Proceedings of the 1996 IEEE
International Conference on Robotics and Automation
Minneapolis, Minnesota - April 1996

Robot Planning in the Space of Feasible Actions: Two Examples

Sanjiv Singh and Alonzo Kelly

Field Robotics Center
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Several researchers in robotics and artificial intelligence have
Sfound that the commonly used method of planning in a state (con-
figuration) space is intractable in certain domains. This may be
because the C-space has very high dimensionality, the “C-space
obstacles” are too difficult to compute, or, because a mapping
between desired states and actions is not straightforward. Instead
of using an inverse model that relates a desired state to an action
to be executed by a robot, we have used a methodology that
selects between the feasible actions that a robot might execute, in
effect, circumventing many of the problems faced by configuration
space planners. In this paper we discuss the implications of such
a method and present two examples of working systems that
employ this methodology. One system drives an autonomous
cross-country vehicle while the other controls a robotic excavator
performing a trenching operation.

1 Introduction

Commonly, robot planning has used an abstraction
known as configuration space (C-space). The main idea is
that the configuration of a robot and the objects that it
manipulates can be represented as points in the space
spanned by a set of parameters that uniquely describe the
state of the robot and the world. Simplistically speaking,
the job of a planner is to find a path in this space from an
initial state to the goal state. The path in C-space prescribes
a sequence of states that must be achieved to accomplish
the goal and as a consequence dictates the actions that the
robot must execute. There are, however, several cases in
which configuration-space methods do not work well. In
this paper we examine a different approach to posing these
problems using the examples of autonomous cross-country
navigation and robotic excavation.

The duality between actions and states has been well dis-
cussed in the Al literature [4]. In a state based representa-
tion, the world is viewed as a series of states that are altered
by events. Events are modeled only in terms of their state-
changing function. Alternatively, in an action based
approach, the state of the world at a particular moment in
time is a function of the set of events that have occurred up
to that moment. As with most dualities, the choice of one
representation over another does not affect any essential
capability for expression since one dual representation can
be converted into the other. However, the form of a repre-
sentation can make certain kinds of properties more natural
to express and reason about [3]. State based methods

0-7803-2988-4/96 $4.00 © 1996 IEEE

require a planner to find a mapping relating states, while
action based methods require a mapping between actions
and states. We will see that in some cases, it is easier to
express the latter.

This paper suggests a methodology for robot planning
using an abstraction known as action space. The process
starts by encoding a task as opposed to the mechanism used
to perform the task. At every step, the robot selects from the
set of feasible actions available to it, one that optimizes
some cost criterion. We show how the tasks of autonomous
cross-country navigation and robotic excavation are posed
as problems of constrained optimization. While at first
sight these systems seem to have little in common, they
both succeed in large part due to a formulation that makes
the problem tractable.

2 Relation to Other Work

As mentioned above, several researchers have written
about the duality between actions (events) and states. In
fact, Al researchers now routinely use planners that search
in a space of plans rather that in the space of states [4]. In
the robotics literature, several researchers have adopted a
similar view to planning for diverse tasks such as robot jug-
gling and robot pool playing [6][10]{11]. Similarly Feiten
and Bauer have devised a planner for a mobile robot oper-
ating in a cluttered environments that plans in the space of
actions rather than in the state (configuration) space of the
vehicle [2]. The proposed approach is similar in motivation
to work in classical optimal control [8] in that it seeks to
determine the control signals (plans) that will both satisfy
some constraints as well as optimize some performance cri-
terion. However, this paper is less about the methods of
constrained optimization and more about the methodology
from which the task representation is derived.

3 Action Spaces

In this section we describe some of the problems with
planning in C-space. We propose an abstraction called an
action space and discuss the implications.

31 obot Planning Using C-space methods

Planning in C-space is a powerful paradigm. There are,
however, at least three cases in which C-space methods do
not work well:

3309

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

e If C-space obstacles are complex, it may not be
possible to build them quickly in response to sensor
data.

* If the inverse model that prescribes action given a
desired state is either not well defined or too diffi-
cult to compute, as in the case of non-holonomic
systems, a C-space representation is ineffective.

e If a planning problem has very high dimensionality
it is computationally intractable to represent the
problem in C-space.

3.2 Action Space methods

Consider a different way of posing planning. Instead of
abstracting robot and world state, the task that the robot is
to perform is abstracted such that actions that the robots
must perform can be described by a compact set of param-
eters. An action space planner identifies the set of feasible
actions (a subset of the task parameters) and chooses one
that is optimal. The chosen plan is guaranteed to satisfy
constraints (e.g. avoid collision with obstacles) as well as
optimize a cost criterion (e.g. minimize joint torques).
What makes such a method distinct from C-space methods
is that instead of inferring actions from states, it operates
directly on the set of robot actions. Simplicity is the main
advantage. Instead of building complicated C-space obsta-
cles and then deducing a path in between the obstacles, a
planner chooses from among the set of actions available to
it, the one that best accomplishes the robot’s goal.

More formally, an action space is spanned by the range
of parameters used to define an action that a robot is capa-
ble of executing. Each point in this space represents an
atomic action. The space can be separated into two sets—
the set of all feasible actions and the set of actions known
to fail. An action might fail because it is impossible to
achieve or it results in an undesirable effect. The task of an
action space planner, then, is a familiar problem in optimal
control:

Maximize/Minimize h(q;) subject to g(u;)

where k() is a utility function and g() are constraints that
delimit the set of feasible actions and u; spans the set of
actions that a robot can execute.

We propose that planning in certain domains is more
tractable if the task is represented in an action space. The
method allows for generality since an action space allows
abstraction from the robot mechanism. The mechanism is
represented via the constraints. For two different robots
performing the same task, only the function that determines
feasibility due to the mechanism constraints need change.
The downside of planning in an action space is that most
solutions are local. That is, in practice, a higher level plan-
ner must specify intermediate goals.

4 Cross-Country Navigation

Consider the task of path planning for an autonomous

vehicle travelling cross country over rough terrain at high
speeds {1][7]. In general, the vehicle must achieve a useful
goal while avoiding collision. The goal of the vehicle may
be to move from its initial position to some other distant
position, to map an entire area, or to search an area for
objects of interest. It may also be useful to optimize fuel
consumption, or distance travelled. In realistic terrain, the
vehicle is challenged by regions that would cause tipover,
trapped wheels, or loss of traction. Some regions are not
traversable at all and others may cause disastrous system
failures such as falling into an abyss.

An action space approach is attractive for the purposes of
cross-country navigation for several reasons. First, a con-
ventional automobile is underactuated (non-holonomic), so
the mapping from C-space to action space is under-deter-
mined. It is not possible, in general, to compute the speed
and steering commands which will cause a vehicle to fol-
low an arbitrary C-space curve. The use of action space
avoids entirely the problem of path generation for non-
holonomic vehicles. Second, many constraints on vehicle
motion are differential in nature and most naturally
expressed in action space. In a purely geometric (kine-
matic) world, path curvature can be changed instanta-
neously. However, a vehicle traveling at even moderate
speeds is constrained in the range of its steering actions.
Thus, it is necessary to consider actuator response and the
natural space in which to model actuators is action space
because it permits expression of these constraints in terms
of dynamic models. Third, action space planning is more
computationally efficient. Continuous high speed motion
implies that a vehicle has very little time to react to what it
sees. A planner must decide what to do under stringent tim-
ing constraints or the entire system will fail. An action
space formulation permits a fast, if coarse-grained, evalua-
tion of all feasible alternatives.

The method starts with enumeration of alternatives
expressed in action space (a discretized set of feasible
actions that the vehicle might execute). Next, the corre-
sponding Cartesian trajectories are computed using a for-
ward model of the vehicle. No attempt is made to represent
obstacles in C-space. Candidate vehicle trajectories are
evaluated in order to assess vehicle safety. Finally, the plan-
ner integrates the safety assessments with its strategic goal
to decide on the commands to be sent to the vehicle.

Below we present a forward model of our autonomous
vehicle, show how this model is used to determine the tra-
jectory that corresponds to every action space alternative,
and finally discuss how, at every control cycle, a command
is chosen that both satisfies the constraints and optimizes a
cost function.

4.1 Representing Navigation in an Action Space

Our action space for this task is spanned by the variables
of speed and path curvature. For conventional vehicles,
these variables map directly to the controls of throttle and
steering but even for other types of vehicles (such as skid-

3310

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

steered), these variables provide an intuitively understand-
able representation. This section shows how cross country
navigation is stated as a problem of constrained optimiza-
tion in the space spanned by the task parameters.

In this action space the constraints that separate the set of
feasible actions from the infeasible are due to steering lim-
its, acceleration limits and collision of the vehicle with
objects in the world. Consider the vehicle in Fig. 1. Of the

Fig. 1 Some of the trajectories that the vehicle might choose in
the next control cycle will lead to collision with an object in the
world.

throttle and steering commands that the vehicle might
attempt at the next instant, some are not available because
they exceed the turning radii possible (Fig. 2 a), exceed the
lateral acceleration limits (Fig. 2 b), or, cause collision with
an obstacle (Fig. 2 c). Additionally, in rough terrain some
actions might cause tipover or collision of the undercar-
riage.

speed
speed

path curvature path curvature path curvature

(@) (b) ©)

Fig.2 Three of the constraints in the action space spanned by
path curvature and speed. (a) steering constraint (b) acceleration
constraint (c) collision constraint. Shaded areas indicate infeasible
regions.

Of the feasible set of actions, it is necessary to select one
that optimizes a cost criterion. A simple utility function is
to proximity to the goal. Maximizing this utility function
implies that the command that drives the vehicle closest to
the goal is preferred. Additionally we may consider the
hazards that a vehicle might encounter in terms of a contin-
uous space that encodes a degree of danger. That is, in addi-
tion to the hard constraints described above, those
commands that minimize the degree of hazard to the vehi-
cle are preferred. However, hazard avoidance is considered
a constraint in the current formulation while goal-seeking
performance is optimized.

3311

4.1.1 Forward model

At high speeds and over uneven terrain it is essential to
explicitly consider vehicle dynamics since the actual
response varies significantly from the kinematic idealiza-
tion. Our forward model produces an estimate of the trajec-
tories resulting from vehicle commands allowing the
planner to conducts its search over the space of feasible
commands u (¢) € U. We have modeled our vehicle as a
multivariable state space system (Fig. 3).

Ugclayed arcsponsc
. communication steering vehicle | ,
1% . .
M and processing actuator {—gpfkinematics
dynamics
delays
>
v communication throttle Coord
—~p . actuator Transformip, J' dily v
and processin; ?
P J dynamics (body->
delays world)
Ydelayed I
» Vv

X x|
Coord H H —P
Transform) L2 dil Terrain ©
(body-> —] Contact
world) {—»

v

—p Y
z

Fig.3 Forward model used to predict vehicle state given
actuator commands (o, V). The output state contains rate of
heading (#), vehicle velocity(v), heading(y), pitch(8), roll(¢) and
position (x, y, z).

The inputs to the model are the steering angle, o, (cor-
responding to the desired path curvature), and throttle, v,
(corresponding to desired speed) and an elevation map of
the terrain ahead of the vehicle. The commands are first
delayed to account for communications and processing and
passed through a model of the actuator dynamics. In the
case of the throttle (speed) the influence the gravitational
load is so significant that it must be modelled. The pre-
dicted steer angle response is passed through a model of the
steering column to predict the actual curvature (k) of the
path traversed. The product of curvature and speed pro-
vides an estimate of angular velocity. The velocity is con-
verted to world coordinates to generate the components of
vehicle velocity along the world frame axes and then inte-
grated to provide position. Pitch and roll are determined by
placing the vehicle wheels over the terrain map and allow-
ing the vehicle to settle onto the map to determine pitch and
roll. Heading is computed by integrating the angular veloc-
ity after converting coordinates to the world frame.

Note that with the use of a forward model, computed tra-
jectories meet the mobility constraints of the vehicle by

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

construction, so there is never any question if an action
(steering/throttle pair) can be executed by the vehicle.

4.2 Optimization

Apart from satisfaction of thresholds on the degree of
predicted hazard, the system ranks actions based on prox-
imity of the resultant trajectory to the ultimate (strategic)
goal. At times, goal-seeking may cause collision with
obstacles. The system incorporates an arbiter which per-
mits obstacle avoidance and goal-seeking to coexist and to
simultaneously influence the behavior of the vehicle. Arbi-
tration between obstacle avoidance and goal seeking is
accomplished by forming a vote vector for each action and
choosing the action which is closest to the strategic vote
maximum while not violating the obstacle (hazard) avoid-
ance constraint. Thus, the strategic goal is used to bias
obstacle avoidance when there are a number of alterna-
tives, and obstacle avoidance wrests absolute control from
the strategic goal seeker when it is necessary to do so.

4.3 Implementation

Several times a second, the planner considers approxi-
mately ten steering angles to use during the next control
cycle. The forward model simulates the effect of using
these steering angles over a short period of time and evalu-
ates each of the resultant paths. Any steering angles that
result in paths that go near or through hazardous vehicle
configurations are discarded. The steering angle that results
in a path that is optimal based on several criteria is chosen
(Fig. 4). The choice is necessarily based on predicting the

Hill

preferred
path

Wheel Tact _ Strat

Roll Pitch Bod

Fig.4 The system chooses a steering angle from a set of
candidate trajectories.The histograms below represent the votes
for each candidate trajectory (higher values indicate preferred
trajectories). The ftactical vote is the overall vote of hazard
avoidance. The strategic vote is highest for the action that is most
directed towards the goal.

state of the robot a few seconds later. The search space is
too large to consider sequences of actions over a longer

period because of the combinatorics involved. In Fig. 4 the
system issues a left turn command to avoid a hill to its right.
The histograms represent the votes for each candidate tra-
jectory (higher values indicate safer trajectories). The haz-
ards are excessive roll, excessive pitch, collision with the
body, and collision with the wheels. The tactical vote is the
overall vote of hazard avoidance. The strategic vote is the
goal seeking vote.

4.4 Results

Our navigation planner (RANGER) is being used on an
autonomous vehicle shown in Fig. 5. We have used laser

o
etaai

Fig.5 Navigation testbed— a modified military HMMWV.

range data and stereo range data to build maps of the terrain
over which the vehicle must travel. In the former case,
excursions of 15 kilometers and instantaneous speeds of 15
km/hr have been achieved while tracking a coarsely speci-
fied path. Average speed was on the order of 7 km/hr.

RANGER has also been integrated with a stereo vision
system at the Jet Propulsion Laboratory[9] on another vehi-
cle. Fig. 6 shows a short autonomous excursion along a dirt
road bounded by trees and bushes on the right and a ravine
on the left. The sequence of images to the left are the stereo
range images. To the right are intensity images of the scene
corresponding to the range images. The images are posi-
tioned in correspondence with their associated position in
the terrain map. The terrain map, drawn in the center, is
rendered with intensity proportional to elevation. The path
followed is drawn leading to the position of the vehicle
near the end of the run. The run terminates at the end of the
road. Two distinct obstacle avoidance maneuvers occur.
The first is a left turn to avoid a large tree and the second is
arecovery right turn to prevent falling into the ravine.The
system drives this road routinely at this point in its devel-
opment.

3312

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

= i
A A S5 i

(a)

(c) ()

Fig. 6A short cross country excursion. (a) shows a sequence of range images from a stereo vision system mounted on the vehicle. (c) shows a

sequence of reflectance images from one of the cameras. (b) and (d) show an overhead view of an elevation map that was generated.

5 Excavation

The task of robotic excavation can be stated in familiar
terms. The world is in some initial state and must be trans-
formed into some other state. For example, we would like
a robot to dig a trench of specified size, or to level a pile of
soil. This domain is distinguished in two important ways.
First, since soil is not rigid, a C-space representation of nat-
ural terrain has very high dimensionality. Second, the
inverse model, the mapping from a desired state to the next
action is not straightforward. Unfortunately, a full forward
model of the type presented in 4.1.1 is not readily available
because of the complexity of the interaction between a tool
and terrain. In most cases, however, it is possible to approx-
imate the utility of an action. For example it is possible to
estimate the amount of soil that would be excavated by a
particular action and the resistive joint torques that would
be experienced during the excavation.

This section presents a compact set of task parameters
for the task of trenching. Parameterization of this task is not
as simple as in the case of the autonomous navigation
because a mapping between the controls of an excavator
and task variables is not obvious. Hence, we have modeled
the patterns used by human operators. In this action space
we pose geometric and force constraints. Next we show
how a single plan is selected for execution.

5.1 Developing a Representation

The first task is to encode a prototypical trenching
action. Since an action space encodes actions, not mecha-
nisms, our task representation will not include any details
about the configuration of the mechanism. Instead, we
encode the trajectory followed by the excavator bucket.
Fig. 7 shows a robot manipulator equipped with a “bucket”
performing a trenching operation.

?E/Z Arcy

Fig. 7
trench.

Manipulator arm equipped with a bucket, creating a

Fig. 8 shows a compact representation of a prototypical
trenching action based on an observation of digging pat-
terns used by human operators. This representation

‘i‘w Q & \y/
penetrate N 14 !
A d; PN ——= 4'/, dy cur
PELIEN « d >

—) drag

Fig.8 A typical dig during a trenching operation. There are
typicaily three distinct types of motion— penetrate, drag and curl. A
digging trajectory of this form can be represented by a seven-tuple
(k @, dy, dy, d, 1, p).

3313

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

requires seven variables to represent uniquely: & is the dis-
tance from a fixed reference frame to the point where the
bucket enters in the soil, o is the angle at which the bucket
enters the soil. It travels along this angle for a distance dj,
and then follows a horizontal path for a distance d,. Finally
the bucket rotates through the soil along an arc of length ds
and radius r. We will also need to determine the value of p()
(the pitch angle of the bucket, relative to a fixed coordinate
frame) throughout the dig. If we assume that the amount of
soil excavated increases monotonically with d, d; can be
found easily if the other variables are instantiated. Values
of p(), r, d3 can be found from an analysis of contact
between the tool and the terrain[12]. Our action space,
then, is spanned by a compact three-tuple (k, o, d;).

5.2 Geometric Constraints

Recall that each point in an action space represents a
unique action and that some regions in the action space rep-
resent plans that are geometrically infeasible. A plan may
be geometrically infeasible because it requires a robot to
exceed its range of motions or because it violates some
geometric criterion associated with successful execution of
the task. Starting with flat terrain, the robot is to create a
trench of specified size as in Fig. 9. Below we examine the
geometric constraints that can be posed on the space
spanned by the independent parameters of prototypical
trenching actions.

Fig.9 (a) 3D view of the desired shape of the terrain. (b) 2 D
section along trench (dashed line) to be excavated. The solid line
represents the state of the existing terrain.

* The shaping constraint. The shaping constraint
for trenching keeps the trajectory of the bucket
from going past the shape of the desired trench
(dashed line in Fig. 9). That is, all trajectories that
extrude past these boundaries are excluded.

¢ The volume constraint. Of the geometrically fea-
sible actions, some will yield a partially filled
bucket, some will result in a full bucket and yet oth-
ers will sweep through the terrain to excavate more
soil that can possibly be held in the bucket. A sim-
ple calculation of swept volume is used to predict
the amount of soil excavated by a digging action.
All actions that excavate a volume larger than a pre-
set percentage of the bucket capacity, are excluded.

¢ The reachability constraint. A standard inverse
kinematic method is used to determine whether or
not the trajectory corresponding to a candidate
action lies within the workspace of the manipulator.

The set of actions that meet all the geometric constraints
is shown in Fig. 10.

aifx) anm

Fig. 10 Two views of set of feasible plans that meet all the
geometric constrains for the scenario in Fig. 9

5.3 Force Constraints

If a robot excavator is infinitely strong, that is, it can
muster any torque required, then it is sufficient to consider
only geometric constraints. More realistically, for robots
with torque limits, it is necessary to consider the forces
required to accomplish digging. If we could estimate the
forces required for candidate digs, we would have a good
criterion by which to further restrict the set of digs that are
geometrically feasible. Unfortunately, the interaction
between an excavating tool and terrain is complex enough
a phenomenon that no simple physics-based models are
available to predict the resistive forces for a given action
and terrain shape. [13] discusses a method that learns to
predict resistive forces based on experience. The basic idea
is that for a given terrain and tool combination it is possible
to build an expectation of the resistive force based on
observation of the resistive forces, tool trajectories and the
shape of the terrain. Fig. 11 shows the set of actions that
satisfy the force constraint given the excavator and terrain
in Fig. 7. Approximately 4000 force readings from approx-
imately 100 digging actions were used to build the force
model.

To determine if a candidate dig passes the force con-
straint, the force prediction function is called. The pre-
dicted resistive force and the robot’s trajectory are used to
calculate the effective joint torques required to overcome
the resistive forces. A candidate dig is force-feasible if the
joint torques due to resistive forces do not exceed the
torque capability of the robot.

5.4 Optimization

Given a mechanism and the shape of the terrain, it is the
job of the planner to identify a single plan from the feasible
set of plans to be executed. Picking a point in the feasible
set guarantees that the plan will work (modulo correctness

3314

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

Fig. 11 Two views of set of feasible plans that meet the force
constraints given scenario in Fig. 9.

of the model), but not all feasible plans are equivalent in
their utility. Other criteria (maximize excavated volume,
minimize time/joint torques, etc.) can be used to choose
between the set of feasible plans.

Identification of an “optimal” point within the feasible
set does not require explicit computation of the constraint
surfaces. It is possible to use a numerical method that only
requires a boolean function that decides whether a candi-
date point passes or fails a particular constraint. We cur-
rently use an exhaustive search in a discretized action space
to identify the set of feasible actions that have a minimum
utility. For example, we might stipulate that initially all fea-
sible plans sweep a volume of soil that is at least 90% of the
volume of the bucket (Fig. 12). It is possible to further

im) drm)

Fig.12 Two views of set of feasible plans that meet all
constraints given scenario in Fig. 9 and also sweep a volume of soil
that is greater than 90% of the volume of the bucket.

select from this set based on other criteria. For example, it
is possible to sort this set based on the magnitude of the
joint torques expected to perform the action.

5.5 Results

We have developed a testbed to conduct experiments in
subsurface sensing and excavation. The testbed consists of
a sandbox (2.5m x 2.5m x 1m), a Cincinnati Milacron T3
hydraulic robot outfitted with an excavator bucket and
force sensor, and a laser range finder. The setup of our test-
bed is shown in Fig. 13. We use a large industrial manipu-

canning
aser

force sensor

excavator
bucket

hydraulig
robot\/).

Fig.13 Testbed

lator with an end effector payload of approximately 125
Ibs. A small excavator bucket with a volume of 0.01m>
serves as an end effector. The laser range scanner produces
an image of the terrain such that the value of each pixel in
the image is based on the distance from the scanner to the
world along a ray that sweeps in a raster fashion. The scan-
ner has a 60 degree horizontal field of view and a 45 degree
vertical field of view. We have adapted a perception and
mapping system developed at CMU [5] to produce terrain
elevation maps of the terrain in the sandbox. An example
terrain map of the testbed is shown in Fig. 14. Each cell in
the terrain map is 5 cm square.

40

Fig. 14 Elevation map of testbed.

The excavation cycle consists of three phases. First, a
terrain map is produced from range images taken by the
laser scanner. Next, the planner chooses a digging action to
execute that satisfies geometric and force constraints and
optimizes utility criteria. Last, the action is executed by the
robot and the cycle repeats until the terrain is sufficiently
close to the specified goal. Fig. 15 shows a progression of
a trench being excavated using this method. In this experi-
ment, the digging actions chosen sweep a volume of soil
very close to the bucket capacity. However, the actual yield
in the bucket is a function of how cohesive the soil is—dig-
ging in loose, granular soil results is some of the soil leav-

3316

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

Dig#5 swept volume: 0.0127

R 1 15 kd RS Kl = 1 1R 2 28

Dig #2 swept volume: 0.0143 Dig # 6 swept volurhe: 0.0128

.5 1 1.5 2 25 3 .5 1 15 2 25

Dig #3 swépt volume: 0.0130 Dig#7 swépt volunie: 0.0127

& 1 18 ? 28 2 .5 1 1.5 2 25

Dig# 8 swapt volume: 0.0128

Dig#4 swept volume: 0.0138

.5 1 15 2 25 3 .5 1 15 2 25

Fig. 15 The first eight steps in the creation of a trench. The
desired trench is shown by the dashed line. The shaded region is
the volume of soil (in m3) estimated to be swept by the excavator
bucket.

ing the bucket. In practice we have found that the volume
constraint is best relaxed to a volume approximately twice
the bucket capacity. In this case, most digging actions are
constrained by reachability, the shape of the desired trench
and resistive force.

6 Summary

It has often been suggested that a significant part of solv-
ing problems in robotics and artificial intelligence is to find
a suitable representation. We have started with the dictum
“encode the task, not the mechanism.” We find that for cer-
tain applications, the commonly used framework of config-
uration space is insufficient. Instead we have presented two
robot planning problems that use a different representation
called action space.

For cross-country navigation it is very difficult to build
configuration space obstacles in response to real-time sen-
sor data. In addition, for non-holonomic vehicles, such as
our automated HMMWYV, there is no straightforward map-
ping from desired vehicle state to the first of a series of

actions that must be executed to attain the desired state. In
the case of excavation, it is even more difficult to deduce
the next action a robot excavator must execute given a
desired shape of the terrain. This difficulty is further aggra-
vated by the fact that the configuration space corresponding
to natural terrain is extremely high dimensional. Both
applications succeed in large part because of the action
space representation. The autonomous vehicle is able to
account for nonlinear dynamics and is able to react to range
data in real-time. The robotic excavator is able to circum-
vent consideration of a computationally intractable config-
uration space.

The downside of the method we have used is that the
plans produced are short-sighted and require guidance in
the form of subgoals to ensure that the robot doesn’t get
stuck; sometimes it is necessary to be sub-optimal in the
short run for over all optimality. In practice, we find that
coarse grained supervisory planners are effective in provid-
ing such subgoals.

References

{11 M. Daily, “Autonomous Cross Country Navigation with the ALV”,
In Proc. of the 1988 IEEE International. Conference on Robotics
and Automation, pp. 718-726.

[2] Feiten, W. and Bauer, R., “Robust Obstacle Avoidance in Unknown
& Cramped Environments,” In Proc. IEEE International. Confer-
ence on Robotics and Automation, May 1994. San Diego.

[3] Georgeff, M. and Lansky A., Reasoning about actions and plans:
Proc. of the 1986 workshop,1986, AAAL

[4] Hendler, J. and Tate, A. and Drummond, M., “Al Planning: Systems
and Techniques,” Al Magazine, Summer, 1990, Vol 11 (2).

[5] Hoffman, R., and Krotkov, E., “Terrain Mapping for Long Duration
Autonomous Walking”, In Proc. IEEE/RSJ International. Confer-
ence on Intelligent Robots and Systems, Raleigh, 1992.

[6] Jordan, M. 1, and Jacobs, R. A, “Learning to Control an Unstable
System with Forward Modeling,” In Advances in Neural Informa-
tion Sciences 2, Morgan Kaufmann, 1990.

[7] Kelly, A. 1, “An Intelligent Predictive Control Approach to the
High-Speed, Cross Country Autonomous Navigation Problem”, Ph.
D. thesis, Robotics Institute, Carnegie Mellon University, June
1995.

[8] Kirk, D. E., Optimal Control Theory, Prentice Hall, 1970.

[9]1 L. Mathies, “Stereo Vision for Planetary Rovers”, International
Journal of Computer Vision, 8:1, 71-91, 1992.

[10] Moore, A. and Atkeson, C., “An Investigation of Memory-base
Function Approximators for learning Control,” Technical Report,
MIT AI Lab, 1992.

[11] Schaal, S., Atkeson C, “Robot Juggling: Implementation of Mem-
ory Based Learning,” IEEE Control Systems, Vol 14 (1), Febru-
ary,1994,

[12] Singh, S., Synthesis of Tactical Plans for Robotic Excavation, Ph.D
Thesis, Robotics Institute, Carnegie Melton Univ, January 1995.

[13] Singh, S., “Learning to Predict Resistive Forces During Robotic
Excavation,” In Proc. International Conference on Robotics and
Automation, Nagoya, May 1995.

16

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 21, 2009 at 19:15 from IEEE Xplore. Restrictions apply.

