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Abstract— This paper presents an online approach to cal-
ibrating vehicle model parameters that uses the integrated
dynamics of the system. Specifically, we describe the identifi-
cation of the time constant and delay in a first-order model
of the vehicle powertrain, as well as parameters required
for pose estimation (including position offsets for the inertial
measurement unit, steer angle sensor parameters, and wheel
radius). Our approach does not require differentiation of state
measurements like classical techniques; making it ideal when
only low-frequency measurements are available. Experimental
results on the LandTamer and Zoé rover platforms show online
calibration using integrated dynamics to be fast and more
accurate than both manual and classical calibration methods.

I. INTRODUCTION

Accurate calibration is essential for high-performance con-
trol and position estimation on autonomous vehicles [1].

The required calibration includes a model of the power-
train dynamics. For a wheeled mobile robot (WMR), the
powertrain is the group of components that generate power
and transmit it to wheels. No powertrain is capable of
instantaneously changing wheel speeds; often delays and
transients in the powertrain response are significant and must
be accounted for using model predictive control.

The calibration also includes intrinsic parameters required
for position estimation. If the position estimation system
includes an inertial measurement unit (IMU), the pose of
the IMU relative to the vehicle body frame must be known.
Wheel odometry requires accurate dimensional values such
as wheelbase and wheel radius, as well as calibrated steer
angle sensors for articulated wheels.

Unfortunately, manual calibration of all these parameters
can be time-consuming and inaccurate. For example, the
IMU is often mounted deep in the robot chassis, making
position offsets difficult to measure. Nominal CAD dimen-
sions often can not be trusted. Furthermore, calibration must
be repeated as hardware degrades or shifts with use in the
field. Ideally, vehicle model calibration should be automated,
online, and accurate.

A. Related Work

Many WMR controllers ignore powertrain dynamics and
rely on feedback to correct errors that could be prevented
with better predictive models. Others operate at low or
constant speeds where the effects of powertrain transients
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are negligible. Yu et al. developed a dynamic skid-steered
vehicle model that accounts for motor saturation and power
limitations, but do not attempt automated calibration [2].
Others have devised methods of identifying time delays in
the context of sensor calibration, e.g. for LIDAR [3] and for
IMU/camera systems via a registration technique [4].

Outside of robotics literature, there are methods of cali-
brating induction motor parameters [5] and engine models
too complex for our needs. However, we are aware of no
unified method of simultaneous online calibration of a time
constant and delay for a WMR powertrain, much less with
the robustness to noise of our presented approach.

Recent work on calibrating IMU position has focused on
the relative pose between the IMU and other sensors [6]
[7], not between the IMU and vehicle body frame. Some
high-end GPS/INS systems such as the Novatel SPAN have
proprietary calibration routines for the IMU to GPS antenna
offset and angular offsets with respect to the vehicle, but
these require high-frequency differential GPS updates'.

An early example of automated odometry calibration is
the “UMBmark” test in which wheelbase and wheel diam-
eter are identified as the WMR traverses a preprogrammed
square trajectory [8]. Roy and Thrun presented an online,
probabilistic method of calibrating odometry, but it requires
frequent sensor scans and learns simplified translational and
rotational error parameters [9]. Antonelli et al. present a cal-
ibration process similar to ours in that predicted trajectories
are integrated, but theirs is an offline process that learns
a redundant set of parameters [10]. We are aware of no
method that simultaneously calibrates both IMU offsets and
odometry parameters online using temporally sparse pose
data.

B. Integrated (Perturbative) Dynamics

This paper presents an integrated equation error approach
to calibrating intrinsic vehicle model parameters that uses
the integrated dynamics (ID) of the system. System models
are commonly known in the form of a differential equation:

= f(z,u,p) €))

where x is the state vector, w is the input vector, and p
is the vector of parameters to be identified. The classical
model identification approach uses the differential equation
directly, which requires observations of & and z. Often &
can not be measured directly, so measurements of z are
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numerically differentiated with respect to time. For example,
the Springer Handbook of Robotics teaches the estimation of
manipulator inertial parameters using this approach, which
requires double differentiation of joint angle data [11].

In contrast, we identify p using the integrated dynamics:

a(t) = (to) + / fa@)u)pd @

In effect, we integrate the prediction rather than differentiate
the measurement, which has several advantages. This ap-
proach avoids numerical derivatives which can be noisy and
require accurate timestamps and high-frequency sensors. In
addition, integrated predictions account for delayed effects
of the parameters. For example, angular velocity error has
no instantaneous effect on translational velocity, but does
have an increasing effect on translational position error with
distance traveled.

The cost of using integrated dynamics is added complexity
in deriving the Jacobian (or gradient) required for parameter
estimation. d%—;t) is harder to compute than g—i because it
requires at least a numerical solution to the (often non-linear)
differential equation. To facilitate efficient computation of the
Jacobian in our nonlinear WMR application we derive the
integrated perturbative dynamics (IPD) of the system. These
are obtained by solving the linearized differential equation:

of of

t
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(3) and (4) are valid linear approximations of the system
for small perturbations dx and du. Here, we chose to limit
the parameterization to the input vector u; perturbations du
are attributed to errors in the parameter estimates Ap. The
transition matrix ® is explained in Section III-C. Previously,
the authors demonstrated the use of IPD for the identification
of slip parameters and stochastic dynamics [12]; here IPD is
used to identify intrinsic odometry parameters.

For brevity, we will refer to our integrated equation
error approach as the “ID/IPD approach” and the classical
approach (which uses the differential equation) as the “DE
approach.” In the following sections we explain how ID/IPD
can be used with an extended Kalman filter (EKF) to
estimate vehicle parameters online. Section II explains the
identification of a time constant and delay in a powertrain
model, and Section III explains the calibration of IMU
position offsets, steer angle sensors, and wheel radius. Ex-
perimental results show improved convenience and accuracy
over manual calibration. Note that no special trajectories
are required; calibration can be performed during normal
operation. Because identification is performed online, the
calibration should automatically adjust to changing hardware
conditions (e.g. a low battery or a flat tire).

II. CALIBRATION OF THE VEHICLE POWERTRAIN

WMR powertrains can not change wheel speeds instanta-
neously; doing so would require infinite torque. The dynam-

ics of many vehicle powertrains can be modeled by a time
delay and a first-order transient response:
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where w denotes the angular velocity of the wheel. We
present a model for an individual wheel, but models may
also be learned for sets of wheels. w denotes the commanded
velocity, 7. the time constant, and 74 the time delay. Given
the angular velocity at some initial time ¢( the velocity at
the future time ¢ is given by the integral:

w(t) = wlto) + / Lo —m) —wr)dr  (©)
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In practice this integral is computed numerically using the
recursive discrete-time relation:
) P T .
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where the integer in brackets [ ] denotes the time index and
At denotes the time step size.

A. Online Identification of Powertrain Parameters

The time constant 7. and time delay 74 can be estimated
online using an extended Kalman filter. Here we identify
all the necessary variables to perform an EKF measurement
update: the state z, measurement z, predicted measurement
h(z), measurement uncertainty R, and the measurement
Jacobian H. In short, at time ¢y we predict the wheel velocity
at some future time ¢; at time ¢ we compare the measured
wheel velocity to the prediction, and update our estimates of
7. and 74 accordingly.

The EKF state contains the parameters we are estimating:
T = [TC Td]T. The measurement z is the wheel velocity
at time ¢, as measured by the wheel encoder. The predicted
measurement h(z) is the predicted wheel velocity at time ¢
and is calculated using (6) and our current estimates of 7.

and 74. The measurement uncertainty R is sensor-dependent.
dw(t) aw(t)} The
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partial derivative with respect to the time constant 7. is:
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This partial derivative is also calculated numerically using a
recursive, discrete-time relation analogous to (7). No straight-
forward analytical solution for the derivative with respect to
the time delay is known, so DgT(;) is calculated numerically
(using the central-difference for example).

The measurement Jacobian is: H = [

B. Experimental Results

Experimental results were obtained on a LandTamer, a
hydraulic-drive skid-steered autonomous vehicle (see Fig. 1).
As the left and right wheels exhibited similar dynamics, a
single model was learned for both. A time interval (¢t — tg)
of 0.5 seconds was chosen; the time interval should be on
the order of the time constant ..

In the first test, the LandTamer autonomously drove in
circular trajectories of varying curvature and speed. In Fig.



Fig. 1. The LandTamer, a hydraulic-drive skid-steered autonomous vehicle.

TABLE I
POWERTRAIN MODEL MEAN SQUARED ERROR (DEG/S)2

Calibration method

Test Command DE D
Circles 70.97 11.78 9.92
Teleop 501.37 105.20 94.53

2 the vehicle is commanded to instantly decelerate while
traversing an arc. The powertrain model, using the online
integrated dynamics estimates of the time delays and time
constants, accurately captures the transient response of the
actual wheel speeds (as measured by encoders).

In the second test, the LandTamer is teleoperated and
commands alternate between ~ 0.5 and 4 rad/s (see Fig.
3). The commands change so quickly that the wheels rarely
reach their target speed, which is accurately captured by the
calibrated model. Note also that the parameters learned in
the second test differ from those in the first; this suggests
the powertrain dynamics depend on the operating mode,
which justifies the need for online calibration. The rate of
convergence depends on the variation in velocity commands.
In this test, Fig. 4 shows convergence in one minute starting
from poor initial estimates.

We also implemented an online identification filter that
uses the differential equation directly. Every effort was made
to improve performance, including careful tuning of a band
pass filter for the noisy double derivatives of encoder ticks
(i.e. the measurement w), but the classical DE approach still
underperformed the ID approach, especially at identifying
the time delay. This is because, using the DE approach, g—:'; is
observable (or nonzero) only at the instant when commands
change but using the ID approach, Bgfj) is observable
whenever a command change occurs in the interval ¢ — #.
Intentionally poor initial parameter estimates were chosen
(te = 0.2 s, 7¢ = 0.25 s), but with sufficiently large initial
uncertainty, to highlight the difference in performance.

Table I presents the mean squared error (MSE) of wheel
velocity predictions for powertrain models calibrated using
both the DE and ID approaches, and one that naively predicts
the nominal commands. MSE is larger in the “Teleop” test
because command changes are more frequent and aggressive.

III. CALIBRATION OF THE POSE ESTIMATION SYSTEM

This section explains how parameters required for pose
estimation can be calibrated online using integrated per-
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Fig. 2. Left and right wheel angular velocities vs. time as the LandTamer
decelerates. The speeds predicted by the calibrated model closely match the
actual (encoder) speeds.
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Fig. 3.  Wheel velocities vs. time as the LandTamer is teleoperated. See
legend in Fig. 2
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Fig. 4. Estimates of powertrain parameters vs. time during the teleoperated
LandTamer test, using both the integrated dynamics (ID) and differential
equation (DE) online calibration approaches. The DE approach fails to
identify the time delay which affects the time constant estimate.

turbative dynamics (IPD). To demonstrate the process, we
calibrate the position of the IMU, steer angle sensors, and the
wheel radius on the Zog€ rover. Zo€ previously surveyed the
distribution of biological life in Chile’s Atacama desert [13].
Zo€ has four independently driven wheels and two passively
articulated axles (see Fig. 5).

A. Odometry Equations

When performing dead reckoning in 3D (assuming a zyx
Euler angle convention), the pose of the vehicle p in a
ground-fixed frame is predicted by integrating the following
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Fig. 5. (a) The Zo¢ rover in the Atacama desert. (b) A diagram of the
rover. The (W)orld, (R)obot, and (I)MU coordinate systems are shown in
red.

kinematic differential equation:

p=f(pu)
T cOcB  clsPsy —sbey 0 V,
y| = |s0cB sOsBsy+cley 0| |V, (9)
6 0 0 21 Ve
¢ = cos(), s = sin(),y = roll, 8 = pitch, § = yaw

Where u = [V, V,, V|7 is the velocity of the vehicle in the
body frame, and is computed as follows:

u(p) = HSv

Ve 1 0o 1 0 (wl + W?)Cd)f

vl — (2) 1 8 1 Tw (w1 + wa)syy

Vy 0 i 0 _2L 2 (W3 + W4>C¢r
0 L L (w3 + wa) sty

(10)

In (10), L is the vehicle length, r, the wheel radius,
and w;y to wy are wheel angular velocities (see Fig. 5(b)).
The front and rear steer angles (vf, 1) are sensed using
potentiometers; measured steer angle is a linear function of
the potentiometer output voltage V':

wf:mfvf—i_bﬁ P =mp V. + by an

The pose of the robot at the end of the path segment is
predicted by integrating the kinematic differential equation
(9) as follows:

plt) = o)+ [ f(p(r).utr.p)) dr

[ad to
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B. IMU Pose Equations

By default, the GPS/INS unit on Zo€ returns the pose
of the IMU with respect to the world frame (e.g. UTM
coordinates). In order to accurately estimate the pose of the
robot with respect to the world frame we must know the
relative pose of the IMU/robot frames.

For a path segment from ¢ to ¢ the predicted final pose of
the IMU is a composition of poses (calculated by multiplying
the corresponding homogenous transforms):

w _ W, Ii Ri Rf
BIf = Pri *Pri *BRf *Blf
Py =pp, < o))" s oot (13)

In (13), the lowercase subscripts 7 and f denote initial and
final poses (i.e. at the beginning and end of a path segment).
be is the current estimate of the pose of the IMU with respect
to the robot frame. p"¥ Pr; is the GPS/INS measurement of the
initial pose of the IMU with respect to the world frame. pgz
is the final pose of the robot with respect to the initial robot
frame, and is computed using the odometry integral (12).

C. Online Identification of Pose Estimation Parameters

This section explains how the parameters required for pose
estimation are calibrated online using an extended Kalman
filter. Just as in the section on powertrain model identifi-
cation, we identify all the necessary variables to perform a
measurement update.

The state vector contains the parameters we wish to
estimate:

B podom —odom

P, dom is a vector of odometry parameters. The measurement
Z is the final pose of the IMU in the world frame pI P a
measured by the GPS/INS. The predicted measurement Q(f)
is the predicted final pose of the IMU computed using (13)
The measurement uncertainty R depends on the accuracy
of the pose measurement device. The measurement Jacobian

H can be considered in two parts:

v [ ()
9of \ P25 Wi

/(9/)1 and 5‘pW /8;) are Jacobians of the pose
composmon equation (1f3) w1th respect to intermediate poses;
they can be solved for in closed form using symbolic
mathematics software. 8p /] op odom 1S the Jacobian of the
odometry integral (12) Wltﬁ respect to the steer angle and
wheel radius parameters.

The linearized error dynamics of the system help to
compute this Jacobian. The following convolution integral
relates input velocity perturbations to a change in terminal
pose:

[mg by my by rw]T (14)

(15)

t

dp(t) = ®(t,t0)dp(to) —I—/ D(t,7)du(r,Ap , )dr (16)
to

In short, (16) attributes errors in our terminal pose prediction

to errors in the initial pose measurement and velocity errors

du, caused by errors in our odometry parameter estimates.

® and I' are the transition and input transition matrices:

10 —(y(t) —y(r))
O(t,7)=10 1  x(t)—z(r) (17)
0 0 1
of
L, )= ‘I)(tﬂ')afz (18)

The transition matrix ®(¢,7) accounts for the nonlinear
effect that heading errors at time 7 have on (x,y) position at
the future time ¢. Due to space limitations the derivation of



(17) and (18) is not included here, but can be found in [14].
Applying (16), the rightmost term in H is:

Ot t
agi :/ L(t,7)U, dr
Bodom to

where U, is the Jacobian of u in (10) with respect to Podom:
The Leibniz rule is used to move the derivative inside the
integral.

(19)

D. Experimental Results

Experimental data was collected while driving the Zoé
rover by joystick at Flagstaff hill in Pittsburgh, Pennsylva-
nia. Zo€ is equipped with a high-end differential GPS/INS
unit that produced independent pose measurements (without
odometry aiding). Note however that GPS is not necessary;
ground truth need only be accurate for relative pose mea-
surements a few seconds apart so other low-cost techniques
could work such as visual registration of a few carefully
surveyed landmarks.

In a short traverse of just 163 m, the online IPD filter pro-
duced accurate values for IMU position offsets and odometry
parameters. The final parameter estimates are shown in Table
IT along with manually calibrated values. In the “Manual”
column the IMU offsets and wheel radius were measured
with a tape measure, and the steer angle potentiometer pa-
rameters were calibrated manually using precision-machined
angle set blocks.

TABLE I
CALIBRATED PARAMETER VALUES

Manual IPD

o (cm) 38.0 46.02

yF (cm) -15.0 -19.86
my (rad/V)  -0.1128  -0.1192
by (rad) -0.0054  0.0019
m, (rad/V)  -0.1080  -0.1181
by (rad) -0.0105  0.0021
T (cm) 32.5 31.62

Although the IPD parameter values may seem to differ
little from the manual values, they produce a significant
improvement in pose prediction accuracy. Fig. 6 shows
scatter plots of along-track and cross-track pose prediction
error for 6 second path segments. Notice the mean prediction
error using the IPD parameter estimates is reduced from 21
cm to near zero, and the standard deviations of error are
reduced by 20-40%. Quantitative results including heading
error are shown in Table III. The improvement is even more
pronounced when integrating the entire predicted path (see
Fig. 7). Note that, integrated odometry pose predictions used
IMU attitude measurements (y, ) but not heading ().

Fig. 8 compares IPD performance to the classical (DE)
approach which uses the differential equation (9) directly. In
the classical approach, pose measurements are numerically
differentiated to obtain velocity measurements:
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Fig. 6.  Scatter plots of pose prediction error for overlapping 6 second

path segments. (a) using manual calibration parameter estimates. (b) using
online IPD estimates, computed using 20-fold cross-validation.

TABLE III
ODOMETRY POSE PREDICTION ERROR!

Online IPD?
Axis o o “w o

Manual

Along-track (cm) 2.23 5.23 -0.28 4.12
Cross-track (cm) -20.91 6.15 0.13 3.96
Heading (deg) -1.48 0.85 -0.01 0.49

1 for 6 second path segments

2 computed using 20-fold cross-validation

_GPSINS
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N

Fig. 7. GPS/INS path of the Zoé¢ rover at Flagstaff hill. The integrated
wheel odometry path using the online IPD parameter estimates is much
more accurate than wheel odometry using manual calibration values.
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Fig. 8. Comparison of IPD and DE (differential equation) approaches. (a)
Mean (x,y) Euclidean distance error of pose predictions vs. the time between
pose measurements (¢-tg) during training. (b) Mean of the absolute value
of heading errors. Pose prediction errors are computed for 6 second path
segments. When using the classical DE approach, pose prediction errors
increase with the delay between measurements.

Accuracy of the numerical derivatives and performance of
the DE approach degrade as the delay between pose mea-
surments increases. Pose prediction errors in Fig. 8 are
computed for 6 second path segments. This explains the
spike in error in Fig. 8(a) when calibrating to very short path
segments; IPD calibration results are best when the model is
trained and evaluated using paths of comparable length.

In this test, wheel slip was kept to a minimum by Zoé&’s
passive steering design, high traction with the grassy terrain,
and a speed limit of 1 m/s. Minimizing wheel slip is
important when calibrating odometry parameters because of
observability issues. For example, wheel radius error can
not be distinguished from longitudinal wheel slip that is
proportional to forward velocity V. Intrinsic parameters
may also be indistinguishable; for example, 6% can not
be concurrently calibrated with by and b,. Parameters are
indistinguishable if they produce linearly dependent columns
in the measurement Jacobian, H.

IV. CONCLUSIONS

This paper demonstrated how integrated dynamics (ID)
and integrated perturbative dynamics (IPD) can be used
to automate the tedious but essential aspects of vehicle
calibration. The ID/IPD approach has advantages over clas-
sically derived calibration techniques which use the system
differential equation directly. Specifically, ID/IPD enables
direct use of state measurements instead of their numerical
derivatives which can be extremely noisy. We used ID/IPD
in combination with an extended Kalman filter to identify
intrinsic parameters of the vehicle powertrain and pose
estimation system online.

Using integrated dynamics, we presented a method to
identify both the time constant and delay of a first-order
powertrain model, without requiring double differentiation
and bandpass filtering of encoder ticks. In addition, using
an online IPD algorithm we simultaneously calibrated IMU
position offsets and odometry parameters (steer angle sen-
sors, wheel radius) on the Zoé rover in one short traverse.
Pose predictions using the IPD approach were significantly
more accurate than using the manual or classical (differential

equation) calibration approaches, especially when delays
between pose measurements were large.

In conclusion, ID/IPD is an effective tool for the identi-
fication of intrinsic robot parameters, especially when only
low-frequency state measurements are available. In future
work we will apply active learning techniques (e.g. [15]) to
command trajectories that will most reduce the uncertainty
of the parameter estimates.
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