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Abstract
The problem of computing a single continuous trajec-

tory which connects an arbitrary initial posture (position,
heading, curvature) with a final posture remains
unsolved. Previous approaches have either failed to
achieve curvature continuity for the general case or gen-
erated sampled solutions which have not been efficient
enough for real time use. The polynomial spiral is a gen-
eralization of the clothoid which is general enough to rep-
resent any feasible vehicle motion with a few coefficients.
Starting from an optimal control formulation, the problem
of generating a polynomial spiral between two arbitrary
postures is transformed naturally into a nonlinear pro-
gramming problem. This formulation yields to standard
numerical approaches which produce trajectories
throughout the set of feasible motions in real time.

1.  Introduction

The problem of generating mobile robot trajectories is
more difficult than it may at first appear. One expression
of vehicle dynamics (and of dead reckoning) for a vehicle
actuated in curvature-speed and moving in the plane is the
system of four nonlinear, coupled, underdetermined dif-
ferential equations:

where the vehicle state vector (also called a posture in

this context) consists of the position coordinates ,

heading , and curvature : 

The input or control vector consists of speed  and

desired curvature :

It is straightforward to effect a change of variable from
time to distance and express the solution in terms of inte-

grals:

The forward problem is that of determining the state
space trajectory given the input trajectory. This is equiva-
lent to dead reckoning and, it can be solved by evaluating
the above integrals numerically.

The inverse problem is the trajectory generation prob-
lem. It is one of inverting these equations - of finding the
inputs  which generate the desired output . This state-

ment clearly identifies the problem as one of control.
When smoothness, curvature limits, and boundary condi-
tions such as terminal posture are considered, it becomes
one of optimal control. A related and important view is
that of the two point boundary value problem in differen-
tial equations. Once the problem is classified in this man-
ner, it becomes natural to assess the degree to which
standard approaches are relevant to this case.

1. 1.  Previous Work

Given that this problem is one of the fundamental prob-
lems in mobile robot control, the relatively little attention
it has received must perhaps be attributed to its difficulty
and/or the fact that the more general case is dealt with
elsewhere. Earlier approaches in [3] and [5] for example
are characterized by a curve-fitting formulation where the
parameter space of a family of one or more curves of
some assumed general form is searched for a solution
which satisfies constraints on terminal posture.

While this earlier literature ignores how the curves are
computed, the parameter space is of low enough dimen-
sion, and computational power was sufficiently limited,
that lookup tables would have been a preferred solution.
The curve-fitting formulation has over time been refined
repeatedly in order to meet more terminal constraints but
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it has fallen far short of a general solution.
More recently, variational approaches to the problem

have been investigated [2] [8]. In this approach, a contin-
uously deformable representation is adjusted in order to
optimize a functional which might consider such factors
as smoothness in addition to initial and terminal con-
straints. This approach can solve a broader class of prob-
lems at the expense of increased run time. Of course,
optimal curve generation forms the first example applica-
tion of variational methods in many of the textbooks.

Beyond robotics, the literatures of optimal control,
boundary value problems, and curve fitting clearly
address related and even identical problems. For example,
[1] appeals in its references to early work on the mathe-
matics of shortest paths of bounded curvature and also
serves as an example of much work on the related prob-
lem of trajectory planning - where sequences of primi-
tives are assembled to achieve some goal.

The relationship between curve fitting an optimal con-
trol is expressed in [4] and its references. Here, the use of
linear system dynamics to fit curves is first attributed to
practitioners in flight control. Of course, the boundary
value problem of differential equations is a closely related
topic but the deliberate introduction of a dynamic system
to define behavior between points of interpolation is
attributed here to research writings as recent as 1991.

There is also a growing body of literature which
addresses the difficult and specialized topic of nonholo-
nomic motion planning. Recent work in [6] for example,
broadens earlier work due to Brockett that applies varia-
tional principles to nonholonomic systems. Brockett’s
work in this area establishes the conditions for the exist-
ence of steering solutions between arbitrary initial and
final configurations.

1. 2.  Approach

The approach presented in this paper is one which
combines the strengths of earlier techniques in order to
achieve both a highly general formulation and a real-time
solution. First, the clothoid and related curves of earlier
approaches are generalized to a curvature polynomial of
arbitrary order which becomes the assumed form of the
solution. Second, the very general optimal control formu-
lation is applied and, based on the assumed form of solu-
tion, converted into one of nonlinear programming. Initial
steps in this direction were presented in [7].

While the approach is in some sense new, it is also
ancient. The method of substituting a family of curves
into a differential equation and solving for the parameters
is, of course, classical “variation of parameters”. Like-
wise, the use of power series in order to solve differential
equations has been employed for centuries.

1. 3.  Motivation

While it is typical to approach trajectory generation as
an offline problem - to store the representations of every
case - this is only possible for curves with few parame-
ters. The satisfaction of constraints on final position,
heading and curvature, as well as initial curvature is the
minimal requirement for curvature continuity. The stor-
age of the associated five-parameter lookup tables with
perhaps 100 samples per degree of freedom requires five
arrays of 10 billion floating point numbers.

While interpolation could potentially be used to reduce
storage, the solutions must still be computed for the
tables. A table of forward solutions could in principle be
inverted but the nonlinearity of the equations requires  the
parameter space to be oversampled significantly leading
to unrealistic computing times. Hence, the obvious brute
force approaches do not seem to scale well enough even
to achieve minimal curvature continuity. This work
addresses the computation of the inverse solution which
could be either tabulated in inverse form or computed on-
line.

2.  Polynomial Spirals

The polynomial spiral is an obvious generalization of
the clothoids and related curves which have been used
historically. An nth order spiral is simply an nth order
polynomial expressing curvature in terms of arc length:

and the clothoid is the special case where the series ter-
minates at the second term. In the complex plane, these
curves will be referred to as the generalized Cornu Spiral.
A representative spiral of cubic order is shown in figure 1.

This new primitive possesses many advantages that can
be briefly summarized as the ability to represent any fea-
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Figure 1: Generalized Cornu Spiral. This curve is
generated by a cubic curvature polynomial of the
form . The coefficients
are a = 0.0, b = 33, c = -82, d = 41.5. In this example,
the primitive reverses curvature and terminates
pointing back at the origin. 
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sible vehicle motion using a small number of parameters.
Such a bold statement is easy to justify by noting that all
feasible motions have an associated control and the prim-
itive is merely the Taylor series of the control. The Taylor
remainder theorem then supplies the basis of the claim
that all controls can be represented.

Given that the control in this case represents the actual
motion of the steering actuator, it can also be concluded
that higher order terms in the series will vanish due to the
impossibly high frequencies they imply. A small number
of parameters is also valuable from the perspective of rep-
resenting and communicating the results, but most impor-
tantly, it dramatically reduces the dimensionality of the
search space.

3.  Optimal Control Formulation

This section will develop the conversion of the formu-
lation from optimal control to nonlinear programming.

3. 1.  Variational Calculus Formulation

For our problem, there are known nonlinear system
dynamics:

Let there be a performance index to be optimized
which is expressed as some functional evaluated over the
trajectory:

Let there be initial and terminal constraints on the
states:

There may also be additional inequality constraints
(reflecting such concerns as limited actuator power) on
the inputs. For example:

This is the classical formulation of an optimal control
problem in the Bolza form. The principle of optimality
yields the solution in classical theory. A vector of
Lagrange multiplier functions is used to adjoin the con-
straints to the performance index to form the scalar func-
tion of time known as the Hamiltonian:

 First order necessary conditions for a local optimum
are the Euler-Lagrange equations:

Recall that the second equation is the transversality
condition on final time and the last equation is simply the
boundary conditions. This result is repeated for compari-

son and to introduce the notation of the next section.

3. 2.  Nonlinear Program Formulation

The conversion to a nonlinear program is made as fol-
lows:

• assume that the input  can be expressed in terms of

a parameter vector  thus: .

• note that the input completely determines the state
and the parameters completely determine the input so the
dependence on both state and input is just a dependence
on the parameters.

• transform the independent variable from distance to
time.

• set the initial distance to zero and absorb the free ter-
minal distance  into an adjoined parameter vector 

thus 

Under these transformations, the problem statement
becomes:

From the theory of constrained optimization, the solu-
tion is obtained by defining the Hamiltonian (often called
the Lagrangian in the constrained optimization context):

The first order necessary conditions are:

Here, the symbol  refers to  whereas

it was the system dynamics function above. The symbol
overloading is an attempt to be consistent with standard
notation in both theories. It was considered necessary to
derive this result from optimal control theory because
classical constrained optimization does not obviously
treat the case where the performance index, though admit-
tedly a function of the parameters, is in fact defined by an
integral. Nor does it admit any equivalent of the transver-
sality condition necessary for the present purpose. 

A major difficulty is hidden beneath the notation. The
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boundary condition expression  elaborates into

the coupled system of integrals:

Which means that , being the partial derivative

of an integral (for  or ) which depends on the partial

derivative of another integral (for ), is far from straight-
forward to compute. Although this general case is treat-
able numerically, the introduction of the polynomial
spiral simplifies the situation.

3. 3.  Polynomial Spiral Formulation

The polynomial spiral is integrable in closed form to
generate an explicit expression for heading as well as cur-
vature:

The heading expression can then be substituted into the
position integrals and the whole system becomes decou-
pled:

Whereas in the general case, the solution integral for
heading would have to be evaluated before or in parallel
with the position integrals, now all four equations are
independent. Each is a nonlinear function of the parame-
ters (when terminal arc length is considered a parameter).

Clearly, any technique for solving the first order condi-
tions will require an understanding of first order behavior.
The partials of the heading and curvature are immediate.
In general Leibnitz rule supplies the mechanism for com-
puting the partial derivatives of integrals. Defining: 

Then, the position integrals are:

The partial derivative with respect to the parameters

satisfy useful recurrences:

4.  Implementation and Results

Given the nonlinearity of the equations to be solved,
the mechanism for numerical solution is linearization.
Newton’s method as it applies to constrained optimization
is used. The derivation follows but first let the parameter
vector for the general case be denoted:

Let there be  parameters and  boundary conditions.

4. 1.  Linearization

Consider the first order conditions. Transpose the first
set of equations, linearize about a point where all equa-
tions are not satisfied, and insist that they become satis-
fied to first order after perturbation. This gives:

Notation for the Hessian of the Hamiltonian (with
respect to ) was used:

The last term involves a third order tensor. It can be

interpreted as a multiplier weighted sum of the  Hes-
sians of each of the individual constraint equations:

In matrix form, this is now of the form:

This is finally in a form suitable for computer imple-
mentation. The constraint satisfaction case (where there is
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no performance index) reduces to:

This case was discussed earlier in [6].

4. 2.  Numerical Solution

In the present implementation, Simpson’s rule is used
to perform all of the integrations numerically. In the worst
cases, the integrands are sinusoids. These are usually inte-
grated over less than one revolution. Hence the integrands
are quite smooth and can be estimated well numerically in
as little as 10 integrand evaluations.

The nonlinear nature of the problem means that imple-
mentations are exposed to the failure mode of falling into
a local rather than the desired global minimum. Some
relief is available through the use of the Levenberg-Mar-
quardt modification to Newton’s method which widens
the radius of convergence and permits the solution to be
completely determined by the initial estimate. A good ini-
tial estimate is therefore critical to a robust solution.

4. 3.  Performance Index

Experimental validation was performed by defining a
performance index of the form:

The intention is to discourage curves of high curvature
and to use any additional parametric degrees of freedom
(above what is necessary to satisfy the boundary condi-
tions) to reduce the curvatures required to achieve the
goal posture.

In order to express the parameter gradients, it is useful
to define the following general gradient integral:

For polynomial spirals, these integrals can be evaluated
in closed form:

The gradients of the smoothness performance index

can now be written in terms of these gradient integrals:

The gradients of these integrals satisfy:

The Hessian matrix for the performance index is:

4. 4.  Results

Figures 2 and 3 present results on a curvaceous trajec-
tory chosen so as to illustrate the operation of the con-
strained optimization formulation. The 5 parameter case

is computed in 3 milliseconds and the other two cases in
20 milliseconds on a 1 GHz Pentium 4 processor.

The trajectory has no initial curvature and is required to
terminate at the posture:

At least five parameters are required to satisfy the
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Figure 2: Trajectories for Varying Number of
Parameters. These three curves all terminate at the
same posture but smoothness increases with the
number of parameters used. 
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boundary conditions. The 5 parameter solution therefore
retains no free parameters that can be used to improve the
performance index. When free parameters become avail-
able (in the 6 and 7 parameter solutions), there is an initial
dramatic effect on the curvatures used but the effect
tapers off quickly.

The performance index used is essentially the continu-
ous inner product of curvature with itself. This index will
favor longer paths over shorter ones to the degree that the
area under the squared curvature function is reduced by
doing so. Of course lengthening itself has an impact on
the performance index so a best compromise is sought.
The curvature profiles in Figure 3 show how longer paths
can achieve lower overall curvature.

In practice, different performance indices may be more
appropriate. Given the need for a numerical implementa-
tion, however, any index at all could be accommodated
instead of the example used.

4. 5.  Pragmas

Two other pragmatic issues are worth mentioning
briefly. In addition to the fundamental sensitivity of
odometry to small changes in the inputs, the choice of
polynomial spiral introduces scaling issues which aggra-
vate matters. For a curve of length of 10 units. A change
of unity in the third significant figure of the coefficient of

 causes a change of unity in the curvature - which is
then integrated twice to determine its effect on the termi-
nal position. At the cost of scaling the roundoff error in
the answer, the present implementation scales all prob-
lems to place the terminal position on the unit circle and
then rescales the answer in order to mitigate this problem.

Secondly, it is very important to realize that all but two
of the constraint equations are linear in all parameters but
arc length. As a result, it is possible to fix one parameter
and the arc length and satisfy all but the position bound-
ary conditions exactly in each iteration. This device has
the effect of reducing the search to a relatively well-

behaved subspace of parameter space.

5.  Summary and Conclusions

The polynomial spiral has been introduced as a natural
primitive to express arbitrary steering functions. It pos-
sesses the significant benefit of being integrable in closed
form for heading, linear in all but one parameter, and of
minimum degrees of freedom. These properties are
responsible for its ability to convert a general optimal
control problem into a derived nonlinear programming
problem which finds the parameters of the solution curve.
Numerical solution of the associated first order necessary
conditions requires the partial differentiation of quadra-
tures, but otherwise, classical numerical approaches apply
directly.

This paper has extended the initial work in [7], which
produced a real-time algorithm to join arbitrary postures,
to include the case where a performance index is also to
be optimized.
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