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ABSTRACT  
 
A pedestrian tracking system using inertial sensors 
mounted on both feet is presented.  Significant accuracy 
improvements are demonstrated, compared to single shoe 
tracking, by using sonar foot-to-foot range measurements 
to constrain heading drift.  A single complementary 
Kalman filter fuses data from both inertial measurement 
units and the sonar sensor.  The system is composed of 
commercial and custom hardware.  Experimental results 
collected over long durations and distances are presented. 
 

INTRODUCTION  
 
Pedestrian tracking is the problem of calculating the 
position and orientation of walking individuals with 
wearable devices.  It can provide situational awareness for 
first responders, direct advertising at potential consumers, 
map resources or buildings, guide the visually impaired 
etc. 
 
There are two approaches to pedestrian tracking in the 
current literature. Pedometry approaches count steps, and 
measure heading and step distance to resolve position [8]. 
The advantage of the pedometry approach is that sensors 
can be mounted anywhere on the body and that errors are 
typically only motion and not time dependent.  One 
disadvantage is that a biomechanical model that is user 
dependent is typically needed to determine step length.  
Inertial navigation approaches implement a full six 
degree-of-freedom inertial solution at the foot and use 
each footfall to reset accumulated error [3][4][5].  The 
inertial approach requires sensors to be at the foot and 
exhibits errors that are both time and motion dependent.  
However, the solution is not user dependent and in fact is 



almost identical to aided inertial navigation solutions for 
vehicle tracking so it can leverage a body of pre-existing 
work.  The system and results described here use an 
inertial system. 
 
Zero velocity updates at each footfall reduce the time 
dependence of position error variance from cubic to 
linear, when assessed independently of orientation effects. 
Zero velocity updates, however, cannot resolve heading 
error and heading gyro bias error [2].  More specifically, 
zero velocity updates cannot resolve the components of 
gyro bias parallel to the specific force vector [4].  When 
the foot is on the ground, during footfall, this specific 
force vector is approximately the gravity normal force.  
Hence the uncorrected gyro and orientation components 
are those that affect pedestrian heading.  It has been 
shown that two independent inertial solutions, one on 
each foot, with a range constraint between them can 
largely remove these remaining heading and gyro bias 
errors [1].  This result however has only been reported in 
simulation studies.  We present here, to our knowledge, 
the first experimental implementation of this idea and 
confirm significant accuracy improvements. 
 
Left and right feet are tracked with independent IMUs and 
inertial solutions.  A single complementary Kalman filter 
tracks errors in both solutions.  Periods of zero velocity 
are inferred from acceleration signals and corrections are 
applied separately on each foot. A sonar sensing system is 
mounted alongside each IMU to measure range between 
the feet. With this measurement, errors on both sides are 
corrected and the two solutions become coupled via the 
covariance correlations maintained in the filter.  In our 
experiments, without this range measurement, heading 
error grows linearly in time because of gyro bias, drift and 
dynamic response and differs for each foot. The addition 
of the range measurement reduces the heading error drift 
rate by up to an order of magnitude. The remaining trend 
is still generally linear in time but it is the same for both 
feet. 
 
The system operates in a local coordinate frame that can 
be geo-located with the addition of initial position and 
north relative heading.  
 
A variety of inertial sensors have been tested in field 
trials, the results described here use a pair of tactical 
grade MEMS IMUs. The tracking filter provides three 
axis position, velocity and orientation and, optionally, 
online calibration data for each IMU. 
 
The remainder of this paper is organized as follows:  We 
review the inertial navigation approach to pedestrian 
tracking and present our algorithms, as they would be 
applied to an IMU on one shoe.  We then extend these 
algorithms to two IMUs and add a range measurement 
between them.  The experimental hardware is presented 

and an analysis of experimental results, especially in 
comparison to previously reported systems is provided. 
 
IMU CALIBRATION 
 
The IMUs are calibrated before experiments.  This 
procedure happens with the IMUs mounted on the boots 
but not with the boots on the feet.  Gyro calibration is 
straightforward.  While at rest, the gyroscopes are 
measuring only the rotation of the earth, !earth, which is a 
function of latitude, ". 
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R is a rotation matrix that converts navigation (A local 
level north, east, down frame) to IMU coordinates.  To 
remove noise and small oscillations, the gyro 
measurements are averaged for 3 minutes.  This averaging 
period should be selected based on the minimum of the 
Allan deviation (i.e. the bias stability) to ensure that the 
average is optimal.  For our sensor, the bias to noise ratio 
is approximately 0.02, so careful selection of the 
averaging period is important.  Figure 1 shows the Allan 
deviation for the three-axis gyro, with a minimum at 
approximately 3 minutes. 
 

 
Figure 1.  Allan deviation of the three-axis gyro.  

Averaging time in seconds, deviation in rad/s.  Blue is 
the x IMU axis, green is y, red is z. 

 
The difference between the average gyro readings and the 
expected earth rate signal is the calibrated bias. 
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This technique requires R, the navigation to IMU frame 
rotation, and latitude ", to be known.  The alignment 
section below shows how the calculation of R is 
accomplished using the accelerometer signals.  Compared 



to MEMS gyro accuracies, the earth rate variation with 
latitude is small, so an approximate value is sufficient. 
 
Accelerometer calibration is more complicated.  We use a 
method similar to [8].   The three axes of the 
accelerometer are sequentially exposed to positive and 
negative gravity normals while the IMU is stationary. See 
Figure 2.   
 
 

 
 

Figure 2.  Six orientations required for the 
accelerometer calibration for a heel mounted IMU.  
Each face of the IMU bounding cube is pointed 'up' 

once. 
 
The accelerometer readings are averaged for 3-5 seconds 
to give a total of six three-axis averages.  An error term is 
calculated as the difference between the magnitude of the 
measured gravity signal, f, and the known magnitude of 
gravity at the current latitude, g(") 
 

e = f ! g !( )  

 
The error term uses the vector norm and gravity 
magnitude and is one-dimensional.  This is necessary 
since, roll and pitch angle errors are not separable from 
accelerometer biases in a static calibration [9].  A non-
linear optimization using the Levenberg-Marquardt 
algorithm is then used to minimize the error term while 
estimating the accelerometer biases, #f. 
 
The accelerometer calibration is performed before the 
gyro calibration because the accelerometer values are 
needed in the calculation of the R matrix. 
 
The magnitude of gravity, including centripetal effects, at 
a given latitude is calculated from the WGS84 gravity 
model  
  

g !( ) = gequator
1+ a0 sin
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Where gequator, the equatorial gravity, and a0 and a1 are 
constants [9].  
 
ALIGNMENT 
 
Each IMU measures three-axis specific force and three-
axis rotation rate.  Given initial conditions, these signals 
can be integrated into position, velocity and orientation. 
 
Initial position is either given to the system at startup by 
the user or set at (0,0,0), the latter implies a local 
reference frame.  In both cases the navigation frame is a 
local level frame, suitable for navigation over several 
miles.  For longer trajectories, the earth’s curvature 
becomes important and would necessitate a re-
implementation. 
 
Initial velocity is assumed to be (0,0,0) in the navigation 
frame, meaning that the user must start with both feet 
stationary. 
 
Initial orientation is determined in two steps.  Roll and 
pitch angles ($,%) are calculated, while the user is wearing 
the boots and stationary, by computing the misalignment 
with the measured local gravity vector 
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Inverting 
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Initial heading, &, is a user input since MEMS gyroscope 
technology is not yet capable of gyro-compassing.  If 
initial heading is unknown it defaults to true north and 
degrades performance a small amount for failing to 
correct for the rotation of the navigation frame with Earth.  
This effect, at moderate latitudes, is generally less than 10 
degrees/hour.  That is significant in our case. 
 
Roll, pitch and heading angles are then converted to the 
rotation matrix, R, relating the navigation frame and the 
IMU frame [9]. 
 
INS MECHANIZATION 
 
The alignment stage described above gives initial 
conditions for the inertial solution recursions.  For 
orientation 

Rk
T = Rk!1

T "  



 
Where k is a time and data index determined by the IMUs 
in use or the algorithm design.  In this case each k is 
1/600s.  A is an update matrix, composed of the small 
angle rotation between time indices, ', where 
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Superscript T represents matrix transpose, implying that 
the update increments the IMU to navigation rotation 
matrix rather than vice versa.  The ['x] notation 
represents the cross product matrix.  This is output by 
some IMUs directly or can be approximated to first order 
by 
 

! = !T"  
 
Velocity is updated with 
 

vk = vk!1 +"T RT fk!1 + g! 2!earth # vk!1( )  

 
where g is gravity (The WGS84 model given above), 
!earth is earth rate and its cross product with velocity is the 
coriolis force. R is known from orientation recursion 
given above. The accelerometer output, f, is the specific 
force and #T is the time increment. 
 
Position is integrated using a trapezoidal algorithm with 
the current and previous velocity 
 

pk = pk!1 +
1
2
"T vk + vk!1( )  

 
Typical performance of free inertial navigation on a shoe 
depends on two principal factors.  The first is the quality 
of the IMU, as disclosed by the manufacturer in a 
datasheet.  The second is the IMUs response to the 
dynamics of the foot, which do not resemble any 
environment that commercially available IMUs are 
designed for.  These second errors may be partially 
predicted by g-dependent gyro biases and various other 
terms that some manufacturers specify.  In our experience 
the performance of a particular IMU on the foot is often 
not predictable without experimental data. 
 
The IMUs used here are Honeywell HG1930 MEMs 
IMUs.  Typical rated performance is 10 deg/hr gyro bias 
stability, which sets a performance flaw for free 
navigation with a calibrated gyro.  Based on Allan 
deviation analysis, the particular models used here have 
bias stabilities closer to 3 deg/hr, See Figure 1.  We 
observe this level of performance in the gyros when 
mounted on the torso, but typically observe 10-100x more 
drift error when mounted on the foot.  Figure 3 compares 

the heading solution for two calibrated IMUs mounted in 
different locations on the body.  The black signal is a 
torso mounted device, with a trend line demonstrating 
very little drift (Bias stability of 3 deg/hr is not observable 
here) while the blue signal from a foot mounted device is 
accumulating heading error at approximately 135 deg/hr, 
well above datasheet predictions.  A similar phenomenon 
has been reported previously [4].  As will be 
demonstrated in the experiments to come, heading error is 
the major source of position error in most tracking 
scenarios, so we expect that inertial devices designed for 
these environments or improved online calibrations will 
significantly improve future performance. 
 

 
Figure 3.  Heading drift rates of two calibrated IMUs.  
Black is torso mounted (0 deg/hr trend), blue is foot 

mounted (135 deg/hr trend). 
 
 
To constrain drift error we use a complementary Kalman 
filter that maintains estimates of the error in the inertial 
states [13].  The filter requires a process model of the 
form 
 

!! = f (!,W )  
 
where X is a vector of relevant states and W are noise 
sources that reflect the uncalibrated errors remaining in 
the IMU.  W is assumed zero mean and white, which can 
always be enforced by moving any structure into the state 
X, whether it be non-zero mean (bias) or non-white 
correlations (Gauss-Markov process).  We typically work 
with two models, one that includes gyro and 
accelerometer bias in the state and one that does not.  The 
extended state version can compensate for bias drift from 
the calibrated values but in practice it typically overfits 
residual motion in the zero velocity updates, so we prefer 
the simpler formulation and present the rest of the 
development with this form.  The state consists of three 
orientation errors, forming a small angle deviation from 
the true orientation, three-axis position errors and three-
axis velocity errors. 
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The noise sources represent three-axis gyro and 
accelerometer uncertainties that cover errors not initially 
calibrated 
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This represents the simplest model for uncertainty input 
into an inertial filter but it also the most robust without a 
more precise understanding of the dynamic error response 
of the IMU on the foot.  Linearizing at the current state 
gives 
 

! !!
!k
= F! +GW  

 
where F and G are Jacobian matrices taken with respect to 
state and noise.  In this case, these are 
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The specification of X, F, G and the power spectrum of W 
is sufficient to predict system uncertainty using the 
standard Kalman filter relations, given initial uncertainties 
in each state.  Initial roll and pitch uncertainties are 
derived from estimates of the residual accelerometer 
biases passed through the alignment equations.  Heading, 
position and velocity uncertainties, like their mean values 
are user inputs. 
 
Footfall, the period when a foot is flat on the ground 
while walking, is inferred from the following signal 
 

zv = varn f( ) <m( )? true : false  

 

This should be interpreted as measuring the variance of 
the accelerometer signal (over the preceding n seconds) 
compared component wise with a threshold m.  If each 
component is less than a than m, an indicator is true, 
otherwise it is false.  Here n  = 0.1s and m = 0.1m2/s4.   
 
When the indicator variable is true, a footfall is detected 
and an assumption that the IMU is now at zero velocity is 
enforced in the filter.  This takes the form of a Kalman 
update directly measuring the velocity error as the current 
inertial solution velocity estimate. 
 
Many other zero velocity detectors are mentioned in the 
literature [7].  What is not mentioned is that these 
detection techniques mostly measure constant 
acceleration, which is then assumed to mean zero 
velocity.  This is approximately true for foot-mounted 
sensors, when walking, because the complex dynamics of 
the foot mean velocity is never constant for n seconds 
except during footfall.  This assumption fails however in 
elevators, on moving walkways and when the user is in a 
non-accelerating vehicle.  When it fails, the system 
performance will degrade rapidly and may be 
unrecoverable.  Our system has these failure modes also. 
 
The threshold, m, needs to be set far above the noise floor 
of the accelerometers (0.1 m2/s4 vs. 0.0009 m2/s4) for any 
detections to occur. This implies that real motion of the 
foot is occurring which in turn implies that the zero 
velocity assumption is an approximation at best.  Figure 4 
shows the accelerometer and gyro signals over the period 
of one step (Approximately 1.2s) starting and ending at 
heel impact with the ground.  At full scale the period 0.2-
0.3 seconds appears to support the notion of constant 
acceleration. 

 
Figure 4.  Accelerometer (upper) and gyro (lower) 

signals for the period of one step.  The 0.2-0.3s window 
is typically assumed to be at zero velocity. 

 
Figure 5 presents the x IMU axis accelerometer and gyro 
signals from the 0.2-0.3s window of Figure 4 at an 
enlarged scale.  Overlaid on the signal is an indicator of 
the three-sigma noise values for reference (Red lines).  It 
is obvious from this that real motion of the IMU is 



occurring during footfall, with significant magnitude and 
structure in the signal.  A truly zero signal would be 99% 
contained within the red lines. 

 
Figure 5.  Accelerometer (upper) and gyro (lower) x 

axis signals during footfall (blue), enlarged view of the 
02-0.3s window of Figure 4.  Positive and negative 3 

sigma noise bars (red) indicate real motion is present. 
 
The Kalman filter assumes measurement errors are zero 
mean and uncorrelated in time so the accuracy of any zero 
velocity based system will be limited by this model fault.  
To improve upon the current technique we introduce the 
following model, which is intended to capture some of the 
motion of the IMU during footfall. 
 

vk
imu =!k ! rtoe"imu

imu  
 
Where k is again a time and data increment and 
superscript IMU means the variable is measured in the 
IMU reference frame, not the navigation frame. 
 
This model makes use of the accurate gyro signal, !k, 
plus a vector range from a point of pivot near the toes of 
the foot to the IMU center, rtoe!imu.  This is an assumption 
that IMU velocity when the foot is in contact with the 
ground can be described by pure rotation.  The radius 
rtoe!imu will change as the footfall progresses from the 
heel to the toes.  At present we detect heel impact, which 
presents an obvious spike in acceleration (See Figure 4, 0s 
mark) using a local maximum operator, then introduce a 
delay, calibrated to allow the transition from heel to 
forefoot to occur.  The velocity model given above is then 
applied as the foot lifts off the ground, pivoting around 
the forefoot.   
 
Not only does this model improve estimation of the 
velocity mean, it allows for more accurate introduction of 
uncertainty.  Denoting covariance matrices by P we can 
write the uncertainty in the velocity as the transform of 
gyro and pivot radius uncertainties 
 

Pv = [rtoe!imu"]P![rtoe!imu"]
T + ! "[ ]Pr ! "[ ]T  

 
The covariance of the gyro is known and the covariance 
of the radius is fixed to cover some portion of the forefoot 
depending on the accuracy of the impact detection and the 
delay function described above. 
 
Because this measurement is formulated in the IMU 
reference frame, where ! and rtoe!imu are measured, the 
filter must relate velocity error to the states.  This is 
accomplished by 
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Extending the above algorithms to two shoes requires 
concatenating the state, noise input and Jacobians. 
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A sonar then measures the range between them, with the 
following model for range error 
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Where p is the position of the sonars, not the IMUs 

 
psonar = pimu + R

Trimu!sonar  

 
HARDWARE 
 
The system sensing is composed of two Honeywell 
HG1930 AA90 IMUs and a Devantech sonar range 
finder.  These are connected to a Xilinx Virtex 4 FPGA 
with custom interface electronics. The FPGA implements 
the necessary communication protocols, receives, formats 
and timestamps incoming sensor data and then transmits it 
on a local network.  A small form factor PC running 
Ubuntu Linux and our real-time positioning software 
performs the inertial navigation and filtering. 



 
Figure 6.  HG1930 IMU mounted on standard issue 

boot.  Sonar transceivers (silver cylinders).  Mil-spec 
connector runs cabling to backpack computing. 

 
Figure 6 shows the IMU (brass cylinder) mounted on a 
boot.  Two sonar transceivers (silver cylinders) at located 
nearby. An electrical and power interface board (green) 
connects to a mil-spec connector, which attaches to 
backpack computing and electronics.  An exploded view 
of the entire system is shown in Figure 7. 
 
 

 
Figure 7.  Exploded view of entire system.  The grey 

box contains electronics and computing and resides in 
the backpack.  Cables connect IMUs and sonars at 

each foot.  An iPad provides a user interface via WiFi.  
An alignment brace ensures the two IMUs have the 

same initial heading. 
 

RESULTS 
 
We present two experiments; the first is a continuous 4 
hour repetitive path to demonstrate system reliability and 
accuracy. The second is a 2 hour freeform path with static 
intervals that simulates a typical office scenario where the 
user spends time at a desk and occasionally moves around 
an office building. 
 
For indoor tracking, GPS cannot be used as a reference 
and for environments as large as our test locations there 
are no practical ground truth systems available.  For the 
first test a known rectangle is followed for 4 hours, 
allowing the calculation of position error at each corner.  
The path length is approximately 20km consisting of 48 
laps.  Figure 8 shows the tracking solution (blue) 

compared to the known path (red).  Figure 9 shows root 
sum squared position errors at each corner. 
 

 
Figure 8.  2D rectangular path.  Test duration is 4 

hours and approx. 20km.  Tracking solution (blue) is 
compared to known path (red). 

 

 
Figure 9.  RSS Position error assessed at each corner 
of the path in Figure 8.  Circles are corner 1, squares 

corner 2, crosses corner 3 and triangles corner 4.  
Corners are numbered counter-clockwise from the 

bottom left. 
 
Position accuracy in this result is a function of heading 
error which is approximately 3.5 degrees after 4 hours, or 
less than 1 degree/hr heading drift.  This improvement, 
compared to the gyro only performance shown in Figure 
3, is a result of the sonar measurements ability to remove 
accumulated heading error.  The maximum position error, 
10.2m, occurs at corner 3 (top right).  There is also a 
small scale factor error in the computed path that 
underestimates the true rectangle by approximately 1%.  
This result does not use the pivot velocity model 
described earlier and this underestimate is attributed to the 
zeroing of real motions during zero velocity updates.  
There are approximately 14,000 footfalls in a 4 hour 
experiment, so even 1mm of motion sums to a significant 
value. 
 
Figure 10 shows the results of a simulated office scenario.  
In this case no ground truth is available but the result is 
overlaid on the office floor plan for comparison.  Four



 
Figure 10.  Simulated office scenario.  The user spends 1.5 hours in the office in the top center of the images and 0.5 

hours moving about the building.  Top left shows free inertial.  Top right is zero velocity updates without sonars, 
bottom left is zero velocity updates with sonars and bottom right is zero velocity updates, pivot velocity updates and 

sonars. 
 
results are shown progressing from free inertial (top left).  
Standard zero velocity updates without sonar (tor right), 
standard zero velocity updates with sonar (bottom left) 
and standard zero velocity updates, pivot velocity updates 
and sonars (bottom right). 
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