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Abstract

Thereare many situationsfor which a feasible nonholonomic motion
plan must be generated immediately based on real-time perceptual
information. Parametric trajectory representations limit computa-
tion because they reduce the search space for solutions (at the cost
of potentially introducing suboptimality). The use of any parametric
trajectory model converts the optimal control formulation into an
equivalent nonlinear programming problem. In this paper, curva-
ture polynomials of arbitrary order are used as the assumed form
of solution. Polynomials sacrifice little in terms of spanning the set
of feasible controls while permitting an expression of the general
solution to the system dynamics in terms of decoupled quadratures.
These quadratures are then readily linearized to express the neces-
sary conditions for optimality. Resulting trajectories are convenient
to manipulate and execute in vehicle controllers and they can be
computed with a straightforward numerical procedurein real time.

Reactive Nonholonomic
Trajectory Generation
via Parametric

Optimal Control
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The vehicle state vector (also called a posture in this context)
consists of the position coordinatés, y), headingd, and
curvaturec:

X=(x,5,0,K)". (2)

The input or control vector consists of spegdand desired
curvatureu:

u=(V,u)". 3)

It is straightforward to effect a change of variable from time
to distance. Integrating the equations produces a canonical
expression of the equations of odometric dead reckoning:
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1. Introduction
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Trajectory generation is a more difficult problem than it may at

first appear to be. By contrast to manipulation, where the conihese equations are not a solution in the classical differential
mon inverse problem is that of inverting nonlinear kinematiequation sense because the heading (a state) appears inside
equations, the common inverse problem for mobile robots iBe integrals.

that of inverting nonlinear differential equations.

1.1. Notation

For a vehicle actuated in curvature and speed while mov
in the plane, one description of its dynamics is the foIIowin%b

four coupled, nonlinear equations:
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1.2. Problem Statement

The forward problem is that of determining the state space

_trajectory from the input functions. This problem is equivalent

9 dead reckoning and it can be solved by integrating the
ove equations numerically. It is not possible to compute
the position without simultaneously computing the heading,
because the above is not formally a solution.

In this paper we address the inverse problem. In the in-
verse problem, all or part of the state space trajectory
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specified, and the associated contrdinput function) must
be computed. The question of whether suahexists when Pallet
boundary conditions are specified is one of classical contrc
lability. When more than one such input exists, it become
possible to think about optimizing some performance inde
(such as smoothness) and the problem becomes one of optii  Forktruck
control. —

Unlike in the case of holonomic motion planning, obsta
cles are not required in order to make the problem of noi |mme==seeey.....
holonomic trajectory generation difficult. The terms trajec —]
tory generation, trajectory planning, and nonholonomic mc
tion planning have been used historically for the problem dfig. 1. Robot fork truck motivation. Based on the location of
achieving goal postures while respecting dynamic and notke load, a trajectory must be generated which ends precisely
holonomic limitations on mobility. In many cases, quantitiesn front of, and aligned with, the fork holes. The curvature
to be optimized are introduced and, less frequently, knowand speed must also be zero at the terminal point. Although
obstacles are introduced to generate additional constraintsthe pallet is to the left of the truck, it must turn initially to the
mobility and require higher degrees of search. right to achieve the goal posture.

Much of the work to date has either expressed the problem
strictly in terms of goal posture acquisition or assumed thatthe
environment was known a priori. Yet, every time that an op-
erating vehicle must react to its environment based on sens
information gathered while on the move, a nonholonomic mc / / / 2
tion plan must be generated in real time. Indeed, our work
applications points to a strong need for feasible motion plai -
to be generated virtually instantaneously in response to new
acquired environmental information. In this paper, we addre
the need to generate such reactive trajectories in real time. -

4

.
""""
....
.....
..........

Obstacle

1.3. Motivation I\ N\

Real-time trajectory generation is motivated by applicatiorisig. 2. Obstacle avoidance motivation. The robot must avoid

of precision control. While computing trajectories is a comthe obstacle while staying on the road. Given the length of

plicated matter, there are many situations for which nothirigpe arcs being evaluated (which reflects the stopping distance
less will solve the problem. Due to dynamics, limited curat this speed), there is no curvature which does not hit either
vature, and underactuation, a vehicle often has few optiotfte obstacle or the road edge. Yet, a compound curve easily
for how it travels over the space immediately in front of itavoids both.

The key to achieving a relatively arbitrary posture is to think

about doing so well before getting there, and to do so based

on precise understanding of the above limitations. of both staying on the road and avoiding the obstacle. How-

One of the motivations for our work on this problemis thg, e the space of all feasible vehicle motions does contain a
application of robot fork trucks handling pallets in factoriesg | ;tion.

as illustrated in Figure 1. Pallets can only be picked up when Simplistic approaches can quickly lead to unnecessary

addressed from a posture which places the fork tips at the foﬁ'foblems. In the fork truck example, simply steering toward
holes with the right heading and with zero curvature. In OUf,e pallet is exactly the wrong thing to do. The only way
application, a vision system determines where the fork holgs »chieve the goal is to turn away from the pallet in order
are, so the goal posture may not be known until limited spagg |engthen the path enough to achieve the required heading
requires an aggressive maneuver to address the load corre nge.

In the event that the fork holes are located after traveling |, summary, a mobile robot must precisely understand and

past the point where a feasible capture motion exists, it Sl |t its own capacity to maneuver in order to function ef-
may be valuable to optimize the terminal posture error baseth ey in realistic applications. Several other applications
on the fact that the holes are often much larger than the forks, trajectory generation include the following.

Obstacle avoidance also requires precise models of mobil-
ity. In Figure 2, for example, the space of constant curvature < Coordinated control. By expressing curvature as a func-
arc trajectories does not contain a solution to the problem  tion of distance, it is straightforward to slave the steer-
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ing wheel to the actual distance traveled in order to Early approaches in robotics are characterized by a curve-
ensure that the intended trajectory is being followed. fitting formulation where the parameter space of a family of

. ., ...one or more curves of some assumed general form is searched
* Planned obstacle avoidance. Due to the ava”ab'“%r a solution. With the exception of very early work which

of the Jacob|_anbmatr|x with rgslg(:ct to ;[jhe trajectory,sed B-splines, researchers initially preferred to represent tra-
parameters, it becomes straightiorward t0 COMPUtE s in terms of heading, curvature, and higher deriva-
first-order modifications to a planned trajectory whic

) ide th . ¢ i ith ives, presumably due to their ease of execution and the ease
mbovesl It outside the region of Intersection with any i, which curvature constraints can be tested, if notimposed.
obstacle. The progression is from line segments (Tsumura et al.

« Guidepath representation. Many factory automation ve-981) to arcs (Komoriya, Tachi, and Tanie 1984) to clothoids
hicles express vehicle guidepaths (the robot roads fff@nayamaand Miyake 1985) to cubic spirals (quadratic cur-
the factory) in terms of lines and arcs; the more geri/ature) (Kanayama and Hartman 1988). The progression to

representation. higher-order derivatives for boundary values, and thereby

achieve higher levels of continuity when primitives are joined
* Path following. Corrective trajectories for path follow-together sequentially.
ing applications can be generated in such a manner asaspects of optimization have appeared over time. In
to achieve the correct position, heading, and curvatugganayama and Miyake (1985) is an early mention of the
of the point of path re acquisition. nonuniqueness of solutions and searching alternatives. In
}ganayama and Hartman (1988) are explicit performance in-

For trajectories which achieve curvature and higher Od' q ts of optimality for clothoid d cubi iral
ders of continuity when joined together, prohibitive rapid ac- Ices and prools ot optimality for clotholds and cubic spirals.
One approach to planning is to sequence atomic primitives

cess storage would be required to implement lookup tables i
of solutions for a high-density sampling of every terminalogether' Dubins (1957) showed that sequences of arcs and
pose within a useful range. While interpolation can be us

to reduce storage requirements, the algorithm presented h

can compute solutions so rapidly from such poor initial est

mates that it would often render even tables of initial guess&8" andﬁShkel and Lumelsky (1996) used classification to
unnecessary. improve efficiency.

While advances in computing continue to render sloweratlg- These works have been restricted to line and arc primitives

ipes are shortest for a forward moving vehicle given a con-
Vgint on average curvature. Much later, Reeds and Shepp
El 90) generalized this result to forward and backward mo-

gorithms faster, the value of efficient nonholonomic trajector ased on the quest for the shortest path, l?'“.'t in the presence of
stacles or higher-order boundary conditions, more expres-

generation is not restricted to computers of the contemporar) o : . ) )
generation. In the context of planning around obstacles, wh € primitives are required. Earlier Shin and Singh (1990 for
' cample, composed trajectories from clothoids and lines for

up to thousands of trajectories per second are checked for c

- . . these reasons.
lisions, an efficient generator enables an efficient planner. . . . .
g P Boisonnat, Cérézo, and Leblond (1992) derived Dubin’s

) result using variational principles. Variational methods are
1.4. Prior Work now commonly applied to nonholonomic motion planning in
From a robotics perspective, there has been little work dRbotics (Latombe 1991; Laumond 1998). The relationship to
this problem when compared with, for example, the amouffi€ two-point boundary value problem has meant that clas-
of effort devoted to localization (position estimation). Fron$ical numerical methods are applicable. Delingette, Herbert,
another, the two-point boundary value problem of differenti@nd Ikeuchi (1991) use a sampled representation of the tra-
equations, optimal curves in the calculus of variations, tHectory and a relaxation based numerical method to compute
spline generation problem of geometric modeling, and tH&€ optimum input.
optimal control problem are all very closely related and often The shooting method is another classical technique for
more general problems. solving boundary value and optimal control problems. It is
Some of the earliest work in robotics appeals to the applidised on assuming a parametric representation and solving for
mathematics literature to supply a precedent for the probleifie parameters. The method of substituting a family of curves
(Horn 1983; Dubins 1957). into a differential equation and solving for the parameters is,
Contemporary applied mathematics literature addressekcourse, classical “variation of parameters”. Likewise, the
the relationships between abstract curve generation and céi§€ of power series in order to solve differential equations has
trol. For example, the relationship between curve fitting an@een employed for centuries.
optimal control is addressed in Kano et al. (2003). Here, the From as early as Brockett (1981) it has been known that si-
use of linear system dynamics to fit curves is first attributegusoidal inputs are optimal from the perspective of minimized
to practitioners in flight control. squared effort. Murray and Sastry (1993) used this result to
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generate suboptimal solutions for chained systems. Similar
Fernandes, Gurvits, and Li (1991) proposed the use of a tru
cated Fourier series to express the steering input and prop:
a shooting method to find the coefficients of these sinusoid (X,Y,8,K,V);
basis functions. Polynomial steering functions have beenpr
posed in Tilbury, Murray, and Sastry (1995) for steering in th e,
n trailer problem. »
Much of the nonholonomic motion planning literature ha I ..
become theoretical in nature and algorithmic efficiency is n : Start State K
often discussed. In Reuter (1998), however, a near real-tir : e
optimal control solution appears. The problem is formulate I : I (x.y,8,k,V)g
as eleven simultaneous first-order differential equations su

ject to boundary conditions which include curvature and itgig. 3. Trajectory generation problem. The initial and final

Goal State

derivative. Solutions are generated in about 1/3 s. pose, curvature, velocity and perhaps some of their deriva-
tives are given. The problem is to find an input consistent
1.5. Approach with all of these constraints, the system dynamics, and

) . . ) ~bounds on the inputs.
The approach presented in this paper is one which combines

many of the strengths of earlier techniques in order to achieve
both a highly general formulation and a real-time solution.
First, the clothoid and related curves of earlier approaches are . : L
generalized to a curvature polynomial of arbitrary order whicR°>¢ which includes cur\{ature and 'FS derivatives. .MOSt gen-
becomes the assumed form of the solution. This form of Sg_rally, co_ntro! theory prowd_es the r_10t|0n 9f sFate which would
lution presents several computational advantages. Seconm)(/: lude, in th'.s case, velocny_and Its der|vat|ves._

‘Let the trajectory generation problem be defined here as

the very general optimal control formulation is applied an . . . ) .
Y9 P : PP qh]at of determining a feasible specification of motion which
based on the assumed form of solution, converted into one 0

nonlinear programming. Application of numerical method%l’) ”;C&;\ljesr? ;EZIrozcs)i;cr)em(Z;;g)oroar g;\(/:;"}g'a(igsssﬁer?tﬁéaégle
for nonlinear programming problems then result in solutionls dicgated - pure 3 ' pie,
for connecting fairly arbitrary postures in under a millisecond’ 9 ' : .
. More generally, an ordered list of goal states might be
of computation. o . i
specified and constraints of different forms may apply at each
state. While the technique presented in this paper adapts in
1.6. Layout a straightforward manner to the generation of such dynamic

The paper is organized into five sections. In Section 2 we gablines, this generalization will not be discussed further.
Inthe eventthat more than one feasible motion connects the

velop the general method for using an assumed solution form _ X : )

to convert the problem from optimal control to constrained!ial andterminal state, it may be desirable to choose among
optimization. In Section 3 we introduce the polynomial spira'ihem based on some convenient performance criterion.

and its properties and develop the computational method of . .

solution. In Section 4 we present the results and in Section?s?- Optimal Control Formulation

the conclusion. Optimal control is a natural formalism for the representation

of such problems. The above problem can be expressed in
2. Formulation control theoretic terms as follows.

There are known nonlinear system dynamics:
In this section we formulate trajectory generation first as -
: , X= f(x,u,n). 5)
an optimal control problem, and later as a parametric con-
strained optimization problem. We then adapt classical néperformance index is expressed as some functional evalu-

merical methods to the solution. ated over the trajectory:

If
2.1. Trajectory Generation Problem J = plxt,)] + / L(X, u, t)dz. (6)
The briefest acquaintance with the question of how one de- o

termines a steering function which achieves a goal postutgere are initial and terminal constraints on the states:
leads to the conclusion that the differential equations are un-

avoidable. The term posture is a convenient generalization of X(to) = Xo X(tr) = X;- (7
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There may also be certain pragmatic constraints (reflectiiggain, because the parameters determine the input which de-
such concerns as limited actuator power) on the inputs. F@rmines the state, these expressions can be written as:
example:

Iy

|u(t)| = uma.x(t) |U(t)| = Umux(t)' (8) minimize: J(p) — ¢(p’ tf) + / L(p’ t)dt
This is a fairly classical formulation of an optimal control 0
problem in the Bolza form. subject to: g(p,to, ;) =0 ¢, free (14)
2.3. Constrained Optimization Formulation It may also be useful to represent the constraint of bounded

. ) o inputs with something like:
Just as the classical technique of variation of parameters con-

verts differential equations to algebraic ones, it converts opti- 1Pl < Poas. (15)
mal control problems to constrained optimization (also known -

as nonlinear programming) problems. The technique used The present problem formulation now looks partially like
here is also closely related to the shooting method for boungptimal control (due to the integrals) and partially like param-
ary value problems because an initial guess will be iterativepter optimization. It is now the case that both the state and the
refined based on repeated evaluation of the forward solutiqferformance index are functions only of the parameters and

Parametric representations of solutions are convenigjfihe, but the appearance of integrals in both is nontraditional.
from the perspective of the compactness of the representa-

tion. When compared with sampled forms of continuous sig- _ o
nals, this compactness makes them easier to represent, stérg,First-Order Dynamic Response to Parameter Variation
communicate and manipulate. The process of transformati

: : e high-level notation masks some severe difficulties in gen-
starts by assuming a solution of the form

eral. Chief among them is the question of how first derivatives
u() = u(p, 1) (9) With respect to the parameters are to be determined. There is
generally no analytic solution for the state available which
where the control is assumed to be a member of a family ehn be substituted into the equations in order to compute pa-
functions which span all possible values of an arbitrary vecteameter derivatives of the constraigts)). Assuming so begs
of parameters of lengthp. An individual control functionis  the original question. Even if the trajectory was available as
now represented as a point in parameter space. an integral over the input (as it will be later for polynomial
Since the input completely determines the state, and tBgirals), there is no guarantee that the integrals have closed-
parameters now determine the input, dependence on both sfaieén solutions. Hence, implementations generally must rely
and input is just dependence on the parameters. Accordinghyy numerical methods.
the state equations can be written as: Nonetheless, in order to implement the shooting method,
. the Jacobians of the performance index and the endpoint with
X(1) =[x, 1), up. 1), 1] =1 (p. 1). (10) respect to the parameters will be required. The Leibnitz rule
The state vector would include any variables upon whicBupplies the principle but the Jacobians can only be extracted
boundary conditions are to be imposed as well as any otfdirectly.
ers upon which these depend. The system dynamics can be differentiated with respect to
Let the boundary conditions comprise a set @bnstraint the parameters to obtain
relations of the form:

: i =2 = repnZ 4 oo
h(p, to, ;) = X(to) +/f(p, Dt = Xp. 11)
fo
. . . of of
It is conventional to write these as: F=— G=— (16)
X au
ap, to. t;) = h(p, to, 1) — X, = 0. (12)

whereF andG are the Jacobians of the system with respect to
Assume there is some scalar performance index which is tiee state and the inputs. Hence, the Jacobian of the state with
be minimized: respect to the parameters must satisfy the linearized system
" dynamics at any point in time. Although there is no solution
_ to the nonlinear system given in eq. (1), the general solution
minimize: J(x, u) = ¢[x(,)] + / Lx,u,ndr. - (13) to the linearized dynamics (which must exist due to linearity)
fo exists in closed form (Kelly 2001).
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Integrating the above gives a self-referential form of thputing itsr-norm

Leibnitz’ rule:
iy
tr 1
dX aX au maxu, ()"} ~ /[u,-(t)]”dt (21)
- = - _— (ty — o)
op / [F(p, t)ap + G(p, t)ap} dr. an sy

o
wheren is a large even integer. This expression can now form
This equation can be integrated to yield the parameter JagRe basis of an integral constraint

bian at the endpoint. Due to the nonlinearity of the equations,

a solution would proceed by linearizing the first-order con- max{u; (1)"} < (Uma)" (22)
ditions. Therefore, second derivatives would be required in
general. which is no different in principle than the boundary conditions

In some situations, it is possible to eliminate the self refeexcept that it is an inequality.
ence to the state to produce a solution integral (a quadrature)

which is explicitly of the form: 2.6. Change of Variable

i It is often convenient for trajectory generation purposes to
X(p, t;) = /g(p, t)dr. (18) change the independent variable from time to distance. With-
o out loss of generality, let the initial distance be set to zero.
Also, let the final distance, be absorbed into an adjoined
The Leibnitz rule can be applied directly to this form to geparameter vector thus:
the parameter Jacobian and the final time gradient:

, a=[p"5]". (23)
aX ag aX . . .
— :/ — | dt — =g(p, tf). (29) The problem formulation under this change of variable
p J p oty takes the following form:
Even in this simplified case, however, the parameter Jacobian o s
remains defined by an integral. minimize: J(@) =¢@Q) + / L(q)ds
Likewise, the performance index can be differentiated: 0
) 5 subject to: 09(qQ)=0 s, free (24)
—J = — ,t 20
ap P 8p¢(p ) (20)

2.7. Necessary Conditions

t

0 Lot ox 0 L.t au dr Constrained optimization problems can of course be solved by
+ X P )ﬁ + au ®, )@ : the method of Lagrange multipliers. From the theory of con-
fo strained optimization, the solution is obtained by defining the

Hamiltonian (often called the Lagrangian in the constrained

This information is included here to address how the a%'ptimization context):

proach applies to any parametric form of assumed solution:

The choice of polynomial spiral will further simplify the cal- HA) = J AT 25

culations, but the overall approach can be applied to any form @) (@ +249@. (25)

of parametric input. The first-order necessary conditions are:

2.5. Functional I nequality Constraints iH(q, A = i](q) + ATig(q) =0 (p+1leqgns
3 aq a9

Once the constrained optimization formulation is adopted, 4

systematic mechanisms for dealing with inequality con- —-H(@ = 9@ =0  (negns. (26)

straints, such as in Kuhn and Tucker (1961) can be brought

to bear. Imposing limits on an input during iteration can be This is a set ol + p 4+ 1 simultaneous equations in the

problematic because such limits apply to the entire time hig-+ p + 1 unknowns ing andA. The equation in the first

tory of the input. Preventing excessive curvature at one tinget corresponding to the final distance is the transversality

for example, may cause it somewhere else. condition used to determine the final distance in the event
An auxiliary advantage of the present formulation is thathat it is considered variable. The right-hand side is a row

the maximum value of an input can be approximated by comector in the first set and a column vector in the second set.
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2.8. Methods of Solution 1988) in order to enlarge the radius of convergence. The

structure is also amenable to recursive partitioning (Slama,

Severa] numerical tech.nlques are available for. the Somtlolrheurer, and Henriksen 1980) to improve performance.
of nonlinear programming problems. The last five chapters Two degenerate forms of the iteration are also important
of Luenberger (1989), for example, contain a lucid tutoriaIJ

on the basic techniques: gradient projection, Lagrange, anocir this paper.
penalty function.

The technique chosen here is a Lagrange method. S
methods treat the Lagrange multipliers on an equal footintf’® degenerate form of unconstrained optimization is of prac-
with the unknown parameters. The first-order necessary cd#eal significance. In this case, there are no constraint equa-
ditions are solved directly using multi-dimensional rootfind!ions and no Lagrange multipliers. Equation (30) degenerates
ing techniques. Newton’s method is the basis for most of thel@the square system
“curvature” (second derivative) based techniques. As aresult, 527 3
they converge quadratl.c'ally but must be_ augmented by me'cha— [_Z(q)} AQ=——J(q)T (31)
nisms to enhance stability when operating far from a solution. dq 39

Newton’s method as it applies to constrained optimization, . . . .
is derived briefly as follows. Transposing the first set of equ which is the same result that would be obtained by applying

) : . . . Eﬁewton’s method from scratch to this specific problem.
tions, linearizing about a point where all equations are no

satisfied, and insisting that they become satisfied to first ordf
after perturbation gives: :

uzc.ﬁ.l. Unconstrained Optimization

%.2. Constraint Satisfaction

The second degenerate form is also of practical significance.
0°H el T el T Indeed, this is trajectory generation as it was originally posed.
a_qz(q’ MAG+ @g(q) Ak = _@H(q’ A (p+leans Here, there is no objective function. It is simply required that

the boundary conditions be met. In this case, eq. (30) degen-

) erates to:
3qd@Ad=—g@  (neqns. (@7) P
[ﬁg(q)] Ag = —9(Q). (32)

Notation for the Hessian of the Hamiltonian (with respect to
q) was used: This is Newton’s method as it occurs in rootfinding contexts.

5 2 ) The matrix which appears is the Jacobian of the constraints. In

(@, A) = —(q) + A—0g(q). (28) this case, itis legitimate for the system to be non-square and,
992 992 ag? ifitis, the appropriate generalized inverse of the Jacobian can

The lastterminvolves athird-order tensor. It can be interprett,p& used in the teration.
as a multiplier weighted sum of the Hessians of each of the

individual constraint equations: 3. Solution Using Polynomial Spirals
2 92 The techniques of the previous section will apply to any form
la—ng(CI) = Z )‘-ia_ngi (@. (29)  of assumed solution. In this section we develop the specific

i case when polynomial spirals are the assumed form.
Furthermore, the previous formulation is not confined to

In matrix form, this is now of the form: . . .
steering functions. It could be used, for example, to determine

92H 9 ; polynomials for linear velocity and to enforce acceleration
3g2 (@.2) ﬁg(q) Aq —iH(q, )T continuity. However, such a trivial problem would not require
3 [AA } = 9q - all of the machinery just presented. Since steering functions
—a(Q) 0 —9(@) are much harder to determine, in this section we concentrate
99 (30) on this aspect of the problem.

This matrix equation can be interpreted to provide the eA-1- Achieving Steering Continuity
rors in the parameters which, when added to the parametdesen though it is most accurate to consider curvature a state,
remove the observed residuals to first order. It can be iteratiéds also useful for many purposes to consider curvature to
froma good initial guess for the parameters and the multipliek® an input and to omit the last equation in eq. (1). Under
until convergence. this assumption, the equations become homogeneous to the
It is usually advisable to enforce diagonal dominance ifirst degree in linear velocity (¢) and it becomes possible to
the manner of the Levenberg—Marquardt algorithm (see Pradigide the remaining equations by it in the form of/dr to
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effect a change of independent variable from time to distance:

—x(s) = cosH(s)

ds

d06) = sinecs)

ds

d 0
a@(s) = k(s). (33) 0

This form can be most useful for trajectory generation pu
poses because it permits the geometry of the trajectoryto 5
considered independent of the speed of traversal.

Under this transformation, and omitting velocity, the end
point constraints in Figure 3 become:

X(s0) = (xo, Yo, bo, ko)
X(sp) = (x5, y5, 05, Kf)T. (34)

Of course, if the origin is defined to be positioned a
the initial posture then the first three boundary conditionSig_ 4. Cornu spiral. The projection onto the complex plane
will be satisfied by construction and the five constraintg the plane trajectory which results from a linearly varying
[0, X, s, 67, ;] would remain to be satisfied in this exam-curvature input. The curvature polynomial coefficients are
ple. Five parameters are therefore necessary for generatjg 0, andc = 7.
sequences of curvature continuous trajectories.

3.2. Clothoids

The clothoid is a well-known curve which is defined by lin-
early varying curvature, thus

k(s) = a + bs. (35)

This curve traces out a trajectory ifry—s space known
as the Cornu spiral (see Figure 4). Of course, with only thre
parameters to varya( b ands) the clothoid cannot satisfy
arbitrary terminal curvature or even heading constraints if t
existing parameters are used to satisfy initial curvature ai
terminal position.

3.3. Polynomial Spirals

Given the need for additional parameters for steering co
tinuity, an obvious approach is to add terms to the curvatu
polynomial. These curves, called polynomial spirals in Dillet
(1990), possess as many degrees of freedom as necessal
meet any number of constraints. Ath-order spiral is simply
annth-order polynomial expressing curvature in terms of arEig. 5. Generalized Cornu spiral. This curve is gen-
length: erated by a cubic curvature polynomial of the form
k(s) = a + bs + cs? + ds®. The coefficients ara = 0.0,
k() =a+bs+es’+ds®+ ... . (36) b = 33,¢c = —82, andd = 415. In this example, the

) rimitive reverses curvature and terminates pointing back at
In the complex plane, these curves will be referred to as t I

generalized Cornu spiral. A representative spiral of cubic or- e orgin.
der is shown in Figure 5.

This new primitive possesses many advantages that can
be briefly summarized as the ability to represent any feasible
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vehicle motion using a small number of parameters. Su¢he integrals are the well-known Fresnel integrals). How-

a bold statement is easy to justify by noting that all feasiblever, the polynomial spiral has the property that any num-

motions have an associated control and the primitive is merdber of boundary conditions on initial or terminal heading or

the Taylor series of the control. The Taylor remainder theoreits derivatives are linear in all parameters but distance. This

then supplies the basis of the claim that all controls can lmeeans that it is straightforward to enforce these conditions

represented. exactly by fixing one parameter in addition to terminal dis-
Given that the control in this case represents the actuance and solving the resulting linear equations; only two of

motion of the steering actuator, it can also be concluded thidie equations are ever difficult to solve.

higher-order terms in the series will eventually vanish due

to the impossibly high frequencies that they imply. A smalg 5. Boundary Conditions as Constraints

number of parameters is also valuable from the perspective

of representing and communicating the results, but most ifonsider now the expression of the boundary conditions for

portantly, it dramatically reduces the dimensionality of thénitial and terminal posture using polynomial spirals for the

search space which is implied in all variational approaches §&Se of enforcing curvature continuity. This case corresponds
the problem. to cubic polynomials and five parameters:

k(s) = a+ bs + cs* + ds°. (39)
3.4. Reduction to Decoupled Quadratures
. _ _ _Theinitial constraints on position and heading can be satisfied
The polynomial spiral has two other important computationgfjyially by choosing coordinates such that:
advantages. Notice that the system dynamics, while coupled,

are in echelon form, so that a closed-form solution for heading so=0  x(0)=y(0) =60 =0. (40)

could be substituted into the position integrals to decouple thﬁﬂs leaves constraints on initial curvature and its derivatives

system. o i .
Y . . : . as well as the entire final posture to be satisfied. We define the
The polynomial spiral can be integrated in closed form to : . S }
. vector of polynomial spiral parameters to be the coefficients:
produce heading:

.

= b ¢ d . 41

k(s) = a+bs+cs’+ds®+... q=a ¢ s¢] (41)
bs* cs® ds* The initial curvature is satisfied trivially:

a =«(0) (42)

The new position integrals then become: . A T
and any higher-order initial derivatives in a more general case

: ) 3 4 could be resolved similarly. To save computation, this pa-
bs cs ds - o . . .
x(s) = cos|las + — + — 4+ — 4+ ... |ds rameter will be eliminated from the iterative equations. The

2 3 4 remaining constraint equations in standard form are therefore:
i bs? c¢s®  ds* hi(q) —x;, =0
s) = sinflas + — + —+— +...|ds.(38 —y, =
Y / [ 2 3 4 ] 9 9@ =h(@ —x =0 or @ =y=0 " g
hs(@) — 0, =0

: : ha(@) —k; =0
These are the generalized Fresnel integrals. The computa-
tion of these transcendental integrals and their gradients witthe equations for terminal curvatukg and heading, are
respect to the parameters will turn out to be the major conpolynomials while the endpoint constraints and y, are
putational burden of trajectory generation. qguadratures. The Jacobian matrix of the above nonlinear sys-
The main advantage of decoupling is that the first-order b&em is just a top to bottom arrangement of the gradients of
havior of the system can now also be computed using quadesch constraint:

ture rather than something like the multidimensional Runge— 9x  9x ox 9x

Kutta required by eq. (17). The parameter Jacobians remain % 3 3d s

defined by integrals but at least they are explicit. Theirintegral 99 _ dh ¢ 51 (44)
nature also leads to an interpretation ofeq. (32) astheclassical 39 39 | 5. 3¢ 93¢ 9¢ |

shooting method for solving boundary value problems.

A second computational advantage is that the state equa-
tions become simplified to the maximum degree possibkeor the position coordinates, the Leibnitz’ rule can be used to
while retaining a fairly general steering function. It is wellcompute the derivatives. Details of a Simpson’s rule imple-
known that the position equations are not solvable in closedentation for computing these functions and their first and
form for even a linearly varying heading input (in which casesecond derivatives are provided in the Appendix.

% ac ad B,
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3.6. Boundary Conditions as Performance I ndices

Itis also valid and may be convenient to formulate the bound- 1 *
ary conditions as costs rather than hard constraints. Let the J.(Q) = > / [k (q)]°ds. (50)
terminal error be scaled as follows: o

x(Q) — x; Termsinvolving heading or curvature derivatives could also be
AX(q) = Y@ —yy (45) added to discourage indirect rputgs or ra}pid steeﬂng changes.
L[6(q) — 6] Note that whenevenq appears inside a distance integral, the
L?[k (@) — k/] terminal arc length; should be interpreted as the variable of
integrations.

The characteristic length is used to make the units of each e gradient of the performance index with respect to the
element of the vector consistent and to make each eleme”b‘%lframeters is obtained from the Leibnitz’ rule:

roughly equal significance. A useful interpretation is that the

heading and curvature error are being converted to their effect 97 ° I
on the position of a point a distanéeaway. For the forktruck L = fx(q)—ds. (51)
application, for exampleL could be set to the sum of the 99 o 99

length of the forks and the distance the vehicle will travel to _ o . o .
insert them. The absolute bounds on this terminal error afd'® Hessian matrix is computed by differentiating this:
denoted as: o

2 ok Ok 9%k
Axmax = [Axmax Aymax AemaxAKmax]T . (46) an (JK) - / [ aq % + K(q) aqz} ds. (52)
0

An associated performance index could then given by t

) ) hIehe previous performance index could also be added to this
squared terminal error:

one in order to produce smooth trajectories which almost meet

1 T the constraints in some optimum fashion.
$@) = 5 [Ax@] [AX(@)]. (47)

The gradient of the performance index with respect to th‘é‘ Results
parameters is the sum of several components:

I
aq
4.1. Forward Problem

Here, the vector8x/dq, etc., are the gradients (row vectors) _
of the terminal posture with respect to the parameters. THegood solution to the forward problem for the boundary con-

In this section we present some numerical validations of the
9 9 96 9 approach to trajectory generation.
e+ 2 Ay + 12200 + 1% A | (48)

a9 a9 e e

Hessian matrix is computed by differentiating this: ditions and their derivatives is necessary because it becomes
the basis for solving the more difficult inverse problem. Of
8_2(¢) _ &Ax N 82_yAy N LZ@AG N L“&AK course, only the position coordinates preseflt any difficulty.
902 0g? 0g2 0q2 9g? In the present implementation, Simpson’s rule is used to
axT ax  dy' dy 90T 96 3T ok perform all of the integrations numerically. Many of the in-
+ P — L ——|. tegrands are quite smooth and can often be estimated well
99 99 = 99 4q 99 9q 99 9q

(49) numerically in as little as ten integrand evaluations. In this
context, “estimated well” means well enough to determine

The last four terms involve outer product (hence symmetri@nd posture to perhaps a few millimeters in position and a
matrices formed by multiplying individual gradients by theiféw milliradians in heading. . _
transposes. These outer products can be evaluated numericallyVhen coefficients are large in magnitude, it may be nec-

given the gradients. When near a solution, these outer prod@&gary to perform many integrand evaluations in Simpson’s
terms dominate the Hessian. rule. At some point, large coefficients correspond to infea-

sible inputs and the difficulty in computation indicates dif-
ficulty or even impossibility of execution. In rough terms,
curves that cannot be computed, cannot be executed anyway.
Itis also possible to create a performance index which prefefsie appendix provides a straightforward mechanism to reuse
smooth trajectories. In this case, an integral form is appreomputations while refining the estimate of the quadratures.
priate. The following functional form will discourage high  Figure 6 shows a typical member of the cubic curvature
curvature values relative to more graceful turns: polynomial family of curves computed. Curves must be much

3.7. Smoothness as a Performance | ndex
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Fig. 6. A cubic polynomial spiral. Clockwise from top left,
a curve of cubic polynomial curvature, its curvature, and th
first and second derivatives of curvature versus distance. ‘ ‘ 9.9 ‘ ‘
-3 -2 -1 0 1 2 3

Terminal Heading

Fig. 7. Approximate length. Over the range of terminal

more aggressive than this one to present difficulty in the foROStures discussed in Section 4.3, the correct curve length
ward solution. can be approximated by a quadratic in terminal heading.

4.2. Initialization

All forms of the inverse solution require an initial estimate in Any other parameter can then be set to zero and the remain-

order to start the iterations. Estimates must be very good ; parameters can be determined by solving the non-position

hhave_ a s_lgnlflcanft_ |mpac_t onhthe eff|C|en_|(_:r)]/ befcause ﬁr_n(_)st Onstraints exactly. This procedure enables a robust conver-

.t e time Is spent ne tl_Jmng the :nswer. q ere olre, € 'C'en@énce to a solution over the wide range of cases discussed next

IS nl—? tastrong r_n_oltllvat!on 0 prlo uce good initia esnmatgs'because it confines the iterations to a well-behaved subspace

Owever, |n|t_|a|za.t|on IS also an Important matter be parameter space. In a movie of the iteration taking place,

cause the algorithm is convergent only to thg n e'are.st Iocmle terminal heading and curvature are always correct and

ex'_[reml_,lm. One extreme on the spectrum of initialization SPhe iteration progressively moves the endpoint to the solution
lutions is to use low resolution lookup tables to seed the searp
0

; . L sition.
for a solution. The other extreme is to use approximations For the constrained and unconstrained optimization cases

the”SOIUt'OT]' fThehsecond option has turned out easiest to gl‘gcussed later, the fully determined case is solved first in
well enough for the present purpose. order to serve as an initial estimate. Initial estimates for the

There is potential value_m using scaling and Symmetry_tEagrange multipliers can be obtained by solving the first part
reduce the number of solutions being represented. For a g'vr?frbquation (26) with the pseudoinverter
polynomial spiral, a new curve which is scaled by a factor o '

A from the original has coefficients: . . )
4.3. Constraint Satisfaction

? b S dyow = i (53) The implementation of basic trajectory generation has been

Apew = X new — P Chew )\‘3 )\‘4- : 8 ) ]
highly successful. This case is characterized by the use of
Reflections about the- or y-axis or the origin can be accom-eq. (32). In order to assess efficiency and reliability, 1600

plished in a similar manner. solutions were computed over the envelope:
If the scale factor applied is the inverse of the original
length or endpoint radius, the result is a canonical “unity Sm < x; < 19m —5mn <y; <50m
scale” curve. For the constraint satisfaction case discussed
next, our approach is to scale the problem so that the endpoint 4 4
is on the unit circle. Then, the simple estimate for length il- 5 < 0 < 5

lustrated in Figure 7 is used.

02 1 1 1 1
S~—+1 (54) —01— <k < 01— —01— <«; <01—. (55
5 m m m ‘ m
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This posture envelope is intended to be representative of a
factory automation application (no high curvatures). Termi
nation was based on achieving a weighted residual norm
0.01 defined as:

r =/ (w,Ax)? + (wyAy)? + (W AG,)2 + (w, Ak s)2.
(56)

The weights were adjusted so that 0.01 units of position
0.0001 rads of heading or 0.0001 rads/meter of curvature e 8 E | | ial spirals. Th diff d
ror alone would exceed the threshold. Figure 8 depicts som&) ©: EXampie polynomial spirals. these di erent en
. postures have feasible solutions.

example curves in the envelope computed.

Computation times over this envelope are summarized in
Figure 9. These are essentially worst-case results because no
lookup tables and only the above simplistic initial estimate
(an arc of roughly the right length) were used. Of course
many applications would sequentially compute many neart | 500
trajectories and run-times would be significantly faster.

Solutions for driving in reverse are generated naturally b | 4o |
choice of sign of the initial distance estimate. Reversing bo!
x and distance in the above cases generateg-thés mirror
image of the solutions. It is also relatively easy to control th
number of loops and the direction to which the initial turn will
tend. Figure 10, for example, shows two solutions separat | 200
by one revolution that were generated by simply modulatin
the terminal heading. 100 |

Runtime Histogram

4.4. Unconstrained Optimization o | M . [

<0.2 <04 <06 <08 <10 <12 <14
msec msec msec mMsec mMsec msec msec

This case is characterized by the use of eq. (31). Thisis afail
general technique in its own right because it is equivalent-
the penalty function approach to constrained optimization; V\i_e

simply convert the constraints to costs with high associat d : . . :
. . . GHz Pentium 4 for 1600 constraint satisfaction test cases.
weights. There are always the right number of equations ql were less than 1.4 ms based on an arc initial estimate

matter how many curve parameters are used. Figure 11 illus-
trates an example motivated by the forktruck application. A
load is discovered toéh5 m to thaight of expectations when
only 5 m away. A newrajectory must be generated to move
diagonally but end up at zero heading and curvature.

When there is one parameter too few, the weights a
configured to ignore terminal curvature and the goal pose
achieved with nonzero terminal curvature (see Figure 12). Tl
five-parameter case computes the same answer as constr
satisfaction.

In the eight-parameter case, the path smoothness perf
mance index is introduced and weights are adjusted to pt
mit terminal heading and curvature error. In this case, tf
smoothness (total area under squared curvature) is enhan

significantly because the temporarily high initial curvature i
balanced by a long intermediate period of low curvature. Fig. 10. Multiple solutions. Two different symmetric curves
(left) and asymmetric curves (right) each reaching the same

4.5. Constrained Optimization relative destination posture.

g. 9. Cubic polynomial spiral run times. Run times on a

This case is defined by the use of eq. (30). Figures 13 and
14 present results on a curvaceous trajectory chosen so as to
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Fig. 14. Curvature profiles for varying number of parame-
Fig. 12. Curvature profiles for trajectories computed usingrs. These three curves all terminate at the same posture
unconstrained optimization. The four-parameter case dogstsmoothness increases with the number of parameters used.
not achieve the desired terminal curvature of zero. The

eight-parameter case has the best smoothness index.

index. When free parameters become available (in the six- and
illustrate the operation. The trajectory has no initial Curvaturseven—parameter solutions), there is an initial dramatic effect
b ' ! y &n the curvatures used but the effect tapers off quickly.

and is required to terminate at the posture: The performance index used is essentially the continuous
inner product of curvature with itself. This index will favor
37 longer paths over shorter ones to the degree that the area under
[x,y, 0, k] = [5’ 0, 2 O} ‘ G7)  the squared curvature function is reduced by doing so. Of

course, lengthening itself has an impact on the performance
At least five parameters are required to satisfy the boundandex so a best compromise is sought. The curvature profiles
conditions. The five-parameter solution therefore retains nio Figure 14 show how longer paths can achieve lower overall
free parameters that can be used to improve the performameevature.
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In practice, different performance indices may be more Ofcourse, solutions are only “nearly” optimum inthe sense
appropriate. Given the need for a numerical implementatioof Fernandes, Gurvits, and Li (1991). A truncated series ap-
however, any index at all could be accommodated instead pfoximation may exclude a better solution which happens to
the example used. have non-vanishing high-order derivatives.

In this paper, we have avoided the discussion of how an or-
dered sequence of goal postures can be achieved using nonlin-
5. Summary and Conclusions ear programming but extensions in this direction are straight-
forward.

Work in contemporary applications points to an acute need
for a mobile robot to understand its own motion Capab"itieﬁ\ppendices
and limitations in very certain terms. This is especially so in

the case when a changing or unknown environment requirggr readers who may be interested in implementing the tech-

on-line selection or computation of trajectories. nique of the article, this appendix provides further detail on
If trajectories are to be pre-stored, the number of continghe numerical implementation.

ous feasible curvature profiles is prohibitively large to repre-

sent. Parametric trajectory representations must be used. Even . . . .

if trajectories are cojmput?a/d oa—line rather than off-line, parﬁppe”d'x A: Partial Derivatives of Solution

metric representations then become motivated by the need@iadratures

compute answers in real time. When they are used, the best ] ] o
parametrizations can represent essentially all feasible moticngnsider the form of the firstand second partial derivatives of:
in the least number of parameters.

Once parametric representations are accepted, the nonlin-
ear nature of the dynamics then requires search in order to « the heading and curvature polynomials;
find a solution to the inverse problem. A method to compute
the first-order response of the dynamics to parameter varia-
tionis then required. In general, the parametric gradient of the, .| the integral of the state equations expressed as decou-
dynamics can be obtained by linearizing the dynamics Wit&ed quadratures:
respect to the parameters and solving the associated forward

« the solution integrals for position;

» a smoothness performance index.

problem (by solving a matrix differential equation). 5 S

Itis therefore generally possible to convertan optimal con-x(p, s;) = /cos@(p, s)ds  0(p,sy) = /K(p, s)ds
trol problem into a derived nonlinear programming problem
which finds the parameters of the solution curve. Numerical s

solution of the associated first-order necessary conditions " p,s,) = /sine(p, s)ds k(p,s;) = u(p.,s). (58)
quires the forward solution of auxiliary differential equations,
but otherwise, classical numerical approaches apply directly. 0
Within this general framework, the polynomial spiralisin-  |n the following, the notation for the parameter vector is:
troduced as a primitive which spans the set of feasible controls
while using few parameters. It also has a closed form solu- p=la b ¢ d...1". (59)
tion for heading which decouples the dynamics and reduces _ _ _
the auxiliary differential equations to decoupled quadrature$§ Will sometimes be convenient to define the augmented pa-
This pr|m|t|\/e is not 0n|y natural to manipu]ate but it is easyameter vector which includes the final arc Iength as follows:
to compute relative to the alternatives. It even reduces lookup
table memory requirements because all but two parameters
are solvable in closed form. o .
C .. Unlessitis necessary, the general arc length will often not be
Based on the use of this primitive to represent arbitrary. .. . .
. . X %ﬁ%tlngwshed from the terminal arc length
steering functions, a robust technique has been presente
which computes curvature continuous trajectories between ] o )
relatively arbitrary initial and final postures in under a mil/A-1- Partial Derivatives of Heading and Curvature
lisecond on contemporary processors. _ When curvature is given by a polynomial spiral, so is heading
Given nonlinear performance indices and/or nonlinear copqp s)
straints, the algorithm will converge only to the nearest local
optimum. This is an inevitable limitation of all local methods.  «(p,s) = a+bs+cs®+ds®+es*+ ...
Techniques for generating a good initial guess may therefore 52 §3 g4 5
be important in cases more ambitious than our examples. o0(p,s) = as+ bf teg+ dz teg +... .(61)

a=1[p"s; )" =la b ¢ d...s]". (60)
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For notational convenience, we define the derivatives:

Ky = /co—i—bsf—i—cs]z(—i—ds?
, oK
K, = a_sf = b+ 2cs; + 3ds? (62)
S=Sf
oKl
Ky = B_S/ = 2c + 6ds;.

s=sf

The partial derivatives of these expressions with respect to

the parameters and arc length are immediate:

96 52 53 54

—_— = Sf_f_f_fo

aq 234

K ,

ﬁ = [hfs?s? .. .Kf]. (63)

The second derivative or Hessian matrix for heading is:

0O 0 0 O 1
0O 0 0 O Sy
920 0O 0 0 O 52
-7 = !
a2 0O 0O 0 O 5% (64)
1 sp 52 53 Ky
Similarly, the Hessian for curvature is:
0O 0 O o0 ...
0o 0o o0 o0 ... 1
321( 0 0 0 0 ZSf
3| 0 0 0 o0 352 (65)
0 1 2 3% ... «f

A.2. Partial Derivatives of the Position Integrals

The position states are given by the integrals:
A’f Sf
x(p, sy) = /COSG(p, s)ds y(p,s;) = /Sine(p, s)ds.
0 0
(66)

More generally, we define the twah-order gradient inte-
grals:

C'(s) = /s" cosH(s)ds S"(s) = /s”siné?(s)ds.
0 0
(67)
Clearly

x(s)=C%)  y(s) =S, (68)

For polynomial spirals, partial derivatives of these integrals
with respect to arc length and spiral parameters satisfy useful
recurrence relationships. For example:

0 d .
—C"(s) = s"CcosH(s) —8"(s) = 5" SIiNA(s)
as as

0 d

—C"(s) = —S""s) —S8"(s) = C"(s)

da da

8 n _ 1 n+2 8 n _ 1 n+2
8bC (s) = 2S (s) BbS (s) = 2C (s)
a n — 1 n+3 a n _ 1 n+3
aCC (s) = 3S (s) acS (s) = 3C (s)

(69)

The evaluation of these integrals represents the fundamental
computational burden of this approach to trajectory genera-
tion. A subsequent section will describe a technique for their
efficient evaluation.

The partial derivatives of the position integrals with respect
to the parameters and arc length are related to higher-order
gradient integrals

Ox St(ss) 1SZ( ) 153( ) 1S"( )...cl
— = S¢) — = S¢) — = S¢) — — S¢)...C
a9 1) 5ot = gstsy) = S sy ’
a 1 1 1
% = [cl(sf) = 5C%s) = 5C%6) = 7)) ..sef}
(70)
wherec6, = cog6,), etc. The Hessian matrix faris
0%x
R (71)
0g?
[ —C2(sp)  —3C3sp)  —3CHsp)  —3C5Gp) ... —spsbf]
2
~1c3Gy) —ichsp —icSGp  —LcSsp ... —fsoy
3
~lcdsp —ECSGp —dcbGp  —LCTGp .. —soy
4
~165Gp) —LcbGsp) —&CTGp) —&CBGp) ... —fsoy
e g “
| —sys6f —5s0f —5s0f —5s0r ce. —kypsOy
The Hessian matrix foy is:
32
== (72)
0g?
T-52(sp) =383y =384y 385Gy ... —speof]
2
3% —3S%p  —§56p  —§SPp .. —Fey
3
3step 306 8% —hsTep o ety
4
~1s5Gy) 38 —hSTsp) —&SBGp) ... —fobf
SZ S'3 S4
| —sfcly —%C@f —%C@f —chef coo —kpety ]
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A.3. Partial Derivatives for Smoothness The Hessian matrix for the performance index is

While many metrics for measuring path smoothness are pos- [ s 8y o]
sible, the following one will be illustrated here: T2 3 !
i S8 8
1 92J, > 2 u Sk
Tl )] = = [ [k(p. s)PPds. (73) =/ 2 3 4 (79)
2 3q2 §3 s4 §5
0 S A 2
. . - . 3 4 5 Srks
This functional will discourage sharp turns in favor of more D o
graceful ones. It can be evaluated easily in closed form but Lk ospk o s2kg KoK

it is convenient to do so numerically given all of the other
integrals which must be evaluated numerically.

For polynomial spirals, its gradient is: Appendix B: Efficient Evaluation of Quadrature

Gradients
. [ajk 3J, 0, ajk}
aq da 0b dc  dsy Consider the problem of computing the gradiehtgdp and
sy 1 dy/op and Hessians of the position integrals. This is equiva-
e _ /Ka_de 0Jc _ ZKk(p,s;)?.  (74) lentto computing the quadratures:
aq ap ds;, 2

s s

In order to express the parameter gradients, it is useful to C"(s) = /s" cosf (s)ds S"(s) = /s" sind(s)ds.

define the following general gradient integral:

K

K"(s) = /s”/c(s)ds.

0

(75)

0

(80)

Finite differences could be used to differentiate these integrals
by evaluating and differencing these integrals for two nearby

For polynomial spirals, these integrals can be evaluated Ya!ues of any parameter. However, it is less computationally

closed form: intensive and potentially more accurate to apply quadrature
b c to the exact derivative.
K°s) = 6(s)=as+ ESZ + §s3 +... This can be illustrated with Simpson’s rule. We define the
) 3 4 notation for the integrands:
Kl(S) = d§+b§+CZ+ sy sf
3 4 5 x(p,s;) = /COSH(IO, s)ds = / f(p, s)ds
2 _ . s . P
K°(s) = a3+b4+c5+... ) )
gntl §n2 4 ) H
K'(s) = a—atbst. (76) yp,sp) = /smé(p, s)ds = /g(p, s)ds.  (81)
n n

0 0
The gradients of the smoothness performance index can now

equal segments of widthis (wheren is even). At each of the

T T

o 1 K:(Sf) resultingn + 1 values ofs, the integrands angd () andg()
9J, = f/c s2 ds = Kz(sf) J. are evaluated. Then, the integrals are approximated by:
ap ; N K (Sf) an (77) As

x(p) = ?{f0+4f1+2f2+...+2f,,,2
1 2
= EK(D, sp)° +aAfia+ fu} (82)
The gradients of these integrals satisfy: — f 4 2 2

) - ; y(P) 3 {go+48:1+28+...+ 28,2
EK (S) = n+1 gK (S) =S K(S) +4gnfl+gn}'
9 K'(s) = s Now the derivatives with respect to arc length are the inte-
ab n+2 grands themselves. At any point
a n+3
—K"(s) = s 0 0
dc n+3 —x(P,s)| = f 5)’([)7 )| =& (83)

=5k
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On the other hand, the derivatives with respect to the paranieie partial derivatives of the quadratures follow analogous
ters follow a pattern similar to the following partial derivativerecurrence relationships:

for thea parameter. At any poirs:

af, 9 _ 30

So= oo codfp)l = —sinlb(p)]5 = s

a da da

o) J . 00

% = Zsinp)] = codb(P)]— = scfi.  (84)
a da da

The partials of the integrals evaluated at the endpoints are then 53

0
ax(p) =

As [ 0 0 0fu1 | 0fu
il ﬁ+4£+2£+_._+4g+i

3 | 9a da da da da

3 (85)
a)’(p) =

As [0go 0g1 08> 0gn-1 08,
— = +4=>F+2=>"4 . 4=+ =1,

3 { da + da + da o da + da

Substituting the results for the partials gives

d As
gx(p) ="3 {s0g0 + 45181 + 25282 + . .. + 25,282
+4sn—1gn—1 + sngn} (86)
d As
a—a)’(p) =3 {sofo+4s1fi+2502+...+25, 2fu

+4sn—1fn—1 + Sn f;z} .

a;:: =5 fi aaig =58
aa? = G (k) % = FD k)
IF _ —%G(’”Z)(k) 38(22 _ %F(””)(k)
% _ —%G("”)(k) 8322 _ %F("”)(k)

(91)

Any order of derivative can be computed by accumulating
the sums andG? up to the appropriate order. Conceptually,
the computation proceeds by filling in a structure similar to
Table 1 one column at a time. The case for integrals up to or-
der 3 is illustrated. Columns can be lengthened progressively
by doubling their length (and halvinds) until all of the in-
tegrals being computed pass a convergence test. As long as
the weightsw, are computed for each row, there is no need to
order the columns to correspond to increasing arc length.

It is possible with little effort to combine each previous it-
eration with the next one without recomputing the sums of the
columns all over again. Each term weighted by 4dd) in a
given iteration is weighted by 2 in the next (and all subsequent
iterations) whereas the terms weight by 1 ok2Zyen) have
their weights unchanged. Accordingly, if the sums of odd and
even terms are computed separately, they are easily converted

This is the same result that would be obtained by applyintg their contribution to the next iteration.

Simpson’s rule to the closed form derivatives in eq. (69).

We define the weight vector:
w={w}=[1 4 2 4..4 2 4 1" (87)

Simpsons’s rule is

x(p) = (%) Zwkfk y(p) = <%) Zwkgk~ (88)
k k

More generally, we define the sums approximating the inte-

grals of egs. (67) and (80):

')~ F =

As
<?> Z SZwkfk
k
As
<?> Z Sy W8k
k

S"(s) ~ Gl = (89)

Clearly

FPxx(s)  GY= y(s). (90)

Appendix C: Exact Solution tothe Linear
Constraints

The constraint equations are again of the form:

k(s)=a+bs+cs®+ds®+...

o(s) +bs2+cs3+ds4+
H=as+ —+ —+ —+...
2 3 4
()_/scos +bs2+cs3+ds4+ q
x(s) = as + — 3 gt |ds

0

p b2 3 d4
y(S)=/Sin[as+%+%+%+..}ds. (92)
0

We consider the five-parameter fully-constrained curve;
for example purposes, the constraint equations take the form:
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Table 1. Computation of Position Quadrature Gradientsand Hessians

2 3 2 2 3 3

k Wy Ok S 8k Sk Sk Sy wy fr Wi 8k wksffk WiSs 8k wksffk WS 8k
2 3 2 2 3 3

0 1 0o fo 8o So N So wo fo Wo&o WoSq fo WoSy80 WoSy fo WoSy 80
2 3 2 2 3 3

1 4 01 fi 81 S1 S sy wy f1 w181 wlslfl W18, 81 wlslfl Wi15181
2 3 2 2 3 3

n 1 0, Ja 8&n S sy s; Wy fy  Wagn  WaS [y WuSi&n WS fu WS, &
2 2 3 3
'x" y” Fn Gn F;l Gn
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