect to the
first when the line from the first to the second was estab-
lished as the x axis. As long as the layout process is signifi-
cantly more accurate than the odometry system being
calibrated, it is accurate enough. We were able to repeat-
edly measure the triangle to a repeatability of 2 mm.

The data set used in [5] is reused here although the calibra-
tion techniqe presented here is quite different. A total of 28
different trajectories were executed from physically the
same start point to physically the same endpoint. A laser
pointer was mounted horizontally to indicate points on dis-
tant walls in order to verify heading repeatability.

Six of the 28 trajectories used are shown in figure Figure 3:
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Figure 3: Calibration Test Trajectories. All start at the origin.
All terminate near the point (3,12) with arbitrary heading..

Figure 4: is a zoomed-in view of the correct endpoint.
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Figure 4: Residuals before and after calibration. The black
squares are transformed into the white squares by systematic
model calibration. The grey ellipse captures the remaining
variance.

The white circles represent the uncalibrated results and the
black ones are the calibrated results. Systematic error has
been reduced by about 75% in the worst case and the cor-
rected data also has less variance. Of course, if a better sys-
tematic model were used, it would probably reduce the
variance more. In the systematic model calibration, a
highly overdetermined system of equations was solved
with 84 constraints on 3 parameters.

The grey ellipse represents a 99% probability ellipse char-
acterizing the variance in the calibrated data. There were
only three parameters to be found and we elected to cali-
brate only the translational elements of covariance. Hence,
three linear equations were solved for three unknowns
exactly in a single iteration and the scatter matrix and pre-
dicted covariance after calibration are identical:

g — p— |0.033 -0.006
~0.006 0.004



7 Summary and Conclusions

A general purpose method of odometry calibration has
been presented which applies to both systematic and sto-
chastic models and which is designed for maximal opera-
tional convenience.

The derivation for systematic and stochastic model parame-
ter calibration took slightly different paths due to the algo-
rithms most likely to be available for reuse. However, the
technique applies to any algorithms for odometry and cova-
riance propagation. It is, of course, a major advantage to be
able use the algorithm to be calibrated in its own calibra-
tion.

The fact that odometry is highly sensitive to small parame-
ter variations is the essence of both the problem and its
solution. This sensitivity arise because odometry is an inte-
gration process. We exploit the path dependence of odome-
try to maximize sensitivity to parameter variation which
also requiring a minimum amount of ground truth data.
While it is possible to augment the unknowns by the initial
conditions and solve for these in addition to the parameters,
we chose not to because being unable to enforce initial con-
ditions normally implies being unable to enforce terminal
conditions - which would invalidate the whole approach.
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	In the end, only the conditioning of the Jacobian itself matters in determining whether the syste...
	(12)
	3.4 Benefit of Using Computed Trajectory as Reference Trajectory

	In practice, another important principle is critical to making odometry calibration convenient. W...
	The last section precludes the need to have ground truth all along test trajectories in order to ...
	When the arguments of both this section and the previous are invoked, it is clear that equation (...
	4 Stochastic Odometry Calibration

	Of course, once the best fit parameters are determined from the data set, there is still likely t...
	Parameters of a stochastic error model may be determined in like fashion to the preceeding system...
	The response of equation (2) in its nonlinear form to random parameter variations requires either...
	(13)

	where, with reference to equation (2), we define the particular expectation:
	(14)

	as the state covariance and:
	(15)

	as the measurement covariance. The Jacobians are those of the nonlinear system dynamics with resp...
	(16)
	4.1 First Order Response to Parameter Variation

	The general solution to equation (13) can be written in the form of an integral whose precise for...
	(17)

	These expressions also depend in general on the state, and possibly, the inputs. The stochastic m...
	The first order response of the computed variance to errors in parameters is of central importanc...
	In analogy to the systematic case, we might have a numerical integration of equation (13) availab...
	and then implemented recursively in the form of the system model covariance update in a Kalman fi...
	(18)

	We assume that, in this case, the forcing covariance represents the errors in all odometric sensi...
	(19)

	In either case, it only matters that the resulting computed covariance represent the estimate of ...
	4.2 Linearized Parameter Error Observer

	Consider equation (17). If we use the notation to mean the entire input error function rather tha...
	(20)

	For a specified entire input error time history we can differentiate this with respect to the par...
	Although covariance is a matrix, the above function was considered to be vector-valued because it...
	(21)
	4.3 Observations of Variance

	Unlike for the systematic case, it is not a straightforward matter to make observations of actual...
	However, in the absence of fixtures to physically guide the robot, being able to execute repetiti...
	In the interest of maximal convenience, we would prefer not to have to make any ground truth meas...
	To accomplish this, we must define a new random process which is the selection of multiple random...
	Figure 1: Visualization of Calibration Random Process Ensembles. Three ensemles are illustrated a...

	Let denote the event that a trajectory from ensemble i is selected. Let denote the event that the...
	(22)

	The covariance of this distribution is:
	(23)

	where is the covariance of pose error at time step k for ensemble i. In plain terms, the covarian...
	Multiple ensembles are introduced to relieve the need to execute repetitive motions. If two traje...
	To use this technique the covariance estimate is computed for each test trajectory and the averag...
	Once the systematic biases are removed from the data set, the observed covariance in the data is ...
	(24)

	This computation provides the 6 measured values of covariance. The differences between these meas...
	(25)

	The model is then linearized numerically as in the systematic case:
	It may be more convenient to compute each of these parameter partials as matrices. In any case, w...
	(26)

	For convenience, it is possible to reuse almost all of the parameter solution algorithm for the s...
	5 Example: Differential Heading Odometry

	Further suppose that we have a differentially steered vehicle whose two wheels are instrumented w...
	Figure 2: Differential Heading Odometry. Velocity measurements of both wheels are used to determi...

	We can consider that the encoders measure wheel velocities rather than distance by invoking the j...
	(27)

	The state vector will be the position and orientation of the vehicle thus:
	(28)

	Further, let the vector of linear and angular velocty be denoted thus:
	(29)

	The left and right wheel velocities are related to the linear and angular velocities thus:
	(30)

	We can also represent the fact that the encoders actually measure angular velocity and introduce ...
	(31)

	Any amount of additional unknown parameters can be introduced at the discretion of the modeller. ...
	(32)
	5.1 Odometry Equations

	The observer can be substituted in to the dynamics to produce the odometry equations. First, inve...
	(33)

	Then, the odometry equations are simply:
	(34)
	5.2 Covariance Propagation Equations

	The transition matrix for this system is:
	(35)

	where is the system Jacobian. The input noise distribution matrix is:
	(36)

	The covariance propagation equations are therefore:
	(37)

	We need to depende on some parameters which are to be calibrated. For illustrative purposes, let ...
	(38)

	and then:
	(39)

	The parameters to be solved for are:
	(40)

	This effective variance accounts also for aspects of terrain/ wheel interaction. Some correlation...
	6 Results

	This above technique was implemented for the case of differential heading odometry. A reference l...
	The data set used in [5] is reused here although the calibration techniqe presented here is quite...
	Six of the 28 trajectories used are shown in figure Figure 3:
	Figure 3: Calibration Test Trajectories. All start at the origin. All terminate near the point (3...

	Figure 4: is a zoomed-in view of the correct endpoint.
	Figure 4: Residuals before and after calibration. The black squares are transformed into the whit...

	The white circles represent the uncalibrated results and the black ones are the calibrated result...
	The grey ellipse represents a 99% probability ellipse characterizing the variance in the calibrat...
	7 Summary and Conclusions

	A general purpose method of odometry calibration has been presented which applies to both systema...
	The derivation for systematic and stochastic model parameter calibration took slightly different ...
	The fact that odometry is highly sensitive to small parameter variations is the essence of both t...
	While it is possible to augment the unknowns by the initial conditions and solve for these in add...
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