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Abstract

A basic requirement of autonomous vehicles is that of guaranteeing
the safety of the vehicle by avoiding hazardous situations. This paper
analyses this requirement in general terms of  the resolution and accu-
racy of sensors and computations. Several nondimensional expres-
sions emerge which characterize requirements in canonical form.

1 Introduction

This paper is concerned with the requirements that must be
satisfied by an autonomous vehicle which operates safely in its
environment. A typical autonomous vehicle has been fitted
with low level vehicle-specific control loops to enable com-
puter control of propulsion, steering, and brakes. Some posi-
tion estimation system is typically incorporated to determine
position. At least one perception sensor is needed to enable it
to perceive its environment.

For the purposes of this paper, the perception sensor can be
any imaging sensor measuring range or intensity in any electro-
magnetic band of frequencies. This paper proposes aspects of a
rudimentary theory of obstacle avoidance and uses it to quan-
tify some of the requirements placed upon autonomous systems
that are derived from the need to ensure safety

2 Guaranteed Safety

Any vehicle which attempts to navigate autonomously in the
presence of unknown obstacles must exhibit performance that
satisfies a basic set of requirements. At the highest level, if the
system is to survive on its own, the vehicle control system must
implement apolicy of guaranteed safety.

It may be possible in simple environments to make the
default assumption that the terrain is navigable in the absence
of direct evidence to the contrary. Theweak form of the policy
is optimistic. It requires that the vehicle guarantee, to the best
of its ability, that collisions withidentified obstacles will be
avoided. The system must prove an area is not safe before not
traversing it. An example of such an environment is a flat floor
indoor setting.

In more complex environments, it is necessary to make the
default assumption that the terrain is not navigable in the
absence of direct evidence to the contrary. In itsstrong form,
the policy is pessimistic. It requires that a vehicle not enter ter-
rain that it has not both perceived and understood. The system
must prove that an area is safe before traversing it. An example
of such an environment is a rough terrain outdoor environment.

This requirement to guarantee safety can be further broken
down into four other requirements on performance and func-
tionality expressed in terms of timing, speed, resolution, and
accuracy. In order to survive on its own, an autonomous vehicle
must implement the four policies of:
• guaranteed response: It must respond fast enough to avoid

an obstacle once it is perceived.
• guaranteed throughput: It must update its model of the

environment at a rate commensurate with its speed.
• guaranteed detection: It must incorporate high enough

resolution sensors and computations to enable it to detect
the smallest event or feature that can present a hazard.

• guaranteed localization: It must incorporate sufficiently
high fidelity models of itself and the environment to enable
it to make correct decisions and execute them sufficiently
accurately.

2.1 Preliminaries
A nondimensional expression of the above policies provides

the most compact expression of the relationships between
speed, reaction time, and other system performance parame-
ters. Results will be expressed in a scale-independent form
when this is possible. Before developing such expressions, a
brief background discussion is in order.
2.1.1 Lexical Conventions

The paper will introduce many new terms as a device to fos-
ter brevity and precision. New terms will be defined in their
first appearance in the text. They will generally be highlighted
thus.
2.1.2 Coordinate Conventions

The angular coordinates of a pixel will be expressed in terms
of horizontal angle orazimuth , and vertical angle oreleva-
tion . Three orthogonal axes are considered to be oriented
along the vehicle body axes of symmetry. Generally, we will
arbitrarily choose z up, y forward, and x to the right:
• x - crossrange, in the groundplane, normal to the direction

of travel.
• y - downrange, in the groundplane, along the direction of

travel.
• z - vertical, normal to the groundplane.
2.1.3 Notation

We will carefully distinguish range,  measured in 3D from
a range sensor, and the projection of range  onto the ground-
plane. Generally, both will be measured forward from the sen-
sor unless otherwise noted.
2.2 Nondimensional Configuration

Certain vehicle dimensions that will be generally important
in the analysis are summarized in the following figure. One dis-
tinguished point on the vehicle body will be designated the
vehicle control point. The position of this point and the orien-
tation of the associated coordinate system is used to designate
the pose of the vehicle.

The wheelbase is , and the wheel radius is . The height of
the sensor above the groundplane is designated  and its offset
rear of the vehicle nose is . The height of the undercarriage
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above the groundplane is . Range measured from the sensor
is designated .

2.3 Key Nondimensionals
Certain nondimensional variables that encode relevant

aspects of the vehicle geometry will be employed later in the
paper.
• : normalized wheelbase, the ratio of wheelbase to

measured range, encodes the size of the vehicle relative to
its sensory lookahead, relates to requirements on sensor
angular resolution.

• : perception ratio, the ratio of sensor height to mea-
sured range, encodes the sensor height relative to vehicle
sensory lookahead, encodes angle of incidence of range
pixels with the terrain, relates to requirements on sensor
angular resolution, pixel footprint aspect ratio, and preve-
lance of terrain self occlusions.

• : undercarriage tangent, the ratio of undercarriage
clearance to wheelbase, encodes body clearance aspects of
terrainability in scale independent terms, relates to the pre-
valance of terrain self occulsions.

2.4 Nondimensional Safety Requirements
One way to characterize scale is to choose a characteristic

vehicle dimension to represent its size. We will sometimes use
the wheelbase , the width , or the wheel radius  to char-
acterize scale. In this way, results will be expressable in scale-
independent terms.
2.4.1 Acuity

Obstacles cannot be avoided unless the system can reliably
detect them. Reliability in obstacle detection is at least a ques-
tion of the spatial resolution of the sensor pixel footprint. How-
ever, a larger vehicle requires a larger obstacle to challenge it,
so it is natural to normalize the spatial resolution of the sensor
by a characteristic vehicle dimension.

Theacuity ratio will be defined as:

In order to resolve a difference in the size of an environmen-
tal feature that is as small as the vehicle dimension chosen, the
acuity ratio must be kept, by the sampling theorem, below one-
half.

2.4.2 Fidelity
Obstacles cannot be avoided unless the system can locate

them sufficiently accurately with respect to itself and execute
an avoidance trajectory sufficiently accurately. In this context,
“sufficiently accurately” depends on the size of the vehicle and
the spacing between obstacles in some average, worst-case, or
other useful sense.

Thefidelity ratio  will be defined as:

where  is the error between the intended and actual paths
of the vehicle. This quantity depends on the accuracy of the
perception sensor used to locate the vehicle relative to obsta-
cles, the position estimation system, and the command follow-
ing controls.

The margin for error available when driving exactly between
two separated obstacles is half the difference between the
obstacle spacing and the vehicle dimension aligned between
them. That is, the fidelity ratio must be kept below one-half.
2.5 Standard Assumptions

Certain assumptions will be important either because they
must be adopted, or because they simplify analysis. These
assumptions are not always necessary, justified, or even cor-
rect, but we will employ them when they are:
• small incidence angle assumption: the assumption that the

perception ratio is small. When adopted, allows us to
equate the range to a point on the ground to its groundplane
projection with a minimal relative error equal to the square
of the perception ratio.

• point vehicle assumption: the assumption that the finite
extent of the vehicle can be ignored in the analysis. When
adopted, allows us to ignore the extension of the vehicle
nose in front of the perception sensor, for example.

• low latency assumption: the assumption that the delays
associated with passing energy or information through an
element of the system can be ignored. When adopted,
allows us to ignore actuator dynamics, for example.

• flat terrain assumption: the assumption that the terrain is
at least locally flat at the scale of the sensory lookahead
distance. When adopted, allows us to simplify many
aspects of the analysis.

• smooth terrain assumption: the assumption that the ter-
rain does not contain any high spatial frequencies. When
adopted, allows to assume reasonable limits on the need to
resolve small hazards in the environment.

• stationary environment assumption: the assumption that
the environment is rigid. When adopted, allows us to mea-
sure the position of an object only once and assume that it
stays put while the vehicle moves around it.
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2.6 Standard Problems
Given the description of the problem outlined above, a set of

natural subproblems emerge when vehicle subsystems do not
meet the underlying requirements of the problem of autono-
mous mobility. Many of the following subproblems will be
subsequently elaborated in more detail.
2.6.1 Acuity Problem

The acuity problem is that of guaranteeing detection of
obstacles. It is often the case that sensor intrinsic angular or
range resolution is inadequate for a given lookahead distance
but other subproblems can be identified as well:
• sampling problem: Unfavorable variation in the size, den-

sity, or shape of sensor pixels due to terrain shape, sensor
mounting configuration, and radiometric considerations.

• motion distortion problem:  Distortion of images due to
the motion of the vehicle during image acquisition.

2.6.2 Fidelity problem
Thefidelity problem is that of guaranteeing adequate fidel-

ity of models and measurements. Several subproblems can also
be identified:
• sensitivity problem: Extreme sensitivity of changes in one

quantity to small changes in another.
• registration problem: Inability to match redundant mea-

surements of the environment due to errors in the measure-
ments.

• command following problem: Inability of the vehicle con-
trol systems to cause the vehicle to execute its commands
sufficiently well.

• stability problem:  Instability of obstacle avoidance and/or
goal seeking due to the use of insufficiently accurate mod-
els.

3 Acuity

This section investigates the manner in which vehicle config-
uration and sensor resolution together determine the ability of a sensor
to resolve obstacles. The following analysis is based on aflat ter-
rain assumption so it is not entirely correct in rough terrain.
Nonetheless, it is a useful theoretical approximation.
3.1 Acuity Limits

The size of a spatial feature that presents an obstacle to a
vehicle has both an upper and a lower useful limit. The largest
feature of interest is one the size of the vehicle wheelbase
because this is the lowest resolution that still allows the vehicle
pitch angle to be predicted. At resolutions below this, the entire
vehicle is smaller than the sensor resolution and vehicle pitch
cannot be resolved. This lower useful limit on acuity will be
calledminimum acuity. Based on earlier comments on acuity,
we can express this limit in terms of the wheelbase as follows:

Another important form of obstacle is one which could col-
lide with or trap a tire at operating velocity such as a pothole or
step. The ability to resolve a spatial feature on the order of the
size of a wheel radius is needed to ensure that a wheel does not
fall in a hole or drive over a step which would cause damage.
This upper limit on acuity will be calledmaximum acuity.
Based on earlier comments, we can express this limit in terms

of the wheel radius as follows:

While it can be argued that the smallest feature of interest is
one the size of a nail, this leads to results that are impossible to
achieve so we will assume that such pathological cases do not
exist. A practical system must always assume that there are no
man-made or natural hazards that are smaller than some prac-
tical resolution limit. This will be called thesmooth terrain
assumption.
3.2 Obstacle Sampling Factor

Formally, resolution is the smallest difference that a system
can resolve. Thus, the acuity problem is to reliably distinguish
a spatial feature of a given size from one somewhat smaller.
The choice of what is to be considered somewhat smaller is
arbitrary but it relates directly to reliability of obstacle detec-
tion.

Consider the following figure in which an obstacle appears
in the field of view of a sensor. The obstacle is of height . We
will define a one-dimensional obstaclesampling factor as
half the number of pixels that intersect the obstacle in a particular
direction.

The spatial resolution of the system is governed by the sam-
pling theorem. The sensor can distinguish a difference  in
obstacle size no smaller than:

Thus, the sampling theorem is just satisfied for a given fea-
ture size when the sampling factor is unity. One measure of
reliability in obstacle detection is the frequency of false posi-
tives and false negatives and both of these measures can be
expected to improve as the sensor spatial resolution exceeds the
amount required by the sampling theorem, or equivalently, as
the sampling factor increases.
3.3 Differential Imaging Kinematics

The relationships between pixel angular width and its pro-
jections onto three orthogonal axes are approximated below for
flat terrain. In the crossrange direction the following figure
applies:

In the downrange and vertical directions, the following fig-
ure applies:

Consider the following approximations to these relation-
ships when elevation spacing  equals azimuth spacing
andR >> h as is almost always the case:

These approximations will be called the resolution trans-
forms and used extensively throughout the rest of this section.
3.4 Sampling Problem
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It is clear from the previous expressions that the size of pix-
els projected on the ground plane varies linearly with range in
the crossrange and vertical directions while it varies quadrati-
cally in the downrange direction. Theperception ratio has
appeared in the denominator of the  expression and because
it is normally smaller than unity, the downrange pixel projec-
tion is normally largest.

The differential mapping from image space onto cartesian
space is both nonlinear, and a function of the terrain geometry.
The density of pixels on the groundplane can vary by orders of
magnitude, and it varies with both position and direction. Sig-
nificant variation in groundplane resolution can cause under-
sampling at far ranges and oversampling close to the vehicle.
This problem will be called thesampling problem.
3.4.1 Pixel Footprint Area and Density Nonuniformity

Multiplying the above expressions:

Hence, the area of a pixel when projected onto the ground
plane is proportional to the cube of the range. Due to the pro-
jection onto the groundplane, it is increased by the inverse of
the perception ratio over what would be expected based on the
area of an expanding wavefront. This result expresses the vari-
ation of pixel size with position.

3.4.2 Pixel Footprint Aspect Ratio
Dividing the above expressions:

Hence, the pixel footprint aspect ratio is given by the percep-
tion ratio. This result expresses the variation of pixel size with
direction.
3.5 Acuity Limits in Image Space

This section develops expressions for sensor angular resolu-
tion requirments based on vehicle dimensions and sensory loo-
kahead. For reasons of simplicity, we will define sensor angular
resolution in this section as the smallest difference in sensor
pixel azimuth and elevation that can be resolved. It is important
to distinguish this definition from the angle subtended by the
smallest obstacle that can be resolved. The quantum of motion
or measurement of pixel angle may not be related to the angle
subtended by a pixel in the case of a laser rangefinder.
3.5.1 Minimum Acuity

When R >> h, the downrange projection of a pixel signifi-
cantly exceeds the crossrange projection. Consider what hap-
pens when the downrange spacing between pixels begins to
approach the size of the vehicle itself.

The ability to resolve vehicle pitch angle from terrain data
depends on having two different elevations under the front and
rear wheels. The pixel spacing  must be no larger than one-
half the wheelbase for this to be practical. At resolutions below
this level, sensor data contains no useful information at all.

Equating downrange resolution to one-half the wheelbase
and substituting the resolution transforms

Rewriting gives the following relationship that relates two
key nondimensional variables and relates the vehicle shape and
lookahead distance to the required sensor angular resolution:

The lowest useful resolution occurs when the product of the
normalized wheelbase and theperception ratio equals one-
half the angular resolution of the sensor. This is an image space
expression of theminimum sensor acuity rule. Any of the
variables can be considered to be absolutely limited by the oth-
ers in the expression.
3.5.2 Maximum Acuity

It is possible to formulate a similar rule by considering the
much more stringent requirements of resolving a wheel colli-
sion hazard at the maximum range. In order to resolve a wheel
collision hazard, spatial resolution in the vertical direction
must be sufficient to land two pixels on a vertical surface, equal
in height to the wheel radius, at any given range.

Equating vertical resolution to one-half the wheel radius and
substituting the resolution transforms

Rewriting gives the following relationship that relates the
vehicle shape and lookahead distance to the required sensor
angular resolution:
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The highest useful resolution occurs when the ratio of wheel
radius to range equals one-half the angular resolution of the
sensor. This is an image space expression of themaximum
sensor acuity rule. Again, any of the variables can be consid-
ered to be absolutely limited by the others in the expression.
3.5.3 Relative Importance of Acuity Limits

Notice that the minimum rule is quadratic in 1/R, whereas
the maximum rule is linear. Both constraints are equal when:

At long ranges, the minimum acuity limit actually dominates
the maximum limit. Solving the minimum acuity expression
for range gives an expression for the maximum useful range of
a sensor:

The condition that this range is small compared to that
required by response considerations has been called themyo-
pia problem.

For contemporary vehicles, the myopia problem and the acu-
ity problem are linked because poor angular resolution is the
typical limit on the useful range of a sensor. The above analysis
is based on theflat terrain assumption. On rough terrain,
there is no practical way to guarantee adequate acuity over the
field of view because there will always be situations where pix-
els have glancing incidence to the terrain.
3.6 Motion Distortion Problem

By the time an image is received by the perception system,
the vehicle may have moved a considerable distance since the
image was acquired. So, the processing of the geometry in the
image must account for the exact position of the vehicle when
the image was taken. Further, some sensors such as scanning
laser rangefinders may require significant time to scan the laser
beam over the environment. In the worst case, there must be a
distinct vehicle pose associated with each pixel in a ladar
image. If this motion distortion is not corrected, the terrain
maps computed from images will be grossly in error.

The worst case is a high angular velocity turn as indicated in
the figure below. Suppose the input latency of a range image is
0.5 secs, that rangefinder scanning takes a further  0.5 secs, and
that the vehicle is travelling at 6 mph and turning sharply, so its
angular velocity is 1 rad/sec. If this motion is not accounted for,
all of the following effects will occur:
• objects will be smeared by 30° in the image
• objects will be shifted by 30° in their percieved location
• the range to an object will also be overestimated by the dis-

tance travelled in 1 second.

This distortion of range images can be removed by maintain-
ing a history of vehicle poses sampled at regular intervals for
the last few minutes of execution and searching this list for the
precise vehicle position at which each range pixel was mea-
sured.

4 Fidelity

This section investigates the manner in which the accuracy
of models of vehicle maneuverability determine the ability of a
vehicle to operate robustly.
4.1 Modeling Dynamics and Delays

In the context of high-speed motion, the time it takes to pass
information into and out of the system becomes a significant
factor. Any delays in time which are not modeled are ultimately
reflected as errors between both:
• what is sensed and reality, and
• what is commanded and reality

Time delays, also calledlatencies, may arise in general from
several sources - all of which occur in a contemporary autono-
mous system:
• sensor dwell latency is the time it really takes for a mea-

surement to be acquired even though it is often a nominally
instantaneous process.

• communication latency is the time it takes to pass infor-
mation between system processes and processors.

• processing latency is the time it takes for an algorithm to
transform its inputs into its outputs.

• plant dynamics latency is the delay that arises in physical
systems because they are governed by differential equa-
tions.
Feedback controllers often cannot significantly reduce the

raw delay associated with response of actuators and the vehicle
body. While delays affect response directly, they also affect the
ability of the system to localize obstacles correctly if they are
not modeled in perceptual processing. This section investigates
these matters in the context of high-speed motion.
4.1.1 Latency Problem

Unmodeled latencies in both sensors and actuators can cause
the vehicle to both underestimate the distance to an obstacle
and underestimate the distance required to react. This behavior
is indicated in the following figure. When latencies are mod-
eled, the system is aware of its closer proximity to the obstacle
and its reduced ability to turn sharply. In the following sce-
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nario, it should choose an alternative obstacle avoidance trajec-
tory to avoid collision.

4.1.2 Minimum Significant Delay and Low latency
Assumption

The characteristic time of any element is the total delay,
whatever its source, which relates the input to the associated
correct, steady-state output. In the case of dynamic systems
characterized by a differential equation, thetime constant  is
a related concept.

The total characteristic time of all information processing
elements, hardware or software, and all energy transformation
elements is the quantity which matters, so it is not correct to
discount delays individually. To assume that delays are irrele-
vant is to assume that the characteristic time is relatively small.
This low latency assumption is not correct for high-speed
autonomy above some speed.

Let a time delay of  occur which is not modeled by the
system. If the vehicle travels at a speed  then the distance
travelled is, naturally, . In order to guarantee correct
localization of either a range pixel or the vehicle to an accuracy
of , theminimum significant delay occurs when the fidelity
ratio is unity, or when:

4.1.3 Normalized Time Constant
Motion planners operating on a mission level may find it

convenient to abstract away the dynamics of the problem for
reasons of efficiency or irrelevance. However, obstacle avoid-
ance must be aware that a steering actuator may not reach its
commanded position before an obstacle is reached because this
will dramatically affect the trajectory followed. This spectrum
can be formalized roughly with a quantity called thenormal-
ized time constant:

where  is thetemporal planning horizon or the
amount of time the system component is looking ahead in its
deliberations.

When the normalized time constant is small, dynamics are
not important but when it approaches or exceeds unity, dynam-
ics are a central issue.
4.2 Ackerman Steering Kinematics
4.2.1 Bicycle Model

It is useful to approximate the kinematics of the Ackerman
steering mechanism by assuming that the two front wheels turn
slightly differentially so that the instantaneous center of rota-

tion can be determined purely by kinematic means. This
amounts to assuming that the steering mechanism is the same
as that of a bicycle. Let the angular velocity vector directed
along the body z axis be called . Using thebicycle model
approximation, the path curvature , radius of curvature ,
and steer angle  are related by the wheelbase .

Rotation rate is obtained from the speed  as:

The steer angle  is an indirect measurement of the ratio of
 to velocity through:

When the dependence on time of inputs and outputs is repre-
sented explicitly, this steering mechanism is modeled by a cou-
pled nonlinear differential equation thus:

4.2.2 Fresnel Integrals
Theactuation space (A-space) of a typical automobile is the

space of curvature and speed since these are the variables that
are directly controlled. Theconfiguration space (C-space) on
the other hand is comprised of (x, y, heading) or perhaps more
degrees of freedom in cartesian 3D. The mapping from A-
space to C-space is the well-knownFresnel Integrals which
are also the equations ofdead reckoning in navigation. For
example, the integral and differential equations which map A-
space to C-space in a flat 2D world are given below:

4.2.3 Nonholonomic Constraint
The inverse mapping is that of determining curvature

and speed  from the C-space curve. Notice that C-space
is three-dimensional while A-space is two-dimensional. Not
only is the problem of computing this mapping a nonlinear dif-
ferential equation, but it is underdetermined ornonholonomic.
This is a difficult problem to solve and, from a mathematics
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standpoint, there is no guarantee that a solution exists at all.
Practical approaches to the C-space to A-space mapping prob-
lem often involve the generation of curves of the form:

where  is arc length and  is a constant. These curves are
linear equations for curvature in the arc length parameter and
are known as theclothoids. The generation of clothoids can be
computationally expensive. Their generation can also be unre-
liable if the algorithm attempts to respect practical limits on the
curvature or its derivatives.
4.3 Rough Ackerman Steering Dynamics

The following sections consider the latencies associated with
a typical Ackerman steering column. When such a vehicle exe-
cutes areverse turn, the actuator response can be divided into
a transient portion and a steady-state portion as shown in the
following figure.

During the transient portion the steering mechanism is mov-
ing to its commanded position at a constant rate. This portion
of the curve in the groundplane is a clothoid. During the steady-
state portion, the curvature is constant, and the curve is a circu-
lar arc.
4.3.1 Heading Response

If the mechanism actuates curvature more or less directly, as
does Ackerman steering,  then the heading response curve is
the direct integral of the steering mechanism position at con-
stant velocity because yaw rate is given by:

where  is vehicle heading,  is curvature, and  is the
time required for the actuator to reach commanded deflection.
This implies that the heading will grow quadratically, reach a
maximum and descend back to zero exactly as the steering
mechanism reaches its goal because the area under the curva-

ture signal is zero as shown below:

4.3.2 Nondimensional Transient Turning
If  is the commanded change in steer angle, and  is

the maximum rate of change of steer angle, the actuator reac-
tion time for a reverse turn is given by:

The temporal horizon of obstacle avoidance is the time
required to turn through an angle  at constant curvature

Thus, atransient turning coefficient can be defined as the
ratio of these two:

This nondimensional is a particular instance of thenormal-
ized time constant. It provides a measure of the importance of
turning dynamics in a sharp turn. When it exceeds, say 0.1, it
becomes important to explicitly consider turning dynamics.
Note that the number increases for smaller constant curvature
turns. It can easily exceed unity for a conventional automobile.
4.3.3 Command Following Problem

Another important aspect of the high curvature turn at speed
is the raw error involved in assuming instantaneous response
from the steering actuators. The difference between the two
models is illustrated in the previous figure. The length of this
vector can be approximated by:

Thus, the modeling error associated with an ideal model of
steering is equal to the reaction distance of the steering actua-
tor.

To cast this result in terms of the fidelity ratio, consider the
minimum fidelity ratio for an acceptable model error on the
order of the wheel radius. Let this be called theturning fidelity
ratio :

This number must be significantly less than unity to allow
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Figure 10 Transience in the Reverse Turn
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ignoring dynamics. It is often on the order of 10.
4.4 Exact Ackerman Steering Dynamics

While instantaneous response models of vehicle actuators  is
a useful theoretical approximation, and while it is a good model
of braking, the same is not true of turning. Steering actuators
exhibit dynamics that often must be modelled in practice. This
section presents a reasonably accurate steering model for an
Ackerman steer vehicle.

While this section is written specifically for the Ackerman
steer vehicle, many of the conclusions apply in general because
high speeds and rollover hazards limit the curvatures that a
vehicle can safely sustain.
4.4.1 Dependence of Steering Response on Speed

The limited rate of change of curvature for an Ackerman
steer vehicle is an important modeling matter at even moderate
speeds. A numerical feedforward solution to the dead reckon-
ing equations was implemented in order to assess the realistic
response of an automobile to steering commands. It was used
to generate the following analysis. The maneuver is a reverse
turn. The following figure gives the trajectory executed by the
vehicle at various speeds for a 3 second actuator delay.

For a vehicle speed of 5 m/s, a kinematic steering model
would predict that an immediate turn to the right is required to
avoid the obstacle. However, the actual response of the vehicle
to this command would cause a direct head-on collision. It
should be clear from this analysis that obstacle avoidance must
account somehow for steering dynamics, even at low speeds, in
order to robustly avoid obstacles.

There are two fundamental reasons for this behavior. First,
steering control is control of the derivative of heading, and any
limits in the response of the derivative give rise to errors that
are integrated over time. Second, curvature is an arc length
derivative, not a time derivative. Hence the heading and speed
relationships are coupled differential equations. The net result
is that the trajectory followed depends heavily on the speed.

4.4.2 Stability Problem
Feedforward of dynamics can be necessary for stable con-

trol. In the above figure, if the vehicle decided to turn slightly
right at 5 m/s speed, position feedback would indicate that the
vehicle was not turning right. Any feedback control law which
attempted to follow the ideal commanded arc would continue
to increase the turn command while the steering servo tries to
turn right. This overcompensation will eventually lead to the
maximum turn command being issued although a slight turn
was commanded. Acceptable control is not possible without
knowledge of these dynamics.
4.4.3 Exact Response of Steering at Constant Speed

The previous graph investigated the variability of the
response to a steering command at various speeds. Consider
now the response at a single speed to a number of steering com-
mands issued at a speed of 5 m/s. Again using the reverse turn
at t = 0, the response curves for a number of curvature com-
mands are as shown in the figure below:

The vehicle cannot turn right at all until it has travelled a
considerable distance. Further, a configuration space planner
which placed curve control points in the right half plane would
consistently fail to generate the clothoid necessary, if it
attempted to model the steering dynamics,because the vehicle
fundamentally cannot execute such a curve. If the clothoid gen-
erator did not model such limits, the error would show up as
instability and ultimate failure of the lower levels of control to
track the path. The x-y region bounded by the curves is the
entire region that the vehicle can reach.

One valid model of this system is a coupled system of non-
linear differential equations.

5 Conclusions

Requirements analysis is an activity that attempts to study
the problem rather than any particular solution. This paper has
analysed some of the requirements of high speed autonomous
mobility in general terms and has supported the following con-
clusions about the nature of the problem.
5.1 Sensor Mounting Geometry

One very important distinction of high-speed autonomous
mobility is the fact that sensor height is typically an order of
magnitude smaller than the vehicle response distance. This
observation has many implications relating to the prevalence of
occlusions in images and the complexity of image processing
algorithms.

A primary difficulty associated with a low perception ratio is
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a severe groundplane sampling problem. However, certain sim-
ple approximations to fundamental requirements become avail-
able which are quite useful. Pixel aspect ratio is the perception
ratio under these conditions and the area of a pixel footprint is
cubic in range.

Elegant expressions for the angular resolution required of
sensors also become available which depend directly and only
on properties of the vehicle such as wheelbase, wheel radius,
and (through sensory lookahed) the response distance.

Both the sampling problem and the motion distortion prob-
lem are expected to be severe in a typical situation.
5.2 Obstacle Avoidance

From the perspective of reliability in obstacle detection and
avoidance, it is important to recognise that the planning hori-
zon of obstacle avoidance (reaction time) is roughly equal to
the characteristic time (time constant) of the actuators, so the
system operates almost entirely in the transient regime. This
leads to the conclusion that the absence of dynamic models of
response will lead to unreliability in obstacle avoidance. Spe-
cifically, “arc” based models of Ackerman steering will be
unreliable at even moderate speeds.
5.3 Goal Seeking

In the particular case of steering delays, the raw trajectory
error associated with higher speeds implies that stability prob-
lems will emerge with control algorithms that do not account
for the delay.
5.4 Trajectory Generation

From a trajectory generation and planning perspective, it
seems advisable not to attempt the C-space to A-space trans-
form in any form such as the generation of clothoids if another
method can be found. Feedforward, for example, is one alter-
native that generates the C space curve from the A space curve
with little algorithmic difficulty at the level of trajectory gener-
ation.
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