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Abstract 2 Préiminaries

The contemporary implementation of software systems for off-
road navigation on conventional computing involves a continuous
struggle to develop more computationally efficient algorithms. A
basic trade-off exists between system performance and reliability
for any given level of efficiency of the software. Hence, the only
way to improve both performance and reliability isto improve the
computational efficiency of the underlying algorithms. Dense ste-
reo vision algorithmscan easily exhaust almost all available com-
puter cycles and are therefore prime candidates for the
development of more efficient approaches. This paper presents
some techniques that can be used to improve the efficiency and/or
reliability of dense stereo for off road autonomous vehicles.

1 Introduction

The need for high throughput perception algorithms has been
acknowledged for sometime [2][4][13][12] in the field of auton-
omous vehicle navigation. In our earlier work [7], the authors
have presented several adaptive techniques for the implementa-
tion of active stereo vision and terrain mapping in off-road sce-
narios. These techniquesincluded:

This section introduces terminology and the core concepts upon
which the paper is based.

2.1 Coordinate Conventions

The angular coordinates of a pixel will be expressed in terms of
horizontal angle oazimuth { , and vertical angle alevation
0 . Three orthogonal axes are considered to be oriented along the
vehicle body axes of symmetry. Generally, we will arbitrarily
choose z up, y forward, and x to the right:
*X - crossrange, in the groundplane, normal to the direction of
travel.
sy - downrange, in the groundplane, along the direction of
travel.
z -vertical, normal to the groundplane.
Certain vehicle dimensions that will be generally important in the
analysis are summarized in the following figure. One distin-
guished point on the vehicle body will be designated the vehicle
control point. The position of this point and the orientation of the
associated coordinate system is used to designate the pose of the
vehicle.

esoftware modulation of the distance beyond which geometry The wheelbase i, and the wheel radius is . The height of the
is processed to correspond to the instantaneous vehicle sensor above the groundplane is designhted and its offset rear
response distance. of the vehicle nose ip . The height of the undercarriage above
«software modulation of the width of the window of ranges  the groundplane is . Range measured from the sensor is desig-
processed to correspond to the distance moved by the vehicle natedR .
in each perceptual cycle.
esoftware modulation of the range pixel aspect ratio to com-
pensate for the average expected elongation of pixels when
projected onto the groundplane.
This paper builds on this earlier work and introduces several new
techniques to further increase performance. To the degree that the
techniques increase performance, they enable the use of lower
cost computing and sensing systems for a fixed performance
requirement and contribute to the development of lower cost
fieldworthy autonomous vehicles.

Computer stereo vision is an area that has been studied for at
least two decades [11]. Our work in the area reuses ideas of hier- - - — -
archical processing of images [1][4] and the use of relaxation We will sometimes distinguish rangR, ~ measured in 3D from a
techniques that reflect the interdependencies of various parts of fange sensor, and the projection of range  onto the ground-
the problem [9][5]. More recently, researchers have recognized plane. Genel’allly, both will be measuf:ed forward from the $enSO|'
the importance of adaptive signal matching techniques [14]. Our unless otherwise noted. The velocity of the vehicle will be

work is in the spirit of this trend while also introducing a form of denotedv .

relaxation and applying it to an application where the disparity We will describe the coordinates of a point both with respect to
gradient is usually high. an image and with respect to a correlation window within the

Figure 1: Important Dimensions
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image. The figure introduces the conventions used in the paper.
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Figure 2: Image and Correlation Window Coordinates. A local
coordinate system (x,y) is attached to the image plane at the
central pixel of the reference image and another (u,v) is
attached to the correlation window.

2.2 Normalized Disparity

We will present our work in the context of binocular (two-eyed)
stereo, though none of our fundamental results depend on the
number of cameras used. The basic binocular stereo ranging rela-
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Figure 3: Basic Triangulation in Binocular Stereo. The
baseline is the perpendicular distance between the optical
axes. The range is measured normal to the reference image
plane. The disparity is the difference in image coordinates of
corresponding points measured along the epipolar line. It
also depends on the focal length.

tionship for perfectly aligned cameras is derived from similar tri-
angles. It relates disparity d, range Y, baseline b, and focal
length f:

Y = bf/d

It is useful to remove the dependence of disparity on the focal
length by expressing disparity as an angle. Define the normal-
ized disparity thus:

2.3  Digparity Gradient

The disparity gradient is the spatial derivative of disparity in
some coordinate system. Under the assumption that the images
have been rectified into perfect epipolar geometry, the disparity
isascalar field over theimage plane known also asthe disparity
image. An associated vector field, the disparity gradient image,
can be derived fromiit:

08(x,Y) = 280 Y)i + 280 Y)
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3  Geometric Decorrelation

It is well known that the gradient of range measured from the
image plane of the reference camera introduces a disparity gradi-
ent across the correlation window in area-based stereo [3]. This
section investigates the qualitative behavior of the disparity gra-
dient for horizontal and vertical baseline stereo systems.

31 Geometric Decorrelation for Horizontal and
Vertical Basdlines

Let the reference image be defined as the image whose coordi-
nate system is used to express the resulting range image. Without
loss of generality, we will take the Ieft image to be the reference
image for horizontal baselines and the top image will play this
role for vertical baselines.

The following figures show that a fixed angular region projected
from different positions will image different areas on the ground-
plane.

z

L»y Vertical Baseline

Top Camera

Bottom Camera

Top Pixel Footprint «——
Bottom Pixel Footprint «<——————>

Note: Pixels are of equal angular width.

Figure 4: Pixel Foreshortening - Vertical Baseline. A fixed
angular region projected from different positions images
different sized areas on the groundplane.

Thisistruefor both horizontal and vertical baselines as shownin
the next figure.
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Note: Pixels are of equal angular width.

Figure 5: Pixel Foreshortening - Horizontal Baseline. A fixed
angular region projected from different positions images
different sized areas on the groundplane.

From the reverse perspective, for flat terrain, a region on the
groundplane which projects onto aregular rectangle in the refer-
ence image will project onto a region of different size and/or



shape in the other image as shown below.
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Figure 6: Geometric Decorrelation. A correlation window in the
reference image will have its corresponding window distorted
in the other image as shown.

This foreshortening effect goes by several namesin the literature.
Its effect is to cause attempts to correlate corresponding regions
of images to fail because the right intensity values are in the
wrong places. No rigid transformation of the reference image
correlation window results in the other image correlation win-
dow.

We will call the effect geometric decorrelation. All
approaches to stereo have different methods which attempt to
deal with it. The rest of the paper introduces two techniques for
dealing with this problem in increasing order of sophistication.

3.2  Reationship to Disparity Field

Generally, of course, the correct mapping from a region in the
reference image to the other image is the very thing we are look-
ing for in stereo - the disparity image. If x and y denote coordi-
nates in the image plane, then disparity d(x,y) in an idealy
rectified, left-referenced, horizontal baseline system is deter-
mined by the following equations relating the coordinates of cor-
responding pixelsin each image.
Xg = X +d(x.,y,) YR =YL
Given thisrelationship, it is clearly possible to compute the map-
ping of any region from the left image to its corresponding region
in the right. When disparity is continuous, every pixel's sur-
rounding region in the reference image maps onto a correspond-
ing region in the other image. When disparity is not continuous,
it maps onto a set of regions. Some cases are indicated in the fol-
lowing figure for several possibilities for the geometry of the sur-
face being imaged.
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Figure 7: Mapping of Correlation Windows for a Horizontal
Baseline. By definition, the disparity image d(X,y) maps
pixels and hence regions from the reference image to the
other image. Some typical cases are indicated.

3.3
Stereo

The observation that geometric decorrelation occurs leads to the

Fundamental Inconsistency of Area-Based
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observation that traditional or “area based” stereo incorporates a
fundamental inconsistency, because:

-Iaisparity cannot be everywhere differemtd have zero gra-

ient.
Disparity can’'t be both uncorrelated (everywhere different)
and correlated (constant in a small window).

This inconsistency arises as soon as we attempt to match two cor-
relation windows of the same shape, any fixed shape, or any
fixed relationship - one of each comes from each image. Unless
the disparity is constant across the window, corresponding identi-
cally shaped “regions” can never correspond perfectly - only
points can.

F ol

Bottom Image

Top Correlation Window Bottom Correlation Window

Figure 8: Example of Geometric Decorrelation. Corresponding
correlation windows for two synthetic images of perfect
geometry. The last row of each corresponds, but the bottom
window has an extra row at the top of the window.

34 Results

Figure 8 illustrates geometric decorrelation for a perfectly
aligned vertical pair for cameras looking at a flat surface, which
has randomly generated greyscale tiles. The images were pro-
duced by the ray tracer of our simulator so their geometry is per-
fect. Note that although the bottom rows of the correlation
windows correspond, the bottom correlation window has an extra
row at its top. The balance of the paper will introduce techniques
for dealing with this which each have varying degrees of sophis-
tication and success.

4  Modulation of Correlation Window Aspect
Ratio

In this section, we derive the optimal fixed shape of a stereo cor-
relation window for flat terrain from the perspective of minimiz-
ing the effects of geometric decorrelation.

4.1  Disparity Gradient of Flat Terrain

A simple expression, accurate to first order, is available for the
gradient of disparity in an image of flat terrain. In such an image,
the gradient is wholly vertical. It is related to thg spanned by
the correlation window heighk® . From earlier analysis [8] for
flat terrain we know that a small change in image elevation angle
moves a range pixel a corresponding distance along flat terrain
given by:

2
Ay = Yh—Ae

Differentiating the earlier expression for normalized disparity
with respect to range leads to:



Substituting the first relationship into the second shows that the
disparity gradient is equal to the normalized baseline - the ratio
of baseline to sensor height [10]. Notice that two quadratic rela

Ad _ b

AB~ h

tionships have cancelled to leave us with the convenient rule that
linear variation in range leads to alinear variation in disparity.

Of course, the disparity gradient at any point in an image is a
direct function of the real range gradient of rough terrain. In gen-
eral, it may vary significantly as the terrain slope varies, but the
above figure is an acceptable approximation for many of our pur-
poses.

4.2 Coefficient of Geometric Decorrelation for
Uniform Disparity Gradient

The distortion of correlation windows is purely a geometric mat-
ter - independent of the image data itself and dependent solely on
the disparity gradient field. We can easily derive an expression
for the total displacement from their nominal positions of all pix-
elsin the window.

Recalling Figure 2, let us attach alocal (u, v) coordinate system
to awindow of size (U, V) in some arbitrary image plane linear
units. Let the disparity gradient be given by:

S < |05 08 T
Dé_{auav} =[5, 3

and assume it is constant over the correlation window. Then the
coefficient of geometric decorrelation C,,, will be defined as
the weighted integral of the area of the window where the weight
of each differential region is given by its shift relative to its nom-
inal undistorted position. Thus, if p is the position vector in the
image plane, then:

yuyv yy
22 22
Ceorr = J’J’D6~ pdudv = J’ J’(éuu+6vv)dudv
uy uyv
272 272
Therefore, when the disparity gradient is constant:
3,U%v 3, V2U
Cerr = +
4 4

Notice that the decorrel ation depends only on the disparity gradi-
ent and the window dimensions.

4.3  Optimal Shape of the Correlation Window

The above expression can be optimized if another constraint
equation is available. Let the area of the correlation window
remain constant while the width and height vary dependently.
Then, setting the derivative to zero, there results:

u_>9

vV 9}

u

Thus the optimum aspect ratio of the correlation window is the
inverse of the ratio of the corresponding components of the dis-
parity gradient. This is intuitively appealing because it requires
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that the extent of the window be minimized in the direction
where disparity changes most. This result explains why outdoor
stereo systems tend to perform better when the correlation win-
dow iswider than it is high. On average, the disparity gradient is
mostly vertical in the image plane in outdoor settings.

4.4 Results

We have begun to use this rule in our work in order to minimize
the effects of geometric decorrelation. Figure 9 clearly shows a
dramatic improvement in the accuracy of disparity images of flat
terrain based on simply changing the aspect ratio of the correla-
tion window.

= Top Image ™

Figure 9: Effect of Correlation
Window Aspect Ratio.
Binocular stereo was
performed on this image of
natural flat terrain, first with a
25 X 25 window and then with
a 10 X 60 window. Although
the number of pixels in the
windows was the same, the
nonrectangular window clearly
gives strikingly cleaner and
more accurate disparity images.

ﬂ

Later sections provide better mechanisms which achieve the
same types of improvements.

5 Constant Modulation of Correlation Window
Shape.

In the last section, we varied the aspect ratio of the correlation
window in order to minimize the effects of geometric decorrela-
tion. The window area, however, remained constant as did its
shape. This section introduces techniques that modify the size
and/or shape of the correlation window based upon expectations.

It may seem to the reader that the introduction of expectations
would make stereo more error prone when those expectations are
violated. However, note that the traditional correlation of rectan-
gular subwindows amounts to an assumption that the disparity
gradient is zero. Thisis equivaent to the assumption that the ter-
rainisnearly vertical.

Hence, traditional stereo already incorporates expectations and
the particular ones used are not the ones that would be chosen in
off-road autonomous vehicles which tend to operate on nearly
horizontal terrain most of the timel. We have already calculated
that the disparity gradient is equal to the normalized disparity in
this case.

One simple way to introduce expectations is to introduce awarp-

1. There is the argument that vertical surfaces often constitute obstacles
and that stereo should be tuned to detect them. We accept that argument
while striving to develop stereo algorithms which need no such tuning.
Our navigator also avoids unknown terrain which would be generated by
poor ranging to vertical surfaces so this point isless relevant to us.



ing function defined on the correlation window of the form

Dwarp(uv v) = J'Dé(u, V) e CTS
|

This function is the integral of the assumed disparity gradient
0d(u, v) dong the epipolar line | . It therefore gives the dis-
placement of a pixel along the epipolar line from its nominal
position with respect to the window center if the disparity gradi-
ent were zero. It encodes the change in shape of a rectangular
correlation window when mapped to the other image.
Computation of disparity is accomplished through maximizing
some measure of window similarity such as normalized correla-
tion by searching a sequence of proposed or candidate dispari-
ties.
Consider the horizontal baseline case. If L(x,y) is the left nor-
malized image and R(x,y) is the right normalized image, then
the normalized correlation computed for each pixel as afunction
of aproposed disparity d iscomputed from the double integral :
Uuyv

2
C(x,y,d) = Ui\/ J’L(x+u,y+v)R(x+u—d,y+v)dudv
v

ic— nlI

22

In order to use the window warping function proposed above we
replace the constant proposed disparity d above by the offset
war ping function:

A(u,v) = d+ Dygrp(u, V)

where the first term represents the candidate relative position of
the window and the second encodes its shape. Note that the win-
dow origin is aways unwarped:

Duarp(0,0) = 0

This approach corresponds to simply warping the window and
then correlating it in candidate positions aong the epipolar line
asusual asillustrated below.
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Figure 10: Correlation with Window Warping. We can warp the
left correlation window by an arbitrary function and then
search for its position in the right image.

In practice, the warping function can be computed by assuming a
constant for the disparity gradient based on the results of earlier
sections and then integrating it. Some examples were given in
Figure7.

51 Results
Figure 11 illustrates the use of a constant warping function on
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simulated flat terrain. Because synthetic images were used,
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Figure 11: Constant Warping Function. The constant warping
function technique was applied to the synthetic stereo pair of
Figure 6. The left disparity image is based on no warping and the
right is based on using the normalized baseline warping
function.

ground truth is a perfectly flat patch of terrain and avirtualy lin-
ear disparity image. The disparity versus row curves for the right
image are clearly smoother and more accurate whereas the left
image shows the disparity steps that typically occur when the
gradient is high.

6 Disparity Relaxation Stereo

The reader may have noticed that since the proposed approach
assumes avaluefor the disparity gradient (and hence disparity, to
within a constant) from which a new disparity is computed, the
problem is somewhat circular. Thiscircularity leadsto aformula-
tion of stereo as arelaxation of the disparity image. In each itera-
tion of the algorithm, we assume that the current disparity image
islocally correct (i.e. of the right shape) but that it may need to
have its position adjusted somewhat. This section derives such an
algorithm.

6.1 Principle

Let dk(x, y) denote the disparity image at iteration k, and let d
denote the candidate disparity being searched in the evaluation of
the 3D scalar field C(x, y, d) . Unlikeinthe prigvioussection, we
allow the warping function, now denoted as D, ,, p(x, y,u,Vv),to
vary with position in the image. However, we will suppress the
dependence on position in the notation for readability.

We compute the warping function from the initial estimate of dis-
parity but continue to search for the position of the best correla
tion. Thus:

D\Iz/arp(uv v) = {dk(uy v) —dk(O, 0)}

where every term above is a so afunction of image position. This
gives the warping function offset by a candidate disparity as:

A" Y, v) = d+{d“(u, v) —d(0, 0)}

We can now define a quantity called relative disparity as the
difference between the candidate disparity and the current dispar-
ity of apixel, thus:

df, = d—d“(0,0)

Reorganizing terms leads to an expression for the offset warping



function in terms of the relative disparity and the origina dispar-
ity image:

A Mo v) = d +diu,v)

Thus, the warped position of a pixel is given by the position in
the reference image, plus the current estimate of disparity plus
the current candidate relative disparity. The relative disparity
would typically be in the range of small signed integers such as:
-n< d'r(el <n

The processis, for each pixel position (X, y) , moveit to the other
image, offset it by its current estimated disparity and then search,
using it and its appropriately transformed neighbors, for a better
match on either side of the current estimate.
For iteration k+1, the correlations are computed as:

uv
1

v L(x+u,y+v)R(x+u—Ak+1(u, V), y + Vv)dudv

k+1
C (XY dg) =

ol — ni
— NI

NI

6.2 Refinements

Further refinements are possible which incorporate and/or mod-
ify the ideas of other researchers for adaptive signal matching.
First, astheiteration number grows, the disparity image becomes
more accurate and less search is required. Hence, the disparity
window searched can be quickly reduced to increase speed.

Second, thereis of course a trade-off between signal to noise and
distortion where larger correlation windows have better signal to
noise ratios in the absence of distortion while being more suscep-
tible to errors due to distortion. Also, large disparity search
regions increase the likelihood of false matches due to nearly
repetitive texture. However, as the iteration number grows, the
locally correct shape of the disparity image implies that distor-
tion decreases and that the disparity search region can be
reduced. We have found it possible and profitable to reduce the
correlation window to a very small size as the relaxation pro-
ceeds.

6.3 Results

We have used the idea of disparity relaxation based stereo in its
simplest form. A singleiteration is performed where the disparity
image of flat terrain forms the initial estimate. This estimate can
be computed from the reference camerafield of view and resolu-
tion and its position and orientation with respect to the flat ter-
rain.

Although outdoor terrain is certainly not aways flat, it is often
closer to being flat than it is to being vertical as our results in
Figure 12 show. Traditiona stereo applied to this pair generates
uneven artifacts and provides no datain the safest placesto drive.
Use of anonsquare window improves matters. Using relaxation -
even on aflat initial estimate - generates a dense disparity image
of relatively high quality which correctly represents the sides of
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theravine as well asits bottom.

Figure 12: Relaxation Stereo.
This figure compares all of the
approaches. An image pair of
the ravine at left is converted
to disparity first with a square
correlation window, then with
a nonsquare one, and then by
a single iteration on the
disparity image of flat terrain.

o —_—
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7 Conclusions

We have presented a new approach to stereo vision that has
advantages in situations where some amount of expectation of
the shape of the environment can be employed. Although its
potential applicability may be broader, we have applied it ini-
tialy to outdoor autonomous vehicles. In this domain, at least
where vehicles are tested today, the terrain surfaceis:

«almost never normal to the optical axis of the reference cam-

era
eusually tilted away from the camera
emostly smooth, but

epunctuated by occluding edges

Our approach seems to improve many important characteristics

of stereo systems:

eunlike in more traditional approaches, flat terrain with high

disparity gradient is correctly computed as flat.

eaccounting for geometric decorrelation improves robustness
in the presence of noise, distortion, and nearly repetitive tex-

ture.

ereduced search windows improves speed and immunity to

nearly repetitive texture.

Disparity relaxation both improves speed and reduces memory



requirements. In the figure below, the cube represents the 3D

MOJ

[T T ] [ 77

Figure 13: Speed and Memory Improvements. use of disparity
relaxation improves speed and reduces required memory.

array of correlation scores C(x,Y, d). The thick diagona line
represents the initial estimated disparity image. Searching a few
disparities on either side of the estimate implies that the white
cells need never be computed or stored in memory. By using the
relative disparity as the array index, a rectangular array can till
be used.
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