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Abstract. Off-road autonomous navigation is one of the most difficult automation challenges from the point of
view of constraints on mobility, speed of motion, lack of environmental structure, density of hazards, and typical
lack of prior information. This paper describes an autonomous navigation software system for outdoor vehicles
which includes perception, mapping, obstacle detection and avoidance, and goal seeking. It has been used on sev-
eral vehicle testbeds including autonomous HMMWV'’s and planetary rover prototypes. To date, it has achieved
speeds of 15 km/hr and excursions of 15 km.

We introduce algorithms for optimal processing and computational stabilization of range imagery for terrain map-
ping purposes. We formulate the problem of trajectory generation as one of predictive control searching trajectories
in command space. We also formulate the problem of goal arbitration in local autonomous mobility as an optimal
control problem. We emphasize the modeling of vehicles in state space form. The resulting high fidelity models sta-
bilize coordinated control of a high speed vehicle for both obstacle avoidance and goal seeking purposes.

An intermediate predictive control layer is introduced between the typical high-level strategic or artificial intelli-
gence layer and the typical low-level servo control layer. This layer incorporates some deliberation, and some envi-
ronmental mapping as do deliberative Al planners, yet it also emphasizes the real-time aspects of the problem as do
minimalist reactive architectures.

Keywords: mobile robots, autonomous vehicles, rough terrain mobility, terrain mapping, obstacle avoidance, goal-
seeking, trajectory generation, requirements analysis
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2 Kelly and Stentz

1 Introduction » Difficulty of Terrain . In realistic terrain, the vehi-
cle is challenged by regions that would cause

; ; tipover, trapped wheels, or loss of traction. Some
In ee;rlufer papers [32t][?}3][34]t[35]’ the autfrfmrs genvgt_jl regions are not traversable at all and others may
a Set of requirements for autonomous off-road mobil- — ca,se disastrous system failures such as falling

ity that also suggest an approach to meeting those intg an abyss.

requirements. This paper is concerned with the design , Depth of Prior Knowledge. Both the goal to be
and implementation of a system that learns from the  achjeved and the characteristics of the environ-
results of our earlier theoretical analysis. We have ment may be expressed and/or known to varying
called this system RANGER - for Real-Time Autono-  degrees of detail. The goal may be expressed as a
mous Navigator with a Geometric Englne point to achieve, a path to follow, an object to find,

. . . or something much more abstract. The environ-
We emphasize the real-time nature of high speed ment may be completely known of partially

autonomous mobility and, as a result, have been very o564 at various levels of detail and richness of
concerned with such matters as efficiency, speed, expression.

throughput, and response time.
2.1.2 Problem

Our approach is based fundamentally on the state
space representation of a multi-input / multi-output Within these parameters, we can characterize the prob-
dynamical system and is a departure from precedent inem we have addressed in the following terms:

the following ways: « The overall goal is to follow a predefined path that

« We use an active and adaptive approach to percep- is assumed to be free of local planning minima.
tion that minimizes the amount of perceptual data « We attempt to follow this path as closely as possi-

processed. ble while travelling as fast as possible and avoid-
« We use a predictive control formulation of trajec- ing any obstacles that may appear.
tory generation and search. «We attempt to operate on barren, rolling terrain
*We use an optimal control formulation of goal that may contain ravines, cliffs, and regions that
arbitration. would tip the vehicle.
.- * We have no prior knowledge of the environment
2 Local Autonomous Mobility beyond the path we are to follow.

The navigator addresses what we will call theal 2.1.3 Previous Work

navigation problem for autonomous vehicles. That is, Groundbreaking work on this and related problems
the problem of deciding what to do based only on whathas been conducted at Hughes [10][9][13][36][45],
can be seen at the moment within the field of view of JPL [41][55], CMU [16][20][22][23][24] and INRIA

the environmental sensors. The problem of global[28], among many others. Generally speaking, early

planning is outside our scope in this paper. systems were slower than later ones, and speed, excur-
. sion, and run time have improved with the general
2.1 Introduction improvement in component technology and algo-
rithms.

Consider the task of path planning for an autonomous _
vehicle travelling cross country over rough terrain at 2.1.4 Solution

high speeds. Our general approach to the problem has been to insert

2.1.1 Scope of Problem an architectural layer between strategic planning and
. actuator control which we will catiactical control.

We can scope the problem in terms of several paramepg |ayer, being faster than planning yet more intelli-
ters: gent than control will be able to understand vehicle
* Overall Goal. In general, the vehicle must achieve maneuverability sufficiently well for robust path track-
some useful goal. The goal may be to move from ing and react fast enough for robust obstacle avoid-

an initial position to some other distant position, to ance.
map an entire area, or to search an area for objects.

» Degree of Optimization Standards for what con-
stitutes achievement of the goal may vary from
satisfaction of certain constraints (e.g. avoid colli-
sion with obstacles) to optimization of an arbitrary
utility function (e.g. fuel consumption or distance
travelled).

1. The name RANGER is also being used currently for an unrelated
free-flying space vehicle under development by David Akin at the
University of Maryland.
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2.2 Preliminaries 2.2.2 Terminology

2.2 1 Conventions Any vehicle which attempts to navigate autonomously
in the presence of unknown obstacles must exhibit per-

2.2.1.1 Lexical Conventions formance that satisfies a basic set of requirements. At

the highest level, if the system is to survive on its own,
The paper will introduce many new terms as a devicethe vehicle control system must implement a policy of
to foster brevity and precision. New terms will be guaranteed safety
defined in their first appearance in the text. They will
generally be highlightedhus, and will appear in a
glossary at the end of the paper for easy reference.

This requirement to guarantee safety can be further
broken down into four other requirements on perfor-
mance and functionality expressed in terms of timing,
2.2.1.2 Coordinate Conventions speed, resolution, and accuracy. In order to survive on

its own, an autonomous vehicle must implement the
The angular coordinates of a pixel will be expressed infour policies of:

terms of horizpntal angle @zimuth g, and vertical « guaranteed responselt must respond fast enough
angle orelevation 6 . Three orthogonal axes are con- {5 ayoid an obstacle once it is perceived.

sidered to be oriented along the vehicle body axes of , 4aranteed throughput It must update its model
symmetry. Generally, we will arbitrarily choose zup, Y of the environment at a rate commensurate with its

forward, and x to the right: speed.
* X - crossrange in the groundplane, normal to the  * guaranteed detection It must incorporate high
direction of travel. enough resolution sensors and computations to
.y - downrange in the groundplane, along the enable it to detect the smallest event or feature that
direction of travel. can present a hazard. _
« 7 -vertical, normal to the groundplane. * guaranteed localization It must incorporate suf-
g P ficiently high fidelity models of itself and the envi-
2.2.1.3 Notational Conventions ronment to enable it to make correct decisions and

We il wllv distinavish d4in 3D execute them sufficiently accurately.

e will carefully distinguish ran measured in

from a range Zensor,gand theggr{ojection of ramge 2.2.3 Subproblems

onto the groundplane. Generally, both will be mea- Analysis shows [31] that traditional configuration

sured forward from the sensor unless otherwise noted.space planning techniques applied to cross-country
navigation suffer from problems of poor reliability and

stability, and poor computational efficiency. Indeed,

Certain vehicle dimensions that will be important are OUr experience has demonstrated regular collisions
summarized in the following figure. One distinguished With obstacles that were seen and reacted to. There
point on the vehicle body will be designated the vehi- Were two general reasons for this behavior:

cle control point. The position of this point and the ori- « computational inefficiency. there was not enough
entation of the associated coordinate system is used to time to decide what to do.

designate the pose of the vehicle. « command following problent the specific trajec-

The wheelbase it , and the wheel radius is . The [©Ory used to avoid the obstacle could not be exe-
height of the sensor above the groundplane is desig- cuted reliably or stably.

natedh and its offset rear of the vehicle nose is . TheYet another common problem is the well-knolooal
height of the undercarriage above the groundplane isminimum problem. It arises from the use of local

c. Range measured from the sensor is desigriated . rather than global optimization strategies. This prob-
lem is consideredutside the scope of our work here

though one of the authors [53] addresses this problem
in our target environment in other writings.

2.2.1.4 Nomenclature

Figure 1: Important Vehicle Dimensions.

A complete list of symbols is provided at the end of
the paper for easy reference.
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2.3 Standard Architectural Model

Consider the following hierarchical
model. This is a convenient view for organizing the

description of the system.

Search-Oriented

architectural

told to do to the best of its ability. Relative to higher
layers, it is often obliged to consume more bandwidth
as it reacts almost instantly to short term immediate
concerns.

It is clear that both longer term strategic and shorter
term reactive concerns will contend for computational
resources. Plainly, there are limits to the degree to

Logical which any system can be both smart and fast. Faced
g)e/mﬁgr?t(i:al with this reality, the design problem becomes one of
Deﬂberative Objectives making the best of available resources.
Abstract .
2.4 Tactical Control Layer
Goals Status . _ _
Much of our work resides in the layer we are calling
_ tactical control. We identify this layer in order to
Set Points States more effectively connect the strategic and control lay-
ers, and to provide a place solve many of the problems
Repetitive mentioned earlier.
Arit%metic Commands Feedback ; i
Spatio-temporal 2.4.1 Strategic - Control Connection
Parallel . . .
Reactive A direct connection of the strategic layer (say, the glo-
Concrete bal path planner) to the control layer (actuator control)

Figure 2: Standard Model . This type of hierarchical
architecture is common. Higher layers tend to be
more deliberative etc. whereas lower layers tend to
be more reactive etc. Our control formulation of

becomes less feasible as speeds increase. Further,
there are times when one or the other generates incor-
rect output and the other is either not intelligent
enough or not fast enough to compensate.

mobility fits in at the *tactical” level. There are certainly times when the goals specified by

the strategic layer must be ignored because it is not
aware of the immediate environment but the control
Higher levels of the hierarchy tend to be characterized|ayer is not intelligent enough to compensate. There
by computation that is more symbolic, logical, search- are also times when the control layer is unable to fol-

oriented, sequential, deliberative and abstract thanjow its commands but the strategic layer is too slow to
lower layers. Lower layers tend to be characterized byg|ter the command.

computation that is more spatial or temporal, arith-
metic, repetitive, parallel, reactive, and concrete than
higher layers. As a general rule, higher layers exhibit
longer reaction times and longer cycle times.

The policy layer concerns itself with the generation
and monitoring of mission level objectives such as
“stay alive’, “find the bomb”, etc. Generally, the goals
of this level are not subject to much compromise. Pol-  ¢je ‘syryival at the coordinated actuator control
icy does not change often and is usually constant over |eyel.

the duration of a mission. Policy is often imparted per- , |ncorporates a sufficiently accurate model of vehi-
manently to a system by its human designers. cle dynamics that it understands and adapts to the
The Strategic |ayer Corresponds to the de"berative, |nab|l|ty of the controller to follow its commands.
logical, goal-generating component of autonomous This three layer architecture imparts a degree of auton-
systems. It concerns itself with the larger picture omy to the layer below the strategic to allow it to
within the confines of policy; with avoiding local plan- implement basic survival a temporarily disregard
ning minima, with overall optimality, and with model-  strategic imperatives.

ing and memory of the environment. Relative to lower
layers, it is often obliged to consume more time in its
deliberations of longer term strategic concerns. We characterize the navigator as an intelligent predic-
By contrast, the control layer corresponds to the real-tive controller because it closes the overall perceive-

time command following component of autonomous think-act loop for a robot vehicle based on intelligent
systems. It concerns itself with the immediate low assessment of both the surrounding environment and

level issues of how much power should be applied tothe abilities of the vehicle to maneuver.
actuators and generally, with doing exactly what it is

2.3.1 Spectrum of Characteristics

Our solution to this problem is to have a third layer
more intelligent than control and faster than planning.
This layer:

* Views the goals from the strategic layer as recom-
mendations that it may be override when the situa-
tion demands it.

* Incorporates sufficient bandwidth to ensure vehi-

2.4.2 Intelligent Predictive Control
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The system shares many characteristics with strategi@.5.2 Map Manager

lanning: . .
P g The Map Manager integrates discrete samples of ter-

« It performs an amount of search and heuristics are rain geometry or other properties into a consistent ter-

employed to reduce that search. __ rain map which can be presented to the vehicle
. It m_oderl15 the (_anwrc.)r]melr;.t and responds to it, so it conroller as the environmental model. It maintains a
merits the designatidntelligent current record of the terrain immediately in front of

* It considers alternatives in an abstract space that is tne yehicle which incorporates all images necessary,

a transformation of reality - in this case, command 54 \yhich automatically scrolls as the vehicle moves.
space instead of the configuration space com-

monly used in strategic motion planning. 2.5.3 Vehicle
« It considers the consequences of its actions using

form of a feedforward system dynamics model. ward element and an abstract data structure which
« It employs some memory of the state of the envi- €ncapsulates the vehicle state. It incorporates FIFO
ronment and of the vehicle. queues which store a short time history of vehicle

Likewise, the system also shares characteristics withStateS and commands. Old state information is
required by the map manager in order to register

controllers. : . .
_ ) o _ images in space. The current vehicle state and old
* It models the vehicle with a multivariate differen-  commands are used in the feedforward dynamic simu-
tial equation. lation.
eIt is very concerned with response time and
throughput management as is common of real- 2.5.4 Controller
time systems.
« It is concerned with latencies and time tags and the
precise timing of events.
eIt concerns itself with command following
although it may temporarily override its com-
mands.

2.5 Architecture

The Controller object is responsible for coordinated
control of all actuators. This module includes regula-
tors for sensor head control, an obstacle avoidance tac-
tical controller and a path following strategic
controller. It also incorporates an arbiter to resolve dis-
agreements between the latter two controllers.

2.5.5 Perception

At the highest level, the system can be considered toThe Perception module is responsible for understand-
consist of 5 modules as shown in the following data ing or interpreting input images and putting them in a

flow diagram: form suitable for the Map Manager to process. Exam-

| Processed Motion ples of perceptual preprocessing include stereoscopy
mages Images Cmds (stereo vision) which computes range from two or
_" more images taken from disparate viewpoints, and ter-
old Predicted rain-typing which labels each pixel in an image as

Jenicle Vehicle 1 | current rock, road, shrubbery or tree. Stereo vision is the only

States States Vehicle ; ;
Nav Environ . perception that is currently supported, although laser
gen(sjqr Properties range images can be fed directly to the map manager.
eadings
2.6 Results
Current
Vehicle X i
States The system has been tested on the vehicles shown in
make up the tactical control layer. and stereo range data to build maps of the terrain over
which the vehicle must travel. In the former case,
2.5.1 Position Estimator excursions of 15 kilometers and instantaneous speeds

of 15 km/hr have been achieved while tracking a
The Position Estimator is responSible for integrating Coarse|y Specified path Average Speed was on the
diverse navigation sensor indications into a single con-grder of 7 km/hr.
sistent indication of vehicle state. Vehicle state infor-
mation includes the positions of all actuators and some
of their derivatives, and the 3D state of motion of the
vehicle body. This module may be the built-in naviga-
tion Kalman filter or another system which generates
the same output.
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b
etary Rover prototype.

i

n TestbedsA modified military HMMWYV and a RATLER Plan

Figu}e 4: Some vigaio

3 Perception that much of the computational resources used to
image and interpret the environment can be a waste of
This section discusses the motivation behind, andfesources in mobility scenarios. This waste occurs for
implementation of the 3D perception algorithm for three principle reasons:
extracting relevant geometry from a range image e The vertical field of view is often too wide from a
sequence. We propose a relatively simple method of throughput perspective. Obstacles and other haz-
approaching the minimum required perceptual ards normally appear in the field of view long
throughput in a terrain mapping system, and hence the before they can be resolved, and long after they
fastest possible update of the environmental model. cannot be avoided.
The technique proposed will be relevant to any appli- * Sensor frame rate is often too fast. The sensor ver-
cation that models the environment with a terrain map ~ tical field of view is normally aligned with the

or other 2-1/2 D representation direction of travel so that image sequences nor-
’ mally contain much redundant information.
3.1 Introduction * Square pixels are not optimally shaped. The pro-

jection of image pixels on the groundplane is nor-
The surface of the surrounding terrain can be sensed Mally elongated in the wrong direction for robust
by any number of means, but the two most commonly obstacle detection and minimum throughput.
used ones in outdoor scenarios are laser rangefindersrom the days of the Stanford Cart [44] to the Autono-
and stereo vision. We represent the surface of the surmous Land Vehicle [10], vehicle speed has been lim-
rounding terrain by a sampled, uniform density data ited, at least in part, by limited perceptual throughpuit.
structure often called trrain map or cartesian ele-  We will show how to eliminate much of this ineffi-

vation map. ciency in order to generate perceptual throughput
requi h ily.

3.1.1 Problem equirements that can be met easily.
3.1.2 Solution

When attempting to navigate over rough terrain, few

assumptions about the shape of the terrain ahead ca@ne approach to reducing redundant information is the
be made. It can be necessary to convert images into aise of laser and video line scanners. These have seen
full description of the geometry of the scene at rela- use in specialized high-speed inspection applications
tively high rates. As a result, the speed of rough terrainfor some time. In satellite applications, synthetic aper-
navigation is typically limited by the throughput of the ture radar has used vehicle motion to provide the scan-
perception system. We will call this predicament the ning motion of the sensor along the direction of travel.
perceptuathroughput problem. Perceptual through- The essential principle involved in these examples is
put can be expressed in units of range or intensity pix-to avoid scanning the sensor when either the motion of
els measured per second, or its equivalent. the vehicle or the motion of the environment already

We address here this typical performance limitation of accomplish the scanning.
autonomous outdoor vehicles. Analysis suggests [31]However, the use of line-scanned sensors is difficult on
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rough terrain because abrupt attitude changes of thecalled theground plane.
vehicle body cause holes in the coverage of the sensor.

Software adaptation provides the best of both worlds .
because it gives the ideally focussed attention neces- T
sary for high speed and the wide field of view neces-

sary for rough terrain.

In our earlier paper [34], we have showed that required
perceptual throughput is polynomial in the reaction - - . —

distance. This analysis suggests that certain Figure S: Regions of Interest. A region of interest
approaches to mapping the environment in mobility ™ the ground plane forms a corresponding image in

. L . the image plane.
scenarios can waste significant computational i )
resources. An ROI defined on the groundplane will be called a

. . ground plane ROI. Such a region will have an image
We have also showed that straightforward techniquesj;, he image plane which will be called @mage

promise to significantly increase the overall efficiency plane ROI
of terrain mapping perception algorithms. This '
improvement can be accomplished by exploiting con- 3.2.1.2 Differential Relationships

straints and several assumptions that are valid in most ] ) )
outdoor mobility scenarios. Let 8 andy be the elevation and azimuth coordinates

of an image pixel. Computing derivatives of the range
aimage of flat terrain leads to the differential relation-

ships between groundplane (x,y) resolution and image
plane resolutionqd ¢ ):

The basic idea is to selectively process only the dat
that matters in range imagery. Known hereadap-
tive perception, the technique also has the beneficial
side-effects of automatically adapting to changes in
vehicle speed and attitude, and to the local slope of the dx = Rdy dy = (Rz/h)de

imaged terrain. Through this technique we achieve

near minimum perceptual throughput and hence, nearThe completely correct transformations also depend
maximum safe vehicle speeds. on the local terrain gradients. These are unknown a
priori because terrain geometry is the very thing the

A fundamental tenet adctive vision[1][2] is to direct sensor is supposed to measure.

attention to the part of the scene that is relevant to th
task at hand, rather than to interpret and model the3 2 1.3 Response Distance

scene. Our work provides a concrete example of at

least one aspect of active vision. Although we do A quantity of central concern to us will be the distance
model the scene, we actively search for the data wethat the vehicle requires to react to an external event

need. such as the appearance of an obstacle in the sensor
R field of view. This distance will be called thesponse
3.2 Preliminaries distanceand its precise value will depend on:

* the speed of the vehicle when the event happens
» when the response is considered to be complete
« the maneuver chosen as the response

We will use two primary techniques for reduction of
the perceptual inefficiencies mentioned above:
* We will actively maintain docus of attentionand
process perceptual data only imegion of inter- 3.2.2 Subproblems

estthat contains the most useful information. h hi . inatedant
« We will actively and intelligently subsample the We have, at this point, nominatediaptive percep-

data within that region of interest for adequate - fon @s a solution to the perceptual throughput prob-
but not unnecessarily high - resolving power. lem. Unfortunately, this leads to a new set of

. . . problems, but we will be able to solve them with addi-
These two strategies will be referred to collectively as o 'sirategies and clearly identified assumptions.
adaptive perception- the organizing principle of our

approach to terrain mapping for high speed mobility.  3.2.2.1 Response - Resolution Tradeoff Problem

3.2.1 Terminology From the point of view of responding robustly to
We will call a region of space for which sensory data obstacles, it is best to detect obstacles early, or equiva-

is required aegion of interest abbreviated ROI. lently, at high range from the vehicle. However, from
the point of view of sensor resolving power, it is best
3.2.1.1 Regions of Interest to detect obstacles as close as possible to the vehicle

_ . L ) where data quality and spatial resolution tends to be
It also will be important to distinguish the coordinate highest. In other words, the farther away an obstacle is

system implied by the sensor image - callediige  getected, the easier it is to avoid, but the harder it is to
plane from a set of coordinates attached to the terrain - yatect it robustly. When either resolution or range is
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limited, we can detect an obstacle robustly or avoid it

robustly, but not both. This is tlesponse-resolution ﬂso

tradeoff. £

We will manage this tradeoff by explicitly computing EZO

the minimum distance required for robust obstacle g

avoidance and looking for obstacles only beyond this £10

distance. This technique will be calledaptive loo- T

kahead g Lo
o0
> -30 -20 -10 0 10 20 30

3.2.2.2 Selection Problem X Coordinate in Meters

The mapping from the groundplane ROI to the image Figure 6: Sampling Problem . Equally spaced

plane ROI is both nonlinear (a projective transform) image pixels are not equally spaced on the

and a function of the unknown shape of the terrain. It groundplane - even for flat terrain. The situation is
seems, therefore, that it is not at all straightforward to WOrse for rough terrain.

efficiently find the image plane ROI. Consider, for \We will solve this problem to some degree by choos-
example, the straightforward solution of converting ing the best compromise and, at other times, by
coordinates of all pixels in the image and then compar-actively computing the required image plane resolu-
ing their positions to the groundplane ROI. After pix- tion from extrapolation. The algorithm for doing this
els that are not in the groundplane ROI are eliminated,will be calledadaptive scan

one is left with the image plane ROI. While this would )

certainly work, it can be far too inefficient to be useful. 3-2-3 Assumptions

For terrain mapping, the largest computational cost of Certain assumptions will be key components of our

a range pixel is the conversion of its coordinates from approach - either because they must be made or
the image plane to the ground plane. In attempting tobecause they can be made with little or no loss of gen-
select only the data of interest by converting the coor-erality.

dinates of all pixels, one has already done most of the _

perception task anyway. Any straightforward attempt 3-2-3-1 Stationary World

to selectively process data in a region of interest apparge of our most fundamental assumptions will be that
e_ntly falters becausiae problem_ of selection is as dif- the environment is self stationary. That is, the environ-
ficult as the problem of perception ment will be supposed to consist of rigid bodies whose
We will use assumptions to decouple these problemsrelative positions are fixed - at least while they are in
When the assumptions are combined with an appropri-the field of view of the environmental sensor. While

ate choice of the groundplane ROI, we will be able to the bodies comprising the environment are self station-
partially infer the shape of the image plane ROI and ary, our vehicle is in motion with respect to them. The
compute its position by very efficient image plane value of this assumption is that it allows us to image a
search. The algorithm for doing this will be called point in the environment only once and, because only

adaptive sweep the vehicle moves, its subsequent position relative to
i bl the vehicle at any later time can be inferred solely
3.2.2.3 Sampling Problem from the vehicle motion.

The sampling problem is the nonuniform and aniso- 3 5 32 small Incidence Angle

tropic distribution of pixels on the groundplane which

corresponds to a uniform and isotropic distribution of We will use the ternsmall incidence angle assump-
the corresponding pixels in the image plane. The Jaco+tion to refer to the situation where image pixels inter-
bian matrix which relates the two distributions sect a theoretical flat world at glancing angles. This is
depends on both the image projective transform andguaranteed to be the case if:

the local terrain slope at each point. The impact of this the sensor is mounted on the vehicle roof, and

problem is that not only is the shape of the image ixels inside the response distance are ignored
plane ROI distorted and of unknown position but the gnd P 9 '

local pixel density required to sample the groundplane : . . .
uniformly is both unknown and different everywhere the vehicle speed is relatlygly high ) .
in the image plane ROI. because, under these conditions, the sensor height is

. o L Il relati h f ixel.
This variation in pixel density is shown below for flat small relative to the range of any pixe

terrain. Each ellipse represents the footprint of a pixel. In the figure above, this assumption implies the valid-
It is the variation in density which we are illustrating, ity of the following approximations:

not the density itself, so the images were subsampledye will call R therangeand Y therange projection.

to avoid clutter. It is easy to show that the relative error incurred in
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shown below.

Yan' =R 0,>06 d R,>R 6,>0, but R;<R
. . . > > > <
Figure 7: Imaging Geometry . The height of the 27%1 and =y 3> % but Ry<k,
sensor above the ground plane is normally small Figure 8: Nonmonotone Range. Range is a
compared to the ranges measured. nonmonotone function of image elevation angle at a
vertical or near-vertical surface.
h and Y=R The computational advantage of the assumption is that

R ! once the maximum range is found in an image, all pix-

assuming that these two quantities are the same is thels above it in the same column of the image can be
square of the ratib/ R . We will concentrate now on a safely assumed to be beyond that range. It will turn out
specific class of region of interest - one that can belater that this assumption will only be used in laser

specified in terms of two range extremes. Let us definerangefinder implementations of adaptive perception.

arange window or range gateas an interval given by  Stereo vision will not require it.

R and R or, equivalently, by its corresponding 3.2.4 Design

max 'min
range projection extremesmax aﬁqﬂn

Suppose a pixe|’s range projectisan isin a range pro_our adaptive perception algorithm confines the pro-

jection gate: cessing of range geometry in any cycle of computa-
tions to an image plane ROl with the following
Yimin<Y < Ymax properties:

* It extends beyond the vehicle response distance.
* Its size is the distance moved since the last cycle.

Rmin <Y < Rpax 'tl)'hle algorithm has three conceptual parts as outlined
elow.

Then, to first order, we have, under our assumption:

Which is to say that we can directly compare range
pixel values (an image plane ROI) to a region of inter-
est on the groundplane (a groundplane ROI) while
incurring very little relative error. The small incidence

3.2.4.1 Adaptive Lookahead

Adaptive lookahead means the process of adapting

; o . the position of the groundplane ROI to assure that
angle assumption allows us to efficiently implement a o6 s sufficient time to react to hazards. There is
telst mRtg? |[Jnac<i:]e plane of metmbe(tsh|p mt a ground'some minimum range inside of which it is unnecessary
piane - Lnder our-assumption, i1 Not NECessalyy, 4ok pecause the vehicle is already committed to
to convert range pixel coordinates so it inexpensively o ol there. Also. there is some maximum range
dec?uple(s) tlhetr[])robler_n (I)f se;!gcglontfronlghqt of Per- hevond which it is unnecessary to look because there
ception. Only those pixels which satisfy the inexpen- yij pe time to look there later. In detail implementa-
sive image plane ROI membership test need have theifjo, “the algorithm can set the minimum range to the
coordinates converted for mapping purposes. response distance, or alternately, set the maximum
3.2.3.3 Near Monotone Range Assumption range tlo response distance plus the distance travelled

per cycle.

At this point, we have an efficient test for membership _
in a groundplane ROI. However, it is still expensive to 3-2-4-2 Adaptive Sweep
test every pixel in a range image against a range gatep,
A final important assumption is the assumption that
the environment is 2-1/2 dimensional with respect to
the direction of gravity. That is, at all points, a line

daptive sweepis the process of adapting the width

of the groundplane ROI to assure that there are no
holes or excessive overlaps in the coverage of the sen-
sor. The ROI width is set to the distance travelled since

aligned with gravity pierces the first reflecting surface o 45t computational cycle. This determines both the
of the environment at most once. This assumption JUS-maximum and minimum range projections in the

tifies a terrain map representation and it also allows us roundplane and they are trivially converted to the

to assume that range is a near monotonic f_unct|on o image plane ROl based on assumptions mentioned
image elevation angle. The worst case violation of this earlier

monotone range assumptioris the reduction in range
that occurs when a vertical surface is scanned as
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3.2.4.3 Adaptive Scan The choice of trajectory determines the details of com-

_ i _ . puting the response distance. For our purposes, adap-
Adaptive scanis the process of managing resolution tjye |ookahead is implemented by computing the
within the image plane ROI in order to achieve uni- gistance required to execute a°a@rn at the current

form groundplane resolution. For the data of interest, speed. This gives the maximum range of the range
it will be possible to compute an approximate mapping \yindow.

from groundplane resolution to image plane resolution . .
and images will be subsampled by appropriate factors] "€ groundplane ROI must be defined very precisely

to achieve near uniform groundplane resolution. in terms of distances from some specific point on the

vehicle at some specific time. The problem of finding

3.2.5 Implications the data in this region in an image taken previously
o . . . involves several aspects of time delays and geometric
Certain implications of using the adaptive perception offsets
algorithm are worth noting here. '
» The sensor is not mounted at the vehicle reference
3.2.5.1 Minimum Computational Cost Implies Highest point, so the ROI is adjusted for this offset.
Speeds * The vehicle is not itself a point, so the ROl must be

. , , enlarged to provide data at the positions of the
The minimum computational cost of this approach to  wheels forward and aft of the reference point.

perception has implications for the real-time perfor- . There may be significant delay associated with the
mance of autonomous vehicles. The maximum useful acquisition of an image, so the ROl must be

range of a perception sensor is often limited by rea- adjusted for the age of the image.

sons of eye safety, computational cost, limited angular « The most recent vehicle state estimate is itself
resolution etc. Given this limit, the highest safe vehicle somewhat old and computation takes finite time.
speeds are normally achieved by minimizing reaction The ROI may need to be adjusted for these effects
times. The only element of reaction time that can be depending on the instant with respect to which the
changed easily is often the component due to the time ROl is defined.

required to process imagery or perform other compu- .

ta'gons. Theprefore, to tr?e >(ljegrge that our approiis)lch‘?"4 Adaptive Sweep/Scan-Range Imagery
minimizes the computational cost of perception, it also

increases the vehicle speeds that can be achieved. If one starts with a dense range image, the algorithm

consists of the mapping of the range window into
3.2.5.2 Adaptive Sweep Implies Image Stabilization image space and the extraction of the data.

Our software adaptive approach to perception has the3'4'1 Adaptive Sweep

side effect of computationally pointing the sensor ver- Terrain roughness and nonzero vehicle roll mean that
tical field of view by responding to both changes in the the position of the range window in the image is differ-
vehicle attitude and changes in the shape of theent for each column so the range window is processed
imaged terrain. While the shape of the range window on a per column basis. In order to robustly find the

may be very irregular in image space, it always corre-range window, each column is processed in the bot-
sponds to a regular semi-annulus in the ground planetom-to-top direction.

If the vertical field of view is wide enough and the A conceptual C code fraament is as follows. The
range sensor is fast enough in terms of range pixel: P 9 :

rate, this software adaptation is superior to the tech-image itself is of dimensions rows by cols. A constant

nique of physically stabilizing the sensor because it irse((:jtglri]nq#tz; iUbtvr\ll:anidncw);v c;f ﬂl]aer:gq?ggrldsi r?aetirscgfgrtwrhol&h
responds instantaneously. y gep _row,

start_col, end_row, and end_col. This region is known
3.3 Adaptive Lookahead to always contain the ROI.

The monotone range assumptionappears as the
The three techniques described in the previous sectiomreak statement after the first conditional of the inner
can be applied to any range image generated by amoop. The start_col and end_col variables implement a
imaging laser or radar sensor or a stereo vision systemfixed azimuth and elevation angle window within

It is also possible to embed adaptive perception into awhich the range window always lies on typical terrain.
stereo vision algorithm - which will be the subject of a

special section. For both classes of imagery, range3-4-2 Adaptive Scan

imagery and stereo pairs, the adaptive lookahead algoThe yariables row_skip and col_skip have values cor-
rithm is common. responding to the constant image subsampling factors
A vehicle may attempt to turn to avoid obstacles andthat give the most acceptable groundplane resolution.
maintain its forward speed, it may elect to stop com- In the case of range images, adaptive scan is imple-
pletely, or it may choose any other arbitrary trajectory. mented by a literal subsampling of the image. Also,
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j = start_col; small, so the variation idy  (row_skip) is also small.
while (j <= end_col+col_skip) Under this assumption, a good compromise is to use
- - the worst case azimuth resolution and the instanta-
i =end_row; neously computed elevation resolution.
while (i >= start_row-row_skip) 01 oh
= X = =
R = range(i,j); w ERmax%j . E{QZ%W
if (R >Rmax)
break; Although the flat world assumption may seem inap-
else iflR <Rmin) propriate on rough terrain, the use of it in adaptive
{i -= row_skip; continue;} scan works well in practice.
else process_pixel_into_map();
i -= row_skip; 3.5 Adaptive Sweep/Scan-Stereo Imagery
j += col_skip; The principles of the earlier section could be applied

Figure 9: Adaptive Sweep Algorithm . The range directly to the output of a stereo vision system. Yet,
window is processed on a per column basis in order because stereo also consumes computational

to robustly extract the data of interest. resources, it seems worthwhile to investigate whether
similar techniques can be employed inside of the ste-
this subsampling applies to both the data in the ROlreo algorithm itself in order to avoid computing range
and the data below the ROI that is not processed. Thapixels that subsequently would be eliminated anyway.
is, adapting the resolution can benefit the speed of.

. Traditionally, the stereo problem is cast as one of
handling both the processed and the unprocessed datadetermining the range foE every pixel in the image.

Because the differential transformation from the Traditional stereo finds the range for each possible
image plane to the groundplane is unknown, a per-angular pixel position. Conversely, our adaptive

fectly robust, optimal subsampling solution is not approach to stereo finds the angular positions in the
available. However, a spectrum of approaches to resoimage plane of each possible range value. It deter-
lution management are available based on the fre-mines those pixels whose range value falls within a
quency of update of the row_skip and col_skip small range window, and it does so without computing
variables and how they vary with range for an assumedthe ranges of pixels which are not of interest. This
flat world. They can be computed based on: principle is sometimes callechnge gating in laser

« the highest projected value of the ROI maximum rangefinders which employ it.
range, Rmax, based on the known speed limits of The motivation for the approach in the case of stereo is

the vehicle. _ the observation that the region of terrain which is
* the value of ROl maximum range, Rmax, for the peyond the vehicle response distance usually corre-

current computational cycle. sponds to a very narrow range in stereo disparity
« the instantaneous value of range, R, at the current space. The nonlinear relationship between range and

pixel. disparity also implies that range resolution is relatively
These options have been listed in order of increasingpoor at high ranges, so the computation of the range of
speed and decreasing robustness. low range pixels can be wasteful. However, as before,

In the least adaptive form of adaptive scan, the numbeth€ problem of selection, of determining membership
of pixels skipped in the horizontal and vertical direc- " @ range gate without computing the range, seems

tions can be set based on the average or worst casgifficult.

expected value of the maximum range. 3.5.1 Embedded Adaptive Sweep in Stereo Vision
_n1l _dn O For stereo ranging systems, the basic principle of the
dv = ERmaXEPX do = = 2y range window can be converted talisparity win-
max dow! for a stereo system because the range and dispar-

In the next most adaptive form, the image plane reso-ity are related by the stereo baseline.
lutions are recomputed for each image based on th
current ROl maximum range. In the most adaptive
form, image plane resolutions can be recomputedthe pasic stereo configuration for perfectly aligned
based on the instantaneous range image values. How-
ever, it can be awkward to vary the azimuth resolution

as a function of range if one chooses to process the’.L. There is a slight difference in the geometry of a stereo range

image by columns. image (perspective) compared to a rangefinder image (spherical
. . - . polar). Therefore, a disparity window corresponds to a window on
The ratio of maximum to minimum range is normally - the y'coordinate and not the true polar range. In most circumstances,

this distinction can be safely ignored.

%.5.1.1 Disparity Window
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cameras is given below. It is useful to remove the trated below.

Optlcal . \ Planes

Axes :.\’/\ <
Left__ . 2 |v . /Right

Camera . amera
/' f “\
A\ ’ \ YR | Figure 11: Disparity Search . The global maximum
correlation is the best match. Limiting the search can
X, b Xr lead to the wrong answer.
N " If, however, the search were limited to the disparity
_ _ _ o window whose boundaries ae,,,  adg;, in the
Elgure 1(?.3 Ste_reOdT”a”QU'i‘(“Og‘- lThe Le'a“gr}Sh'Pl above figure, the point of maximum correlation that
etween disparity d, range ¥, baseline b, and foca would be found would only be a local minimum. No

length f is derived from similiar triangles. . .
9 9 information other than the absolute value of the mea-

q d £ di it the focal lenath by SUre of similarity would indicate this. If a range image
ependence of disparly on Ihe focal 'eng Y were generated based on the results of this limited dis-
expressing disparity as an angle. Definertbemal- parity search, the image would contain:

ized disparity thus: i
» correct ranges for pixels whose true range hap-

pened to fall within the range window searched.
* incorrect ranges for pixels like the one illustrated

Then, for a range window between 25 meters and 30 ?hbeo%ea\{vtwicshs?aeé%act)?%r%Léréggisntgéttempts to identify

meters, and a stereo baseline of 1 meter, the angular ) .
width of the corresponding disparity window is: Nevertheless, the environment is often smooth, and

this smoothness leads to the property that correct
5=+_1 _(g0067= 038 ranges tend to form Iar_ge smooth regions whereas
25 30 incorrect ones do not as illustrated below.

-l
<o

Thus, the range of disparities which corresponds to a

typical range window is roughly 1% of a typical cam- “ Legend
era field of view (40). In other words, the image . '

coordinates of corresponding points in both images are c

. K . orrect
very close to each other if the range of the point is Range
beyond the response distance.

3.5.1.2 Local Minimum Problem . ::?ggggd
In traditional area-based stereo, correlations (or any of No

a number of other measures of similarity of two image Range
subwindows) are computed for a wide range of dispar- 4

ities. Then the algorithm searches along the curve gen- ange Image

erated for each pixel for the disparityd® . Figure 12: Spurious Disparities. Correctly ranged

corresponding to the global correlation maximum. The pixels tend to form large connected smooth regions.
case for normalized image crosscorrelation is illus- Incorrect ones do not.

It is well known that spurious matches occur funda-
mentally because regions which do not correspond
physically actually look more or less the same. Several
solutions to this repetitive texture problem help the sit-
uation somewhat but the simple technique of comput-
ing connected components and removing small
regions [43] works effectively and is computationally
free because a disparity image cleanup pass is required
even when a wide disparity range is searched.
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3.5.2 Embedded Adaptive Scan in Stereo Vision for a run of our navigation system simuldton very

- o . rough terrain using a simulated rangefinder where the
In the case of stereo vision, the situation for adaptively yiyeis that were actually processed fall between the
changing resolution is more complex because rangey,in piack lines. On average, only 75 range pixels out
resolution and angular resolution are coupled. That iS,0f the available 10,000 (or 2%) were processed per
once angular resolution is fixed, range resolution isimage. In terms of areas imaged per second, the sys-

also fixed, yet each has independent constraintsem ihroughput is increased by a factor of 100 times,
imposed on it by the application. It is not possible, for . +vo orders of magnitude.

instance, to aggressively reduce horizontal image reso- _ _ _
lution (as would be done with a range image) at the There are five range images arranged vertically on the

input to stereo because range resolution will also bel€ft. These are rendered as intensity images where
dramatically and unacceptably degraded. darker greys indicate increasing distance from the sen-

. sor. The terrain map constructed by the perception sys-
The least that can be done, however, is to compute thgg, s rendered on the right. The top figure shows the

degree to which the output range image would be sub—map as an image where lighter greys indicate higher
sampled and then the latter stages of stereo (th'e Stag&Sevations. In the center of the map is the vehicle at the
past the correlation computation) can simply ignore ,qgition where the 5th image was captured. The lower
the unwanted pixels. Before correlation, those yon figure is the same terrain map rendered as a wire-

unwanted pixels may be needed to participate in COM-pame “surface from the vantage point of the initial
puting the correlations. position.

3.6 Results There are three hills in the scene whose range shadows
are clearly visible in the terrain map. In the first image,
The following two sections present performance the vehicle is accelerating but still travelling relatively
results for adaptive perception based on laser rangeslowly. The range window is relatively wide and posi-
images and stereo vision. For these results, the vehicléioned near the bottom of the image. The first hill is in
speed is 3 meters/second and the resolution of the genthe range window. In the second image, the second hill
erated terrain map is 0.75 meters in both horizontalis in the range window and the first hill has already
directions. An oversampling factor of 2 is also incor- been processed. In the third image, the third hill is now
porated into adaptive scan as a safety margin to protecin the range window. In the fourth image, the vehicle is
against terrain undersampling. driving past the first hill and is rolled to the right

While adaptive perception resamples a range imagebecause of it. This rolls the image to the left and the

for optimum coverage of the terrain, the specific &l90rithm compensates appropriately. In the fifth

attributes of the range sensor and cameras used for thi@ge, the range window has moved past the third hill
following results are given in the table below: to the flats beyond and a fourth hill is barely visible in

Table 1: Sensor Parameters the distance.

. v [ cco | T
Attribute rangefinder | camera Image 5

Image Rows 64 640 —
Image Cols 256 486 Image 4

Hor. Field of View 80 20°

Vert. Field of View | 30 20° —
Hor. Angular Res 0.3125 0.0412 Image 3

Vert. Angular Res | 0.4688 0.0312 _
Frame Rate 2Hz 30 Hz image 2

3.6.1 Range Image Adaptive Perception “
In a typical image, the pixels that are actually pro- Image 1

cessed by the adaptive perception algorithm form a fFigure 13: Adaptive Rangefinder Perception.  The
horizontal band that is jagged-edged and of varying processing of five range images is illustrated as the
width. The width of the band decreases if the vehicle vehicle drives through an obstacle course of three
speed increases because adaptive lookahead will movdills.

the window up in the image where a smaller width

projects onto the same groundplane distance. — . .
1. The system performs identically on real images but simulated

The following figure gives a sequence of range imagesones were used here in order to illustrate several points in limited
space.
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Actual perception performance is given in the tables A breakdown of this run is shown in the table below:

below for a series of images of flat terrain. In the table, Taple 3: Stereo Adaptive Perception Performance

the nonadaptive value corresponds to the result (SPARC 20)
obtained by processing all pixels in the ERIM range
image. The adaptive value is the value obtained by our Attribute Nonadaptive Adaptive
range image algorithm: Output Rows 150 78

Table 2: Rangefinder Adaptive Perception

Performance (SPARC 20) O'utput. F:OIS 128 128
Disparities 60 10

Attribute Nonadaptive Adaptive Preprocessing 102 msecs. 41 msecs.
Pixels Processed|16384 75 Correlation 683 msecs. 69 msecs.
Per Image Postprocessing 754 msecs. 74 msecs.
Run Time 0.352 secs 0.022 secs Total Runtime 1539 msecs. 203 msecs.

The results do not scale linearly with pixels processed ] ]

because the adaptive result includes a constant setud Terrain Mapping

time. Nonetheless, the adaptive result is 16 times faster

than the nonadaptive result and if the ERIM sensor This section discusses the motivation behind, and

had higher angular resolution, the improvement would implementation of our highly efficient approach to ter-

be proportionally better. The system uses barely aderain mapping. We discuss methods for elimination of

quate spatial resolution and eliminates redundant meathe need to copy and/or interpolate the data structure

surements and hence achieves minimum throughput. to incorporate incoming new data, methods to com-

3.6.2 Stereo Vision pensate for sensor motion, and methods for the repre-
sentation of terrain shape uncertainty.

The following figure illustrates the operation of .

embedded adaptive stereo on two horizontal baseline?-1 Introduction

input images. These are images of a barren ravine roaq_ . . : .
near CMU taken from inside the ravine. The initial |€'"@in mapping is the process by which surface

input images appear at the left. To the right of these arglescriptions, obtain_ed from diffe_rent vantage points,
the nonadaptively processed disparity and range?'® accumulated into a consistent environmental
images. To the extreme right are the adaptively pro-M°del [22]. In order to provide the rest of the system
cessed disparity and range images. The disparityW'th a single, coherent, uniform density data structure
images are shown to demonstrate the spurious matche@® transform images into a regularly-spaced cartesian
which are caused by incorrectly chosen extrema in thed"d Icalled aCartesian Elevation Map (CEM) or
correlation versus disparity curves. Simply amap.

4.1.1 Problem

Input Images Nonadaptive Adaptive

Disparity

Disparity
-

In our early attempts to map terrain for a fast moving
outdoor vehicle, we encountered severe computational
inefficiency problems for several reasons:

* The treatment of the motion of the vehicle through

the environmental model necessitated a physical
shift of data that was very expensive.

* Interpolation of the values of unknown cells from
their neighbours was very expensive.

» Massive distortions of reality due to sensor motion
were introduced as the vehicle speed increased.

4.1.2 Solution

Figure 14: Adaptive Horizontal Baseline Stereo
The incorrect disparities due to incorrect matches are
cleaned up with an efficient filter.

We have developed methods to manage these prob-
lems that include:

A special terrain map data structure and access
routines.

* Real-time methods for processing sensor data.
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4.2 Preliminaries

4.2.1 Terminology

In the map, each cell encodes

fixed coordinate system called the navigation coordi-
nate system with respect to which the vehicle moves.
Individual elevation buckets in a terrain map are called
cellsto distinguish them from range imapgixels.

4.2.2 Subproblems

Once we have implemented a wrapping terrain map
data structure, we will face a new problem in distin-
guishing data from two different regions of space that
happen to fall into the same cell. We will be able to
manage this problem through the introduction of a
new data field - the “age” of a cell.

4.2.3 Assumptions

15

account for the relative motion between the vehicle
and the terrain.

4.3.1 2D FIFO Queue

where the z coordi-
nate is unique for any pair i,j and is referenced to some

Our solution to this problem is a classical one from
computer science - the FIFO queue. A simple array
accessed with modulo arithmetic sufficeddgically

scroll the map as the vehicle moves physically
wrapping aroundin memory. As in all FIFOs, the
gqueue size must be chosen to exceed the worst case
amount of memory required.

Let the rows and columns of the terrain map be
aligned with the axegx,y) of the navigation frame
and be divided into cells of resolutialx  kly . Let
the map width and height b&y amtl  respectively.
The indices into the array are determined by modulo

arithmetic as follows:
yo
rem
0
- “ = 2% y)

mﬂ i

X
remD-—

|

Under some circumstances, natural outdoor terrain is

well approximated by a surface expressed as z = f(x,y)

where the z axis is aligned with the local gravity vec-
tor. An important exception to this assumption is trees

and other large vegetation. We will assume that either

we operate in barren terrain or that we can safely fill in
the space beneath branches in our models. Thus, th
use of a terrain map normally means thataHe2 D
world assumptionis being adopted.

4.2.4 Design

Our implementation includes the following elements:

A 2D ring-buffer implementation of a terrain map
that accommodates vehicle motion through mod-
ulo arithmetic indexing.

« Methods for processing perceptual data that never
require copying, traversal, or interpolation of the
terrain map.

« Straightforward methods to compensate incoming
geometry for camera motion.

4.2.5 Implications

Before these methods were first adopted, over half of
our processor time was consumed in simply managing
the terrain map. That is, map management was more

expensive than perception and planning combined.
After they were adopted, the cost of terrain map man-
agement became so small that it was insignificant.

4.3 Wrappable Map

Using 30 meters of lookahead in planning, 1/6 meter
resolution, and 20 bytes of memory per map cell, over
1/2 megabyte of memory is required to store a typical
map. If this map is stored as a physically coherent
block of memory, it must be physically shifted and

copied after the acquisition of each image in order to

-y —>

[m} dy
dx

VLX

Figure 15: Wrappable Map Indexing. Using modular
arithmetic, all of 2D space maps, with wraparound
into a finite map.

e

I —>

The operator x] is the least integer function and
rem( % y) is the floating point remainder function.

The operation of the technique when applied to three
successive images is indicated below or both a physi-
cally scrolling and a wrappable map data structure.

Third
Image

Second

First Image

Image

] L :
L T—\ Scrolling
— / Map
- T/
1 Wrappable
Map
A

Figure 16: Wrappable Terrain Map . Data remains
in the map until it is overwritten by incoming data
from somewhere else that happens to fall in the
same place in memory.
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4.3.2 Cell Tags 4.4.2 Pose History and Lookup

This approach creates new problems. The mappingWe remove this distortion of range images is removed
from world coordinates to map indices is multiply by maintaining a history of vehicle poses sampled at
defined and therefore the inverse mapping is not aregular intervals for the last few minutes of execution.
function. In mathematical terms, the coordinate trans-When a pixel is processed, we search the vehicle pose
form is notonto. FIFO for the precise vehicle position at which each

An infinity of points in global coordinates correspond "ange pixel was measured.
to a single cell in the map, so remnants of images of4 5 Interpolation

arbitrary age may remain in the map indefinitely. Sup- ™
pose the elevation at the point (15, 25) is needed anGrye terrain map is not interpolated at all because inter-
the map is 10 by 10. Then the point (5, 15) may also be P P

) . polation requires a complete traversal which is too
in the map. A query for the elevation at (15, 25) may expensive to perform. Instead, the responsibility for
get the elevation at (5, 15) instead.

interpolation is left with the users of the map.
We manage this problem in a very simple way.
Although all data remains in the map until it is over-

written, each entry is tagged with the distance that thegpatial interpolation of the entire map is wasteful
vehicle had travelled since the start of the mission atpecause vehicle maneuverability constraints may pre-
the time the pixel was measured. The interface rou-vent many places from being reachable. Hence, the
tines then perform two important hidden functions:  data in such regions is not necessary at all and interpo-
« If the tag of the last update is too old, the interface lating there is a waste of resources.
routines report the cell as empty. This makes it
impossible for old data to poke through the holes
in new data. _ _ o Note that occlusion is inevitable in rough terrain, so
* When the tag of new incoming data is significantly ~spatial interpolation can never succeed fully without

different from the one in the cell, it indicates wrap- — njystified and harmful smoothness assumptions.
around, so the statistical accumulators in the cell

are first cleared. This ensures that two physically 4.5.3 Temporal State Interpolation
distinct regions of space are not confused and

4.5.1 Impact of Vehicle Maneuverability

4.5.2 Impact of Occlusion

merged together. We will see later that the path plannaterpolates
) ) vehicle state in timmstead of interpolating the map in
4.4 Sensor Motion Compensation space. Further, the assessment of hazards is based on a

) ) ) ) _time signal which may or may not be known at a par-
By the time an image is received by the perceptionticular point in time. The system is robust by design to
system, the vehicle may have moved a considerableynknown signal values and, as a by-product of its pro-
distance since the image was acquired. So, the processing, computes an assessment of how much geome-

cessing of the geometry in the image must account foriry is actually unknown and reacts accordingly.
the exact position of the vehiclkehen the image was

taken 4.6 Errors and Uncertainty

Further, some sensors such as scanning laser ranges . : . .
finders may require significant time to scan the Iaseﬁ‘:’ractlcal solutions require methods to deal with both

beam over the environment. In the worst case, there issystematic and ran_dom error sources that_ corrupt the
a distinct vehicle pose associated with each pixel in ancoming data and its eventual representation.

ladar image. If this motion is not accounted for, the 4.6.1 Image Registration

terrain maps computed from images will be grossly in

error. A simple image registration algorithm is used in situa-
tions where edge artifacts are introduced by various
4.4.1 Smear and Offset forms of position and range sensor errors. The basic

If mechanism is to compute and remove the average ele-

The worst case is a high angular velocity trn. vation deviation between the overlapping regions of
rangefinder scanning takes about 0.5 secs and the vehi- pping reg

cle is travelling at 6 mph and turning sharply, its angu- consecutive images.

lar velocity can be as high as 1 rad/sec, so an obstacl€urrently, only the elevatiory, coordinate is matched
can be smeared by 30n a rangefinder image at high and this seems to work best in practice. When the z
speed. Similarly, if the input latency is 0.5 secs and it deviation of two consecutive images is computed, it is
is not accounted for, objects will also be shifted by applied to all incoming geometry samples in order to
30° in a rangefinder image at high speed. Of course,remove the mismatch error.

the range to an object will also be overestimated by the

distance travelled in 1 second.
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4.6.2 Elevation Uncertainty

After the mean mismatch error is removed, there are D XX H Xy Hx
still random errors in the elevation data. In order to S= X

> 2 | fad DYXS Yy Sy
represent the variation in geometry in a single map cell
and to improve signal to noise ratioscatter matrix dYxyzy yz

is computed [28] incrementally as each new range
pixel is merged into the map. The scatter matrix is generated by the path planner.

defined as: 4.7 Results
The advantage of this incremental approach is that the

mean and standard deviation of the evolving 3D distri- RANGER has been integrated with a stereo vision sys-
bution is available at any point in time from some sim- tem at the Jet Propulsion Laboratory [41] on a

ple formulas. Specifically, the deviation in z is useful ymmMmwy. The following figure shows a short auton-
for computing the uncertainty in the hazard estimates

ravine

ravine

(@) (d)

Figure 17: A short cross country excursion. (a) shows a sequence of range images from a stereo vision system
mounted on a HMMWYV vehicle. (c) shows a sequence of intensity images from one of the cameras. (b) and (d)
show an overhead view of an elevation map that was generated.

omous excursion along a dirt road bounded by treesf Path P|anning

and bushes on the right and a ravine on the left. The

sequence of images to the left are the stereo rangerhis section discusses the motivation behind, and the

images. To the right are intensity images of the scengmplementation of our predictive control approach to

corresponding to the range images. trajectory representation, generation and search. We

The images are positioned in correspondence withwill call the collection of these three capabilitigesth

their associated position in the terrain map. The terrainplanning in our context.

map, drawn in the center, is rendered with intensity oyr approach will be a departure from precedent that

proportional to elevation. The path followed is drawn formylates the classical planning problem of deciding

leading to the position of the vehicle near the end of yhere to go largely in terms pfedictive contral This

the run. The run terminates at the end of the road. Twoapproach will have advantages whenever speed is high

distinct obstacle avoidance maneuvers occur. The firstenoygh for dynamics to matter or when nonholonomic

is a left turn to avoid a large tree and the second is anotion constraints are operative. Our approach is sim-

recovery right turn to prevent falling into the ravine.  jjar to the approach to cluttered environment planning
adopted in [15] and it echoes earlier work presenting a
duality between feedforward control and deliberative
planning [46].
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5.1 Introduction 5.2 Preliminaries

The local intelligent mobility problem can be charac- Before proceeding to describe our technique, a few

terized in terms of a search of the immediately visible necessary terms will be defined.

environment, scanning for hazards, and seeking a goag 2 1 Terminol

while simultaneously avoiding any hazards that =" erminology

appear. Regardless of many other design variables, alive will use a single point on the vehicle calledrefe

or part of the local environment is typically searched. erence pointto describe its motion. A spatial descrip-

5.1.1 Problem tion of phe continuous sequence of positions aqhieved
or considered will be calledmath, and when the time

Our initial attempts to search trajectories were dimension is added,teajectory.

founded on classical C-space techniques [40]. These ) - _

attempts were very slow, brittle, and inelegant, but 5-2-1.1 Mechanical Feasibility of a Trajectory

:2‘2’ dvitlr?(raefc()alﬁ)l:/\(/:i%go&jj.olrnp?gtr)Igﬁ:lsy work, we encoun- The kinematics constraint is a term used to express
’ the fact that steering mechanisms may be unable to

« computational inefficiency. There was not achieve arbitrarily small curvatures. Any path which
enough time to decide what to do. Conversely, the respects these mechanical limitations of the steering

inefficiency of computations limited vehicle  gystem is said to dénematically feasible
speeds that could be safely achieved.

« command following problem Specific trajecto- The dynamics constraintis a catchall term used to

ries used to avoid obstacles often could not be exe- express the fact that system behavior is governed by
cuted reliably or stably. differential equations. Any trajectory which satisfies

Our computational inefficiency problem was caused g};s set of constraints is said to @gnamically feasi-

by a treatment of vehicle trajectories that was expen--""

sive and often wasteful. Our command following prob- A trajectory ismechanically feasiblef it is both kine-
lem arose from issuing commands to the vehicle thatmatically and dynamically feasible. Such a trajectory
were either wrong or unrealistic. describes a physically achievable motion.

Further, consideration of these unrealistic trajectoriesA trajectory which is safe for the vehicle to execute
in search tended to waste computational resources(i.e free from significant hazards) is calkdinissible
thereby increasing reaction time and aggravating the
first problem of computational inefficiency.

After conducting a study of some related real-time It will be necessary to distinguish several alternate
issues [32], we concluded that classical C-space planforms of trajectory representation. In general, the sys-
ning technigues were ineffective in our domain. A new tem has available to it at any time a space of possible
approach was necessary. commands that it can send to the vehicle controller for
5 1.2 Solution execution. This space of (_:om_man_ds will be_ called the

- command spaceand a point in this space iscam-
Motion planning is a problem involving search. Recall mand vector.

that heuristic search efficiency can be improved by Commands may or may not map direcﬂy onto the
appropriate ordering of constraints because some havgehicle actuators, but when they are expressed directly
more power to limit search than others. Predictive in terms of actuated variables, they sparettteation
control formulation amounts to a constraint ordering space In our case, vehicle commands map more or
heuristic that improves the efficiency of search. The |ess directly onto the speed and steering actuators.

elements of our apr.)roacr.].are:. o When these commands are applied to the vehicle actu-
* We represent trajectoriésiplicitly in terms of the ators, the vehicle kinematics, dynamics, and the
commands that are issued to the vehicle actuators, mechanics of terrain following cause it to traverse a

and ... ) . . i unigue trajectory. We can represent this trajectory in
* The corresponding spatial trajectory is computed terms of the time evolution of a vector quantity called

from a highly accurate state space vehicle model ,q \ehiclestate vectorwhich spans an abstrastate
that guarantees mechanical feasibility by construc- space '

tion.
Through this technique we completely bypass many of Nominally, the state vector includes the position and
g 9 P y byp y orientation of the vehicle body, and the positions of

the difficulties of trajectory generation and search for X . :
J Y 9 any articulations. Depending on the order of the sys-

nonholonomic vehicles with real actuator response d ics. it will also include time derivati
characteristics. tem dynamics, it will also include time derivatives.

If time dependence is removed from the description by

5.2.1.2 Representations and Spaces
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representing only the geometry of the motion and time 5.2.1.6 Command Space Methods
derivatives are eliminated from the description, the

resulting description turns out to becanfiguration The command space described earlier represents the
space(C-space). space of alternative commands that the vehicle can

receive. Such commands can always be executed in
5.2.1.3 Command Versus Response the sense that a legitimate, unique, computable

s . response exists for all commands - although the
A distinction which is independent from representa- response may not follow the command closely.
tion is the distinction betweesommandandresponse

The first is a specification of requested motion ;"M > : X
whereas the second is the actual response to th fa|'rly tnwal_whereas it requires some work to ensure
request. The degree to which these two agree is ondhat itis admissible.

measure of the fidelity of control that has been Command space methods, like event based methods,

In this case, the determination of trajectory feasibility

achieved. require aforward model that computes the C-space
_ trajectory that corresponds to the chosen command
5.2.1.4 Duality of States and Events trajectory. Both forms of model are indicated below.

Current
State

New

It will be useful to distinguish two approaches to

dynamic system modeling that are analogous to the
duality between actions and states that has been well cgmmand
discussed in the Al literature [25].

In a state based representatiosystem motion is
viewed as a series of states that are altered by events.
In anevent based representatiathe state of the sys-
tem is derived implicitly from its initial state and all
events that have occurred up to a particular point.

While the choice of one representation over another
does not affect the capability for expression, it does
affect the relative ease with which certain properties
are represented and reasoned about.

—

Current
State

Command

i

Figure 18: Forward and Inverse Models . These
have analogous definitions in robot manipulator

5.2.1.5 C-Space Methods dynamics.

Robot planning has commonly used an abstractions'z'2 Subproblems

known asconfiguration space (C-space) [40] - @ 5 7 1 Trajectory Generation Problem
space spanned by any set of parameters that uniquely
describe the configuration of the robot. The command following problem arises either because

admissibility (safety) is fairly trivial in C space but controller performance is inadequate. If we choose to

. . _call the predicament thteajectory generation prob-
C-space methods, like state based methods, require P J v P

inverse modelthat computes the command trajectory - ) ] ) ]

h del b v i dandi vehicle limitations that amount to very strong con-
Such a model cannot be easily inverted and it may Nolgyaints on the feasibility of arbitrary trajectories
be invertible at all for an arbitrary C-space curve.

. o © ! .= expressed in configuration space. Such constraints
While C-space planning is a powerful paradigm, it is b 9 P

: ) : include:
not an effective technique in problems where the

model is difficult to invert. Such situations include *actuator and plant kinematic and dynamic limits in
cases where the system: the form of braking and steering maneuverability.

requires a dvnamic modebr » underactuation of the vehicle

L] . . .

require y * processing and communication delays
¢ is nonlinear, or

 is underdetermined (nonholonomic) Consider a simple situation where the vehicle com-

' mand space consists of spe¥dt) , and curvature
K(t), and the configuration space consists of position
x(1), y(t) and headingp(t) in two dimensions.

1. We will consider any situation where a derivative is required in a |n attempting to generate trajectories that are feasible,

state vector to compute accurate trajectories to be one where fyon . : :
“dynamic” model is required. The need for one increases as spee(%everal difficulties will emerge because the relation-

increases.
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ship between a C-space trajectory and its commandsteering wheel is 3Qoer second.
space equivalent is multivariate, nonlinear, coupled,

and underdetermined. LT
. . 18 [ clothoid]
The equations which map command space to C-space \

in a flat 2D world are given below: 14 \

t
‘% = V(1) cosp(t) X(1) = %o+ [V(1) cos( (D)t
0

[y
o

2
o]

t
% = V(1)siny(t) y(D) = Yo+ [V(Dsin(w(t))dt
0

o
y.

N

t
% = V()k(1) (D) = wo+ [V(OK(Ddt
0

Y coordinate in Meters

'
N

Figure 19: Mapping from Command Space to C i yi
space. These are also the equations of dead —
reckoning.

o

w
e

-14  -10 -6 -2 2 6 10 14

We will call these equations farward model. By ‘o
X coordinate in Meters

contrast, an inverse model would be a solution to the . _ - _

problem of computing the A space curve from the C  Figuré 20: Model Fidelity at 5 m/s speed: The
: . clothoid model correctly accounts for how long

space curve. That is, the inverse model generates i req|ly takes to reverse curvature.

clothoid curves for Ackerman steered vehicles.

The generation of clothoids is a difficult problem that Suppose an obstacle existed to the left of the vehicle
is further aggravated by the need to account forand it issued a hard right command to avoid it. The
dynamics and latencies. Note however, that the for-response to such a command is the clothoid shown, so
ward model provides the inverse correspondence trivi-the vehicle would drive straight into the obstacle -
ally, and in its integral form, is simply the equations of being fundamentally unable to avoid it at the current
dead reckoning. The trajectory generation problem speed.

here is only difficult in one direction. 5.2.3 Design

We have ) .

Our approach to managing these problems is to:

* Invert the order in which the common planning
constraints of feasibility and admissibility are sat-
isfied through a forward modeling approach to tra-
jectory generation.

* Employ an accurate state space model of vehicle
response as the forward model.

o _ It turns out that it is far more efficient to search for an

* unreliablility of obstacle avoidance admissible trajectory in a space of feasible ones than
« instability of path following vice-versa and that sufficiently accurate models of
The perceptual horizon of any vehicle is the maximum vehicle motion are relatively easy to generate in state
range of the perception sensor. At moderate speedspace form.

(<10 mph), it tends to be roughly equal to the worst
case distance it takes for the steering actuator to mov
to its commanded position. An important implication of the approach is that the
When dramatic steering changes are required to avoiddenerated trajectories are mechanically feasible by
a hazard, the navigation system operates almosonstruction While the_lnput commands to the _model
entirely in the regime where curvature is continuously "eSpect only the maximum curvature constraint, the
changing. This observation leads to the conclusion thatoutput state estimate is consistent with the response of
the use of arc rather than clothoid models of Acker- all actuators and the body kinematics of motion over
man steering are incorrect at even moderate speeds. ough terrain.

The following figure indicates accurately the differ- Thus, we have simplified the computation of the corre-
ence between an arc model and a clothoid model ofSPondence between command and response. This sim-
vehicle response to a command to switch from a hardPlé correspondence available through our control

left to a hard right turn. The maximum rate of the formulation combined with high fidelity models intro-
duces the following benefits:

* Reliability: System reliability is enhanced

5.2.2.2 Vehicle Model Fidelity Problem

It is often necessary for the system to understand the
degree to which a particular motion can be accom-
plished. Poor fidelity of this aspect of the vehicle
model means that the system will not understand its
own motion. This in turn will lead to:

e5.2.4 Implications



An Approach to Rough Terrain Autonomous Mobility 21

because dynamic feasibility is inherent in forward assumption that velocity can be considered constant
modeling approaches. for a small period of time.

« Accuracy: Higher fidelity models make it possible Theinput distribution matrix , B, models communi-

to drive close to hazards when necessary and to cation delays and any kinematics that relate command

track paths with low error. space 1o actuation spdce
« Stability: Vehicle control, whether for the purpose b P

of obstacle avoidance or goal-seeking, remains sta- The command vectoru includes vehicle steering and
ble at high speeds. speed commands as well as command signals to any

« Performance Computational complexity of plan-  articulated sensor heads. Generally, alternative com-
ning is reduced because the dynamics constraint is mands can be any time-varying command veaftr

a valuable heuristic to limit search. This reduction P .
in complexity leads to enhanced response times The terrain disturbancag; model the terrain contact

and higher sbeed motion. c_onstrain%. Alternately, an abstract kinem_atic equa-
g P tion of the formg(x) = 0 can be used. Terrain geome-
5.3 Trajectory Representation & try is represented in a terrain map data structure that is
Generation generated by the perception system.

The state vector x includes the vehicle steering,
We will represent response trajectories implicitly in speed, and the state of motion of the vehicle body and
terms of the commands to which they correspond.any articulated sensor heads. It includes the 3D posi-
When necessary, we will use a forward model to gen-tion and 3-axis orientation of the vehicle body as well
erate the response from the command through a proas its linear and angular velocity.

cess classically calleidedforward. The output vector y can be any function of both state
The process which converts a command space trajecand inputs. It will be discussed later in the context of
tory to a state space trajectory is the solution of a con-obstacle avoidance.

strained multidimensional differential equation which
we will call thestate space model

5.3.1 Linear State Space Model The actual system model used is nonlinear. Funda-
mentally, this is because the actuators move with the

For a linear system the conventional state space vehicle, so the transformation from command space to

model of a system is the following two matrix equa- state space depends on vehicle attitude and hence on

5.3.2 Nonlinear State Space Model

tions: state.
dx=Ax+Bu ac O‘delayed O‘response
(F A u
y=Cx+Du

Note in particular thathe first equation is a differen-
tial one This kind of model is known classically as a
multivariate state space systemlt can be mapped
onto our problem as follows. Let us assume the system
is linear and describe the function of the matrices and

vectors. The system of equations can be represented in W W
a block diagram as follows: -_, —_

Figure 22: Forward model . This model is used to
predict vehicle state given actuator commands (q..,
V.). The output state contains rate of heading (|33,
Figure 21: Multivariate Linear System Block vehicle velocity(V), heading(y), pitch(8), roli(€) and
Diagram . This model can be used to represent a position (x, ¥, 2)).

vehicle driving over terrain.

The system dynamics matrix A, models actuator
constraints, kinematics, and dynamics, and body 1. For example, it would be the inverse Jacobian in resolved-rate
dynamics. It propagates the state of the vehicle for_control that maps cartesian inputs onto joint velocities.

. . . 2. Of course, at sufficiently high speeds, the vehicle need not remain
ward in time. Our system model is based on the iy contact with theterrain,y ghsp



22 Kelly and Stentz

The nonlinear model computes trajectories resulting alternatives which span the entire set of commands
from vehicle commands. The inputs to the model areavailable for the vehicle at some gross resolution.
the steering angle, , (corresponding to the desiredThese are then converted to response state space and C
path curvature), and throttl¥ . , (corresponding to space trajectories through feedforward and subse-
desired speed) and an elevation map of the terrainquently evaluated by both obstacle detection and goal
ahead of the vehicle. seeking.

The commands are first delayed through a FIFO queudror a rigid-bodied vehicle moving in three dimen-
to account for communications and processing andsional space, the C-space can be considered to be a
passed through a model of the actuator dynamics. Insubset of state space - that is, the coordinates of the
the case of the throttle (speed) the influence the gravi-vehicle control point expressed as (x, y, z, roll, pitch,
tational load is so significant that it must be modeled. yaw). The command space for a conventional automo-
The predicted steer angle responsg onse is passecp"e is spanned by th.e variables of speed and path cur-
through a model of the steering column to predict the vature and these variables map more or less directly to
actual curvaturex , of the path traversed. The producttN€ controls of throttle and steering.

of curvature and speed provides angular veloBity .5.4.1 Feedforward

The linear velocityv is converted to world coordi-

nates to generate the components of vehicle velocityBy the definition of state, the system can be projected

along the world frame axes and then integrated to pro-arbitrarily far forward in time based only on the com-
vide position(x, y, 2) . mand signal, terrain contact constraint, and time.

Hence, the system model constitutestate space

Pitch® and rollp are determined by placing the vehi- simulator as shown below.

cle wheels over the terrain map and allowing the vehi- . .
cle to settle. Heading  is computed by integrating the Terrain I/cle;ram
angular velocity after converting coordinates to the Map P

world frame.

5.3.3 State Space Simulator
Thus, the basic simulation loop can be written as fol-
lows. At each time step:

Forward Inverse

* simulate suspension - determine attitude from ter- Model Model
rain geometry and position
« simulate propulsion - determine new speed from

command, state, and attitude Figure 23: State Space Simulator . Because a
* simulate steering - determine angular velocity state spacé model retains state, it cah be used to

from steering and speed project motion that corresponds to a command
« simulate body - dead reckon from linear and angu-  arbitrarily far into the future. The inverse model on
lar velocity and time step the right is never explicitly evaluated.

The positions of distinguished points on the body,
calledreference points are maintained in navigation o )
coordinates throughout the simulation. The suspension * satisfies the model equations/dt = A x + B u )
model that is used is based on assumptions of rigid ter- * maintains contact with rigid terraig(k) = 0)
rain and suspension and it computes the attitude of thgs called thdeasible set

vehicle which is consistent with terrain contact. The constraints are satisfied by construction through
Propulsion is modeled as a proportional controller feedforward of the system dynamics and altering the
with gravity compensation. The steering model is vehicle attitude at each step in the simulation to
based on an angular velocity limit on the steering enforce terrain contact.

wheel and the bicycle model of steering kinematics. . .

Body dynamics are simulated using the 3D dead reck->-4-2 Predictive Control vs. C Space Planning

oning equations. The differences between classical C space planning
. and command space planning are indicated in the fol-
5.4 Trajectory Search lowing figure. On the left of the figure, the search of
\A}:éanning alternatives is expressed danfiguration
space A commonly invoked assumption is the expres-
sion of obstacles as discrete points in this space. When
a clear region or set of points has been found in front
) of the vehicle, darajectory generation algorithm is
The system considers a number of command spacenyoked to map C space onto the vehicle command

The set of trajectorieg(t) which:

The basic search process used is generate and test.
employ this technique while conductingcammand
space searclover the feasible set of response trajecto-
ries.
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space and these commands are sent to the hardware ftie 3.1%.

execution. S097% of the C-space of the vehicle is infeasible
On the right of the figure is thpredictive control the limited maneuverability of the vehicle is modeled.
approach. Note first that the direction of the arrows areThe maneuverability is limited by both the nonzero
reversed. The inverse system model is never evaluatedninimum turn radius and the steering actuator
explicitly. The system simply remembers the corre- response. Note that occupancy of C-space does not
spondence of command to response trajectories andccount for higher level dynamics. There are severe
inverts this list of ordered pairs. constraints on the ability to “connect the dots” in these

It is clear from the figure that state space is, in fact, a9r@Phs which aggravate the situation further.
superset of configuration space - including all C space
variables plus any derivatives that appear in the system

dynamic model. 0*PI/8 PI/16 1*PI/8 PI/16
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Figure 24: Planning Through Predictive Control. X Coordinate X Coordinate
Obstacles are most naturally represented in C
space but generating commands that avoid them 4*Pl/8  PI/16 5*PI/g PI/16
involves a_ difficult ~ inverse model. Instead, a 20 20
representative number of command space g b il £
alternatives are transformed, through feedforward, c s R <
to state space, and then to C space and then g10 s10
checked for intersection with obstacles. 3 3]
>
>-
0 0
5.5 Results -10 0 10 -10 0 10
X Coordinate X Coordinate

While it is difficult to compute the shapes of regions in  Figure 25! Ackerman Steer ~Configuration
configuration space in closed form, it is relatively easy Spggg‘/- Fc;r a Sharpf.t“m o the Iefttor_ngfht at 4'f5thm/
to write a computer program to enumerate a}ll possibil- \s,éhide"a?e noet fcégr;ilt%gra 1on points n front ot the
ities and fill in boxes in a discrete grid which repre-

sents C-space at reduced resolution. The three . .

dimensional C-space for an Ackerman steer vehicle® GOal Arbitration

for an impulse turn at 4.5 m/s was generated by this_ ) ) o )
forward technique. This section discusses the motivation behind, and the

implementation of our optimal control approach to
goal arbitration. The proposed approach is similar in
formulation to work in classical optimal control [37]

The results are plotted below in heading slices of 1/16
of a revolution. Symmetry generates mirror images

along the heading axis, so two slices are plotted ONin that it seeks to determine control signals that will

each graph. The maneuver is a turn fr_om ZETO CUVA, 1y satisfy constraints and optimize a performance
ture to the maximum issued at time t = 0. A dot at a riterion

particular point (X,y) in any graph indicates that the

heading of the slice is obtainable at that position. § 1 |Introduction

There are 16 slices in total of which 6 are completely

empty (i.e the vehicle cannot turn around completely |n addition to trajectory search, the local intelligent
in 20 meters). The total percent occupancy of C-spacemobility problem involves an aspect of goal arbitra-
is the ratio of the total occupied cells to the total num- tjon. For example, given a goal path to follow and the
ber of cells. This can be computed from the figure to simultaneous goal of avoiding obstacles, it is likely
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and frequently the case that these goals will conflict. rain contact, followed by ballistic motion, fol-
More plainly, an obstacle may appear directly on the lowed by catastrophic collision.

goal path. A path isadmissibleif it would be safe for the vehicle

We will discuss here our mechanism for dealing with to traverse it.

this conflict as well as the manner in which candidate g 5 » Design

trajectories are ranked for both their obstacle avoid-

ance and goal-seeking potential. Our basic approach is to notice that the mobility prob-

6.1.1 Problem lem can be expressed in the familiar terms _of optimal
T control theory and to then apply the associated tech-

Let us define thetrategic goalas some path or posi- hiques and abstractions of this theory.

tion to be followed or achieved and tletical goalas  Architecturally, the tactical control layer consists of

that of simultaneously avoiding all hazardous condi- Coexisting hazard avoidance and goa| seeking behav-

tions. If both goals are implemented as independentiors that are managed by an arbiter to avoid conflict as

behaviors they will naturally disagree on the com- shown below:

mands to the actuators. This legitimate and inevitable

conflict will be called theactuator contention prob-

lem.

6.1.2 Solution

Solutions to this problem must decide how to either:

« Merge both commands together to generate a
third.

» Give one behavior priority over the other.
Regardless of how this is done, the general technique

Set Pointsi ; States
involved isarbitration . Several approaches have been
used ranging from subsumption of one behavior in Figure 26: Optimal Control Arbitration . The

favor of another [8] to consensus-building and voting tactical control layer consists of a trajectory
techniques [47]. generator (not shown), two purposeful behaviors,
and an arbiter to coordinate them.

A spectrum of approaches exist with extremes thatI ¢ h ki d/ id hen th
correspond roughly to bureaucracy and democracy." fact, the seeking and/or avoidance occur when the

Our approach is somewhat intermediate between thes@'Pitér chooses an alternative and sends it to the con-
extremes. It recognizes that: trol layer. The other two entities simply rank the can-

i ) ] didate trajectories that are given to them.
» Some behaviors, like obstacle avoidance, must be o
given absolute veto power over unsafe trajectories. 6.2.3 Implications
« Others, like goal seeking can profitably optimize
performance through search and ranking of the
remaining alternative trajectories.

Our approach has the advantage that some limited
degree of local intelligent behavior emerges naturally.
For example, wall or other extended feature following

6.2 Preliminaries emerges because optimization will keep the vehicle
close to an obstacle between it and the goal. However,
6.2.1 Terminology once a break in the extended feature appears, the sys-

tem will immediately seize the opportunity to reac-

Any number of potential hazardous situations may quire the goal path.

exist along a trajectory. Some of these hazards include:

« discrete obstaclegike rocks, holes, and trees that 6.3 Arbitration
would damage the vehicle through collision. ] ) )

« hazardous configurationslike extreme pitch and ~ Note that the satisfaction of either goal may be
roll angles that would damage the vehicle through €xpressed as a constraint or as some utility function to

tipover. be optimized. For example, we could optimize safety
« hazardous statedike extreme lateral or longitudi- by choosing the safest overall candidate trajectory or

nal acceleration which could damage the vehicle we might rigidly enforce a path to follow as a con-

through tipover or loss of traction and control. straint. We believe the reverse is more appropriate.

« traction traps like wheel sized holes, high center- That is, hazard avoidance is a constraint and goal seek-
ing terrain, and regions of ice or slippery terrain ing is to be optimized.
that would prevent further vehicle motion. Hence, the task of safe navigation can be expressed in

- catastrophic fallslike ravines and cliffs that could  |5ssical optimization terms. The navigator must
damage the vehicle through complete loss of ter- '
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achieve some useful goal while simultaneously satis-Further, let us define goal functional, L[ x;(t)], to be

fying the constraint of avoiding damage to the vehicle an arbitrary expression of how well a particular trajec-
or its payload and the constraints of limited vehicle tory follows the goal trajectory. If we use the inte-
maneuverability. grated length of the vector difference, we might write:

6:3.1 Feasible Set LIX (110 XgoaO

We will express this optimal control problem as fol- .
lows. Letu;(t) be a candidate command signal. The The optimal control problem can now be represented

response to this candidate command, dengi@y is  as follows:
generated from the nonlinear system dynamics and Minimize:L[x;(t)]=I[xi(t)-Xgoa(®) Il Goal Proximity

terrain following models: (1)
x=f(xu)  System Dynamics Subject to:x = f(x,u) System Dynamics
gx)=0 Terrain Following a(x)=0  Terrain Following
Let the set of mechanically feasible trajectories, y=h(x) Hazard Kinematics

denotedXs, be those which satisfy the above two
equations. The response trajectory is a member of this
feasible set

IV| <Vsafe Safety Constraint

Figure 27: Optimal Control Arbitration . Driving
safely toward a goal can be formulated in terms of
optimizing a functional over a set of trajectories that
Xi(t) OX¢ Feasibility are both safe and mechanically feasible.

Note that the space of possible commands to issue i :
continuous. Rather than deal with variational calculus,::G'4 Adaptive Regard

we will sample the feasible set of trajectories at SOMe pjthough predictive control manages the complexity

practical resolution that ensures adequate coverage ogf trajectory search, it does nothing to minimize the

the set and search the alternatives exhaustively. cost of evaluating a particular trajectory for its safety

6.3.2 Output Vector and/or goal seeking potential. Efficient trajectory eval-
uation is the subject of this section.

We minimize wasted computation in trajectory evalua-

tion by selectively processing only the data that mat-

ters along the trajectory in the environmental model.

Known here asdaptive regard, the technique is the

analog of our adaptive approach to perception in that it

minimizes references to the environmental model just
Yy = h(x) Hazard Kinematics as adaptive perception minimizes references to

images.

Let us define the safety threshold veciQise as the g 4 1 petection Zone

constant vector whose elements are the maximum safe

values of each element of the hazard vector. A trajec-The immediately material information forms a region

The hazard vector, y, consists of rankings of every
point along a response trajectory for its relative safety
in terms of several of the hazard conditions mentioned
earlier. By and large, safety can be determined kine-
matically from the state and the terrain map. Each ele-
ment of the vector corresponds to a different hazard.

tory is safe when: in the environmental model which we call ttietec-
tion zone - that region of the near environment which
V| <Ysafe Safety the vehicle can reach but is not already committed to

) ) travelling and about which an immediate decision of
Let the set of safe trajectories, denodeg be those

whose associated hazard vectors satisfy the above
equation. Such a response trajectory is a member of
theadmissible set

Xi(t) OXq Admissibility

6.3.3 Optimal Control Problem

While there are many potential forms of strategic goal
that might be assigned to the vehicle, let us assume,
without loss of generality, th_atgi)al trajectory, Xqoaj,

of some form has been assigned.
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traversability is needed to continue moving. avoidance significantly underestimates the distance
required to react for two reasons.

* Position estimate input latency implies that the
vehicle is actually much closer to an obstacle than
the last available position measurement suggests.

» Command output latency and actuator dynamics
imply that it actually takes much more distance to

Horizon
Zone

Detec

ton Wrece turn than would be expected from instantaneous
Zone response models.
Dea A model of these latencies is accomplished with the
Zone following mechanisms:
« all input and output is time-stamped
e all input and output is stored in internal FIFO
gueues
« all sensor latencies are modeled
) _ _ » all actuator latencies are modeled
E\Ig:@ Zfér%eiél%%gor\]/ezrﬁgli F(r;]ra?]fllj\'/g? '\gans?l\lfg'tﬁr' of These FIFO queues do not introduce artificial delay -
ground is covered. The detection zone is the region they are used tmodelthe delays which already exist
which must be verified to be safe in the current in the system.

computational cycle to prevent collisions. )
6.5 Hazard Detection

6.4.2 Remaining Zones .
The process of hazard detection is the process of com-

Thus, in our search for hazards genotlook for haz- puting the hazard output vector. The hazard vector
ards in the following regions: moves over time in hazard spacein response to the
« free zone where the vehicle cannot go movement over time of the vehicle state vector in state

space. That is, there is a hazard trajecygfty which
corresponds to each state trajectq(t), which in turn
corresponds to each command signal veai(h),.

Once the vehicle trajectory(t) is known, a set of haz-
ard models is used to compute its relative safety with
respect to the associated terrain information in the
environmental model.

« dead zone where the vehicle is committed to go
« horizon zone where the decision can be delayed

The precise location of the detection zone is obtained
trivially from a time window into the response trajec-
tories computed by command feedforward in the state
space model.

6.4.3 PI ing Wind
anning Window 6.5.1 Types of Hazards

The planning window planning is analogous to the
range windowin perception. It confines the search for
hazards to the detection zone. One of the highest leve . . . L
system requirements is to attempt to maintain continu-'S @ function of _the vehicle state, the terrain on which it
ous motion, so adaptive regard is based on turningrests, and the input commands. Some typical hazards
maneuvers (which consume more space) rather thar'®:

braking maneuvers. * Tipover: The movement of the weight vector out-

An impulse turn is a turn from zero curvature to the side of the support polygon formed from the wheel

maximum allowed curvature. The planning window is contact points.
computed by predicting the distance required to exe- * tl?‘%dtyer?;wsmn: Collision of the underbody with
cute an impulse turn at the current speed with the best .

available estimates of the output latencies that will * Dl_screted_Obtstacles Regions of locally high ter-
apply. rain gradient.

* Unknown Terrain: Regions that are occluded,
Precision in computation of the planning window  outside the field of view of the sensors, unknown
requires careful treatment of time. The planning win-  from poor measurement accuracy or resolution, or
dow is measured from the position where the vehicle devoid of matter (such as the region beyond a cliff
will be when the steering actuator starts moving. edge).

6.4.4 Real-Time Latency Modeling 6.5.2 Hazard Signals

The planning problem has latency concerns similar toAS an example of a hazard signal, consider expressing

those of perception. Without latency models, obstacle Proximity to tipover in terms of excessive pitch or roll
angle. Let the elevations of the front and rear points on

Each element of the hazard vector corresponds to a
plifferent hazardous condition. Each scalar haygtyl
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the vehicle longitudinal axes after enforcing terrain current vehicle position.
contact bez;(t) and,(t) . The pitch tipover hazard
signal is then given by:

ypitch(t) = ‘Zf(t)_zr(t)‘/l-
The other three hazards above are computed from the
volume under the belly, the local terrain gradient, and

the total trajectory length for which the terrain is
unknown respectively.

6.5.3 Trajectory Safety

In order to assess the safety of an entire trajectory, it is W w K
- . . . cmd err cmd
necessary to integrate out the time dimension and +
merge all of the predictions of different hazard types -> A
together. This process generates a holistic estimate of Wres *
the degree of safety expected if the associated com-

mand is executed. Figure 29: Basic Pure Pursuit . A proportional
Although many alternatives for doing this present controller formed on the heading error to acquire a
themselves, we have achieved acceptable performance 90l point at a given lookahead distance.

by ranking the whole trajectory using the worst hazard o

at the worst point in time. The output of this process is H€ading is measured at the center of the rear axle. The
the safety ratings of all trajectories - which is supplied Proportional gaink, is normalized by the lookahead

later to the optimal control arbiter. distanceL . This can be viewed an adaptive element
or, more simply, as a unit conversion from heading
6.6 Goal Seeking error to curvature because the rafig,/L is the aver-

age curvature required to reacquire the path at the goal
The process of goal-seeking starts with the process ofoint.
computing the goal functional. Many techniques for
computing the proximity of two trajectories are possi-
ble, but the one we chose here is a modification of theA few modifications are introduced to adapt pure pur-
classicapure pursuit algorithm. suit for rough terrain. Extremely large tracking errors
The most general form of path-based strategic goal is anust be acceptable to the servo without causing insta-
literal trajectory to follow. Other types of goals such Dility if obstacles are to be avoided robustly. This is
as headings, points, and curvatures, can be extracted d8ade possible by two devices indicated in the follow-
trivial subcases of the more general path trackinging figure.

problem.
6.6.1 Basic Pure Pursuit m\

6.6.2 Rough Terrain Pure Pursuit

The pure pursuit algorithm [48] is a proportional con- Adaptive /" | Ermor (%1, y1)
troller formed on the heading error computed from the Lookahead - ! Distance
current heading and the heading derived from the cur- Goal v Lo Ppath

rent vehicle position andgoal point on the path. )?3',”}53)

The goal point is computed by finding the point on the
path which is a predetermined distanice  from the

’ s .
.-~ Nonadaptive

ol Lookahead Closest
Lys Point
(X9, ¥5)

Figure 30: Adaptive Pure Pursuit . The point
closest to the vehicle on the path replaces the
vehicle position.

The system maintains a running estimate of the point
on the path which is closest to the current vehicle posi-
tion in order to avoid an expensive search of the entire
path each iteration. This closest point is used instead

1. The arbiter can easily integrate the real-time inputs of a human ; it i _
supervisor through this mechanism. of the current vehicle position as the origin of the loo
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kahead vector. too high a gain.

The lookahead distance is adaptive to the currentThe goal functional is generated by evaluating, at each
tracking error - increasing as the error increases agoint on each candidate trajectory, the distance from
indicated in the accompanying code fragment: the vehicle to the goal point. The minimum distance
over the entire trajectory is the functional value associ-

min = HUGE; way_pt = close; ated with it

while(L23 < L12 + lookahead)

{ The following figure shows how accurate models of
response stabilizes goal seeking.

x3 = path_x[way_pt];
y3 = path_y[way_pt];

if(L13 <min)
{
close = way_pt;
}
way_pt++; .
} y-P Arc Model Eﬂlgég?'d
Unstable
way_pt = close; ( ) (Stable)

while(L13 < L12 + lookahead)

x3 = path_x[way_pt];
y3 = path_y[way_pt];

= . Figure 32: Feedforward Pure Pursuit . Inaccurate
goal_pt = way_pt; models of response lead to servo instability. Note that
} the vehicle is in a sharp left turn and happens to have

zero heading at t=0.
Figure 31: Adaptive Pure Pursuit Algorithm . The o )
lookahead is adapted to allow for large tracking In the above situation, if an arc-based model were

errors when obstacles are avoided. used, the system would issue a hard left command.
The first while loop is responsible for maintaining a owever, the more accurate clothoid model reveals

running record of the close point, point 2. It searches @t such a command would actuallycrease the

through an arc length window which adapts to the pathtracking error leading to even more overcorrgction. A
tracking error. As the error gets larger, this loop will tracker based on a more accurate clothoid model

cause the close point to jump over high curvature would recognize the situation and issue a zero curva-

kinks in the path as they become less relevant at thd!r® command that would correctly acquire the goal at
resolution of the tracking error. the lookahead distance.

The second while loop computes the goal point in an6.7 Results

identical manner. It basically moves point 3 forward

until it falls outside a circle centered at the vehicle In the RANGER navigator, command alternatives are
whose radius is the sum of the error distange andexpressed in terms of constant speed, constant curva-
the nonadaptive lookahead, . ture commands. Several times a second, the optimal
In this way, when an obstacle avoidance maneuvercontrol arbiter cor_1$|ders approximately ten steering
causes significant path error, the algorithm will search @19l€s t0 use during the next control cycle. The for-

to reacquire the path on the other side of the obstacl@Vard model simulates the effect of using these steering

instead of causing a return to the front of the obstacle. 219!€s over a short period of time and evaluates each
of the resultant paths. Any steering angles that result

Under normal circumstances when the vehicle is iy paths that go near or through hazardous vehicle con-

tion, the error distance is close to zero, and the adapresyits in a path that is optimal based on several crite-
tive lookahead is the nonadaptive lookahead. Henceyiz is chosen.

the algorithm gracefully degenerates to classical pure

pursuit when obstacle avoidance is not necessary. In the figure below the system issues a left turn com-

mand to avoid a hill to its right. The histograms repre-
6.6.3 Feedforward Pure Pursuit sent the votes for each candidate trajectory (higher

The devices of the previous section account for Obsta_values indicate safer trajectories). The hazards are:

cle avoidance. However, basic pure pursuit also suffers * ROLL: excessive roll
from speed related problems. Instability results from * PITCH: excessive pitch
large tracking errors, too short a lookahead distance or « BODY: collision with the body
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* WHEEL.: collision with the wheels rent actions that is implemented in feedforward mod-

The tactical vote (TACT) is the overall vote of hazard els is an essential capability - at least to the extent that
avoidance. The strategic vote (STRAT) is the goal the system must understand its own motion.

seeking vote.The arbiter chooses the third trajectory7 1 3 Reaction

from the left because this closest to the strategic vote

maxim (straight) while exceeding the threshold for The latency models developed in the paper and the
safety. precision timekeeping that has been incorporated in
the software seem more applicable to the control sys-
tems of fighter aircraft than to autonomous vehicles. It
seems that high-speed navigators nrasson about

/ their ability to respond.
7.2 Conclusions

preferred

path This section presents a short list of conclusions which

seem most significant to the problem and most rele-
vant to the more general problem of autonomous
mobility.

H

Bl

Body Wheell| Tact Strat A modification on a standard architectural model of
robotic systems has been proposed which connects

' ' strategic geometric reasoning to dynamic reactive con-

| | trol in an effective manner when the system under con-

trol exhibits poor command following. The problem is
solved in this intermediate layer between Al and con-

7.2.1 Tactical Control Layer

Roll _Pitch

ki

Figure 33: Optimal Control Arbitration ~.The system trol, between reactive and deliberative approaches.
chooses a steering angle from a set of candidate
trajectories.The histograms represent “votes” for 7.2.2 Adaptive Perception
each candidate trajectory where higher values
indicate preferred trajectories. The throughput problem of autonomous navigation
. can be managed at contemporary speeds by computa-
7 Summary and Conclusions tional stabilization of the sensor sweep and active con-

trol of resolution through intelligent image
This section summarizes our perspectives and conclusubsampling.
sions. . I

7.2.3 Computational Image Stabilization

7.1 Perspectives Adaptive perception techniques which computation-

ally stabilize the vertical field of view provide the best

Our implementation of a tactical control layer implies . . :
a perspective on the need for deliberation and reactiv-Of both worlds. They provide the high throughput nec

t . . " essary for high-speed motion and the wide field of
ity in autonomous vehicles. It seems that both reactiv- :

: . . . . view necessary for rough terrain.

ity and deliberation have their place in our approach to

local intelligent mobility. 7.2.4 Adaptive Regard

7.1.1 Memory In a manner similar to the use of a focus of attention in
From a real-time response point of view, high-speed perception, a focus of attention can be com_puted for
navigators cannot afford the computation ’necessary toObST["’lCIe avoidance that'reflec.ts the capacity of the

- ‘vehicle to react at any given timAdaptive regard
continually process the same scene geometry at suffi-

cientlv hiah resolution. Thus. for high-speed navioa- places a limit on how close a vehicle should look for
y hig . L gn-spe 98- hazards because it cannot react inside of some dis-
tors, the memory involved in the mapping of the

environment is an essential system capabilit tance. Thus, adaptive regard calls for all data inside
y P Y- some lower limit to be ignored and limits are placed
7.1.2 Deliberation on the extent of data processed beyond this minimum

. . , limit by considerations of both minimum planning
For high-speed navigators, models of dynamics takethroughput and range data quality.

the place of models of logical precedence used in Al in
that they limit the states reachable in a small period of 7.2.5 Command Space Search
time from any given state. In such navigators, the

deliberative reasoning about the future impact of cur- Dynamics of many kinds imply that the local planning
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problem is actually relatively easy from the point of ber DACA76-89-C-0014, monitored by the US Army
view of search complexity. The planning “state Topographic Engineering Center) and “Unmanned
space” of the high-speed Ackerman vehicle is degen- Ground Vehicle System” (contract number DAAEQ7-

erate. Ordering heuristics generally optimize search by90-

imposing the most constraining limits first and reduc-
ing the size of the search space as fast as possible. This

C-RO59, monitored by TACOM).

principle is used here because once dynamically infea-Q References

sible paths are eliminated, only a few remaining alter-
natives are spatially distinct enough to warrant ;
consideration.

7.2.6 Dynamic Models )
The incorporation of dynamics models has generated a
local navigation system which remains stable past the 3.
limits beyond which our kinematically modeled sys-
tems became unstable. The use of dynamic models 4.
also makes obstacle avoidance more reliable in general
by imparting to the system a more accurate under- 5.
standing of its ability to respond.

7.2.7 Forward Modeling

Physical dynamics amounts to an overwhelming con-
straint on the maneuverability of a high-speed vehicle.
For a vehicle or operating regime for which classical
path generation based on via points becomes difficult, "
forward modeling has the advantage that generated
trajectories are feasible by construction.

7.2.8 Arbitration

8.

The simultaneous satisfaction of hazard avoidance and
goal seeking can cause contention for the absolute 9.
control of vehicle actuators, and in a practical system,
this contention must be resolved through some arbitra-
tion mechanism. The problems of goal seeking, local

path planning, and hazard avoidance have been unified10.

into an optimal control context. In this context, a func-
tional computed over the feasible set of response tra-
jectories serves as the quantity to be optimized and the

hazard avoidance mechanism specifies the confines of11:

the feasible set.
7.2.9 Hazard Space

In strict mathematical terms, the configuration space
(C-space) of Al planning is a subset of the state space
(S-space) of multivariate control. It is a well-estab-
lished technique to abstract a mobile robot into a point
in six-dimensional position and attitude coordinates.

The significance of hazard space (H-space) is that it 14,

performs the same function for dynamic planning that
C-space performs for kinematic planning.

15.
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...................... baseline

undercarriage clearance
disparity

correct disparity

minimum disparity
maximum disparity

focal length

sensor height

sensor / vehicle nose offset

wheel radius

crossrange coordinate
Institute of Carnegie Mellon University. He received
his B. A. Sc. in Aerospace engineering from Univer-
sity of Toronto in 1984, his B. Sc. in computer science % e
from York University in 1990, and his Masters and z; .. ... front elevation
Ph.D. degrees in robotics from Carnegie Mellon Uni-
versity in 1994 and 1996 respectively. His research
interests include perception, planning, control, simula- 10.2 Alphabetics
tion, and operator interfaces for indoor and outdoor
mobile robots.

Y o downrange coordinate

vertical coordinate

..................... rear elevation

correlation
proportional gain

vehicle wheelbase

Ripay eeeeeeees maximum range

Rijin cveeeereseennns minimum range

S scatter matrix

T oo, time, time interval
Vo, vehicle speed

W vehicle width, swath width

Y oo, groundplane projected range

Y min e ....min groundplane projected range
Y max eeereeeeseeees max groundplane projected range
) (T left camera frame axes

Anthony Stentz is a senior research scientist at the
Robotics Institute of Carnegie Mellon University. He Xg YR right camera frame axes
received his Ph.D. in computer science from Carnegie- .

Mellon University in 1989. He received his M.S. in 10.3 Bold Alphabetics
computer science from CMU in 1984 and his B.S. in f(x,u)
physics from Xavier University of Ohio in 1982. His =

.... nonlinear system dynamics model

research interests include mobile robots, path plan-gX)............. terrain following relationship
ning, computer vision, system architecture, and artifi- h(x)................. hazard model

cial intelligence in the context of fieldworthy robotic y x(t) xi(t)..... state vector, candidate state vector

systems.
Y V.Y(1),Y;i(t) ..... output vector, candidate output vector

Ysafe o eerererenees safety threshold vector
u,u(t),y;(t) ... command vector, candidate cmd vector
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LU terrain disturbance vector
A, system dynamics matrix
B input distribution matrix

Xf ..................... set of mechanically feasible trajectories
Kgeereeeoerreneneens iset of admissable trajectories
[ I goal functional

10.4 Greek Alphabetics

[0 S steer angle

B ...................... angular velocity (z component)
O e normalized disparity

K e curvature

yaw, pixel azimuth, vehicle yaw

vehicle yaw rate

pitch, elevation

dX, AX oo crossrange incremental distance
dy, Ay ............. downrange incremental distance
dz Az ... vertical incremental distance

de, Al ... pitch/elevation increment or error
dy, Ay ........... yaw/azimuth increment or error
Ad change in normalized disparity

11 Appendix B - Glossary

Ackerman steering- a steering mechanism, typical of automobiles,
where the two front wheels turn together.

active vision- an approach to vision which emphasizes the direction
of attention to the relevant parts of the scene.

actuation space- an abstract space consisting of all independent
control inputs to a system. For an automobile, this space is spanne
by steering, brake, and throttle.

adaptive lookahead- any mechanism which adapts sensory looka-
head to the speed and response of the vehicle.

actuator contention problem- the contention of software modules
for the control of actuators.

adaptive scan- an algorithm which attempts to make perceptual
groundplane resolution homogeneous and isotropic.

adaptive sweep an algorithm which projects a focus of attention on
the groundplane into image space.

adaptive perception- an algorithm based on a focus of attention and
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trolled device to follow its commands acceptably well.

command space searchthe technique of searching through spatial

trajectories that are expressed implicitly in command space.

configuration space- any abstract space of variables which com-

pletely determines the positions of all points on a vehicle or mecha-

nism.

crossrange- the horizontal direction transverse to the sensor optical

axis.

curvature - the derivative of heading (or vehicle yaw) with respect

to distance travelled.

disparity - the difference in the position of two corresponding points

in a pair of images.

disparity window - a range of disparities defined by a maximum and

a minimum value.

dead reckoning- the process of integrating certain equations which

express position and heading in terms of curvature and either dis-

tance or time.

dead zone- that region of the local environment which a vehicle is

committed to travelling at any particular time.

detection zone- the region of the local environment for which time

is almost up to react to hazards.

downrange- the horizontal direction aligned with the sensor optical

axis.

dynamically feasible- the property of a spatial trajectory of satisfy-

ing the dynamic model of the vehicle.

dynamics constraint- the constraints imposed on a spatial trajectory

by the dynamic model of the vehicle.

elevation - the rotation of something about a horizontal axis, or the

height of something

feasible- the property of being mechanically feasible.

feasible set the set of all feasible trajectories.

feedforward - the process of predicting system response in the future

in order to modify the command inputs of the moment.

flat terrain assumption - the assumption that the vehicle operates in

extremely benign terrain.

focus of attention- in perception and planning, a region of space to

which computations which be confined.

forward model - a model of a dynamic system which is of the form

state = function of state and command. see inverse model.

free zones- regions of the local environment that the vehicle cannot

reach within some time horizon.

goal trajectory - the path to be followed. Generated by the strategic

control layer.

goal functional - a measure of the degree of agreement between the

goal and a candidate response trajectory.

fglround plane - the surface of the terrain when it is assumed to be
at.

@oal point - the point on the path which is one lookahead distance

away in pure pursuit.

guaranteed detection the policy of ensuring adequate resolution in
computations, sensing, and actuation.

guaranteed localization- the policy of ensuring adequate accuracy
in computations, sensing, and actuation.

guaranteed response the policy of ensuring adequate response
time.

guaranteed safety- the policy of guaranteeing vehicle survival.
guaranteed throughput - the policy of ensuring adequate system
throughput.

a resolution transform which adapts to vehicle speed and response tgazard space an abstract space for which every point represents the
provide minimum throughput and uniform minimum resolution of ~Safety of the vehicle in terms of multiple hazardous conditions.

perceptual processing.
adaptive regard - an algorithm based on a focus of attention and a

hazard vector- a point in hazard space.
horizon zone- that region of the local environment which the vehi-

resolution transform which adapts to vehicle speed and response tele can afford to wait to assess.

provide minimum throughput and uniform minimum resolution of
planning processing.

admissible- the property of being safe.

admissible set the set of all admissible trajectories.

azimuth - the rotation of something about a vertical axis.

cartesian elevation map- see terrain map.

clothoid - a linear polynomial for curvature expressed in terms of arc
length. The trajectory corresponding to this polynomial.

command vector- the vector which contains all command inputs to
the vehicle or its controller.

command space the space of all possible command vectors.
command following problem- the problem of causing a servo-con-

image plane- a virtual or real plane in space upon which an imaging
sensor forms an image.

impulse turn - a turn from zero curvature to the maximum.
kinematically feasible- the property of a spatial trajectory of satis-
fying the kinematic limitations of the vehicle model.

kinematics constraint - the constraints imposed on a spatial trajec-
tory by the kinematic model of the vehicle.

inverse model- a model of a dynamic system which is of the form
command = function of state. see forward model.

latency - any type of delay in transforming inputs into outputs in a
system.

local planning problem - the problem of deciding where to drive
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based only on what can be seen at the moment.

local minimum problem - in planning, the problem of avoiding lo-
cal minima which effectively trap local planners.

multivariate state space system a state space model whose state
vector contains at least two elements.

terrain mapping - the process of generating a map of the environ-
ment surrounding the vehicle.

terrain map - a data structure which represents the properties, usu-

ally the height, of terrain.

maneuver- the maneuver dynamics aspect of response.

monotone range assumption the perception assumption that range
is monotone in elevation in the image plane.

mechanically feasible- the property of a spatial trajectory of satis-
fying the kinematic and dynamic limitations of the vehicle model.
motion distortion problem - the distortion of the world model due
to unmodeled delays or unmodeled motion.

nonholonomic- the property of a differential constraint that it cannot
be integrated.

normalized disparity - disparity divided by baseline. Measured in
radians.

output vector - the vector of outputs in a dynamic system.

path - a geometric description of a curve in space (i.e. with time pa-
rameter eliminated). See trajectory.

path planning - the process of deciding where to drive. Involves rep-
resentation, search, and selection of a path.

perception ratio - the ratio of sensor height to measured range.

Equal to the tangent of the range pixel incidence angle for flat terrain.

planning window - the focus of perceptual attention expressed in
terms of the point of actuation.

predictive control - a method of controlling something better by us-
ing feedforward.

pure pursuit - an algorithm for tracking paths characterized by steer-
ing towards a point on the path at a distance in front of the vehicle.
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commands to issue to a vehicle to cause it to follow a given spatial
trajectory.

throughput - a measure of amount of information processed per unit
time.

throughput problem - the problem of maintaining adequate
throughput.

time constant- the coefficient of the first derivative in a first order
system.

tl;nnel vision problem - the problem of inadequate horizontal field

of view.

undersampling - the process of sampling below the Nyquist rate.
vertical - the direction aligned with local gravity.

wheelbase- the length of the vehicle measured from back to front
wheels.

yaw - rotation about the vertical axis.

range- 3D cartesian distance between the image plane and the scene.

range projection -the projection of range into the groundplane
range gating- a technique of range imaging where all pixels of a par-
ticular range window or gate are acquired simultaneously.

range gate- see range window.

range image- an image whose intensity values correspond to the
range to the first reflecting surface in the environment.

range window- a region of interest specified in terms of a maximum
and a minimum range.

reaction - the computer and sensory processing aspects of response.

reaction time - the time it takes to decide on a course of action and
issue the associated commands to the hardware.

region of interest- see focus of attention.

reference point- a distinguished point on the vehicle. Used to track
its state.

registration problem - the problem that redundant measurements of
the same geometry do not agree.

resolution - the smallest difference that a system can resolve.
response- the total response of the vehicle including the computer
and sensory processing and the maneuver dynamics.

response time- the time it takes a vehicle to respond to an external
event. Equal to the sum of reaction time and maneuver time.
response-resolution tradeoff the fact that easing response require-
ments increases resolution requirements and vice-versa.

reverse turn - a turn from one curvature extreme to the other.
sampling problem - the problem of variation in the shape and size
of range pixels when projected onto the ground plane.

small incidence angle assumptionthe assumption that the percep-
tion ratio is small.

state vector- a point in state space.

state space an abstract space of all variables of a system necessary

to define its response to inputs.
stationary environment assumption- the assumption that the envi-

ronment is a single rigid body that is stationary, that is, that there are

no dynamic obstacles or changes in the terrain etc.

sweep rate- the angular elevation rate of scanning of a range sensor.

tactical control - in the standard model, the layer responsible for dy-
namics feedforward, obstacle avoidance, and goal-seeking.
trajectory - a parametric description of a curve in space (i.e. with
time parameter explicit). See path.

trajectory generation problem - the problem of determining the



