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ABSTRACT

A pedestrian tracking system using inertial sensors
mounted on both feet is presented. Significant accuracy
improvements are demonstrated, compared to single shoe
tracking, by using sonar foot-to-foot range measurements
to constrain heading drift. A single complementary
Kalman filter fuses data from both inertial measurement
units and the sonar sensor. The system is composed of
commercial and custom hardware. Experimental results
collected over long durations and distances are presented.

INTRODUCTION

Pedestrian tracking is the problem of calculating the
position and orientation of walking individuals with
wearable devices. It can provide situational awareness for
first responders, direct advertising at potential consumers,
map resources or buildings, guide the visually impaired
etc.

There are two approaches to pedestrian tracking in the
current literature. Pedometry approaches count steps, and
measure heading and step distance to resolve position [8].
The advantage of the pedometry approach is that sensors
can be mounted anywhere on the body and that errors are
typically only motion and not time dependent. One
disadvantage is that a biomechanical model that is user
dependent is typically needed to determine step length.
Inertial navigation approaches implement a full six
degree-of-freedom inertial solution at the foot and use
each footfall to reset accumulated error [3][4][5]. The
inertial approach requires sensors to be at the foot and
exhibits errors that are both time and motion dependent.
However, the solution is not user dependent and in fact is



almost identical to aided inertial navigation solutions for
vehicle tracking so it can leverage a body of pre-existing
work. The system and results described here use an
inertial system.

Zero velocity updates at each footfall reduce the time
dependence of position error variance from cubic to
linear, when assessed independently of orientation effects.
Zero velocity updates, however, cannot resolve heading
error and heading gyro bias error [2]. More specifically,
zero velocity updates cannot resolve the components of
gyro bias parallel to the specific force vector [4]. When
the foot is on the ground, during footfall, this specific
force vector is approximately the gravity normal force.
Hence the uncorrected gyro and orientation components
are those that affect pedestrian heading. It has been
shown that two independent inertial solutions, one on
each foot, with a range constraint between them can
largely remove these remaining heading and gyro bias
errors [1]. This result however has only been reported in
simulation studies. We present here, to our knowledge,
the first experimental implementation of this idea and
confirm significant accuracy improvements.

Left and right feet are tracked with independent IMUs and
inertial solutions. A single complementary Kalman filter
tracks errors in both solutions. Periods of zero velocity
are inferred from acceleration signals and corrections are
applied separately on each foot. A sonar sensing system is
mounted alongside each IMU to measure range between
the feet. With this measurement, errors on both sides are
corrected and the two solutions become coupled via the
covariance correlations maintained in the filter. In our
experiments, without this range measurement, heading
error grows linearly in time because of gyro bias, drift and
dynamic response and differs for each foot. The addition
of the range measurement reduces the heading error drift
rate by up to an order of magnitude. The remaining trend
is still generally linear in time but it is the same for both
feet.

The system operates in a local coordinate frame that can
be geo-located with the addition of initial position and
north relative heading.

A variety of inertial sensors have been tested in field
trials, the results described here use a pair of tactical
grade MEMS IMUs. The tracking filter provides three
axis position, velocity and orientation and, optionally,
online calibration data for each IMU.

The remainder of this paper is organized as follows: We
review the inertial navigation approach to pedestrian
tracking and present our algorithms, as they would be
applied to an IMU on one shoe. We then extend these
algorithms to two IMUs and add a range measurement
between them. The experimental hardware is presented

and an analysis of experimental results, especially in
comparison to previously reported systems is provided.

IMU CALIBRATION

The IMUs are calibrated before experiments. This
procedure happens with the IMUs mounted on the boots
but not with the boots on the feet. Gyro calibration is
straightforward. =~ While at rest, the gyroscopes are
measuring only the rotation of the earth, @y, Which is a
function of latitude, A.
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R is a rotation matrix that converts navigation (A local
level north, east, down frame) to IMU coordinates. To
remove noise and small oscillations, the gyro
measurements are averaged for 3 minutes. This averaging
period should be selected based on the minimum of the
Allan deviation (i.e. the bias stability) to ensure that the
average is optimal. For our sensor, the bias to noise ratio
is approximately 0.02, so careful selection of the
averaging period is important. Figure 1 shows the Allan
deviation for the three-axis gyro, with a minimum at
approximately 3 minutes.

Gyro Allan Deviation (rad/s)

Tau (s)
Figure 1. Allan deviation of the three-axis gyro.
Averaging time in seconds, deviation in rad/s. Blue is
the x IMU axis, green is y, red is z.

The difference between the average gyro readings and the
expected earth rate signal is the calibrated bias.
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This technique requires R, the navigation to IMU frame
rotation, and latitude A, to be known. The alignment
section below shows how the calculation of R is
accomplished using the accelerometer signals. Compared



to MEMS gyro accuracies, the earth rate variation with
latitude is small, so an approximate value is sufficient.

Accelerometer calibration is more complicated. We use a
method similar to [8]. The three axes of the
accelerometer are sequentially exposed to positive and
negative gravity normals while the IMU is stationary. See
Figure 2.
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Figure 2. Six orientations required for the
accelerometer calibration for a heel mounted IMU.
Each face of the IMU bounding cube is pointed 'up'

once.

The accelerometer readings are averaged for 3-5 seconds
to give a total of six three-axis averages. An error term is
calculated as the difference between the magnitude of the
measured gravity signal,f, and the known magnitude of
gravity at the current latitude, g()

e=[7]-5(2)

The error term uses the vector norm and gravity
magnitude and is one-dimensional. This is necessary
since, roll and pitch angle errors are not separable from
accelerometer biases in a static calibration [9]. A non-
linear optimization using the Levenberg-Marquardt
algorithm is then used to minimize the error term while
estimating the accelerometer biases, Af.

The accelerometer calibration is performed before the
gyro calibration because the accelerometer values are
needed in the calculation of the R matrix.

The magnitude of gravity, including centripetal effects, at
a given latitude is calculated from the WGS84 gravity
model

1+a,sin’(A)

g A’ = gﬁ uator
(2)=s. 1-a,sin’ (1)

Where gequator, the equatorial gravity, and a, and a, are
constants [9].

ALIGNMENT

Each IMU measures three-axis specific force and three-
axis rotation rate. Given initial conditions, these signals
can be integrated into position, velocity and orientation.

Initial position is either given to the system at startup by
the user or set at (0,0,0), the latter implies a local
reference frame. In both cases the navigation frame is a
local level frame, suitable for navigation over several
miles. For longer trajectories, the earth’s curvature
becomes important and would necessitate a re-
implementation.

Initial velocity is assumed to be (0,0,0) in the navigation
frame, meaning that the user must start with both feet
stationary.

Initial orientation is determined in two steps. Roll and
pitch angles (¢,0) are calculated, while the user is wearing
the boots and stationary, by computing the misalignment
with the measured local gravity vector
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Initial heading, v, is a user input since MEMS gyroscope
technology is not yet capable of gyro-compassing. If
initial heading is unknown it defaults to true north and
degrades performance a small amount for failing to
correct for the rotation of the navigation frame with Earth.
This effect, at moderate latitudes, is generally less than 10
degrees/hour. That is significant in our case.

Roll, pitch and heading angles are then converted to the
rotation matrix, R, relating the navigation frame and the
IMU frame [9].

INS MECHANIZATION

The alignment stage described above gives initial
conditions for the inertial solution recursions. For
orientation

R =R A



Where k is a time and data index determined by the IMUs
in use or the algorithm design. In this case each k is
1/600s. A is an update matrix, composed of the small
angle rotation between time indices, o, where
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Superscript T represents matrix transpose, implying that
the update increments the IMU to navigation rotation
matrix rather than vice versa. The [oXx] notation
represents the cross product matrix. This is output by
some IMUs directly or can be approximated to first order
by

A=|1+

[ax]+ [ax]

a=ATw

Velocity is updated with
Vi=Via t AT(RTfk-l +8-2m,,, X Vk-l)

where g is gravity (The WGS84 model given above),
Mearn 18 €arth rate and its cross product with velocity is the
coriolis force. R is known from orientation recursion
given above. The accelerometer output, f, is the specific
force and AT is the time increment.

Position is integrated using a trapezoidal algorithm with
the current and previous velocity

1
Pe = Pis +§AT(vk +vk_1)

Typical performance of free inertial navigation on a shoe
depends on two principal factors. The first is the quality
of the IMU, as disclosed by the manufacturer in a
datasheet. The second is the IMUs response to the
dynamics of the foot, which do not resemble any
environment that commercially available IMUs are
designed for. These second errors may be partially
predicted by g-dependent gyro biases and various other
terms that some manufacturers specify. In our experience
the performance of a particular IMU on the foot is often
not predictable without experimental data.

The IMUs used here are Honeywell HG1930 MEMs
IMUs. Typical rated performance is 10 deg/hr gyro bias
stability, which sets a performance flaw for free
navigation with a calibrated gyro. Based on Allan
deviation analysis, the particular models used here have
bias stabilities closer to 3 deg/hr, See Figure 1. We
observe this level of performance in the gyros when
mounted on the torso, but typically observe 10-100x more
drift error when mounted on the foot. Figure 3 compares

the heading solution for two calibrated IMUs mounted in
different locations on the body. The black signal is a
torso mounted device, with a trend line demonstrating
very little drift (Bias stability of 3 deg/hr is not observable
here) while the blue signal from a foot mounted device is
accumulating heading error at approximately 135 deg/hr,
well above datasheet predictions. A similar phenomenon
has been reported previously [4]. As will be
demonstrated in the experiments to come, heading error is
the major source of position error in most tracking
scenarios, so we expect that inertial devices designed for
these environments or improved online calibrations will
significantly improve future performance.

Figure 3. Heading drift rates of two calibrated IMUs.
Black is torso mounted (0 deg/hr trend), blue is foot
mounted (135 deg/hr trend).

To constrain drift error we use a complementary Kalman
filter that maintains estimates of the error in the inertial
states [13]. The filter requires a process model of the
form

X = f(X,W)

where X is a vector of relevant states and W are noise
sources that reflect the uncalibrated errors remaining in
the IMU. W is assumed zero mean and white, which can
always be enforced by moving any structure into the state
X, whether it be non-zero mean (bias) or non-white
correlations (Gauss-Markov process). We typically work
with two models, one that includes gyro and
accelerometer bias in the state and one that does not. The
extended state version can compensate for bias drift from
the calibrated values but in practice it typically overfits
residual motion in the zero velocity updates, so we prefer
the simpler formulation and present the rest of the
development with this form. The state consists of three
orientation errors, forming a small angle deviation from
the true orientation, three-axis position errors and three-
axis velocity errors.



The noise sources represent three-axis gyro and
accelerometer uncertainties that cover errors not initially
calibrated

W,
W=

W,

This represents the simplest model for uncertainty input
into an inertial filter but it also the most robust without a
more precise understanding of the dynamic error response
of the IMU on the foot. Linearizing at the current state
gives

8X| =FX+GW

Xy

where F and G are Jacobian matrices taken with respect to
state and noise. In this case, these are

055 055 054
F= 054 0,5 L
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and

The specification of X, F, G and the power spectrum of W
is sufficient to predict system uncertainty using the
standard Kalman filter relations, given initial uncertainties
in each state. Initial roll and pitch uncertainties are
derived from estimates of the residual accelerometer
biases passed through the alignment equations. Heading,
position and velocity uncertainties, like their mean values
are user inputs.

Footfall, the period when a foot is flat on the ground
while walking, is inferred from the following signal

= (varn (f) < m)?true : false

This should be interpreted as measuring the variance of
the accelerometer signal (over the preceding n seconds)
compared component wise with a threshold m. If each
component is less than a than m, an indicator is true,
otherwise it is false. Here n = 0.1s and m = 0.1m%/s".

When the indicator variable is true, a footfall is detected
and an assumption that the IMU is now at zero velocity is
enforced in the filter. This takes the form of a Kalman
update directly measuring the velocity error as the current
inertial solution velocity estimate.

Many other zero velocity detectors are mentioned in the
literature [7]. What is not mentioned is that these
detection  techniques mostly measure  constant
acceleration, which is then assumed to mean zero
velocity. This is approximately true for foot-mounted
sensors, when walking, because the complex dynamics of
the foot mean velocity is never constant for n seconds
except during footfall. This assumption fails however in
elevators, on moving walkways and when the user is in a
non-accelerating vehicle. When it fails, the system
performance will degrade rapidly and may be
unrecoverable. Our system has these failure modes also.

The threshold, m, needs to be set far above the noise floor
of the accelerometers (0.1 m*/s* vs. 0.0009 m*/s*) for any
detections to occur. This implies that real motion of the
foot is occurring which in turn implies that the zero
velocity assumption is an approximation at best. Figure 4
shows the accelerometer and gyro signals over the period
of one step (Approximately 1.2s) starting and ending at
heel impact with the ground. At full scale the period 0.2-
0.3 seconds appears to support the notion of constant
acceleration.

Time (s)

Figure 4. Accelerometer (upper) and gyro (lower)
signals for the period of one step. The 0.2-0.3s window
is typically assumed to be at zero velocity.

Figure 5 presents the x IMU axis accelerometer and gyro
signals from the 0.2-0.3s window of Figure 4 at an
enlarged scale. Overlaid on the signal is an indicator of
the three-sigma noise values for reference (Red lines). It
is obvious from this that real motion of the IMU is



occurring during footfall, with significant magnitude and
structure in the signal. A truly zero signal would be 99%
contained within the red lines.

Figure 5. Accelerometer (upper) and gyro (lower) x
axis signals during footfall (blue), enlarged view of the
02-0.3s window of Figure 4. Positive and negative 3
sigma noise bars (red) indicate real motion is present.

The Kalman filter assumes measurement errors are zero
mean and uncorrelated in time so the accuracy of any zero
velocity based system will be limited by this model fault.
To improve upon the current technique we introduce the
following model, which is intended to capture some of the
motion of the IMU during footfall.

imu imu

vk = wk x r;oe—>imu

Where k is again a time and data increment and
superscript IMU means the variable is measured in the
IMU reference frame, not the navigation frame.

This model makes use of the accurate gyro signal, wy,
plus a vector range from a point of pivot near the toes of
the foot to the IMU center, 1. Simu- This is an assumption
that IMU velocity when the foot is in contact with the
ground can be described by pure rotation. The radius
Tioc_yimu will change as the footfall progresses from the
heel to the toes. At present we detect heel impact, which
presents an obvious spike in acceleration (See Figure 4, Os
mark) using a local maximum operator, then introduce a
delay, calibrated to allow the transition from heel to
forefoot to occur. The velocity model given above is then
applied as the foot lifts off the ground, pivoting around
the forefoot.

Not only does this model improve estimation of the
velocity mean, it allows for more accurate introduction of
uncertainty. Denoting covariance matrices by P we can
write the uncertainty in the velocity as the transform of
gyro and pivot radius uncertainties

P =lr,

v

T,

_ X]P. [ )
e—>1mu w toe—>1mu

x]" +[wx]P[w x]T

The covariance of the gyro is known and the covariance
of the radius is fixed to cover some portion of the forefoot
depending on the accuracy of the impact detection and the
delay function described above.

Because this measurement is formulated in the IMU
reference frame, where ® and 1 imu are measured, the
filter must relate velocity error to the states. This is
accomplished by

5v=[ -R[vx] 0,, R ]X

Extending the above algorithms to two shoes requires
concatenating the state, noise input and Jacobians.

X/ = [Xlefr ’ Xright ]T

W= [‘/Vleft > an‘gm ]T

, T
F = [Eefr’ F;'ight]
G/ = [Gleft ’ Grighr ]T

A sonar then measures the range between them, with the
following model for range error

[(Pria = P ) X s
(P = Pr)
1 05,
‘ Diesi = Prigns [(p,ef, = Prigi ) x]lm

(prigh/ ~ P )
0

or =

3x1

Where p is the position of the sonars, not the IMUs
T
psonar = pimu +R r}muﬁsonar

HARDWARE

The system sensing is composed of two Honeywell
HG1930 AA90 IMUs and a Devantech sonar range
finder. These are connected to a Xilinx Virtex 4 FPGA
with custom interface electronics. The FPGA implements
the necessary communication protocols, receives, formats
and timestamps incoming sensor data and then transmits it
on a local network. A small form factor PC running
Ubuntu Linux and our real-time positioning software
performs the inertial navigation and filtering.



Figure 6. HG1930 IMU mounted on standard issue
boot. Sonar transceivers (silver cylinders). Mil-spec

connector runs cabling to backpack computing.

Figure 6 shows the IMU (brass cylinder) mounted on a
boot. Two sonar transceivers (silver cylinders) at located
nearby. An electrical and power interface board (green)
connects to a mil-spec connector, which attaches to
backpack computing and electronics. An exploded view
of the entire system is shown in Figure 7.

Figure 7. Exploded view of entire system. The grey
box contains electronics and computing and resides in
the backpack. Cables connect IMUs and sonars at
each foot. An iPad provides a user interface via WiFi.
An alignment brace ensures the two IMUs have the
same initial heading.

RESULTS

We present two experiments; the first is a continuous 4
hour repetitive path to demonstrate system reliability and
accuracy. The second is a 2 hour freeform path with static
intervals that simulates a typical office scenario where the
user spends time at a desk and occasionally moves around
an office building.

For indoor tracking, GPS cannot be used as a reference
and for environments as large as our test locations there
are no practical ground truth systems available. For the
first test a known rectangle is followed for 4 hours,
allowing the calculation of position error at each corner.
The path length is approximately 20km consisting of 48
laps. Figure 8 shows the tracking solution (blue)

compared to the known path (red). Figure 9 shows root
sum squared position errors at each corner.

North (m)

; -20 0 20 40 @ 0 100 120 140 160
East {m)
Figure 8. 2D rectangular path. Test duration is 4
hours and approx. 20km. Tracking solution (blue) is
compared to known path (red).
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Figure 9. RSS Position error assessed at each corner
of the path in Figure 8. Circles are corner 1, squares
corner 2, crosses corner 3 and triangles corner 4.
Corners are numbered counter-clockwise from the
bottom left.

Position accuracy in this result is a function of heading
error which is approximately 3.5 degrees after 4 hours, or
less than 1 degree/hr heading drift. This improvement,
compared to the gyro only performance shown in Figure
3, is a result of the sonar measurements ability to remove
accumulated heading error. The maximum position error,
10.2m, occurs at corner 3 (top right). There is also a
small scale factor error in the computed path that
underestimates the true rectangle by approximately 1%.
This result does not use the pivot velocity model
described earlier and this underestimate is attributed to the
zeroing of real motions during zero velocity updates.
There are approximately 14,000 footfalls in a 4 hour
experiment, so even 1mm of motion sums to a significant
value.

Figure 10 shows the results of a simulated office scenario.
In this case no ground truth is available but the result is
overlaid on the office floor plan for comparison. Four
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Figure 10. Simulated office scenario. The user spends 1.5 hours in the office in the top center of the images and 0.5
hours moving about the building. Top left shows free inertial. Top right is zero velocity updates without sonars,
bottom left is zero velocity updates with sonars and bottom right is zero velocity updates, pivot velocity updates and

results are shown progressing from free inertial (top left).
Standard zero velocity updates without sonar (tor right),
standard zero velocity updates with sonar (bottom left)
and standard zero velocity updates, pivot velocity updates
and sonars (bottom right).
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