
Abstract
Mobile robot localization from large-scale appearance
mosaics has been showing increasing promise as a low-
cost, high-performance and infrastructure free solution to
vehicle-guidance in man-made environments. The genera-
tion of the globally consistent high-resolution mosaics cru-
cial to this procedure suffers from the same problem of
loop-closure in cyclic environments that is commonly
encountered in all map-building procedures. This paper
presents a batch solution to the problem of reliably gener-
ating globally consistent mosaics at low computational
cost, that simultaneously exploits the topological con-
straints among the observations and minimizes the total
residual in observed features. An extension to a general
scalable framework that facilitates an incremental online
mapping strategy is also presented, along with results
using simulated data and from real indoor environments.

1 Introduction

Mosaic-based localization [5] is a technique employing
real-time imagery to track motion over a previously stored
high-resolution image of a known environment. Naturally-
occurring features in a composite mosaic built using
images from a downward-looking camera encode position
information corresponding to the robot pose when the fea-
ture observation was made. Template matching between
observed and predicted views provide absolute position
fixes to dampen the otherwise unbounded growth of errors
originating in a primary position estimation system such as
odometry. Previous papers on the subject of mosaic-based
position estimation have discussed the feasibility and
implementation issues [5] of this approach, and algorithms
to construct the mosaic itself [10].

1.1 Challenges
Map construction requires a solution to the dual problems
of recovering the motion history of the robot, as well as
reconstructing the robot’s environment based on observa-
tions made over the duration of the robot motion. In our
application, the observations are in the form of images
captured sequentially in one-dimensional swaths called
segments by passing a calibrated downward looking cam-
era over the floor. Recorded poses correspond to the 2D
location and heading of each image as determined from

dead-reckoning. For high-speed navigation to be possible,
the mosaic constructed using these images must satisfy the
conditions of local smoothness, whereby the error in tem-
porally adjacent images is bounded to some acceptably
small value, and global consistency, whereby the position
reported at a particular location becomes neither time nor
path dependent, and is uniquely represented in the con-
structed model. These requirements are common to all
map-building procedures, independent of the type of sen-
sor used for the observations.
The observations made by the sensor in mosaic-based
localization differ from those of sensors like laser range-
finders and those used in beacon-based navigation sys-
tems, in that the features observed have low persistence in
both temporal and spatial domains. The problem of gener-
ating accurate mosaics also typically involves the manipu-
lation of thousands of images, and hence demands a time-
efficient and scalable solution to be tractable.

1.2 Prior Work
Considerable literature exists on the field of image mosa-
icing and its applications, although only more recently
have real-time and globally consistent solutions been
addressed [9]. Real-time video mosaicing of the ocean
floor for navigation, exploration and wreckage visualiza-
tion has also received attention. Work by Fleischer et al.
[2] used iterative smoother-follower techniques to reduce
errors accumulated over an image chain, but no mention
was made of the tractability of its extension to networks.
Lu and Milios [6] enforced global consistency in their
work on map-building with laser range-scans, solving an
overconstrained system of measurements to compute the
required least-squares perturbation to absolute scan poses.
Gutmann and Konolige [4] extended the approach to an
online algorithm for mapping cyclic environments. A local
registration step linked scans in a K-neighborhood of the
last scan in time depending primarily on K. Loops were
closed incrementally when a patch correlation scheme
returned an unambiguous high match score, using the
scheme of [6]. The complexity of this step, however, was

 in the number of scans. Although marginal cost
reductions could be achieved using sparse matrix tech-
niques, it was still far too prohibitive for our purposes.
Work by Newman [8] on the problem of simultaneous
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localization and mapping (SLAM) recognized that obser-
vations of relative positional relationships between land-
marks had uncertainties that were uncorrelated to
uncertainties in robot position. An overcomplete, and pos-
sibly inconsistent set of such observations formed the state
vector in a relative map, that could be updated in time lin-
ear in the number of observations. When a consistent map
was explicitly required, geometric projection filtering was
done to repeatedly project the relative map estimates onto
a constraint space described by the topological relation-
ships between the observations. The constraint equations
were chosen heuristically amongst a large but finite set,
such that they spanned a large subset of the observations.
Previous work by the authors [10] described how the span-
ing set of constraint equations required to enforce global
consistency could be easily extracted, and presented an
algorithm for the same. Each loop equation in this set cor-
responded to an element of the  fundamental cycle basis of
the topological graph describing the network of observa-
tions. On the assumption of good local estimates from
odometry, an efficient scalable solution to the problem of
map-building in large cyclic environments was presented
for observations with a short sensory horizon.
This paper presents a formulation that systematically
relaxes the assumption of good initial estimates, while pre-
serving the low time complexity of the algorithm in [10].
Our method employs the approach of total residual mini-
mization between observations, while incorporating
knowledge of prior state uncertainty and enforcing topo-
logical constraints to maintain map consistency. A frame-
work for the solution that facilitates incremental online
implementation is also proposed.

2 Residual at an Image Overlap

Consider a linear sequence of images, such as that shown
in Figure 1. The images overlap such that each image con-
tains a portion of the scene in common with both the
image before and after it in the sequence. Let each image
be assigned with an index i with magnitude increasing in
order of image capture. Let each image i be associated
with its pose  expressed relative to the image preced-
ing it in its sequence. The first image in each sequence has
its pose expressed relative to the world frame w.

2.1 Non-temporally adjacent overlaps
Let i and j be two images that are not adjacent in sequence,
and possibly even belong to different image sequences,
but have features common to them. Such image pairs con-

stitute potential loop-forming overlaps in a network of
images. Let at least two point features be identified in  the
images i and j. The residual of the m-th feature observed in
both images can be expressed in terms of the relative pose
between the images, as

where  is the feature residual,  is the
position of the m-th feature in the i-th image (subscript)
represented in the coordinate frame of image i (super-
script),  is the 2-by-2 rotation matrix relating the coordi-
nate frame of image j with respect to that of image i, and

 is the corresponding displacement between the
two frames.
On linearizing, this can be expressed as

where  is the Jacobian relating the change
in position of feature m in image j with change in relative
pose of image j with respect to image i, and  rep-
resents the linearized change in relative pose.
Collecting the terms for feature residuals in non-tempo-
rally adjacent overlapping images, where , gives a
system of the form

which can be solved iteratively by the least-norm left-
pseudoinverse solution as

Here the matrix to be inverted for each pair of overlapping
images is a 3-by-3 matrix, and hence its computation is
inexpensive. Each such solution from feature matching
provides an initial estimate for the relative pose between
non-temporally overlapping images.
Note that this formulation leaves open the scope of using
robust estimation techniques, such as iteratively re-
weighted least squares (IRLS), commonly encountered in
computer vision literature for outlier rejection. There
exists a large body of literature on the topic, and further
discussion is avoided with the understanding that the tech-
niques can be suitably incorporated in each term involving
feature residual minimization using appropriate weighting
coefficients.

2.2 Temporally adjacent overlaps
For overlaps between images i-1 and i that are adjacent in
sequence, the initial estimates of relative pose  are
provided by dead-reckoning. We can however concatenate
similar equations for residuals occurring at each tempo-
rally adjacent overlap, to give a system of equations in the
linearized observer form

where the concatenated change vector of change in resid-
ual is
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Figure 1: A linear mosaic of 5 images
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and the state vector of change in relative pose is given by

2.3 Error Modeling
In registered non-temporally adjacent image pairs, the
errors in estimates of feature residuals arise primarily from
image noise which leads to inaccuracies in specification of
point correspondences. This error can be treated as zero
mean noise, uncorrelated between residual measurements.
We model this error in a loop-closing overlap between
images i and j as a diagonal matrix with entries , our
estimate of variance in pixel noise. Then the covariance
matrix describing non-systematic error in estimate of rela-
tive pose between images i and j at loop-closure is given
by

For temporally adjacent images, say i-1 and i, the covari-
ance  can be estimated using a suitable choice of
odometry model. Hence the a priori covariance of the
state vector consisting of the concatenated set of relative
poses between temporally adjacent images and relative
poses between loop-closing non-temporally adjacent over-
laps is given by the block diagonal matrix  as

The matrix is block diagonal and non-singular, as errors
between relative poses are inherently decoupled, and the
uncertainty in estimate of non-temporally adjacent relative
poses is derived solely from feature matching and is inde-
pendent of poses of other images participating in the loop.

3 Loop analysis

Consider the two cycled network shown in figure 2, com-
posed of 5 overlapping segments. The image pairs (a,h),
(i,j), (b,c), (d,e), (k,l) and (f,g) form 6 non-temporally
adjacent overlapping image pairs. Let us assume that indi-
ces a through h are in increasing order of magnitude. As
per our convention, every image pose is referenced with

respect to its immediate predecessor having a smaller
image index. Transforms represented by upper-case 
refer to unknowns to be determined, but whose initial esti-
mates are available either from odometry, in the case of
temporally adjacent images, or from feature matching
described earlier, in the case of overlaps between non-tem-
porally adjacent images. A subscript index refers to the
frame being referenced, and a superscript index refers to
the frame with respect to which the reference is made.
Hence the homogenous transform relating coordinate
frame of image b to that of image a is given by

Figure 3 shows an alternate representation of the network,
termed a topology graph, having the property of having
the same number of cycles as the original network of
observations. We define a topology graph as a combina-
tion of a vertex set , and an edge set . Each vertex

 is composed of a set of sub-nodes . Each sub-
node  belonging to a vertex  represents a unique
“footprint” of features associated with , i.e. the images
corresponding to each subnode of a vertex constitute non-
temporally adjacent overlaps with common features.
Edges between sub-nodes correspond to observed pose
relationships.
The homogenous transform expressing a base frame rela-
tive to itself, as observed along any cycle in the graph, say
(a-b-c-d-e-f-g-h-a), should equal the identity. Mathemati-
cally,

Each equation is a function of the relative poses between
images participating in the associated cycle. The set of
such equations constitutes the constraint equations that are
to be satisfied for consistency. In our example, there are
three such equations corresponding to the three possible
cycles (a-b-c-d-e-f-g-h-a), (a-i-j-k-l-f-g-h-a), and (i-b-c-d-
l-k-j-i) in the graph. As detailed in [10], the linearized
form of any two of these three equations form an indepen-
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Figure 2: Two-cycled network of 5 image segments
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Figure 3: Topology graph corresponding
to a two-cycled network. 
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dent basis in the space of constraints. The set of cycles that
are used form an independent and complete cycle cover,
termed in graph theory as a fundamental cycle basis.

4 Formulation as a Constrained Estimation

Let each equation in the chosen set of L constraint equa-
tions be of the form

where X is the concatenated set of relative poses between
temporally adjacent images and non-temporally adjacent
overlapping images.
The maximum likelihood solution to X is then a minimizer
of the Lagrangian

or in matrix representation as

The first term in J penalizes the sum of square residuals of
feature observations in all overlaps, and the second term
penalizes inverse covariance weighted perturbations of
relative poses from their estimates. These two terms
together constitute a full non-linear optimization that facil-
itates linearization of the estimation problem at every step
using all feature observations and the current best estimate
of the entire history of the robot trajectory. The third term
containing the vector of Lagrange multipliers  enforce
the loop equations as hard constraints that are to be met by
the posterior estimate upto first order accuracy.
The true X is a combination of the estimate value  and a
perturbation . Hence the cost function can be rewritten
as

Linearizing and differentiating to extract the Lagrange
conditions at a point of constrained minima gives

and

which together yield the system

Note that this is similar to the basic form of the Variable
State Dimension filter [7], and that recursive partitioning

can be done to take advantage of the sparseness of the sys-
tem matrix to be inverted. The matrix  is block
diagonal with a block size of 3, and can hence be inverted
in time linear in the number of images. The solution to the
system can thus be obtained directly by solving for  in

and substituting back to solve for  in

The above update is performed iteratively until conver-
gence is achieved as per some suitable criterion. The Lev-
enberg-Marquardt procedure can be used to modify this
update rule by adding a value  to the diagonal elements
of the linearized system before inversion. This value of 
is increased to smoothly switch towards gradient descent,
or decreased to switch towards Gauss-Newton update,
depending on whether the value of the cost function J
increases or decreases respectively.
Computational Complexity: The state vector  con-
sists of  relative pose terms between  temporally
adjacent images, and  terms corresponding to k non-
temporally adjacent overlaps. If we denote the total num-
ber of relative poses in the state vector by n, the total num-
ber of loops by l, and the average number of features
considered in each overlap by p (typically chosen to be 6),
it can be shown that  can be computed in

 and  is subsequently computable in
 time. The computational complexity of each

iteration in the algorithm is hence bounded by
 where typically .

5 Constrained estimation as a geometric 
projection operation

Back-substitution of the value of  yields a solution to
 of the form

where

The unconstrained posterior estimate of state obtained on
only minimizing feature residuals is given by the weighted
left pseudoinverse solution

with posterior covariance given by 
This implies that the constrained estimate of required per-
turbation in relative pose is of the form

which is the constrained estimator form of the Extended
Kalman filter, with  equivalent to the
Kalman gain matrix. The constraints consisting of the set
of fundamental loop equations are equivalent to artificial
observations with zero measurement noise [8].
Hence the Lagrange formulation of the map-building
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problem is a constrained estimator that (a) projects the fea-
ture residual vector  into the column space of H to
yield a least-squares unconstrained left pseudoinverse esti-
mate of perturbation , and (b) projects the uncon-
strained estimate with covariance  onto a linearized
hyperplane approximation of the non-linear constraint sur-
face  evaluated at the unconstrained estimate.

6 Incremental Online Mapping

The ability to decouple the residual minimization and con-
sistency enforcement steps using a Kalman filter suggests
the possibility of an incremental map-building strategy. At
each step of incorporation of a new sensor reading, there
are a finite number of possible cases, depending on the
change enforced in the topology graph.
Let there be n elements in the state vector X with covari-
ance given by matrix . Let a new observation be made,
and the state element corresponding to the relative pose
between the current observation and the temporally pre-
ceding observation be 
Case A: No feature is observed that is present in a non-
temporally adjacent observation. In this case there is no
change in the topology graph. The current observation is
then simply an extension of a sequence of observations
whose associated relative poses are independent. The state
vector X is simply augmented by the new relative pose

, and the diagonal of  by its covariance from an
odometry model.
Case B: A feature is observed that is present in a non-tem-
porally adjacent observation with no new loop formed.
Here an additional node is added to the topology graph. In
addition to augmenting the state vector and covariance
matrix as in case A, another relative pose between the non-
temporally adjacent overlapping images in added to X and
its covariance matrix from feature matching is added as a
diagonal element in .
Case C: A feature is observed that is present in a non-tem-
porally adjacent observation and a loop is closed. The state
vector and covariance matrix are augmented as in Case B,
and a subsequent step of constraint enforcement is carried
out. We identify the newly added cycle in the topology
graph as the shortest cycle containing the newly added
edge, with the weight of each graph edge set proportional
to the number of images lying in the edge. The state vector
and covariance matrix can then be partitioned as

where
 consists of the  relative pose elements that are part

of a previously assimilated cycle in the topology graph,
i.e. part of a cycle other than the one newly created,

 consists of the  relative pose elements that are part of

both, a previously assimilated cycle in the topology graph,
as well as the newly created cycle,

 consists of the  relative pose elements that are only
part of the newly created cycle and none other, and

 consists of the  relative pose elements that are not
part of any cycle.
Then  and  are both block diagonal elements,
where each sub-block is a 3-by-3 matrix.
The constrained posterior estimate of the state vector can
then be expressed as a projection onto a linearized sub-
space of the constraint equation. Let the constraint corre-
sponding to new cycle be . Since g is not a
function of state elements in  and , its Jacobian with
respect to the state can be written as

The Kalman gain matrix is then given by

and the matrix to be inverted can be written as

and can be shown to be non-singular. With careful imple-
mentation, the updated estimate can be computed in

 time, which is minimized by the choice
of shortest cycle. The covariance update step is more
expensive at  cost, but the step need only
be performed at points of loop closure in the course of the
robot’s motion.

7 Results

Figures 4-5 show results with a toy problem of 122
images, using a vehicle simulated at 1/10th scale and mov-
ing at 0.5m/s. The actual images used in this experiment
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are extracted from a larger aerial photograph. Initial esti-
mates of vehicle pose are obtained from a simulated differ-
ential heading based dead-reckoning system. The
odometers on the left and right wheels are each calibrated
to 95% accuracy in wheel velocity measurements. Figure
4 illustrates the indication of a systematic rightward drift
by dead-reckoning measurements, leading to distortion
and inconsistency in the generated map on traversing a
loop. Figure 5 shows the map after consistency was
enforced with our algorithm.
Figure 6 shows results with a 170m long vehicle guidepath
in our indoor laboratory, mapped using our test vehicle
with a total of 1836 images. The mosaic built using only
initial pose estimates from dead-reckoning had 4 intersec-
tions that were initially unresolved.

8 Conclusions and Future Work

What we have presented is an map-building algorithm that
enforces global consistency by exploiting the topology of
observations made with sensors having small spatial field
of view, while minimizing observed feature residuals. The
algorithm is  in complexity, where typi-
cally the number of loops l is much smaller than the num-
ber of images n, and hence scales well to large datasets in
the environments common to our application. In our work,
we have generated reliable cyclic mosaics ranging from
80m to 800m in total length, both in laboratory and factory
environments. The mosaics have been used by our test
vehicles at speeds exceeding normal operating conditions
for up to 40hr stretches without error requiring human
intervention.
Ongoing work includes application of the algorithm in
domains with other sensor modalities, including building
dense maps with laser-range data, and eliminating the
need to survey positions of laser reflectors for the installa-
tion of bearing-only guidance systems in factories. Consis-

tent odometry error modeling and incorporation of online
auto-calibration techniques are also being pursued.
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Figure 5: Mosaic after consistency enforcement
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