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Abstract

Vehicle odometry is a nonlinear dynamical system in eche-
lon form. Accordingly, a general solution can be written by
solving the nonlinear equations in the correct order.
Another implication of this structure is that a completely
general solution to the linearized (perturbative) dynamics
exists. The associated vector convolution integral is the gen-
eral relationship between output error and both the input
error and reference trajectory. Solutions for errors in indi-
vidual coordinates are in the form of line integrals in state
space. Response to initial conditions and translational scale
errors, among others, is path independent and vanishes on
all closed trajectories. Response to other errors is path
dependent and can be reduced to expressions in error
moments of the reference trajectory. These path dependent
errors vanish on closed symmetric paths, among others.
These theoretical results and the underlying error expres-
sions have many uses in design, calibration, and evaluation
of odometry systems.

1 Introduction
This paper addresses the problem of understanding the rela-
tionship between systematic error present in sensor indica-
tions in odometry, and the resultant error in computed
vehicle pose. The word “understanding” has been chosen
carefully because a numerical solution to the problem of
“computing” resultant error is trivial. One simply corrupts
the inputs as necessary, integrates both corrupted and
uncorrupted systems over time, and measures the differ-
ence between corrupted and uncorrupted outputs.
1.1 Motivation
This work is motivated by a recurrent set of questions
which arise when designing and constructing position esti-
mation systems for mobile robots for which the answer
always seems to require numerical solution. How good do
the sensors need to be? What kind of localization error can
be expected if we use this particular sensor? Why do some
errors seem to cancel out on closed paths while others
reverse when you drive backwards? What is the best way to
calibrate the model of this sensor?
This paper provides one set of answers to these questions in
the general case for systematic error sources. It also turns
out that random error propagation yields to identical, but
slightly more complicated analysis [1], and many conclu-
sions here are common to both types of error sources.

1.2 Prior Work
The aerospace guidance community has enjoyed the bene-
fits of a theoretical understanding of error propagation for
at least five decades [4]. In inertial guidance, the governing
differential equations and their solutions have long since
been relegated to textbooks [10][11]. It is well known that,
in the presence of gravity, most errors exhibit oscillation
with the characteristic Schuler period of 84 minutes.
Likewise, the essentially geometric nature of satellite navi-
gation system error relationships has been known since
before the GPS satellites were in operation [5]. One of the
earliest practical applications of the Kalman filter was in
the reset of shipborne inertial systems [3].
Robotics has embraced these results, particularly the Kal-
man filter, several decades later [7][8]. Using the Kalman
filter, the theoretical propagation of error, at least in numer-
ical form, has been an essentially solved problem. How-
ever, the guidance community seems not to have provided
us with the relevant analytical results for the land naviga-
tion systems which are typical of mobile robots - assem-
blies of wheel encoders, compasses, gyros, etc. Indeed, the
problem of analytically computing the navigational error
expected from even a given set of sensor errors on a given
trajectory seems to be both a fundamental and an unsolved
problem.
The AI community has justifiably placed significant
emphasis on the question of how error and uncertainty
should be represented [6]. However, robotics has expended
far more effort addressing the question of how errors
should be represented than it has expended understanding
what they actually are and how they propagate.
Analytical analysis of error propagation in mobile robot
odometry seems to have been largely ignored in the litera-
ture with a few exceptions. Early work in [12] concentrates
on improving estimates for a single iteration of the estima-
tion algorithm by incorporating knowledge of the geometry
of the path followed between odometry updates. In [14], a
method is presented which permits the calibration of sys-
tematic errors which are observable on rectangular closed
trajectories by solving geometric relationships. In [13], a
solution is obtained for non systematic error on constant
curvature trajectories by solving a recurrence equation.
This paper builds on this earlier work and presents the gen-
eral solution for linearized systematic error propagation for
any trajectory and any error model. The result is also
extended elsewhere [1] in a natural way to apply to non
systematic error.
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1.3 Problem Description
One of the most important distinctions in position estima-
tion is the distinction between triangulation and dead reck-
oning. These names are no longer as descriptive as they
were when they were coined centuries ago [15] before
mathematics developed past geometry. The essential differ-
ence from a mathematics perspective is whether the avail-
able observations project onto the states of interest, or onto
their derivatives. Odometry is a form of dead reckoning and
can be described, in the 2D case, by the following nonlinear
system of differential equations:

where the state vector  and input vector  are:

In order to make maximum use of available theory, we
have used the technique of identifying the sensor inputs,
normally denoted   with the process inputs . We
have implicitly chosen the x axis as the heading datum.
This situation is illustrated below:

For our purposes, it will occasionally be useful to add an
observer equation which permits the input to be overdeter-
mined:

This device could be used to model, for example, a situa-
tion where encoders are provided on 4 wheels even though
two are enough to determine position and heading.
Many alternative formulations of odometry are possible but
the above formulation has two key properties. First, it is
memoryless because the zero input response is zero. Sec-
ond, it is in echelon form because any given equation
depends only on the states below it in the order listed. As a
result of the second property, the solution is immediate and
well-known:

Closed-form solutions to integrals of general functions do
not exist. The best that can be achieved is to eliminate the
original self reference of the state derivative to the state
itself and write an explicit integral for the trajectory result-
ing from the input. This is as closed-form as a general dif-
ferential equation solution can be.

This paper addresses the following problem. Let the inputs
to the system be corrupted by systematic additive errors as
follows:

Using these input errors and the system dynamics, deter-
mine the associated errors in the computed vehicle pose:

2 Linearized Error Dynamics
A derivative distinction between dead reckoning and trian-
gulation is that errors in triangulation are felt when they
occur whereas errors in dead reckoning are felt forever
thereafter. This is equivalent to noting that errors in dead
reckoning exhibit dynamics. For example, consider a single
discrete error in the input angular velocity:

This single error rotates the entire subsequent computed
trajectory about the point . If  denotes the
position vector in the plane, then the magnitude of the error
at any subsequent time is:

This expression is linear in distance from the point where
the error occurred, so it is unbounded and vanishes upon
return to . This simple illustration foreshadows much
of the sequel.
In principle, the direct solution for error dynamics is to sub-
stitute the perturbed inputs into the general solution and
attempt to integrate it and cancel the reference trajectory.
An attempt to do so above quickly leads to the need to inte-
grate expressions like:

With errors hidden inside trig functions inside integrals,
this is the limit of simplification achievable without making
strong assumptions on the form of the errors. While closed-
form solutions exist for nonlinear propagation of constant
errors, for example, we will pursue linearized solutions
here for two reasons. First, it then becomes possible to gen-
erate general solutions. Second, linear results can be readily
compared with the stochastic error propagation results
anticipated in future work. 
2.1 Perturbative Dynamics
Perturbative techniques linearize nonlinear dynamical sys-
tems in order to study their first order behavior. As long as
errors are small, the perturbative dynamics are a good
approximation to the exact behavior, and for our purposes,
will be far more illuminating. Equation (1) is linearized as
follows:

where the Jacobians may depend on the state and the input,
and are evaluated on some reference trajectory:

td
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Figure 1: Coordinates for odometry. 
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Although equation (4) may still be nonlinear in the state
and the input, it is linear in the perturbations.
2.2 Solution for Commutative Dynamics
Our linearized differential equation is of the form of a time
varying linear system:

While the transition matrix  (which is tantamount to
a solution to such systems) is known to exist, there is no
guarantee that it will be easy to find. However, consider the
particular matrix exponential:

where the matrix exponential is defined as usual by the infi-
nite matrix power series:

When this commutes [2] with the system dynamics matrix:

it is the transition matrix which solves the associated time-
varying linear system and the total solution is of the form of
the vector convolution integral:

This property of commutative dynamics is the key for solv-
ing odometry error propagation in closed form.
2.3 Influence Vectors
The only unknown in equation (6) is the transition matrix.
For convenience, we can define the (potentially nonsquare)
input transition matrix as:

As we shall see, this matrix is the defining matrix for each
form of odometry because it captures both the effects of
system dynamics and the state observer. Let  denote the
ith column of the input transition matrix. Notice that for a
given element  of , its contribution to the integrand is:

The vectors  define the projection of each element of the
input (measurement) error vector onto the entire output
(state) error vector. Indeed, equation (6) can be rewritten:

Note that the order of integration and summation can be
reversed when convenient.
2.4 Transition Matrix
It was noted earlier that our odometry system is in echelon
form. Essentially, this means that the system Jacobian 

is strictly upper triangular:

and since  is composed entirely of definite integrals
of , it is also strictly upper triangular. It can be shown
that the nth power (and hence all subsequent powers) of an

 strictly upper triangular matrix vanishes. This means
that the matrix exponential can be easily written by sum-
ming the first few nonzero terms so we will be able to write
closed-form expressions for the transition matrix.
2.5 Linearized Observer Formulation
When an observer (equation (2)) is used to observe the
input indirectly, it can be linearized as follows:

Where the observer Jacobians are:

If  is not known directly but  is, we can solve the
above equation for  by first writing:

In the event that the measurements determine or overdeter-
mine the inputs, the left pseudoinverse applies:

and we can write:

This is the input which minimizes the residual: 

Substituting this back into the state perturbation equation
we have:

Which reduces to:

This is of the same form as the original perturbation equa-
tion with modified matrices and the measurements acting
as the input:

3 Application to Odometry
This section will derive the error propagation equations for
a few common forms of odometry.
3.1 Direct Heading Odometry
The term direct heading odometry will be used to refer to
the case where a direct measurement of heading is available
rather than its derivative. For example, a compass could be
used to measure heading directly and a transmission
encoder could be used to measure the linear velocity of the
center of an axle of the vehicle.

F t( )
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x
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=
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 exp= (5)

A( )exp I A A2

2!
------ A3

3!
------ …+ + + +=

Ψ t τ,( )F t( ) F t( )Ψ t τ,( )=

x t( ) Φ t t0,( )x t0( ) Φ t τ,( )G τ( )u τ( ) τd
t0

t
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The heading and error in heading are respectively equal at
all times to the heading measurement and its error, so there
is no need for a state to track this. Considering the heading
to be an input, the state equations are:

This system is clearly memoryless since the states do not
appear on the right hand side. Perturbing this, we have:

The vanishing system Jacobian clearly satisfies equation
(5). The transition matrix is trivial:

Substituting into the general solution in equation (6) gives:

This is the general (linearized) solution for the propagation
of systematic error in 2D direct heading odometry for any
trajectory and any error model.
3.2 Integrated Heading Odometry
In integrated heading odometry, an angular velocity indica-
tion is available and a heading state is necessary which is
then integrated to get the heading. For example, a gyro
could be used to measure heading rate and a transmission
encoder, groundspeed radar, or fifth wheel encoder could
be used to measure the linear velocity of the center of an
axle of the vehicle. This is the case given in equation (1)
repeated here for reference:

Let us also define notation for curvature:

Perturbing it we have:

3.2.1 Relevant Properties of Dynamical Systems
Certain important properties can be illustrated on these two
equations. Note that the original three nonlinear equations
can be divided by velocity (without creating a singularity)
to convert the independent variable from time to distance
( ), but this may or may not be true of the per-
turbed system depending on the form of the input errors.
When it is true, the errors are motion dependent and they
stop accumulating when all motion stops.
Also, note that if the errors are odd functions of the inputs,
then switching the signs of the inputs will switch the signs
of the derivatives. Such systems are reversible because
accumulated error is exactly erased by moving backward
over the original trajectory.

Lastly, note that the original nonlinear system is linear in
velocity under the substitution . Hence, the posi-
tion computed for a scaled speed , is scaled
in exactly the same way. As a result, differential distance
and velocity scale errors are distinguished in that they pre-
serve the shape of the trajectory, changing only its size.
3.2.2 General Error Propagation
Let us define the following expressions for the coordinates
of the endpoint from the perspective of the point

:

Next, the integrated system Jacobian is:

which reduces to:

Since , we have the transition matrix as:

Substituting into the general solution in equation (6) gives:

which is convenient to discuss when error sources are sepa-
rated into influence vector terms as follows:

This is the general (linearized) solution for the propagation
of systematic error in 2D integrated heading odometry for
any trajectory and any error model.
A few points are worth noting. Overall, the result consists
of the sum of the response to initial conditions and the
response to the inputs. The former are path independent
terms and the latter may or may not be depending on
whether they can be integrated in closed form. When they
cannot, the errors are path dependent integrals (functionals)
evaluated on the reference trajectory.

td
d x t( )

y t( )
V t( ) θ t( )cos
V t( ) θ t( )sin

=

td
d δx t( )

δy t( )
0 0
0 0

δx t( )
δy t( )

θ t( )cos V– t( ) θ t( )sin
θ t( )sin V t( ) θ t( )cos

δV t( )
δθ t( )
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Φ t τ,( ) F ζ( ) ζd
τ

t
∫ 
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τd
0

t

∫ δθ x( ) yd–
δθ x( ) xdpath

∫+ += (14)
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ω t( )
=
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δy t( )
δθ t( )

·
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0 0 0
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τ
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τ

t
∫–
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τ

t
∫
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=
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1 0 ∆y t τ,( )–
0 1 ∆x t τ,( )
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= = =
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1 0 y t( )–
0 1 x t( )
0 0 1

δx 0( )
cθ ∆y t τ,( )–
sθ ∆x t τ,( )
0 1

δV τ( )
δω τ( )

τd
0

t

∫+= (15)

δx t( )
δx 0( )
δy 0( )

0

y t( )δθ 0( )–
x t( )δθ 0( )

δθ 0( )
θ τ( )cos
θ τ( )sin
0

δV τ( ) τd
0

t

∫
∆y t τ,( )–
∆x t τ,( )

1

δω τ( ) τd
0

t

∫

+ +

+

=

(16)
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3.3 Intuitive Interpretation
Now that the solution is written out, it is clear that it could
have been written by inspection. The initial conditions
affect the endpoint error in a predictable manner and the
remaining terms amount to an addition of the effects felt at
the endpoint at time  of the linear and angular errors
occurring at each time  between the start and end as illus-
trated in figure 2:

The matrix relating input errors occurring at time  to their
later effect at time t is:

This is exactly what equation (16) is integrating. Lineariza-
tion amounts to treating all errors as if they were indepen-
dent in the sense that the endpoint is not changed to reflect
the result of previous errors as the integral proceeds for-
ward through time.
3.4 Differential Heading Odometry
Differential heading odometry is a special case of inte-
grated heading odometry where angular velocity is derived
from the differential indications of wheel linear velocities
and the wheel tread . Let there be a left wheel and a right
wheel on either side of the vehicle reference point as shown
below:

While it is possible in this simple case to solve for the
equivalent integrated heading input  and use the previ-
ous result, we will formulate this form of odometry with an
observer to illustrate the more general case where the mea-
surements  may depend nonlinearly on both the state
and the input, and may overdetermine the input. Let the
measurement vector be the velocities of the two wheels:

The relationship between these and the equivalent inte-
grated heading inputs is:

This is a particularly simple version of the more general
form of the observer in equation (8). The inverse relation-

ship is immediate:

The observer Jacobians are:

The left pseudoinverse reduces to the inverse in this case of
a square  matrix:

From equation (10), the perturbation dynamics are:

This is now identical to the integrated heading case. Substi-
tuting  we have:

This is the general (linearized) solution for the propagation
of systematic error in 2D differential heading odometry for
any trajectory and any error model.
4 First Moments of Error
The main results are equations (14), (16), and (18). Notice
that, in all cases, the input response is a line integral evalu-
ated on the reference trajectory. This is explicitly so in the
case of the last term in direct heading. It becomes clearer in
the other cases by considering the following generalization.
Consider a term of the form:

If the input error is motion dependent, which is to say pro-
portional to a power of velocity (or some other position
variable derivative):

then the integral becomes:

which is a line integral where  is arc length (or some other
position variable) along the trajectory.
Such integrals are the sources of path dependent error in
odometry. These path functionals are equivalent to the
moments of mechanics evaluated on curves whose “mass”
at a given location is the error magnitude suffered at that
location. Two types of moments have appeared.
4.1 Spatial Moments
The spatial moments are analogous to the first moment of
inertia and apply to angular velocity errors. For a general
error , the first spatial error moments are: 

t
τ

Figure 2: Convolution Integral.

x
y

δrω
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ω

Figure 3: Differential Heading Odometry. 
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δVr t( )
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τd
0

t

∫+= (18)

δx t( ) f x τ( )[ ]δV τ( ) τd
0

t
∫=

δV τ( ) α τ( )Vn τ( )=

δx s( ) f x s( )[ ]α s( )Vn 1– s( ) sd
0

s
∫=

s

δu τ( )
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In order, these will be called the first spatial duration,
excursion, and rotation moments of error. Equivalent
moments for the y coordinate are immediate.
4.2 Fourier Moments
The Fourier moments apply to linear velocity errors. For a
general error , the first Fourier error moments are: 

In order, these will be called the first Fourier cosine dura-
tion, excursion, and rotation moments of error. Equivalent
moments for the sine function are immediate.
4.3 Relationships of Trajectory Moments to

Influence Vectors
In general, the influence vector projects each differential
error source onto the associated differential state error. Due
to linearization, the total error in the state can be separated
into the components caused by each error source. For
example, equation 16 can be written as:

Each of the last two terms is an error moment vector - the
integral of the product of the error source and its influence
vector. In the particular case where the error  is constant
(or can be made so by a change of variable), the total effect
of each error source can be evaluated solely as a function of
the reference trajectory. For example, the above becomes:

These integrals, or path functionals, can be called trajectory
moments. They are loosely analogous to the Laplace Trans-
form in that they convert the differential equations of
dynamical system estimation into algebraic ones - once the
trajectory is specified. 
They are intrinsic geometric properties of the path which
give the output error when multiplied by the constant input
error magnitude. A table of such moments provides essen-
tially immediate answers for position error on known refer-
ence trajectories.

5 Errors and Trajectories
The error results available are functions of the reference
trajectory, as is characteristic of perturbations of nonlinear
systems. They are also functions of the error models cho-
sen. Specific trajectories and error models will be assumed
here in order to get specific results. 
5.1 Error Models
For direct heading, we will assume a speed encoder scale
error (due, for example to incorrect wheel radius) and a
compass error due to a magnetic field produced by the
vehicle. For integrated heading, the same speed encoder
scale error and a constant gyro bias will be assumed. For
differential heading, two different encoder scale errors will
be used. These assumptions are summarized in the follow-
ing table.

Under these assumptions, all error moments in the general
solutions become constants multiplied by trajectory
moments. The solution for direct heading becomes:

The solution for integrated heading becomes:

and similarly, the differential heading solution is:

where:

5.2 Trajectories
A linear trajectory, starting at the origin, parallel to the x
axis is defined by the following inputs:

and the associated solution to equation (1):

Ux t( ) x t( ) x τ( )–[ ]δu τ( ) τd
0

t

∫=
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0

s
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0

θ
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(19)

δu τ( )
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0

t
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0

s
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0
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t
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ui
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0

t

∫ δω Φ̃ 1 τd
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Table 1: Error Sources

Odometry Class Error Sources

Direct Heading

Integrated Heading

Differential Heading
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δVr αrVr where αr 1«( )=
δVl α lVl where α l 1«( )=

δx s( ) δx 0( )
δy 0( )

α x s( )
y s( )

Asθcθ–
Bsθcθ

sd
0

s

∫ Bs2θ–

Ac2θ
sd

0

s

∫+ + +=

δx t( )
δx 0( )
δy 0( )

0

y t( )δθ 0( )–
x t( )δθ 0( )

δθ 0( )
α

x t( )
y t( )

0

b
∆y t τ,( )–
∆x t τ,( )

1

τd
0

t

∫+ + +=

δx t( )
δx 0( )
δy 0( )

0

y t( )δθ 0( )–
x t( )δθ 0( )

δθ 0( )

cθ ∆y t τ,( )–
sθ ∆x t τ,( )
0 1

α βW
4

--------

β
W
----- α

V t( )
ω t( )

τd
0

t

∫+ +=

α αr α l+( ) 2⁄= β αr α l–( )=

ω t( ) 0= V t( ) arbitrary=

x t( ) s t( )= y t( ) 0= θ t( ) 0= (21)
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A constant curvature (arc) trajectory, starting at the origin,
initially parallel to the x axis is defined by the following
inputs:

and the associated solution to equation (1):

We also define for later .

6 Solutions to Special Cases
Using the above assumed errors and trajectories, linearized
systematic error propagation is completely determined.
6.1 Straight Trajectory
The solution for direct heading becomes:

Both translational errors are linear in distance - but for dif-
ferent reasons. The x error is due to the encoder scale error
while the y error is due to the constant compass error at
zero heading.
The solution for integrated heading becomes:

Constant velocity was assumed in getting the term qua-
dratic in time. Alongtrack error is linear in distance while
heading error is linear in time. Crosstrack error includes a
term linear in distance and another term which is quadratic
in time or distance for constant velocity.
Similarly, the differential heading solution is:

All terms are motion dependent. As in the integrated head-
ing case, alongtrack error is linear in distance. However, in
this case the heading error is also linear in distance (rather
than time). The crosstrack error is quadratic in distance.
Note that if s reverses, the entire error vector reverses,
because all terms depend explicitly on s.
6.2 Constant Curvature Trajectory
The solution for direct heading becomes:

In addition to linear terms relating to position coordinates
and distance travelled, there are pure oscillation terms that
depend only on the distance travelled along the arc but

which cycle twice per orbit of a complete circle.
The solution for integrated heading becomes:

Constant velocity was assumed in computing the first two
elements of the last term. The heading error is linear in time
whereas the position errors are entirely oscillatory but of
increasing amplitude as time increases. Note that 
oscillates around zero. Note that the linear increase in
amplitude is a first order approximation to the true nonlin-
ear behavior of a beat frequency. Eventually, the amplitude
decreases again in the exact solution.
To first order, the y error vanishes upon return to the origin
whereas the x coordinate of the perturbed trajectory lags or
leads the unperturbed trajectory by an additional distance
of  for each orbit of the unperturbed tra-
jectory.
The solution for differential heading becomes:

Where we have defined:

and then:

The structure is analogous to the integrated heading case.
All terms are motion dependent. The heading error is linear
in distance whereas the position errors are entirely oscilla-
tory but of increasing amplitude as distance increases. Note
that  oscillates around zero. the x coordinate of the
perturbed trajectory lags or leads the unperturbed trajectory
by an additional distance of  for each orbit of
the unperturbed trajectory.

7 Simulation
The results of the last section were verified by comparing
the linearized solutions above with an exact nonlinear
numerical solution. For example, a simulation was con-
ducted for the integrated heading case, for a 1% transmis-
sion encoder error and 3 degree/hour gyro bias. On 5 orbits
of a 4m radius at 0.25 m/s speed, and 0.5 secs timestep, the
difference between the linearized and exact solutions
remains under 1/2 mm.
Figure 4 illustrates an arbitrary trajectory chosen to exhibit

ω t( ) κ t( )V t( ) V t( ) R⁄= = V t( ) arbitrary=

θ s( ) κs= x s( ) R κs( )sin= y s( ) R 1 κs( )cos–[ ]=

T 1 ω⁄=

δx s( ) δx 0( )
δy 0( )

αs
As

+=

δx t( )
δx 0( )
δy 0( )

0

0
s t( )δθ 0( )

δθ 0( )
α

s t( )
0
0

b
0

Vt2 2⁄
t

+ + +=

δx s( )
δx 0( )
δy 0( )

0

y s( )δθ 0( )–
x s( )δθ 0( )

δθ 0( )

αx s( )
0

β W⁄( )s

β
W
-----

0

s2 2⁄
0

βW
4

--------
0
0
0

α
0
0
0

+

+ + + +

=

δx s( ) δx 0( )
δy 0( )

α x s( )
y s( )

R A 4⁄–
B 4⁄

1
2
--- Bs–

As
R
4
--- A 2cos κs B 2sin κs+

B– 2cos κs A 2sin κs+

+

+ + +

=

δx t( )
δx 0( )
δy 0( )

0

y t( )δθ 0( )–
x t( )δθ 0( )

δθ 0( )

α bT–( )x t( )
btx t( )

0

bt R y t( )–[ ]
α bT–( )y t( )

bt

+ + +=

R y t( )–

Rbt 2πR b ω⁄( )=

δx s( )
δx 0( )
δy 0( )

0

y s( )δθ 0( )–
x s( )δθ 0( )

δθ 0( )

α' b'R–( )x s( )
b'sx s( )

b's

b's R y s( )–( )
α' b'R–( )y s( )

0

+ + +=

α' α βW
4R
--------+ 

 = b' β
W
----- α

R
---+ 

 =

βW
4R
-------- βR

W
-------– α βW

4R
--------+ 

  βR
W
------- α+ 

 – α' b'R–= =

R y s( )–

R βs αθR+( )
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no particular symmetry.

The same encoder and gyro errors mentioned above are
applied to this test run. The perturbed (white) and unper-
turbed (black) trajectories can barely be distinguished at
full scale in the figure. Comparison of the exact and linear-
ized solutions is presented in figure 5.

Clearly, the linearized solution is an excellent approxima-
tion for errors of this magnitude. Throughout the test, the
difference between exact and linearized solutions never
exceeds 1 cm.

8 Conclusions
The commonly used heuristic that systematic odometry
error is linear in distance turns out to be correct only for
small excursions. Errors which affect angle are integrated
once to get angular error and then a second time to get the
associated position error. As a result, all cases studied gen-
erate a term quadratic in distance or time depending on the
variable of integration.
A common technique for assessing accuracy is to verify
that the computed trajectory associated with a closed refer-
ence trajectory also closes. As we have shown, some sys-
tematic error terms are path independent and therefore must
vanish on closed trajectories, so the path closure test cannot
observe such systematic sensor errors. However, the results
of this paper provide the means to extract error magnitudes
of any type from any trajectory by measuring total error
externally and solving the equations produced by the error
moments for the error magnitudes.

In addition to their pedagogic value, the results of this
paper can be used in design to determine acceptable levels
of systematic sensor error for a given target system perfor-
mance. They can be used in development to accentuate
response to individual error sources for on-line or off-line
calibration or evaluative purposes. They can be used in
operation to plan trajectories in order to minimize exposure
to specific error sources. The non systematic error version
of the present results also may have application to small
footprint embedded optimal estimators since the linear
variance equation reduces in many cases to computation of
second order versions of the trajectory moments mentioned
here.
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