
Alonzo Kelly
Bryan Nagy
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890, USA
alonzo@ri.cmu.edu
bnagy@rec.ri.cmu.edu

Reactive Nonholonomic
Trajectory Generation
via Parametric
Optimal Control

Abstract

There are many situations for which a feasible nonholonomic motion
plan must be generated immediately based on real-time perceptual
information. Parametric trajectory representations limit computa-
tion because they reduce the search space for solutions (at the cost
of potentially introducing suboptimality). The use of any parametric
trajectory model converts the optimal control formulation into an
equivalent nonlinear programming problem. In this paper, curva-
ture polynomials of arbitrary order are used as the assumed form
of solution. Polynomials sacrifice little in terms of spanning the set
of feasible controls while permitting an expression of the general
solution to the system dynamics in terms of decoupled quadratures.
These quadratures are then readily linearized to express the neces-
sary conditions for optimality. Resulting trajectories are convenient
to manipulate and execute in vehicle controllers and they can be
computed with a straightforward numerical procedure in real time.

KEY WORDS—mobile robots, car-like robots, trajectory
generation, curve generation, nonholonomic, clothoid, cornu
spiral, optimal control

1. Introduction

Trajectory generation is a more difficult problem than it may at
first appear to be. By contrast to manipulation, where the com-
mon inverse problem is that of inverting nonlinear kinematic
equations, the common inverse problem for mobile robots is
that of inverting nonlinear differential equations.

1.1. Notation

For a vehicle actuated in curvature and speed while moving
in the plane, one description of its dynamics is the following
four coupled, nonlinear equations:

The International Journal of Robotics Research
Vol. 22, No. 7–8, July–August 2003, pp. 583-601,
©2003 Sage Publications

ẋ(t) = V (t) cosθ(t) θ̇ (t) = κ(t)V (t)

ẏ(t) = V (t) sinθ(t) κ̇(t) = u(t). (1)

The vehicle state vector (also called a posture in this context)
consists of the position coordinates(x, y), headingθ , and
curvatureκ:

x = (x, y, θ, κ)T. (2)

The input or control vector consists of speedV and desired
curvatureu:

u = (V , u)T. (3)

It is straightforward to effect a change of variable from time
to distance. Integrating the equations produces a canonical
expression of the equations of odometric dead reckoning:

x(s) =
s∫

0

cosθ(s)ds θ(s) =
s∫

0

κ(s)ds

y(s) =
s∫

0

sinθ(s)ds κ(s) = u(s). (4)

These equations are not a solution in the classical differential
equation sense because the heading (a state) appears inside
the integrals.

1.2. Problem Statement

The forward problem is that of determining the state space
trajectory from the input functions. This problem is equivalent
to dead reckoning and it can be solved by integrating the
above equations numerically. It is not possible to compute
the position without simultaneously computing the heading,
because the above is not formally a solution.

In this paper we address the inverse problem. In the in-
verse problem, all or part of the state space trajectoryx is

583

http:\\www.sagepublications.com

584 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

specified, and the associated controlu (input function) must
be computed. The question of whether such au exists when
boundary conditions are specified is one of classical control-
lability. When more than one such input exists, it becomes
possible to think about optimizing some performance index
(such as smoothness) and the problem becomes one of optimal
control.

Unlike in the case of holonomic motion planning, obsta-
cles are not required in order to make the problem of non-
holonomic trajectory generation difficult. The terms trajec-
tory generation, trajectory planning, and nonholonomic mo-
tion planning have been used historically for the problem of
achieving goal postures while respecting dynamic and non-
holonomic limitations on mobility. In many cases, quantities
to be optimized are introduced and, less frequently, known
obstacles are introduced to generate additional constraints on
mobility and require higher degrees of search.

Much of the work to date has either expressed the problem
strictly in terms of goal posture acquisition or assumed that the
environment was known a priori. Yet, every time that an op-
erating vehicle must react to its environment based on sensed
information gathered while on the move, a nonholonomic mo-
tion plan must be generated in real time. Indeed, our work in
applications points to a strong need for feasible motion plans
to be generated virtually instantaneously in response to newly
acquired environmental information. In this paper, we address
the need to generate such reactive trajectories in real time.

1.3. Motivation

Real-time trajectory generation is motivated by applications
of precision control. While computing trajectories is a com-
plicated matter, there are many situations for which nothing
less will solve the problem. Due to dynamics, limited cur-
vature, and underactuation, a vehicle often has few options
for how it travels over the space immediately in front of it.
The key to achieving a relatively arbitrary posture is to think
about doing so well before getting there, and to do so based
on precise understanding of the above limitations.

One of the motivations for our work on this problem is the
application of robot fork trucks handling pallets in factories,
as illustrated in Figure 1. Pallets can only be picked up when
addressed from a posture which places the fork tips at the fork
holes with the right heading and with zero curvature. In our
application, a vision system determines where the fork holes
are, so the goal posture may not be known until limited space
requires an aggressive maneuver to address the load correctly.

In the event that the fork holes are located after traveling
past the point where a feasible capture motion exists, it still
may be valuable to optimize the terminal posture error based
on the fact that the holes are often much larger than the forks.

Obstacle avoidance also requires precise models of mobil-
ity. In Figure 2, for example, the space of constant curvature
arc trajectories does not contain a solution to the problem

Pallet

Forktruck

Fig. 1. Robot fork truck motivation. Based on the location of
the load, a trajectory must be generated which ends precisely
in front of, and aligned with, the fork holes. The curvature
and speed must also be zero at the terminal point. Although
the pallet is to the left of the truck, it must turn initially to the
right to achieve the goal posture.

Obstacle
Robot

Fig. 2. Obstacle avoidance motivation. The robot must avoid
the obstacle while staying on the road. Given the length of
the arcs being evaluated (which reflects the stopping distance
at this speed), there is no curvature which does not hit either
the obstacle or the road edge. Yet, a compound curve easily
avoids both.

of both staying on the road and avoiding the obstacle. How-
ever, the space of all feasible vehicle motions does contain a
solution.

Simplistic approaches can quickly lead to unnecessary
problems. In the fork truck example, simply steering toward
the pallet is exactly the wrong thing to do. The only way
to achieve the goal is to turn away from the pallet in order
to lengthen the path enough to achieve the required heading
change.

In summary, a mobile robot must precisely understand and
exploit its own capacity to maneuver in order to function ef-
fectively in realistic applications. Several other applications
for trajectory generation include the following.

• Coordinated control. By expressing curvature as a func-
tion of distance, it is straightforward to slave the steer-

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 585

ing wheel to the actual distance traveled in order to
ensure that the intended trajectory is being followed.

• Planned obstacle avoidance. Due to the availability
of the Jacobian matrix with respect to the trajectory
parameters, it becomes straightforward to compute
first-order modifications to a planned trajectory which
moves it outside the region of intersection with an
obstacle.

• Guidepath representation. Many factory automation ve-
hicles express vehicle guidepaths (the robot roads in
the factory) in terms of lines and arcs; the more gen-
eral primitives computed here are a more effective
representation.

• Path following. Corrective trajectories for path follow-
ing applications can be generated in such a manner as
to achieve the correct position, heading, and curvature
of the point of path re acquisition.

For trajectories which achieve curvature and higher or-
ders of continuity when joined together, prohibitive rapid ac-
cess storage would be required to implement lookup tables
of solutions for a high-density sampling of every terminal
pose within a useful range. While interpolation can be used
to reduce storage requirements, the algorithm presented here
can compute solutions so rapidly from such poor initial esti-
mates that it would often render even tables of initial guesses
unnecessary.

While advances in computing continue to render slower al-
gorithms faster, the value of efficient nonholonomic trajectory
generation is not restricted to computers of the contemporary
generation. In the context of planning around obstacles, where
up to thousands of trajectories per second are checked for col-
lisions, an efficient generator enables an efficient planner.

1.4. Prior Work

From a robotics perspective, there has been little work on
this problem when compared with, for example, the amount
of effort devoted to localization (position estimation). From
another, the two-point boundary value problem of differential
equations, optimal curves in the calculus of variations, the
spline generation problem of geometric modeling, and the
optimal control problem are all very closely related and often
more general problems.

Some of the earliest work in robotics appeals to the applied
mathematics literature to supply a precedent for the problem
(Horn 1983; Dubins 1957).

Contemporary applied mathematics literature addresses
the relationships between abstract curve generation and con-
trol. For example, the relationship between curve fitting and
optimal control is addressed in Kano et al. (2003). Here, the
use of linear system dynamics to fit curves is first attributed
to practitioners in flight control.

Early approaches in robotics are characterized by a curve-
fitting formulation where the parameter space of a family of
one or more curves of some assumed general form is searched
for a solution. With the exception of very early work which
used B-splines, researchers initially preferred to represent tra-
jectories in terms of heading, curvature, and higher deriva-
tives, presumably due to their ease of execution and the ease
with which curvature constraints can be tested, if not imposed.

The progression is from line segments (Tsumura et al.
1981) to arcs (Komoriya, Tachi, and Tanie 1984) to clothoids
(Kanayama and Miyake 1985) to cubic spirals (quadratic cur-
vature) (Kanayama and Hartman 1988). The progression to
ever higher-order polynomials reflects the desire to constrain
higher-order derivatives for boundary values, and thereby
achieve higher levels of continuity when primitives are joined
together sequentially.

Aspects of optimization have appeared over time. In
Kanayama and Miyake (1985) is an early mention of the
nonuniqueness of solutions and searching alternatives. In
Kanayama and Hartman (1988) are explicit performance in-
dices and proofs of optimality for clothoids and cubic spirals.

One approach to planning is to sequence atomic primitives
together. Dubins (1957) showed that sequences of arcs and
lines are shortest for a forward moving vehicle given a con-
straint on average curvature. Much later, Reeds and Shepp
(1990) generalized this result to forward and backward mo-
tions, and Shkel and Lumelsky (1996) used classification to
improve efficiency.

These works have been restricted to line and arc primitives
based on the quest for the shortest path, but in the presence of
obstacles or higher-order boundary conditions, more expres-
sive primitives are required. Earlier Shin and Singh (1990) for
example, composed trajectories from clothoids and lines for
these reasons.

Boisonnat, Cérézo, and Leblond (1992) derived Dubin’s
result using variational principles. Variational methods are
now commonly applied to nonholonomic motion planning in
robotics (Latombe 1991; Laumond 1998). The relationship to
the two-point boundary value problem has meant that clas-
sical numerical methods are applicable. Delingette, Herbert,
and Ikeuchi (1991) use a sampled representation of the tra-
jectory and a relaxation based numerical method to compute
the optimum input.

The shooting method is another classical technique for
solving boundary value and optimal control problems. It is
based on assuming a parametric representation and solving for
the parameters. The method of substituting a family of curves
into a differential equation and solving for the parameters is,
of course, classical “variation of parameters”. Likewise, the
use of power series in order to solve differential equations has
been employed for centuries.

From as early as Brockett (1981) it has been known that si-
nusoidal inputs are optimal from the perspective of minimized
squared effort. Murray and Sastry (1993) used this result to

586 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

generate suboptimal solutions for chained systems. Similarly,
Fernandes, Gurvits, and Li (1991) proposed the use of a trun-
cated Fourier series to express the steering input and propose
a shooting method to find the coefficients of these sinusoidal
basis functions. Polynomial steering functions have been pro-
posed in Tilbury, Murray, and Sastry (1995) for steering in the
n trailer problem.

Much of the nonholonomic motion planning literature has
become theoretical in nature and algorithmic efficiency is not
often discussed. In Reuter (1998), however, a near real-time
optimal control solution appears. The problem is formulated
as eleven simultaneous first-order differential equations sub-
ject to boundary conditions which include curvature and its
derivative. Solutions are generated in about 1/3 s.

1.5. Approach

The approach presented in this paper is one which combines
many of the strengths of earlier techniques in order to achieve
both a highly general formulation and a real-time solution.
First, the clothoid and related curves of earlier approaches are
generalized to a curvature polynomial of arbitrary order which
becomes the assumed form of the solution. This form of so-
lution presents several computational advantages. Secondly,
the very general optimal control formulation is applied and,
based on the assumed form of solution, converted into one of
nonlinear programming. Application of numerical methods
for nonlinear programming problems then result in solutions
for connecting fairly arbitrary postures in under a millisecond
of computation.

1.6. Layout

The paper is organized into five sections. In Section 2 we de-
velop the general method for using an assumed solution form
to convert the problem from optimal control to constrained
optimization. In Section 3 we introduce the polynomial spiral
and its properties and develop the computational method of
solution. In Section 4 we present the results and in Section 5
the conclusion.

2. Formulation

In this section we formulate trajectory generation first as
an optimal control problem, and later as a parametric con-
strained optimization problem. We then adapt classical nu-
merical methods to the solution.

2.1. Trajectory Generation Problem

The briefest acquaintance with the question of how one de-
termines a steering function which achieves a goal posture
leads to the conclusion that the differential equations are un-
avoidable. The term posture is a convenient generalization of

Start State

(x,y,θ,κ,V)0

Goal State

(x,y,θ,κ,V)f

Fig. 3. Trajectory generation problem. The initial and final
pose, curvature, velocity and perhaps some of their deriva-
tives are given. The problem is to find an input consistent
with all of these constraints, the system dynamics, and
bounds on the inputs.

pose which includes curvature and its derivatives. Most gen-
erally, control theory provides the notion of state which would
include, in this case, velocity and its derivatives.

Let the trajectory generation problem be defined here as
that of determining a feasible specification of motion which
will cause the robot to move from a given initial posture (state)
to a given final posture (state). For example, consider the case
indicated in Figure 3.

More generally, an ordered list of goal states might be
specified and constraints of different forms may apply at each
state. While the technique presented in this paper adapts in
a straightforward manner to the generation of such dynamic
splines, this generalization will not be discussed further.

In the event that more than one feasible motion connects the
initial and terminal state, it may be desirable to choose among
them based on some convenient performance criterion.

2.2. Optimal Control Formulation

Optimal control is a natural formalism for the representation
of such problems. The above problem can be expressed in
control theoretic terms as follows.

There are known nonlinear system dynamics:

ẋ = f (x,u, t). (5)

A performance index is expressed as some functional evalu-
ated over the trajectory:

J = φ[x(tf)] +
tf∫

t0

L(x,u, t)dt. (6)

There are initial and terminal constraints on the states:

x(t0) = x0 x(tf) = xf . (7)

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 587

There may also be certain pragmatic constraints (reflecting
such concerns as limited actuator power) on the inputs. For
example:

|u(t)| ≤ umax(t) |u̇(t)| ≤ u̇max(t). (8)

This is a fairly classical formulation of an optimal control
problem in the Bolza form.

2.3. Constrained Optimization Formulation

Just as the classical technique of variation of parameters con-
verts differential equations to algebraic ones, it converts opti-
mal control problems to constrained optimization (also known
as nonlinear programming) problems. The technique used
here is also closely related to the shooting method for bound-
ary value problems because an initial guess will be iteratively
refined based on repeated evaluation of the forward solution.

Parametric representations of solutions are convenient
from the perspective of the compactness of the representa-
tion. When compared with sampled forms of continuous sig-
nals, this compactness makes them easier to represent, store,
communicate and manipulate. The process of transformation
starts by assuming a solution of the form

u(t) = u(p, t) (9)

where the control is assumed to be a member of a family of
functions which span all possible values of an arbitrary vector
of parametersp of lengthp. An individual control function is
now represented as a point in parameter space.

Since the input completely determines the state, and the
parameters now determine the input, dependence on both state
and input is just dependence on the parameters. Accordingly,
the state equations can be written as:

ẋ(t) = f[x(p, t),u(p, t), t] = f(p, t). (10)

The state vector would include any variables upon which
boundary conditions are to be imposed as well as any oth-
ers upon which these depend.

Let the boundary conditions comprise a set ofn constraint
relations of the form:

h(p, t0, tf) = x(t0) +
tf∫

t0

f(p, t)dt = xb. (11)

It is conventional to write these as:

g(p, t0, tf) = h(p, t0, tf) − xb = 0. (12)

Assume there is some scalar performance index which is to
be minimized:

minimize : J (x,u) = φ[x(tf)] +
tf∫

t0

L(x,u, t)dt. (13)

Again, because the parameters determine the input which de-
termines the state, these expressions can be written as:

minimize : J (p) = φ(p, tf) +
tf∫

t0

L(p, t)dt

subject to: g(p, t0, tf) = 0 tf free. (14)

It may also be useful to represent the constraint of bounded
inputs with something like:

|p| ≤ pmax. (15)

The present problem formulation now looks partially like
optimal control (due to the integrals) and partially like param-
eter optimization. It is now the case that both the state and the
performance index are functions only of the parameters and
time, but the appearance of integrals in both is nontraditional.

2.4. First-Order Dynamic Response to Parameter Variation

The high-level notation masks some severe difficulties in gen-
eral. Chief among them is the question of how first derivatives
with respect to the parameters are to be determined. There is
generally no analytic solution for the state available which
can be substituted into the equations in order to compute pa-
rameter derivatives of the constraintsg(q). Assuming so begs
the original question. Even if the trajectory was available as
an integral over the input (as it will be later for polynomial
spirals), there is no guarantee that the integrals have closed-
form solutions. Hence, implementations generally must rely
on numerical methods.

Nonetheless, in order to implement the shooting method,
the Jacobians of the performance index and the endpoint with
respect to the parameters will be required. The Leibnitz rule
supplies the principle but the Jacobians can only be extracted
indirectly.

The system dynamics can be differentiated with respect to
the parameters to obtain

∂

∂p
ẋ(t) =

[
∂ ẋ
∂p

]
= F(p, t)

∂x
∂p

+ G(p, t)
∂u
∂p

F = ∂f
∂x

G = ∂f
∂u

(16)

whereF andG are the Jacobians of the system with respect to
the state and the inputs. Hence, the Jacobian of the state with
respect to the parameters must satisfy the linearized system
dynamics at any point in time. Although there is no solution
to the nonlinear system given in eq. (1), the general solution
to the linearized dynamics (which must exist due to linearity)
exists in closed form (Kelly 2001).

588 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

Integrating the above gives a self-referential form of the
Leibnitz’ rule:

∂x
∂p

=
tf∫

t0

[
F(p, t)

∂x
∂p

+ G(p, t)
∂u
∂p

]
dt. (17)

This equation can be integrated to yield the parameter Jaco-
bian at the endpoint. Due to the nonlinearity of the equations,
a solution would proceed by linearizing the first-order con-
ditions. Therefore, second derivatives would be required in
general.

In some situations, it is possible to eliminate the self refer-
ence to the state to produce a solution integral (a quadrature)
which is explicitly of the form:

x(p, tf) =
tf∫

t0

g(p, t)dt. (18)

The Leibnitz rule can be applied directly to this form to get
the parameter Jacobian and the final time gradient:

∂x
∂p

=
tf∫

t0

[
∂g
∂p

]
dt

∂x
∂tf

= g(p, tf). (19)

Even in this simplified case, however, the parameter Jacobian
remains defined by an integral.

Likewise, the performance index can be differentiated:

∂

∂p
J (p) = ∂

∂p
φ(p, tf) (20)

+
tf∫

t0

{
∂

∂x
L(p, t)

∂x
∂p

+ ∂

∂u
L(p, t)

∂u
∂p

}
dt.

This information is included here to address how the ap-
proach applies to any parametric form of assumed solution.
The choice of polynomial spiral will further simplify the cal-
culations, but the overall approach can be applied to any form
of parametric input.

2.5. Functional Inequality Constraints

Once the constrained optimization formulation is adopted,
systematic mechanisms for dealing with inequality con-
straints, such as in Kuhn and Tucker (1961) can be brought
to bear. Imposing limits on an input during iteration can be
problematic because such limits apply to the entire time his-
tory of the input. Preventing excessive curvature at one time
for example, may cause it somewhere else.

An auxiliary advantage of the present formulation is that
the maximum value of an input can be approximated by com-

puting itsn-norm

max{ui(t)
n} ≈ 1

(tf − t0)

tf∫
t0

[ui(t)]ndt (21)

wheren is a large even integer. This expression can now form
the basis of an integral constraint

max{ui(t)
n} ≤ (umax)

n (22)

which is no different in principle than the boundary conditions
except that it is an inequality.

2.6. Change of Variable

It is often convenient for trajectory generation purposes to
change the independent variable from time to distance. With-
out loss of generality, let the initial distance be set to zero.
Also, let the final distancesf be absorbed into an adjoined
parameter vector thus:

q = [
pT, sf

]T
. (23)

The problem formulation under this change of variable
takes the following form:

minimize : J (q) = φ(q) +
sf∫

0

L(q)ds

subject to: g(q) = 0 sf free. (24)

2.7. Necessary Conditions

Constrained optimization problems can of course be solved by
the method of Lagrange multipliers. From the theory of con-
strained optimization, the solution is obtained by defining the
Hamiltonian (often called the Lagrangian in the constrained
optimization context):

H(q,λλλ) = J (q) + λλλTg(q). (25)

The first-order necessary conditions are:

∂

∂q
H(q,λλλ) = ∂

∂q
J (q) + λλλT ∂

∂q
g(q) = 0T (p + 1 eqns)

∂

∂λλλ
H(q) = g(q) = 0 (n eqns). (26)

This is a set ofn + p + 1 simultaneous equations in the
n + p + 1 unknowns inq andλλλ. The equation in the first
set corresponding to the final distance is the transversality
condition used to determine the final distance in the event
that it is considered variable. The right-hand side is a row
vector in the first set and a column vector in the second set.

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 589

2.8. Methods of Solution

Several numerical techniques are available for the solution
of nonlinear programming problems. The last five chapters
of Luenberger (1989), for example, contain a lucid tutorial
on the basic techniques: gradient projection, Lagrange, and
penalty function.

The technique chosen here is a Lagrange method. Such
methods treat the Lagrange multipliers on an equal footing
with the unknown parameters. The first-order necessary con-
ditions are solved directly using multi-dimensional rootfind-
ing techniques. Newton’s method is the basis for most of these
“curvature” (second derivative) based techniques. As a result,
they converge quadratically but must be augmented by mecha-
nisms to enhance stability when operating far from a solution.

Newton’s method as it applies to constrained optimization
is derived briefly as follows. Transposing the first set of equa-
tions, linearizing about a point where all equations are not
satisfied, and insisting that they become satisfied to first order
after perturbation gives:

∂2H

∂q2
(q,λλλ)�q + ∂

∂q
g(q)T�λλλ = − ∂

∂q
H(q,λλλ)T (p + 1 eqns)

∂

∂q
g(q)�q = −g(q) (n eqns). (27)

Notation for the Hessian of the Hamiltonian (with respect to
q) was used:

∂2H

∂q2
(q,λλλ) = ∂2J

∂q2
(q) + λλλ

∂2

∂q2
g(q). (28)

The last term involves a third-order tensor. It can be interpreted
as a multiplier weighted sum of the Hessians of each of the
individual constraint equations:

λλλ
∂2

∂q2
g(q) =

∑
i

λi

∂2

∂q2
gi(q). (29)

In matrix form, this is now of the form:


∂2H

∂q2
(q,λλλ)

∂

∂q
g(q)T

∂

∂q
g(q) 0




[
�q
�λλλ

]
=


 − ∂

∂q
H(q,λλλ)T

−g(q)


 .

(30)

This matrix equation can be interpreted to provide the er-
rors in the parameters which, when added to the parameters,
remove the observed residuals to first order. It can be iterated
from a good initial guess for the parameters and the multipliers
until convergence.

It is usually advisable to enforce diagonal dominance in
the manner of the Levenberg–Marquardt algorithm (see Press

1988) in order to enlarge the radius of convergence. The
structure is also amenable to recursive partitioning (Slama,
Theurer, and Henriksen 1980) to improve performance.

Two degenerate forms of the iteration are also important
for this paper.

2.8.1. Unconstrained Optimization

The degenerate form of unconstrained optimization is of prac-
tical significance. In this case, there are no constraint equa-
tions and no Lagrange multipliers. Equation (30) degenerates
to the square system[

∂2J

∂q2
(q)

]
�q = − ∂

∂q
J (q)T (31)

which is the same result that would be obtained by applying
Newton’s method from scratch to this specific problem.

2.8.2. Constraint Satisfaction

The second degenerate form is also of practical significance.
Indeed, this is trajectory generation as it was originally posed.
Here, there is no objective function. It is simply required that
the boundary conditions be met. In this case, eq. (30) degen-
erates to: [

∂

∂q
g(q)

]
�q = −g(q). (32)

This is Newton’s method as it occurs in rootfinding contexts.
The matrix which appears is the Jacobian of the constraints. In
this case, it is legitimate for the system to be non-square and,
if it is, the appropriate generalized inverse of the Jacobian can
be used in the iteration.

3. Solution Using Polynomial Spirals

The techniques of the previous section will apply to any form
of assumed solution. In this section we develop the specific
case when polynomial spirals are the assumed form.

Furthermore, the previous formulation is not confined to
steering functions. It could be used, for example, to determine
polynomials for linear velocity and to enforce acceleration
continuity. However, such a trivial problem would not require
all of the machinery just presented. Since steering functions
are much harder to determine, in this section we concentrate
on this aspect of the problem.

3.1. Achieving Steering Continuity

Even though it is most accurate to consider curvature a state,
it is also useful for many purposes to consider curvature to
be an input and to omit the last equation in eq. (1). Under
this assumption, the equations become homogeneous to the
first degree in linear velocityV (t) and it becomes possible to
divide the remaining equations by it in the form of ds/dt to

590 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

effect a change of independent variable from time to distance:

d

ds
x(s) = cosθ(s)

d

ds
y(s) = sinθ(s)

d

ds
θ(s) = κ(s). (33)

This form can be most useful for trajectory generation pur-
poses because it permits the geometry of the trajectory to be
considered independent of the speed of traversal.

Under this transformation, and omitting velocity, the end-
point constraints in Figure 3 become:

x(s0) = (x0, y0, θ0, κ0)
T

x(sf) = (xf , yf , θf , κf)
T. (34)

Of course, if the origin is defined to be positioned at
the initial posture then the first three boundary conditions
will be satisfied by construction and the five constraints
[κ0, xf , yf , θf , κf] would remain to be satisfied in this exam-
ple. Five parameters are therefore necessary for generating
sequences of curvature continuous trajectories.

3.2. Clothoids

The clothoid is a well-known curve which is defined by lin-
early varying curvature, thus

κ(s) = a + bs. (35)

This curve traces out a trajectory inx–y–s space known
as the Cornu spiral (see Figure 4). Of course, with only three
parameters to vary (a, b and s) the clothoid cannot satisfy
arbitrary terminal curvature or even heading constraints if the
existing parameters are used to satisfy initial curvature and
terminal position.

3.3. Polynomial Spirals

Given the need for additional parameters for steering con-
tinuity, an obvious approach is to add terms to the curvature
polynomial. These curves, called polynomial spirals in Dillen
(1990), possess as many degrees of freedom as necessary to
meet any number of constraints. Annth-order spiral is simply
annth-order polynomial expressing curvature in terms of arc
length:

κ(s) = a + bs + cs2 + ds3 + (36)

In the complex plane, these curves will be referred to as the
generalized Cornu spiral. A representative spiral of cubic or-
der is shown in Figure 5.

This new primitive possesses many advantages that can
be briefly summarized as the ability to represent any feasible

S

0

1

2

3

0

0.5

1

0

0.5

1

X

Y

Fig. 4. Cornu spiral. The projection onto the complex plane
is the plane trajectory which results from a linearly varying
curvature input. The curvature polynomial coefficients are
b = 0, andc = π .

S

0

0.5

1

1.5

0

0.5

1

0

0.5

1

X

Y

Fig. 5. Generalized Cornu spiral. This curve is gen-
erated by a cubic curvature polynomial of the form
κ(s) = a + bs + cs2 + ds3. The coefficients area = 0.0,
b = 33, c = −82, andd = 41.5. In this example, the
primitive reverses curvature and terminates pointing back at
the origin.

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 591

vehicle motion using a small number of parameters. Such
a bold statement is easy to justify by noting that all feasible
motions have an associated control and the primitive is merely
the Taylor series of the control. The Taylor remainder theorem
then supplies the basis of the claim that all controls can be
represented.

Given that the control in this case represents the actual
motion of the steering actuator, it can also be concluded that
higher-order terms in the series will eventually vanish due
to the impossibly high frequencies that they imply. A small
number of parameters is also valuable from the perspective
of representing and communicating the results, but most im-
portantly, it dramatically reduces the dimensionality of the
search space which is implied in all variational approaches to
the problem.

3.4. Reduction to Decoupled Quadratures

The polynomial spiral has two other important computational
advantages. Notice that the system dynamics, while coupled,
are in echelon form, so that a closed-form solution for heading
could be substituted into the position integrals to decouple the
system.

The polynomial spiral can be integrated in closed form to
produce heading:

κ(s) = a + bs + cs2 + ds3 + . . .

θ(s) = as + bs2

2
+ cs3

3
+ ds4

4
+ (37)

The new position integrals then become:

x(s) =
s∫

0

cos

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds

y(s) =
s∫

0

sin

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds.(38)

These are the generalized Fresnel integrals. The computa-
tion of these transcendental integrals and their gradients with
respect to the parameters will turn out to be the major com-
putational burden of trajectory generation.

The main advantage of decoupling is that the first-order be-
havior of the system can now also be computed using quadra-
ture rather than something like the multidimensional Runge–
Kutta required by eq. (17). The parameter Jacobians remain
defined by integrals but at least they are explicit. Their integral
nature also leads to an interpretation of eq. (32) as the classical
shooting method for solving boundary value problems.

A second computational advantage is that the state equa-
tions become simplified to the maximum degree possible
while retaining a fairly general steering function. It is well
known that the position equations are not solvable in closed
form for even a linearly varying heading input (in which case

the integrals are the well-known Fresnel integrals). How-
ever, the polynomial spiral has the property that any num-
ber of boundary conditions on initial or terminal heading or
its derivatives are linear in all parameters but distance. This
means that it is straightforward to enforce these conditions
exactly by fixing one parameter in addition to terminal dis-
tance and solving the resulting linear equations; only two of
the equations are ever difficult to solve.

3.5. Boundary Conditions as Constraints

Consider now the expression of the boundary conditions for
initial and terminal posture using polynomial spirals for the
case of enforcing curvature continuity. This case corresponds
to cubic polynomials and five parameters:

κ(s) = a + bs + cs2 + ds3. (39)

The initial constraints on position and heading can be satisfied
trivially by choosing coordinates such that:

s0 = 0 x(0) = y(0) = θ(0) = 0. (40)

This leaves constraints on initial curvature and its derivatives
as well as the entire final posture to be satisfied. We define the
vector of polynomial spiral parameters to be the coefficients:

q = [
a b c d sf

]T
. (41)

The initial curvature is satisfied trivially:

a = κ(0) (42)

and any higher-order initial derivatives in a more general case
could be resolved similarly. To save computation, this pa-
rameter will be eliminated from the iterative equations. The
remaining constraint equations in standard form are therefore:

g(q) = h(q) − xb = 0 or

h1(q) − xf = 0
h2(q) − yf = 0
h3(q) − θf = 0
h4(q) − κf = 0

. (43)

The equations for terminal curvatureκf and headingθf are
polynomials while the endpoint constraintsxf and yf are
quadratures. The Jacobian matrix of the above nonlinear sys-
tem is just a top to bottom arrangement of the gradients of
each constraint:

∂g
∂q

= ∂h
∂q

=




∂x

∂b

∂x

∂c

∂x

∂d
. . .

∂x

∂sf
.
∂κ

∂b

∂κ

∂c

∂κ

∂d
. . .

∂κ

∂sf


 . (44)

For the position coordinates, the Leibnitz’ rule can be used to
compute the derivatives. Details of a Simpson’s rule imple-
mentation for computing these functions and their first and
second derivatives are provided in the Appendix.

592 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

3.6. Boundary Conditions as Performance Indices

It is also valid and may be convenient to formulate the bound-
ary conditions as costs rather than hard constraints. Let the
terminal error be scaled as follows:

�x(q) =




x(q) − xf

y(q) − yf

L[θ(q) − θf]
L2[κ(q) − κf]


 . (45)

The characteristic lengthL is used to make the units of each
element of the vector consistent and to make each element of
roughly equal significance. A useful interpretation is that the
heading and curvature error are being converted to their effect
on the position of a point a distanceL away. For the forktruck
application, for example,L could be set to the sum of the
length of the forks and the distance the vehicle will travel to
insert them. The absolute bounds on this terminal error are
denoted as:

�xmax = [�xmax�ymax�θmax�κmax]
T . (46)

An associated performance index could then given by the
squared terminal error:

φ(q) = 1

2

[
�x(q)

]T [�x(q)]. (47)

The gradient of the performance index with respect to the
parameters is the sum of several components:

∂φ

∂q
=

[
∂x

∂q
�x + ∂y

∂q
�y + L2 ∂θ

∂q
�θ + L4 ∂κ

∂q
�κ

]
. (48)

Here, the vectors∂x/∂q, etc., are the gradients (row vectors)
of the terminal posture with respect to the parameters. The
Hessian matrix is computed by differentiating this:

∂2

∂q2
(φ) =

[
∂2x

∂q2
�x + ∂2y

∂q2
�y + L2 ∂

2θ

∂q2
�θ + L4 ∂

2κ

∂q2
�κ

+ ∂xT

∂q
∂x

∂q
+ ∂yT

∂q
∂y

∂q
+ L2 ∂θ

T

∂q
∂θ

∂q
+ L4 ∂κ

T

∂q
∂κ

∂q

]
.

(49)

The last four terms involve outer product (hence symmetric)
matrices formed by multiplying individual gradients by their
transposes. These outer products can be evaluated numerically
given the gradients. When near a solution, these outer product
terms dominate the Hessian.

3.7. Smoothness as a Performance Index

It is also possible to create a performance index which prefers
smooth trajectories. In this case, an integral form is appro-
priate. The following functional form will discourage high
curvature values relative to more graceful turns:

Jκ(q) = 1

2

sf∫
0

[κ(q)]2ds. (50)

Terms involving heading or curvature derivatives could also be
added to discourage indirect routes or rapid steering changes.
Note that wheneverq appears inside a distance integral, the
terminal arc lengthsf should be interpreted as the variable of
integrations.

The gradient of the performance index with respect to the
parameters is obtained from the Leibnitz’ rule:

∂Jκ

∂q
=

sf∫
0

κ(q)
∂κ

∂q
ds. (51)

The Hessian matrix is computed by differentiating this:

∂2

∂q2
(Jκ) =

sf∫
0

[
∂κT

∂q
∂κ

∂q
+ κ(q)

∂2κ

∂q2

]
ds. (52)

The previous performance index could also be added to this
one in order to produce smooth trajectories which almost meet
the constraints in some optimum fashion.

4. Results

In this section we present some numerical validations of the
approach to trajectory generation.

4.1. Forward Problem

A good solution to the forward problem for the boundary con-
ditions and their derivatives is necessary because it becomes
the basis for solving the more difficult inverse problem. Of
course, only the position coordinates present any difficulty.

In the present implementation, Simpson’s rule is used to
perform all of the integrations numerically. Many of the in-
tegrands are quite smooth and can often be estimated well
numerically in as little as ten integrand evaluations. In this
context, “estimated well” means well enough to determine
end posture to perhaps a few millimeters in position and a
few milliradians in heading.

When coefficients are large in magnitude, it may be nec-
essary to perform many integrand evaluations in Simpson’s
rule. At some point, large coefficients correspond to infea-
sible inputs and the difficulty in computation indicates dif-
ficulty or even impossibility of execution. In rough terms,
curves that cannot be computed, cannot be executed anyway.
The appendix provides a straightforward mechanism to reuse
computations while refining the estimate of the quadratures.

Figure 6 shows a typical member of the cubic curvature
polynomial family of curves computed. Curves must be much

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 593

s

ss

κ

κ’

x

y

κ’’

Fig. 6. A cubic polynomial spiral. Clockwise from top left,
a curve of cubic polynomial curvature, its curvature, and the
first and second derivatives of curvature versus distance.

more aggressive than this one to present difficulty in the for-
ward solution.

4.2. Initialization

All forms of the inverse solution require an initial estimate in
order to start the iterations. Estimates must be very good to
have a significant impact on the efficiency because most of
the time is spent fine tuning the answer. Therefore, efficiency
is not a strong motivation to produce good initial estimates.

However, initialization is also an important matter be-
cause the algorithm is convergent only to the nearest local
extremum. One extreme on the spectrum of initialization so-
lutions is to use low resolution lookup tables to seed the search
for a solution. The other extreme is to use approximations to
the solution. The second option has turned out easiest to do
well enough for the present purpose.

There is potential value in using scaling and symmetry to
reduce the number of solutions being represented. For a given
polynomial spiral, a new curve which is scaled by a factor of
λ from the original has coefficients:

anew = a

λ
bnew = b

λ2
cnew = c

λ3
dnew = d

λ4
. (53)

Reflections about thex- or y-axis or the origin can be accom-
plished in a similar manner.

If the scale factor applied is the inverse of the original
length or endpoint radius, the result is a canonical “unity
scale” curve. For the constraint satisfaction case discussed
next, our approach is to scale the problem so that the endpoint
is on the unit circle. Then, the simple estimate for length il-
lustrated in Figure 7 is used.

S ≈ θ2

5
+ 1 (54)

Correct Length vs Endpoint Heading

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-3 -2 -1 0 1 2 3
Terminal Heading

Data
Estimate

Fig. 7. Approximate length. Over the range of terminal
postures discussed in Section 4.3, the correct curve length
can be approximated by a quadratic in terminal heading.

Any other parameter can then be set to zero and the remain-
ing parameters can be determined by solving the non-position
constraints exactly. This procedure enables a robust conver-
gence to a solution over the wide range of cases discussed next
because it confines the iterations to a well-behaved subspace
of parameter space. In a movie of the iteration taking place,
the terminal heading and curvature are always correct and
the iteration progressively moves the endpoint to the solution
position.

For the constrained and unconstrained optimization cases
discussed later, the fully determined case is solved first in
order to serve as an initial estimate. Initial estimates for the
Lagrange multipliers can be obtained by solving the first part
of equation (26) with the pseudoinverter.

4.3. Constraint Satisfaction

The implementation of basic trajectory generation has been
highly successful. This case is characterized by the use of
eq. (32). In order to assess efficiency and reliability, 1600
solutions were computed over the envelope:

5m < xf < 15m − 5m < yf < 5.0m

−4π

5
< θf <

4π

5

−0.1
1

m
< κ0 < 0.1

1

m
− 0.1

1

m
< κf < 0.1

1

m
. (55)

594 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

This posture envelope is intended to be representative of a
factory automation application (no high curvatures). Termi-
nation was based on achieving a weighted residual norm of
0.01 defined as:

r = √
(wx�xf)2 + (wy�yf)2 + (wθ�θf)2 + (wκ�κf)2.

(56)

The weights were adjusted so that 0.01 units of position or
0.0001 rads of heading or 0.0001 rads/meter of curvature er-
ror alone would exceed the threshold. Figure 8 depicts some
example curves in the envelope computed.

Computation times over this envelope are summarized in
Figure 9. These are essentially worst-case results because no
lookup tables and only the above simplistic initial estimate
(an arc of roughly the right length) were used. Of course,
many applications would sequentially compute many nearby
trajectories and run-times would be significantly faster.

Solutions for driving in reverse are generated naturally by
choice of sign of the initial distance estimate. Reversing both
x and distance in the above cases generates they-axis mirror
image of the solutions. It is also relatively easy to control the
number of loops and the direction to which the initial turn will
tend. Figure 10, for example, shows two solutions separated
by one revolution that were generated by simply modulating
the terminal heading.

4.4. Unconstrained Optimization

This case is characterized by the use of eq. (31). This is a fairly
general technique in its own right because it is equivalent to
the penalty function approach to constrained optimization; we
simply convert the constraints to costs with high associated
weights. There are always the right number of equations no
matter how many curve parameters are used. Figure 11 illus-
trates an example motivated by the forktruck application. A
load is discovered to be 5 m to theright of expectations when
only 5 m away. A newtrajectory must be generated to move
diagonally but end up at zero heading and curvature.

When there is one parameter too few, the weights are
configured to ignore terminal curvature and the goal pose is
achieved with nonzero terminal curvature (see Figure 12). The
five-parameter case computes the same answer as constraint
satisfaction.

In the eight-parameter case, the path smoothness perfor-
mance index is introduced and weights are adjusted to per-
mit terminal heading and curvature error. In this case, the
smoothness (total area under squared curvature) is enhanced
significantly because the temporarily high initial curvature is
balanced by a long intermediate period of low curvature.

4.5. Constrained Optimization

This case is defined by the use of eq. (30). Figures 13 and
14 present results on a curvaceous trajectory chosen so as to

Fig. 8. Example polynomial spirals. These different end
postures have feasible solutions.

Runtime Histogram

0

100

200

300

400

500

<0.2
msec

<0.4
msec

<0.6
msec

<0.8
msec

<1.0
msec

<1.2
msec

< 1.4
msec

Fig. 9. Cubic polynomial spiral run times. Run times on a
1 GHz Pentium 4 for 1600 constraint satisfaction test cases.
All were less than 1.4 ms based on an arc initial estimate.

Fig. 10. Multiple solutions. Two different symmetric curves
(left) and asymmetric curves (right) each reaching the same
relative destination posture.

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 595

X vs Y

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0
-Y Coordinate

X
 C

oo
rd

in
at

e

5 params

4 params

8 params and trades

Fig. 11. Trajectories computed using unconstrained opti-
mization. These curves illustrate the use of eq. (31). The
goal is to move forward and to the right and end up facing
forward with zero curvature. The white curve has too few
parameters; the black is exact; the gray trades endpoint error
for smoothness.

Curvature

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0 8.0

Distance

C
ur

va
tu

re

5 params

4 params

8 params and trades

Fig. 12. Curvature profiles for trajectories computed using
unconstrained optimization. The four-parameter case does
not achieve the desired terminal curvature of zero. The
eight-parameter case has the best smoothness index.

illustrate the operation. The trajectory has no initial curvature
and is required to terminate at the posture:

[x, y, θ, κ] =
[
5,0,

3π

4
,0

]
. (57)

At least five parameters are required to satisfy the boundary
conditions. The five-parameter solution therefore retains no
free parameters that can be used to improve the performance

X vs Y

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
-Y Coordinate

X
 C

oo
rd

in
at

e

5 parameters

6 parameters

7 parameters

Fig. 13. Trajectories for varying number of parameters. These
three curves all terminate at the same posture but smoothness
increases with the number of parameters used.

Curvature

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20

Distance

C
ur

va
tu

re

5 params
6 params
7 params

Fig. 14. Curvature profiles for varying number of parame-
ters. These three curves all terminate at the same posture
but smoothness increases with the number of parameters used.

index. When free parameters become available (in the six- and
seven-parameter solutions), there is an initial dramatic effect
on the curvatures used but the effect tapers off quickly.

The performance index used is essentially the continuous
inner product of curvature with itself. This index will favor
longer paths over shorter ones to the degree that the area under
the squared curvature function is reduced by doing so. Of
course, lengthening itself has an impact on the performance
index so a best compromise is sought. The curvature profiles
in Figure 14 show how longer paths can achieve lower overall
curvature.

596 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

In practice, different performance indices may be more
appropriate. Given the need for a numerical implementation,
however, any index at all could be accommodated instead of
the example used.

5. Summary and Conclusions

Work in contemporary applications points to an acute need
for a mobile robot to understand its own motion capabilities
and limitations in very certain terms. This is especially so in
the case when a changing or unknown environment requires
on-line selection or computation of trajectories.

If trajectories are to be pre-stored, the number of continu-
ous feasible curvature profiles is prohibitively large to repre-
sent. Parametric trajectory representations must be used. Even
if trajectories are computed on-line rather than off-line, para-
metric representations then become motivated by the need to
compute answers in real time. When they are used, the best
parametrizations can represent essentially all feasible motions
in the least number of parameters.

Once parametric representations are accepted, the nonlin-
ear nature of the dynamics then requires search in order to
find a solution to the inverse problem. A method to compute
the first-order response of the dynamics to parameter varia-
tion is then required. In general, the parametric gradient of the
dynamics can be obtained by linearizing the dynamics with
respect to the parameters and solving the associated forward
problem (by solving a matrix differential equation).

It is therefore generally possible to convert an optimal con-
trol problem into a derived nonlinear programming problem
which finds the parameters of the solution curve. Numerical
solution of the associated first-order necessary conditions re-
quires the forward solution of auxiliary differential equations,
but otherwise, classical numerical approaches apply directly.

Within this general framework, the polynomial spiral is in-
troduced as a primitive which spans the set of feasible controls
while using few parameters. It also has a closed form solu-
tion for heading which decouples the dynamics and reduces
the auxiliary differential equations to decoupled quadratures.
This primitive is not only natural to manipulate but it is easy
to compute relative to the alternatives. It even reduces lookup
table memory requirements because all but two parameters
are solvable in closed form.

Based on the use of this primitive to represent arbitrary
steering functions, a robust technique has been presented
which computes curvature continuous trajectories between
relatively arbitrary initial and final postures in under a mil-
lisecond on contemporary processors.

Given nonlinear performance indices and/or nonlinear con-
straints, the algorithm will converge only to the nearest local
optimum. This is an inevitable limitation of all local methods.
Techniques for generating a good initial guess may therefore
be important in cases more ambitious than our examples.

Of course, solutions are only “nearly” optimum in the sense
of Fernandes, Gurvits, and Li (1991). A truncated series ap-
proximation may exclude a better solution which happens to
have non-vanishing high-order derivatives.

In this paper, we have avoided the discussion of how an or-
dered sequence of goal postures can be achieved using nonlin-
ear programming but extensions in this direction are straight-
forward.

Appendices

For readers who may be interested in implementing the tech-
nique of the article, this appendix provides further detail on
the numerical implementation.

Appendix A: Partial Derivatives of Solution
Quadratures

Consider the form of the first and second partial derivatives of:

• the solution integrals for position;

• the heading and curvature polynomials;

• a smoothness performance index.

Recall the integral of the state equations expressed as decou-
pled quadratures:

x(p, sf) =
s∫

0

cosθ(p, s)ds θ(p, sf) =
s∫

0

κ(p, s)ds

y(p, sf) =
s∫

0

sinθ(p, s)ds κ(p, sf) = u(p, s). (58)

In the following, the notation for the parameter vector is:

p = [a b c d . . .]T. (59)

It will sometimes be convenient to define the augmented pa-
rameter vector which includes the final arc length as follows:

q = [pT sf]T = [a b c d . . . sf]T. (60)

Unless it is necessary, the general arc length will often not be
distinguished from the terminal arc lengthsf .

A.1. Partial Derivatives of Heading and Curvature

When curvature is given by a polynomial spiral, so is heading
θ(p, s):

κ(p, s) = a + bs + cs2 + ds3 + es4 + . . .

θ(p, s) = as + b
s2

2
+ c

s3

3
+ d

s4

4
+ e

s5

5
+ (61)

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 597

For notational convenience, we define the derivatives:

κf = κ0 + bsf + cs2
f

+ ds3
f

κ ′
f

= ∂κf

∂s

∣∣∣∣
s=sf

= b + 2csf + 3ds2
f

(62)

κ ′′
f

= ∂κ ′
f

∂s

∣∣∣∣
s=sf

= 2c + 6dsf .

The partial derivatives of these expressions with respect to
the parameters and arc length are immediate:

∂θ

∂q
=

[
sf
s2
f

2

s3
f

3

s4
f

4
. . . κf

]
∂κ

∂q
= [

1sf s
2
f
s3
f
. . . κ ′

f

]
. (63)

The second derivative or Hessian matrix for heading is:

∂2θ

∂q2
=




0 0 0 0 . . . 1
0 0 0 0 . . . sf
0 0 0 0 . . . s2

f

0 0 0 0 . . . s3
f

.

1 sf s2
f

s3
f

. . . κ ′
f



. (64)

Similarly, the Hessian for curvature is:

∂2κ

∂q2
=




0 0 0 0 . . . 0
0 0 0 0 . . . 1
0 0 0 0 . . . 2sf
0 0 0 0 . . . 3s2

f

.

0 1 2sf 3s2
f

. . . κ ′′
f



. (65)

A.2. Partial Derivatives of the Position Integrals

The position states are given by the integrals:

x(p, sf) =
sf∫

0

cosθ(p, s)ds y(p, sf) =
sf∫

0

sinθ(p, s)ds.

(66)

More generally, we define the twonth-order gradient inte-
grals:

Cn(s) =
s∫

0

sn cosθ(s)ds Sn(s) =
s∫

0

sn sinθ(s)ds.

(67)

Clearly

x(s) = C0(s) y(s) = S0(s). (68)

For polynomial spirals, partial derivatives of these integrals
with respect to arc length and spiral parameters satisfy useful
recurrence relationships. For example:

∂

∂s
Cn(s) = sn cosθ(s)

∂

∂s
Sn(s) = sn sinθ(s)

∂

∂a
Cn(s) = −Sn+1(s)

∂

∂a
Sn(s) = Cn+1(s)

∂

∂b
Cn(s) = −1

2
Sn+2(s)

∂

∂b
Sn(s) = 1

2
Cn+2(s)

∂

∂c
Cn(s) = −1

3
Sn+3(s)

∂

∂c
Sn(s) = 1

3
Cn+3(s)

. (69)

The evaluation of these integrals represents the fundamental
computational burden of this approach to trajectory genera-
tion. A subsequent section will describe a technique for their
efficient evaluation.

The partial derivatives of the position integrals with respect
to the parameters and arc length are related to higher-order
gradient integrals

∂x

∂q
=

[
−S1(sf) − 1

2
S2(sf) − 1

3
S3(sf) − 1

4
S4(sf) . . . cθf

]
∂y

∂q
=

[
C1(sf) − 1

2
C2(sf) − 1

3
C3(sf) − 1

4
C4(sf) . . . sθf

]
(70)

wherecθf = cos(θf), etc. The Hessian matrix forx is

∂2x

∂q2
= (71)




−C2(sf) − 1
2C

3(sf) − 1
3C

4(sf) − 1
4C

5(sf) . . . −sf sθf

− 1
2C

3(sf) − 1
4C

4(sf) − 1
6C

5(sf) − 1
8C

6(sf) . . . − s2
f

2 sθf

− 1
3C

4(sf) − 1
6C

5(sf) − 1
9C

6(sf) − 1
12C

7(sf) . . . − s3
f

3 sθf

− 1
4C

5(sf) − 1
8C

6(sf) − 1
12C

7(sf) − 1
16C

8(sf) . . . − s4
f

4 sθf

.

−sf sθf − s2
f

2 sθf − s3
f

3 sθf − s4
f

4 sθf . . . −κf sθf



.

The Hessian matrix fory is:

∂2y

∂q2
= (72)




−S2(sf) − 1
2S

3(sf) − 1
3S

4(sf) − 1
4S

5(sf) . . . −sf cθf

− 1
2S

3(sf) − 1
4S

4(sf) − 1
6S

5(sf) − 1
8S

6(sf) . . . − s2
f

2 cθf

− 1
3S

4(sf) − 1
6S

5(sf) − 1
9S

6(sf) − 1
12S

7(sf) . . . − s3
f

3 cθf

− 1
4S

5(sf) − 1
8S

6(sf) − 1
12S

7(sf) − 1
16S

8(sf) . . . − s4
f

4 cθf

.

−sf cθf − s2
f

2 cθf − s3
f

3 cθf − s4
f

4 cθf . . . −κf cθf



.

598 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

A.3. Partial Derivatives for Smoothness

While many metrics for measuring path smoothness are pos-
sible, the following one will be illustrated here:

Jκ[κ(p, s)] = 1

2

sf∫
0

[κ(p, s)]2ds. (73)

This functional will discourage sharp turns in favor of more
graceful ones. It can be evaluated easily in closed form but
it is convenient to do so numerically given all of the other
integrals which must be evaluated numerically.

For polynomial spirals, its gradient is:

∂Jκ

∂q
=

[
∂Jκ

∂a

∂Jκ

∂b

∂Jx

∂c
. . .

∂Jκ

∂sf

]

∂Jκ

∂q
=

sf∫
0

κ
∂κ

∂p
ds

∂Jκ

∂sf
= 1

2
κ(p, sf)2. (74)

In order to express the parameter gradients, it is useful to
define the following general gradient integral:

Kn(s) =
s∫

0

snκ(s)ds. (75)

For polynomial spirals, these integrals can be evaluated in
closed form:

K0(s) = θ(s) = as + b

2
s2 + c

3
s3 + . . .

K1(s) = a
s2

2
+ b

s3

3
+ c

s4

4
+ . . .

K2(s) = a
s3

3
+ b

s4

4
+ c

s5

5
+ . . .

. . .

Kn(s) = a
sn+1

n + 1
+ b

sn+2

n + 2
+ (76)

The gradients of the smoothness performance index can now
be written in terms of these gradient integrals:

∂Jκ

∂p
=

sf∫
0

κ




1
s

s2

. . .




T

ds =




K0(sf)

K1(sf)

K2(sf)

. . .




T

∂Jκ

∂sf

= 1

2
κ(p, sf)2.

(77)

The gradients of these integrals satisfy:

∂

∂a
Kn(s) = sn+1

n + 1

∂

∂s
Kn(s) = snκ(s)

∂

∂b
Kn(s) = sn+2

n + 2
∂

∂c
Kn(s) = sn+3

n + 3
. . . . (78)

The Hessian matrix for the performance index is

∂2Jκ

∂q2
=




sf
s2
f

2

s3
f

3
. . . κf

s2
f

2

s3
f

3

s4
f

4
. . . sf κf

s3
f

3

s4
f

4

s5
f

5
. . . s2

f
κf

.

κf sf κf s2
f
κf . . . κf κ

′
f



. (79)

Appendix B: Efficient Evaluation of Quadrature
Gradients

Consider the problem of computing the gradients∂x/∂p and
∂y/∂p and Hessians of the position integrals. This is equiva-
lent to computing the quadratures:

Cn(s) =
s∫

0

sn cosθ(s)ds Sn(s) =
s∫

0

sn sinθ(s)ds.

(80)

Finite differences could be used to differentiate these integrals
by evaluating and differencing these integrals for two nearby
values of any parameter. However, it is less computationally
intensive and potentially more accurate to apply quadrature
to the exact derivative.

This can be illustrated with Simpson’s rule. We define the
notation for the integrands:

x(p, sf) =
sf∫

0

cosθ(p, s)ds =
sf∫

0

f (p, s)ds

y(p, sf) =
sf∫

0

sinθ(p, s)ds =
sf∫

0

g(p, s)ds. (81)

Under Simpson’s rule, the interval[0, s] is divided inton
equal segments of width�s (wheren is even). At each of the
resultingn + 1 values ofs, the integrands andf () andg()
are evaluated. Then, the integrals are approximated by:

x(p) = �s

3
{f0 + 4f1 + 2f2 + . . . + 2fn−2

+4fn−1 + fn} (82)

y(p) = �s

3
{g0 + 4g1 + 2g2 + . . . + 2gn−2

+4gn−1 + gn} .
Now the derivatives with respect to arc length are the inte-
grands themselves. At any pointsk:

∂

∂s
x(p, s)

∣∣∣∣
s=sk

= fk

∂

∂s
y(p, s)

∣∣∣∣
s=sk

= gk. (83)

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 599

On the other hand, the derivatives with respect to the parame-
ters follow a pattern similar to the following partial derivative
for thea parameter. At any pointsk:

∂fk

∂a
= ∂

∂a
cos[θ(p)] = − sin[θ(p)]∂θ

∂a
= −skgk

∂gk

∂a
= ∂

∂a
sin[θ(p)] = cos[θ(p)]∂θ

∂a
= skfk. (84)

The partials of the integrals evaluated at the endpoints are then

∂

∂a
x(p) =

�s

3

{
∂f0

∂a
+ 4

∂f1

∂a
+ 2

∂f2

∂a
+ . . . + 4

∂fn−1

∂a
+ ∂fn

∂a

}
∂

∂a
y(p) =

�s

3

{
∂g0

∂a
+ 4

∂g1

∂a
+ 2

∂g2

∂a
+ . . . + 4

∂gn−1

∂a
+ ∂gn

∂a

}
.

(85)

Substituting the results for the partials gives

∂

∂a
x(p) = −�s

3
{s0g0 + 4s1g1 + 2s2g2 + . . . + 2sn−2gn−2

+4sn−1gn−1 + sngn} (86)
∂

∂a
y(p) = �s

3
{s0f0 + 4s1f1 + 2s2f2 + . . . + 2sn−2fn−2

+4sn−1fn−1 + snfn} .

This is the same result that would be obtained by applying
Simpson’s rule to the closed form derivatives in eq. (69).

We define the weight vector:

w = {wk} = [1 4 2 4. . .4 2 4 1]T. (87)

Simpsons’s rule is

x(p) =
(
�s

3

) ∑
k

wkfk y(p) =
(
�s

3

) ∑
k

wkgk. (88)

More generally, we define the sums approximating the inte-
grals of eqs. (67) and (80):

Cn(sk) ≈ Fn

k
=

(
�s

3

) ∑
k

sn
k
wkfk

Sn(sk) ≈ Gn

k
=

(
�s

3

) ∑
k

sn
k
wkgk. (89)

Clearly

F 0
k

≈ x(sk) G0
k
≈ y(sk). (90)

The partial derivatives of the quadratures follow analogous
recurrence relationships:

∂F n
k

∂sk
= sn

k
fk

∂Gn
k

∂sk
= sn

k
gk

∂F n
k

∂a
= −G(n+1)(k)

∂Gn
k

∂a
= F (n+1)(k)

∂F n
k

∂b
= −1

2
G(n+2)(k)

∂Gn
k

∂b
= 1

2
F (n+2)(k)

∂F n
k

∂c
= −1

3
G(n+3)(k)

∂Gn
k

∂c
= 1

3
F (n+3)(k)

. (91)

Any order of derivative can be computed by accumulating
the sumsFn

k
andGn

k
up to the appropriate order. Conceptually,

the computation proceeds by filling in a structure similar to
Table 1 one column at a time. The case for integrals up to or-
der 3 is illustrated. Columns can be lengthened progressively
by doubling their length (and halving�s) until all of the in-
tegrals being computed pass a convergence test. As long as
the weightswk are computed for each row, there is no need to
order the columns to correspond to increasing arc length.

It is possible with little effort to combine each previous it-
eration with the next one without recomputing the sums of the
columns all over again. Each term weighted by 4 (k odd) in a
given iteration is weighted by 2 in the next (and all subsequent
iterations) whereas the terms weight by 1 or 2 (k even) have
their weights unchanged. Accordingly, if the sums of odd and
even terms are computed separately, they are easily converted
to their contribution to the next iteration.

Appendix C: Exact Solution to the Linear
Constraints

The constraint equations are again of the form:

κ(s) = a + bs + cs2 + ds3 + . . .

θ(s) = as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

x(s) =
s∫

0

cos

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds

y(s) =
s∫

0

sin

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds. (92)

We consider the five-parameter fully-constrained curve;
for example purposes, the constraint equations take the form:

600 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2003

Table 1. Computation of Position Quadrature Gradients and Hessians

k wk θk fk gk sk s2
k

s3
k

wkfk wkgk wks
2
f
fk wks

2
f
gk wks

3
f
fk wks

3
f
gk

0 1 θ0 f0 g0 s0 s2
0 s3

0 w0f0 w0g0 w0s
2
0f0 w0s

2
0g0 w0s

3
0f0 w0s

3
0g0

1 4 θ1 f1 g1 s1 s2
1 s3

1 w1f1 w1g1 w1s
2
1f1 w1s

2
1g1 w1s

3
1f1 w1s

3
1g1

. .

n 1 θn fn gn sn s2
n

s3
n

wnfn wngn wns
2
n
fn wns

2
n
gn wns

3
n
fn wns

3
n
gn

xn yn F 2
n

G2
n

F 3
n

G3
n

κ0 = a

κf = a + bsf + cs2
f

+ ds3
f

θf = asf + bs2
f

2
+ cs3

f

3
+ ds4

f

4

xf =
sf∫

0

cos

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds

yf =
sf∫

0

sin

[
as + bs2

2
+ cs3

3
+ ds4

4
+ . . .

]
ds.(93)

It is important to recognize that all but two of these equations
are linear in all parameters butsf . This creates an opportunity
to guarantee that all but two constraints are perfectly satisfied
in each iteration of the algorithm.

Fix the values ofsf and one other parameter, sayd, and
solve the trivial first equation, then the second and third equa-
tions can be written as:[

sf s2
f

s2
f

2

s3
f

3

] [
b

c

]
=

[
κf − κ0 − ds3

f

θf − κ0sf − ds4
f

4

]
(94)

or, if b is chosen to be dependent,[
s2
f

s3
f

s3
f

3

s4
f

4

] [
c

d

]
=

[
κf − κ0 − bsf

θf − κ0sf − bs2
f

2
.

]

This set is easily solvable forb andc (orc andd). Note partic-
ularly that it cannot be singular for curves of nonzero length. If
these equations are used, the final heading and final curvature
are guaranteed to be correct at the end of each iteration. The
iterations then become confined to the problem of moving the
endpoint to the right place.

References

Boisonnat, J., Cérézo, A., and Leblond, J. 1992. Shortest paths
of bounded curvature in the plane. InProceedings of the
ICRA, Nice, France, pp. 2315–2320.

Brockett, R. W. 1981. Control theory and singular Rieman-
nian geometry. InNew Directions in Applied Mathematics,
Springer-Verlag, New York, pp. 11–27.

Dillen, F. 1990. The classification of hyper-surfaces of a Eu-
clidean space with parallel higher fundamental form.Math.
Z. 203:635–643.

Delingette, H., Herbert, M., and Ikeuchi, K. 1991. Trajec-
tory generation with curvature constraint based on energy
minimization. InProceedings of the IROS, Osaka, Japan,
pp. 206–211.

Dubins, L. E. 1957. On curves of minimal length with a con-
straint on average curvature and with prescribed initial
and terminal positions and tangents.American Journal of
Mathematics 79:497–516.

Fernandes, C., Gurvits, L., and Li, Z. X. 1991. A variational
approach to optimal nonholonomic motion planning.IEEE
International Conference on Robotics and Automation,
Sacramento, CA, pp. 680–685.

Horn, B. K. 1983. The curve of least energy.ACM Transac-
tions on Mathematical Software 9(4):441–460.

Kanayama, Y., and Miyake, N. 1985. Trajectory generation for
mobile robots.Robotics Research, MIT Press, Cambridge,
MA.

Kanayama, Y., and Hartman, B. I. 1988. Smooth local path
planning for autonomous vehicles, Technical Report, De-
partment of Computer Science, University of California,
Santa Barbara, CA.

Kano, H., Egerstedt, M., Nakata, H., and Martin, C.F. 2003.
B-splines and control theory.Applied Mathematics and
Computation, to appear.

Kelly, A. November 2001. General solution for linearized er-
ror propagation in vehicle odometry. InInternational Sym-
posium on Robotics Research, Lorne, Victoria, Australia.

Komoriya, K., Tachi, S., and Tanie, K. 1984. A method for
autonomous locomotion of mobile robots.Journal of the
Robotics Society of Japan 2:222–231.

Kuhn, H. W., and Tucker, A. W. 1961. Nonlinear program-
ming. In Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability, J. Keyman ed.,
University of California Press, Berkeley, CA, pp. 481–492.

Latombe, J. C. 1991.Robot Motion Planning, Kluwer Aca-
demic, Dordrecht.

Kelly and Nagy / Reactive Nonholonomic Trajectory Generation 601

Laumond, J. P., ed. 1998. Robot motion planning and control,
LAAS report 97438.

Luenberger, D. G. 1989.Linear and Nonlinear Programming,
2nd edition, Addison Wesley, Reading, MA.

Murray, R., and Sastry, S. 1993. Nonholonomic motion plan-
ning: Steering using sinusoids.IEEE Transactions on Au-
tomatic Control 38(5).

Nagy, B., and Kelly, A. 2001. Trajectory generation for car-
like robots using cubic curvature polynomials. InField and
Service Robots, 11 June, Helsinki, Finland.

Press, W., Flannery, B., Teukolsky, S., and Vetterling, W.
1988. Numerical Recipes in C, Cambridge University
Press, Cambridge.

Reeds, J. A., and Shepp, R. A. 1990. Optimal paths for a car
that goes both forwards and backwards.Pacific Journal of
Mathematics 145(2).

Reuter, J. October 1998. Mobile robot trajectories with con-
tinuously differentiable curvature: an optimal control ap-
proach. InProceedings of the 1998 IEEE/RSJ Conference

on Intelligent Robots and Systems, Victoria, BC, Canada.
Shin, D. H., and Singh, S. 1990. Path generation for robot vehi-

cles using composite clothoid segments, Technical Report,
CMU-RI-TR- 90-31, The Robotics Institute, Carnegie
Mellon University.

Shkel, A., and Lumelsky, V. 1996. On calculation of optimal
paths with constrained curvature: the case of long paths.

Slama, C. C., Theurer, C., and Henriksen, S. W., eds. 1980.
Manual of Photogrammetry, American Society of Pho-
togrammetry.

Tilbury, D., Murray, R., and Sastry, S. 1995. Trajectory
Generation for the N Trailer Problem using the Goursat
Normal Form.IEEE Transactions on Automatic Control
40(5):802–819.

Tsumura, T., Fujiwara, N., Shirakawa, T., and Hashimoto,
M. October 1981. An Experimental System for Automatic
Guidance of a Robotic Vehicle Following a Route Stored
in Memory. InProceedings of the 11th International Sym-
posium on Industrial Robots, pp. 187–193.

