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Abstract 

Several researchers in robotics and artijicial intelligence have 
found that the commonly used method ofplanning in a state (con- 
jiguration) space is intractable in certain domains. This may be 
because the C-space has very high dimensionality, the “C-space 
obstacles” are too diflcult to compute, or; because a mapping 
between desired states and actions is not straightforward. Instead 
of using an inverse model that relates a desired state to an action 
to be executed by a robot, we have used a methodology that 
selects between the feasible actions that a robot might execute, in 
effect, circumventing many of the problems faced by configuration 
space planners. In this paper we discuss the implications of such 
a method and present two examples of working systems that 
employ this methodology. One system drives an autonomous 
cross-country vehicle while the other controls a robotic excavator 
performing a trenching operation. 

1 Introduction 

Commonly, robot planning has used an abstraction 
known as conjguration space (C-space). The main idea is 
that the configuration of a robot and the objects that it 
manipulates can be represented as points in the space 
spanned by a set of parameters that uniquely describe the 
state of the robot and the world. Simplistically speaking, 
the job of a planner is to find a path in this space from an 
initial state to the goal state. The path in C-space prescribes 
a sequence of states that must be achieved to accomplish 
the goal and as a consequence dictates the actions that the 
robot must execute. There are, however, several cases in 
which configuration-space methods do not work well. In 
this paper we examine a different approach to posing these 
problems using the examples of autonomous cross-country 
navigation and robotic excavation. 

The duality between actions and states has been well dis- 
cussed in the AI literature [4]. In a state based representa- 
tion, the world is viewed as a series of states that are altered 
by events. Events are modeled only in terms of their state- 
changing function. Alternatively, in an action based 
approach, the state of the world at a particular moment in 
time is a function of the set of events that have occurred up 
to that moment. As with most dualities, the choice of one 
representation over another does not affect any essential 
capability for expression since one dual representation can 
be converted into the other. However, the form of a repre- 
sentation can make certain kinds of properties more natural 
to express and reason about 131. State based methods 

require a planner to find a mapping relating states, while 
action b a e d  methods require a mapping between actions 
and states. We will see that in some cases, it is easier to 
express 1.he latter. 

This paper suggests a methodology for robot planning 
using an abstraction known as action space. The process 
starts by encoding a task as opposed to the mechanism used 
to perform the task. At every step, the robot selects from the 
set of feasible actions available to it, one that optimizes 
some cost criterion. We show how the tasks of autonomous 
cross-country navigation and robotic excavation are posed 
as problems of constrained optimization. While at first 
sight these systems seem to have little in common, they 
both succeed in large part due to a formulation that makes 
the probhem tractable. 

2 Rdation to Other Work 

As mentioned above, several researchers have written 
about thc: duality between actions (events) and states. In 
fact, AI researchers now routinely use planners that search 
in a space of plans rather that in the space of states [4]. In 
the robotics literature, several mearchers have adopted a 
similar view to planning for diverse tasks such as robot jug- 
gling arid robot pool playing [61[ IO][ 111. Similarly Feiten 
and Bauer have devised a planner for a mobile robot oper- 
ating in a cluttered environments that plans in the space of 
actions rather than in the state (configuration) space of the 
vehicle [;!I. The proposed approach is similar in motivation 
to work in classical optimal control [8] in that it seeks to 
determine the control signals (plans) that will both satisfy 
some constraints as well as optimize some performance cri- 
terion. However, this paper is less about the methods of 
constrained optimization and more about the methodology 
from which the task representation is derived. 

3 Action Spaces 

In thk section we describe some of the problems with 
planning in C-space. We propose an abstraction called an 
action space and discuss the implications. 

3.1 Robot Planning Using C-space methods 
Planning in C-space is a powerful paradigm. There are, 

however, at least three cases in which C-space methods do 
not work well: 
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If C-space obstacles are complex, it may not be 
possible to build them quickly in response to sensor 
data. 
If the inverse model that prescribes action given a 
desired state is either not well defined or too diffi- 
cult to compute, as in the case of non-holonomic 
systems, a C-space representation is ineffective. 

e If a planning problem has very high dimensionality 
it is computationally intractable to represent the 
problem in C-space. 

3.2 Action Space methods 

Consider a different way of posing planning. Instead of 
abstracting robot and world state, the task that the robot is 
to perform is abstracted such that actions that the robots 
must perform can be described by a compact set of param- 
eters. An action space planner identifies the set of feasible 
actions (a subset of the task parameters) and chooses one 
that is optimal. The chosen plan is guaranteed to satisfy 
constraints (e.g. avoid collision with obstacles) as well as 
optimize a cost criterion (e.g. minimize joint torques). 
What makes such a method distinct from C-space methods 
is that instead of inferring actions from states, it operates 
directly on the set of robot actions. Simplicity is the main 
advantage. Instead of building complicated C-space obsta- 
cles and then deducing a path in between the obstacles, a 
planner chooses from among the set of actions available to 
it, the one that best accomplishes the robot’s goal. 

More formally, an action space is spanned by the range 
of parameters used to define an action that a robot is capa- 
ble of executing. Each point in this space represents an 
atomic action. The space can be separated into two sets- 
the set of all feasible actions and the set of actions known 
to fail. An action might fail because it is impossible to 
achieve or it results in an undesirable effect. The task of an 
action space planner, then, is a familiar problem in optimal 
control: 

Maximize/Minimize h(gi) subject to g(& 

where h()  is a utility function and g() are constraints that 
delimit the set of feasible actions and gi spans the set of 
actions that a robot can execute. 

We propose that planning in certain domains is more 
tractable if the task is represented in an action space. The 
method allows for generality since an action space allows 
abstraction from the robot mechanism. The mechanism is 
represented via the constraints. For two different robots 
performing the same task, only the function that determines 
feasibility due to the mechanism constraints need change. 
The downside of planning in an action space is that most 
solutions are local. That is, in practice, a higher level plan- 
ner must specify intermediate goals. 

4 Cross-Country Navigation 

Consider the task of path planning for an autonomous 

3 

vehicle travelling cross country over rough terrain at high 
speeds [1][7]. In general, the vehicle must achieve a useful 
goal while avoiding collision. The goal of the vehicle may 
be to move from its initial position to some other distant 
position, to map an entire area, or to search an area for 
objects of interest. It may also be useful to optimize fuel 
consumption, or distance travelled. In realistic terrain, the 
vehicle is challenged by regions that would cause tipover, 
trapped wheels, or loss of traction. Some regions are not 
traversable at all and others may cause disastrous system 
failures such as falling into an abyss. 

An action space approach is attractive for the purposes of 
cross-country navigation for several reasons. First, a con- 
ventional automobile is underactuated (non-holonomic), so 
the mapping from C-space to action space is under-deter- 
mined. It is not possible, in general, to compute the speed 
and steering commands which will cause a vehicle to fol- 
low an arbitrary C-space curve. The use of action space 
avoids entirely the problem of path generation for non- 
holonomic vehicles. Second, many constraints on vehicle 
motion are differential in nature and most naturally 
expressed in action space. In a purely geometric (kine- 
matic) world, path curvature can be changed instanta- 
neously. However, a vehicle traveling at even moderate 
speeds is constrained in the range of its steering actions. 
Thus, it is necessary to consider actuator response and the 
natural space in which to model actuators is action space 
because it permits expression of these constraints in terms 
of dynamic models. Third, action space planning is more 
computationally efficient. Continuous high speed motion 
implies that a vehicle has very little time to react to what it 
sees. A planner must decide what to do under stringent tim- 
ing constraints or the entire system will fail. An action 
space formulation permits a fast, if coarse-grained, evalua- 
tion of all feasible alternatives. 

The method starts with enumeration of alternatives 
expressed in action space (a discretized set of feasible 
actions that the vehicle might execute). Next, the corre- 
sponding Cartesian trajectories are computed using a for- 
ward model of the vehicle. No attempt is made to represent 
obstacles in C-space. Candidate vehicle trajectories are 
evaluated in order to assess vehicle safety. Finally, the plan- 
ner integrates the safety assessments with its strategic goal 
to decide on the commands to be sent to the vehicle. 

Below we present a forward model of our autonomous 
vehicle, show how this model is used to determine the tra- 
jectory that corresponds to every action space alternative, 
and finally discuss how, at every control cycle, a command 
is chosen that both satisfies the constraints and optimizes a 
cost function. 

4.1 Representing Navigation in an Action Space 

Our action space for this task is spanned by the variables 
of speed and path curvature. For conventional vehicles, 
these variables map directly to the controls of throttle and 
steering but even for other types of vehicles (such as skid- 
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steered), these variables provide an intuitively understand- 
able representation. This section shows how cross country 
navigation is stated as a problem of constrained optimiza- 
tion in the space spanned by the task parameters. 

In this action space the constraints that separate the set of 
feasible actions from the infeasible are due to steering lim- 
its, acceleration limits and collision of the vehicle with 
objects in the world. Consider the vehicle in Fig. 1. Of the 

Fig. 1 Some of the trajectories that the vehicle might choose in 
the next control cycle will lead to collision with an object in the 
world. 

throttle and steering commands that the vehicle might 
attempt at the next instant, some are not available because 
they exceed the turning radii possible (Fig. 2 a), exceed the 
lateral acceleration limits (Fig. 2 b), or, cause collision with 
an obstacle (Fig. 2 c). Additionally, in rough terrain some 
actions might cause tipover or collision of the undercar- 
riage. 

ia) ib) ic) 

Fig. 2 Three of the constraints in the action space spanned by 
path curvature and speed. (a) steering constraint (b) acceleration 
constraint (c) collision constraint. Shaded areas indicate infeasible 
regions. 

Of the feasible set of actions, it is necessary to select one 
that optimizes a cost criterion. A simple utility function is 
to proximity to the goal. Maximizing this utility function 
implies that the command that drives the vehicle closest to 
the goal is preferred. Additionally we may consider the 
hazards that a vehicle might encounter in terms of a contin- 
uous space that encodes a degree of danger. That is, in addi- 
tion to the hard constraints described above, those 
commands that minimize the degree of hazard to the vehi- 
cle are preferred. However, hazard avoidance is considered 
a constraint in the current formulation while goal-seeking 
performance is optimized. 

4.1.1 Farward model 

At high speeds and over uneven terrain it is essential to 
explicitly consider vehicle dynamics since the actual 
response varies significantly from the kinematic idealiza- 
tion. Our forward model produces an estimate of the trajec- 
tories resulting from vehicle commands allowing the 
planner to conducts its search over the space of feasible 
commant-lls 11 ( t )  E U .  We have modeled our vehicle as a 
multivariable state space system (Fig. 3). 

%clayed ~ r e s p n a e  
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Fig.3 Forward model used to predict vehicle state given 
actuator commands (ac, vc). The output state contains rate of 
heading ( e  ), vehicle velocity(v ), heading(v), pitch(@ ), roll($ ) and 
position (x ,  z). 

The inputs to the model are the steering angle, a,, (cor- 
responding to the desired path curvature), and throttle, vc, 
(corresponding to desired speed) and an elevation map of 
the terrain ahead of the vehicle The commands are first 
delayed to1 account for communications and processing and 
passed through a model of the actuator dynamics. In the 
case of the throttle (speed) the influence the gravitational 
load is so significant that it must be modelled. The pre- 
dicted steer angle response is passed through a model of the 
steering column to predict the actual curvature ( k )  of the 
path traversed. The product of (curvature and speed pro- 
vides an estimate of angular velocity. The velocity is con- 
verted to world coordinates to generate the components of 
vehicle velocity along the world frame axes and then inte- 
grated to provide position. Pitch and roll are determined by 
placing the vehicle wheels over the terrain map and allow- 
ing the vehicle to settle onto the map to determine pitch and 
roll. Heading is computed by integrating the angular veloc- 
ity after converting coordinates to the world frame. 

Note that with the use of a forward model, computed tra- 
jectories meet the mobility constraints of the vehicle by 

331 1 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore.  Restrictions apply. 



construction, so there is never any question if an action 
(steeringhhrottle pair) can be executed by the vehicle. 

4.2 Optimization 

Apart from satisfaction of thresholds on the degree of 
predicted hazard, the system ranks actions based on prox- 
imity of the resultant trajectory to the ultimate (strategic) 
goal. At times, goal-seeking may cause collision with 
obstacles. The system incorporates an arbiter which per- 
mits obstacle avoidance and goal-seeking to coexist and to 
simultaneously influence the behavior of the vehicle. Arbi- 
tration between obstacle avoidance and goal seeking is 
accomplished by forming a vote vector for each action and 
choosing the action which is closest to the strategic vote 
maximum while not violating the obstacle (hazard) avoid- 
ance constraint. Thus, the strategic goal is used to bias 
obstacle avoidance when there are a number of alterna- 
tives, and obstacle avoidance wrests absolute control from 
the strategic goal seeker when it is necessary to do so. 

4.3 Implementation 

Several times a second, the planner considers approxi- 
mately ten steering angles to use during the next control 
cycle. The forward model simulates the effect of using 
these steering angles over a short period of time and evalu- 
ates each of the resultant paths. Any steering angles that 
result in paths that go near or through hazardous vehicle 
configurations are discarded. The steering angle that results 
in a path that is optimal based on several criteria is chosen 
(Fig. 4). The choice is necessarily based on predicting the 

P 
P 

Wheel Tact 

88 
Fig.4 The system chooses a steering angle from a set of 
candidate trajectories.The histograms below represent the votes 
for each candidate trajectory (higher values indicate preferred 
trajectories). The tactical vote is the overall vote of hazard 
avoidance. The strategic vote is highest for the action that is most 
directed towards the goal. 

period because of the combinatorics involved. In Fig. 4 the 
system issues a left turn command to avoid a hill to its right. 
The histograms represent the votes for each candidate tra- 
jectory (higher values indicate safer trajectories). The haz- 
ards are excessive roll, excessive pitch, collision with the 
body, and collision with the wheels. The tactical vote is the 
overall vote of hazard avoidance. The strategic vote is the 
goal seeking vote. 

4.4 Results 

Our navigation planner (RANGER) is being used on an 
autonomous vehicle shown in Fig. 5. We have used laser 

Fig. 5 Navigation testbed- a modified military HMMWV. 

range data and stereo range data to build maps of the terrain 
over which the vehicle must travel. In the former case, 
excursions of 15 kilometers and instantaneous speeds of 15 
km/hr have been achieved while tracking a coarsely speci- 
fied path. Average speed was on the order of 7 kmlhr. 

RANGER has also been integrated with a stereo vision 
system at the Jet Propulsion Laboratory[9] on another vehi- 
cle. Fig. 6 shows a short autonomous excursion along a dirt 
road bounded by trees and bushes on the right and a ravine 
on the left. The sequence of images to the left are the stereo 
range images. To the right are intensity images of the scene 
corresponding to the range images. The images are posi- 
tioned in correspondence with their associated position in 
the terrain map. The terrain map, drawn in the center, is 
rendered with intensity proportional to elevation. The path 
followed is drawn leading to the position of the vehicle 
near the end of the run. The run terminates at the end of the 
road. Two distinct obstacle avoidance maneuvers occur. 
The first is a left turn to avoid a large tree and the second is 
a recovery right turn to prevent falling into the ravine.The 
system drives this road routinely at this point in its devel- 
opment. 

state of the robot a few seconds later. The search space is 
too large to consider sequences of actions over a longer 
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Fig. 6A short cross country excursion. (a) shows a sequence of range images from i i  stereo vision system mounted on the vehicle. (c) shows a 
sequence of reflectance images from one of the cameras. (b) and (d) show an overhead view of an elevation map that was generated. 

5 Excavation 

The task of robotic excavation can be stated in familiar 
terms. The world is in some initial state and must be trans- 
formed into some other state. For example, we would like 
a robot to dig a trench of specified size, or to level a pile of 
soil. This domain is distinguished in two important ways. 
First, since soil is not rigid, a C-space representation of nat- 
ural terrain has very high dimensionality. Second, the 
inverse model, the mapping from a desired state to the next 
action is not straightforward. Unfortunately, a full forward 
model of the type presented in 4.1.1 is not readily available 
because of the complexity of the interaction between a tool 
and terrain. In most cases, however, it is possible to approx- 
imate the utility of an action. For example it is possible to 
estimate the amount of soil that would be excavated by a 
particular action and the resistive joint torques that would 
be experienced during the excavation. 

This section presents a compact set of task parameters 
for the task of trenching. Parameterization of this task is not 
as simple as in the case of the autonomous navigation 
because a mapping between the controls of an excavator 
and task variables is not obvious. Hence, we have modeled 
the patterns used by human operators. In this action space 
we pose geometric and force constraints. Next we show 
how a single plan is selected for execution. 

5.1 Developing a Representation 

The first task is to encode a prototypical trenching 
action. Since an action space encodes actions, not mecha- 
nisms, our task representation will not include any details 
about the configuration of the mechanism. Instead, we 
encode the trajectory followed by the excavator bucket. 
Fig. 7 shows a robot manipulator equipped with a “bucket” 
performing a trenching operation. 

~~ 

Fig.7 
trench. 

Manipulator arm equipped with a bucket, creating a 

Fig. 8 shows a compact representation of a prototypical 
trenching ,action based on an observation of digging pat- 
terns used by human operators. This representation 

Fig.8 P, ‘typical dig during a trenching operation. There are 
typically three distinct types of motion-- penetrate, drag and curl. A 
digging trajaztory of this form can be represented by a seven-tuple 
(k, a, dip 4 ,  d3, r, P). 
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requires seven variables to represent uniquely: k is the dis- 
tance from a fixed reference frame to the point where the 
bucket enters in the soil, a is the angle at which the bucket 
enters the soil. It travels along this angle for a distance d,, 
and then follows a horizontal path for a distance d2. Finally 
the bucket rotates through the soil along an arc of length d, 
and radius r. We will also need to determine the value of p() 
(the pitch angle of the bucket, relative to a fixed coordinate 
frame) throughout the dig. If we assume that the amount of 
soil excavated increases monotonically with d2, d2 can be 
found easily if the other variables are instantiated. Values 
of p(), r, d3 can be found from an analysis of contact 
between the tool and the terrain[l2]. Our action space, 
then, is spanned by a compact three-tuple (k ,  a, d l ) .  

5.2 Geometric Constraints 

Recall that each point in an action space represents a 
unique action and that some regions in the action space rep- 
resent plans that are geometrically infeasible. A plan may 
be geometrically infeasible because it requires a robot to 
exceed its range of motions or because it violates some 
geometric criterion associated with successful execution of 
the task. Starting with flat terrain, the robot is to create a 
trench of specified size as in Fig. 9. Below we examine the 
geometric constraints that can be posed on the space 
spanned by the independent parameters of prototypical 
trenching actions. 

The reachability constraint. A standard inverse 
kinematic method is used to determine whether or 
not the trajectory corresponding to a candidate 
action lies within the workspace of the manipulator. 

The set of actions that meet all the geometric constraints 
is shown in Fig. 10. 

*-I I ,  

Fig. 10 
geometric constrains for the scenario in Fig. 9 

Two views of set of feasible plans that meet all the 

5.3 Force Constraints 

If a robot excavator is infinitely strong, that is, it can 
muster any torque required, then it is sufficient to consider 
only geometric constraints. More realistically, for robots 
with torque limits, it is necessary to consider the forces 
required to accomplish digging. If we could estimate the 
forces required for candidate digs, we would have a good 
criterion by which to further restrict the set of digs that are 
geometrically feasible. Unfortunately, the interaction 
between an excavating tool and terrain is complex enough 
a phenomenon that no simple physics-based models are 
available to predict the resistive forces for a given action 
and terrain shaue. 1131 discusses a method that learns to 

" S E :  1.0 . . ~ ~ ~  -... I ,  ~ _.... 

5 ,  I 8 ,  I 

0.5 . . . I .  .LL--'*. ~ ~ ~ . 
, I (  

, # I  

, S I  predict resistive forcesbased on experience. The basic idea 
is that for a given terrain and tool combination it is possible 
to build an expectation of the resistive force based on 
observation of the resistive forces, tool trajectories and the 
shape of the terrain. Fig. 11 shows the set of actions that 
satisfy the force constraint given the excavator and terrain 
in Fig. 7. Approximately 4000 force readings from approx- 
imately 100 digging actions were used to build the force 
model. 

To determine if a candidate dig passes the force con- 
straint, the force prediction function is called. The pre- 
dicted resistive force and the robot's trajectory are used to 
calculate the effective joint torques required to overcome 
the resistive forces. A candidate dig is force-feasible if the 
joint torques due to resistive forces do not exceed the 
torque capability of the robot. 

5.4 Optimization 
Given a mechanism and the shape of the terrain, it is the 

job of the planner to identify a single plan from the feasible 
set of plans to be executed. Picking a point in the feasible 
set guarantees that the plan will work (modulo correctness 

. .  . .  ..( . 

(b) 

Fig. 9 (a) 3D view of the desired shape of the terrain. (b) 2 D 
section along trench (dashed line) to be excavated. The solid line 
represents the state of the existing terrain. 

The shaping constraint. The shaping constraint 
for trenching keeps the trajectory of the bucket 
from going past the shape of the desired trench 
(dashed line in Fig. 9). That is, all trajectories that 
extrude past these boundaries are excluded. 
The volume constraint. Of the geometrically fea- 

sible actions, some will yield a partially filled 
bucket, some will result in a full bucket and yet oth- 
ers will sweep through the terrain to excavate more 
soil that can possibly be held in the bucket. A sim- 
ple calculation of swept volume is used to predict 
the amount of soil excavated by a digging action. 
All actions that excavate a volume larger than a pre- 
set percentage of the bucket capacity, are excluded. 
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Fig. 11 
constraints given scenario in Fig. 9. 

of the model), but not all feasible plans are equivalent in 
their utility. Other criteria (maximize excavated volume, 
minimize time/joint torques, etc.) can be used to choose 
between the set of feasible plans. 

Identification of an “optimal” point within the feasible 
set does not require explicit computation of the constraint 
surfaces. It is possible to use a numerical method that only 
requires a boolean function that decides whether a candi- 
date point passes or fails a particular constraint. We cur- 
rently use an exhaustive search in a discretized action space 
to identify the set of feasible actions that have a minimum 
utility. For example, we might stipulate that initially all fea- 
sible plans sweep a volume of soil that is at least 90% of the 
volume of the bucket (Fig. 12). It is possible to further 

Two views of set of feasible plans that meet the force 

Fig. 12 Two views of set of feasible plans that meet all 
constraints given scenario in Fig. 9 and also sweep a volume of soil 
that is greater than 90% of the volume of the bucket. 

select from this set based on other criteria. For example, it 
is possible to sort this set based on the magnitude of the 
joint torques expected to perform the action. 

5.5 Results 

We have developed a testbed to conduct experiments in 
subsurface sensing and excavation. The testbed consists of 
a sandbox (2.5m x 2.5m x lm), a Cincinnati Milacron T3 
hydraulic robot outfitted with an excavator bucket and 
force sensor, and a laser range finder. The setup of our test- 
bed is shown in Fig. 13. We use a large industrial manipu- 

c 
hydrauli 

Fig. 13 Testbed 

lator with an end effector payload of approximately 125 
lbs. A small excavator bucket with a volume of 0.01m3 
serves as an end effector. The laser range scanner produces 
an image of the terrain such that the value of each pixel in 
the image is based on the distance from the scanner to the 
world along a ray that sweeps in a raster fashion. The scan- 
ner has a BO degree horizontal field of view and a 45 degree 
vertical field of view. We have (adapted a perception and 
mapping system developed at CMU [5] to produce terrain 
elevation maps of the terrain in 1he sandbox. An example 
terrain map of the testbed is shown in Fig. 14. Each cell in 
the terrain map is 5 cm square. 

--- If 

Fig. 14 Elevation map of testbed. 

The excavation cycle consists of three phases. First, a 
terrain map is produced from range images taken by the 
laser scanner. Next, the planner chooses a digging action to 
execute that satisfies geometric and force constraints and 
optimizes utility criteria. Last, the action is executed by the 
robot and the cycle repeats until the terrain is sufficiently 
close to the specified goal. Fig. 15 shows a progression of 
a trench bcing excavated using this method. In this experi- 
ment, the (digging actions chosen sweep a volume of soil 
very close to the bucket capacity. However, the actual yield 
in the bucket is a function of how cohesive the soil is--dig- 
ging in loose, granular soil results is some of the soil leav- 
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Fie. 15 The first eiqht stem in 
desired trench is shown by the dashed line. The shaded region is 
the volume of soil (in m3) estimated to be swept by the excavator 
bucket. 

ing the bucket. In practice we have found that the volume 
constraint is best relaxed to a volume approximately twice 
the bucket capacity. In this case, most digging actions are 
constrained by reachability, the shape of the desired trench 
and resistive force. 

6 Summary 

It has often been suggested that a significant part of solv- 
ing problems in robotics and artificial intelligence is to find 
a suitable representation. We have started with the dictum 
“encode the task, not the mechanism.” We find that for cer- 
tain applications, the commonly used framework of config- 
uration space is insufficient. Instead we have presented two 
robot planning problems that use a different representation 
called action space. 

For cross-country navigation it is very difficult to build 
configuration space obstacles in response to real-time sen- 
sor data. In addition, for non-holonomic vehicles, such as 
our automated HMMWV, there is no straightforward map- 
ping from desired vehicIe state to the first of a series of 

actions that must be executed to attain the desired state. in 
the case of excavation, it is even more difficult to deduce 
the next action a robot excavator must execute given a 
desired shape of the terrain. This difficulty is further aggra- 
vated by the fact that the configuration space corresponding 
to natural terrain is extremely high dimensional. Both 
applications succeed in large part because of the action 
space representation. The autonomous vehicle is able to 
account for nonlinear dynamics and is able to react to range 
data in real-time. The robotic excavator is able to circum- 
vent consideration of a computationally intractable config- 
uration space. 

The downside of the method we have used is that the 
plans produced are short-sighted and require guidance in 
the form of subgoals to ensure that the robot doesn’t get 
stuck; sometimes it is necessary to be sub-optimal in the 
short run for over all optimality. In practice, we find that 
coarse grained supervisory planners are effective in provid- 
ing such subgoals. 
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