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Abstract

Perhaps one of the simplest mechanisms for navigation in
an area is to use real-time imagery to track vehicle motion
over a very large, previously stored, high resolution image
mosaic of the scene. In structured environments, image
mosaics of textured surfaces present a potential for inex-
pensive, highly repeatable position estimation that is both
higher performance and cheaper than existing commercial
alternatives. This paper presents a case for the feasibility
of such an approach using contemporary cameras and
computing devices.

1 INTRODUCTION
Perhaps one of the simplest mechanisms for navigation in
an area is to use real-time imagery to track vehicle motion
over a large, previously stored, high resolution image
mosaic of the scene. This technique will be referred to
here as mosaic-based position estimation. In one sense, a
traditional paper road map is a low resolution feature-
enhanced version of such an image. 
A little reflection on the ratio of required position resolu-
tion to the area of excursion leads to the conclusion that
significant memory may be needed to store the mosaic. A
little more reflection leaves one wondering if enough pro-
cessing power can be brought to bear. Issues of lack of
texture, repeated texture, occlusion and perspective fore-
shortening distortion and the difficulty of constructing the
mosaic itself also emerge. 
Systematic consideration of these potential problems leads
to the conclusion that contemporary sensing and comput-
ing technology are adequate to the task in suitable environ-
ments. This is particularly true when a high frequency
position estimation system, called here a primary position
estimation system, is available to track motion between
lower frequency visual fixes.

1.1 MOTIVATION
In man-made environments, both indoor and outdoor, a
robot vehicle introduced into the environment normally
moves over a mostly flat floor surface. Walls and ceilings,
if present, are also composed of locally flat surfaces punc-
tuated by occasional abrupt shape discontinuities. It is
often the case that at least some of these surfaces present
at least some areas of local visual texture. 
In its oldest sense, a map is a mechanism that relates

observations to locations. In this same sense, a large image
or a collection of images of a scene and their relative or
absolute locations constitutes a map from which one may
navigate. The only requirements are that there be:
• a mechanism that can be used to determine the locat

of pixels in the map when they happen to be observe
in the environment, and

• a mechanism that can determine camera pose fro
these pixel locations.

1.2 PROBLEM DESCRIPTION
We are interested here in the specific problem of determ
ing the motion, with respect to a fixed scene, of a came
and hence of the vehicle to which the camera is attach
Indeed, accuracy of the mosaic, either absolute or relat
need not necessarily be of much concern. Any applicatio
for which motion trajectories can be taught and replay
will benefit significantly just from the repeatability of
mosaic-based position estimation.
It will not always be necessary for the scene surface(s
be a single flat surface or for the camera to move para
to the surface. However, the following figure illustrate
this simplest scenario.

1.3 TERMINOLOGY
Our proposed system compares immediately acqui
imagery with imagery taken previously. Previous image
may have been acquired milliseconds ago in the curr
excursion or years ago in some other excursion. We  re
to the the most immediately acquired imagery as t
image and any previously acquired imagery as the mosaic
or map. The map may or may not have been process
into a single coherent block of pixels. It may simply be
list of images and their locations.
In the event the previous imagery comes from the la
image acquired, differentials are being integrated, and 

Figure 1: SIMPLEST SCENARIO: Here a camera is erected
normal and at constant height with respect to a surface. It
moves parallel to the surface - hence variations in
foreshortening do not occur.

Camera Motion
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system is operating in relative mode (and may be con-
structing a map). In the event the previous imagery comes
from a map calibrated against some reference, and map-
referenced position is being generated, the system is oper-
ating in absolute mode. In the event the system is con-
structing a map by saving imagery, it is operating in
mapping mode. When referencing imagery to a precon-
structed map, the system operates in tracking mode.

1.4 Comparison to Stereo
Many of the problems of mosaic-based position estima-
tion, and their solutions, are common to stereo vision. The
difficulties associated with foreshortening in area-based
stereo vision are well known. Fundamentally, the same
part of the scene is distorted differently from different
viewpoints if the part of the scene varies in range relative
to the camera. Mosaic-based positioning, however, is a
dramatically simpler than stereo vision because:
• disparity is only required at a few (2-10) places in an

image pair in order to determine pose error.
• disparity gradient is usually guaranteed to be small and

to vary slightly and smoothly over the entire image.
• disparity is a direct measure of the quantity of interest

because pose error is directly proportional to it.
Hence, output error is a linear - not a quadratic - func-
tion of disparity error.

For these reasons, mosaic-based positioning is largely
immune to three of the dominant failure modes of stereo:
unsufficient texture, forshortening distortion in areas of
high disparity gradient, and poor range measurement reso-
lution. Indeed, preliminary experiments indicate quite sat-
isfactory robustness in suitable environments.

1.5 PRINCIPLE OF OPERATION
Normally one real-time image is taken and compared with
a previously stored mosaic of images. A small rectangular
region of pixels in the image called a template, always has
a predicted corresponding position in the mosaic. The
region surrounding that predicted position in the mosaic is
the search region. 
Some of the notation used in the following discussion is
illustrated below. Let the template be of size  pixels
called the correlation window size. Also, although the
window is rectangular, we will loosely refer to  as the
correlation window radius. Similiarly, the center of the

correlation window will be moved slight amounts in all

directions from its nominal position. The rectangula
region inside which all such searching is confined is 
size  where  is called the search window siz
Also,  is loosely called the search window radiu
The two window sizes are independent. Either can be 
larger.  is determined by the amount of texture and 
determined by the current position estimate uncertainty.
The disparity is the difference between predicted an
actual position in the mosaic, i.e. it is the pose error in p
els. Computation of disparity can be accomplish
through maximizing some measure of similarity - such 
normalized correlation -  by searching a sequence of c
didate disparities.
The disparity can be determined by local brute for
search for the peak in a crosscorrelation function betwe
the template and the search region in the mosaic. If 
is the normalized template intensity function and 
is the normalized mosaic intensity function, then the no
malized correlation, computed as a function of dispar

, comes from the double integral:

The figure below presents a template, a search region, 
the correlation between them as a function of two-dime
sional disparity. 

The template in the above figure is a 17 X 17 pixel ar
taken from a concrete floor image. A careful examinatio
shows it is present in the center of the search region. 
unprocessed images exhibit very little texture, so th
have been enhanced for purposes of presentation. 
position of the correlation surface peak is nonethele
clear, and there are no other contenders within the sea
region. 
In stereo, disparity is limited to one dimension by virtue 
the epipolar constraint - which itself is due to the fixe
spatial relationship between the two views. Here, no su
fixed relationship exists. Disparity is unavoidably at lea
a 3 dimensional quantity in mosaic-based positioning.
guess pose may cause a template to be both positioned
oriented incorrectly in the mosaic. For the moment, ho
ever, we will consider translational aspects of dispar
only.

w w×

w 2⁄

Figure 2: IMAGE AND CORRELATION WINDOW
COORDINATES. A local coordinate system (x,y) is attached
to the image plane at the central pixel of the reference image
and another (u,v) is attached to the correlation window.
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Figure 3: PRINCIPLE OF OPERATION. The translational
pose error can be found as the position of the peak in a
surface: the correlation as a function of disparity.
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1.6 PRIOR WORK
The practice of image mosaicing, of producing larger
images from the union of smaller ones registered in the
region of overlap, is an old one. The technique of auto-
matic construction of mosaics by computer is also rela-
tively old [1]. 
Automated mosaicing [2] is often useful in its own right.
Applications include station keeping [3], video coding [4],
image stabilization [5], and visualization [6]. Only
recently have near real-time [7] and globally consistent [8]
mosaicing solutions emerged. However, there seems to be
little in print on the problem of navigating from mosaics. 
Certainly, navigating from imagery is a basic technique in
robotics [9] [10] but such techniques often deal with the
much harder problem of a three dimensional scene - often
of unknown geometry. Yet, the notion of determining
camera pose in a scene is the sensing half of the visual ser-
voing problem [11]. 
Perhaps such a lack of emphasis on the problem has
stemmed from practical inabilities to store enough imag-
ery and access it fast enough to be useful. The purpose of
the paper is to show that these historical restrictions no
longer apply. 

1.7 OPPORTUNITY
Commercial alternatives for the positioning of vehicles in
yards and manufacturing facilities include:
• wire guidance: where crosstrack error is measured

from inductive pickoffs sensing wires that are literally
embedded in the floor of a building.

• laser guidance: where a spinning laser beam senses
the bearings and sometimes the ranges of retroreflec-
tive fiducials mounted on the walls of buildings - and
triangulates pose.

• inertial guidance: dead reckoning from gyroscopes
and accelerometers augmented by occasional position
fixes.

• radio guidance: forms of indoor GPS are reported to
be under development in industrial laboratories.

Mosaic-based positioning promises to compete favorably
with these alternatives in suitable environments because:
• Resolution is limited only by optics. It can, in fact, be

used on microscopes, cameras, and telescopes.
• Capital cost is limited to that of a camera, lighting, off-

line storage, and a capable processor - which may be
required for other reasons.

• Installation cost is limited to the labour and time
required to map the environment by driving over all
necessary guidepaths or areas only once.

Typical conditions in plants, office buildings, and yards,
combined with contemporary relatively inexpensive cam-
eras, computers, and off-line storage, present a new oppor-
tunity to produce inexpensive and highly repeatable
position estimation based on template matching of tex-
tured scenes. 
Use of such a technique to determine position, requires
that:

• the scene have sufficient visual texture which is locall
unique enough (i.e. non repetitive) to support tem
plate matching, and

• sufficient image storage and computing power must b
available. 

Following sections discuss these matters in more detail

2 TEXTURE REQUIREMENTS
Template matching can be surprisingly robust in cases
lack of texture and image noise. This section discus
these matters with regard to typical floor imagery.

2.1 SUBJECTIVE TEXTURE IN MANY MAN-
MADE SCENES

The following figure shows images of floor scenes in ma
ufacturing facilities which exhibit typical textured pat
terns.

In the painted concrete image, just a little wear and te
when added to the physical texture of the surface, can 
ate enough texture to navigate. 

2.2 TEXTURE SIGNAL STRENGTH
A very direct test of whether or not an image or part of 
image contains sufficient texture for template matching
to compute the autocorrelation of candidate templates a
function of disparity. A template is suitable for matchin
when:
• it possesses sufficient texture,
• it has a high cross-correlation surface peak, and
• it has no competitive peaks within a neighbourhood.

All conditions together imply good noise rejection.
2.2.1 SUFFICIENT TEXTURE
Texture in the template implies that a local maximum co
relation will exist. Many metrics of texture have been pr
posed but intuitively, any measure of the “edginess” 
gradient magnitude will suffice for a qualitative asses
ment.

Figure 4: MANUFACTURING PLANT FLOOR IMAGERY.
Many man made surfaces exhibit locally unique texture. 

Scratched Concrete Painted Concrete

Trailer Wood FloorLoading Bay Ramp
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2.2.2 GOOD CROSS-CORRELATION
Good cross-correlation implies a high degree of similiarity
between the template and the candidate mosaic region. It
is important to recognize that this second condition does
not imply the first because even relatively textureless
regions may correlate perfectly. Of course, the autocorre-
lation surface peak always has a value of unity, so it is
important to realize that the real issue is the normalized
cross-correlation between the image template and the
mosaic.
2.2.3 UNIQUENESS
Uniqueness implies a low probability of false matches. A
good measure of this third criterion is the difference in
height between the highest and the second highest autocor-
relation peak in the search neighbourhood. When the dif-
ference is large, it should be possible to correctly match
the template even in the presence of substantial random
noise because significant noise would be necessary to
lower the higher peak and/or raise the lower peak.
2.2.4 EXAMPLE
The following figure presents a quantitave assessment of
the suitability of a concrete floor image. The original
image shows the nicks, cracks, and scratches that might be
expected due to normal wear and tear. Point imperfections,
which are particularly valuable for localization, are appar-
ent as well.
The texture enhanced image is generated by replacing
each pixel by its suitably scaled, normalized deviation
from the mean of its local neighbourhood thus:

For this operation, a 9 X 9 window centered at each pixel
was used.
The texture score image is generated from “edginess” per
unit area. This is computed from a suitably scaled sum of
all intensity gradient magnitudes in a local region thus;

For this operation, a 17 X 17 window centered at each
pixel was used. The reader may detect refinements imple-
mented to identify and discourage one-dimensional tex-
ture. These are beyond our scope here. One can verify that
whiter pixels correspond to features of higher texture due
to imperfections in the floor.
The autocorrelation score image is generated from the dif-
ference of the highest and the second highest autocorrela-
tion peak in a search neighbourhood surrounding the pixel.
Let  be the correlation score of the highest peak (which
is unity for autocorrelation). Let  be the correlation
score of the second highest peak (or it could be simply the
highest score outside the radius of the highest peak). Then
the image is a scaled version of:

For this operation, a 17 X 17 search window centered at

each pixel was used. For the test image, there are no pi
for which  and fewer than 1% have

. 
The conclusion that can be drawn is that this image
likely to be an excellent image for the purpose of templa
matching - especially when augmented by a search 
high texture regions because the differences in peak co
lation scores is virtually everywhere large. 
A preprocessing search for high texture pixels is a go
idea for two reasons:
• it will shortly be shown that noise immunity is corre-

lated with high texture
• in the following image for a 17 X 17 search region

computation of a texture score for a 160 X 120 imag
requires 70 milliseconds, whereas the autocorrelatio
score requires a full 180 seconds. 

2.2.5 ROBUSTNESS TO RANDOM NOISE
It is possible to test the assertion that the above imag
acceptable by deliberately introducing noise and cro
correlating the corrupted image with the original to s
how the peak location changes.
The figure below illustrates the result of cross-correlatin
a pristine mosaic against a noisy image. A 17 X 17 sea
window is used, and a peak that is mislocated by 8 pix
is deemed a false positive. The threshold of 8 is chos
because the radius of the correlation peak is related to
size of the correlation window.
The curve labelled “texture threshold” depicts the highe
texture score of any false positive at the indicated injec
noise level (as determined from its deviation from grou
truth). The curve labelled “percent above threshold” is t
number of image pixels whose texture score rema
above this threshold. 

I’ I µI–( ) σI⁄=

I’’
1

w
2

------
x∂

∂I
 
 

2

y∂
∂I

 
 

2
+∑=

C1
C2

I’’’ C1 C2–( )=

C1 C2–( ) 0.2<
C1 C2–( ) 0.4<

Figure 5: ANALYSIS OF TYPICAL FLOOR IMAGE.  While it
may subjectively seem that this concrete floor image lacks
sufficient texture, it is actually acceptable at every single pixel.
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Hence, no region whose texture score exceeds the thresh-
old generates a false positive. Such regions are “safe” for
matching at the indicated noise level. Clearly:
• as the threshold rises, the percentage of regions above

threshold must lower.
• the fact that random noise of magnitude 60 counts (out

of the available 255 intensity levels) is required to
render any texture threshold useless predicts a high
level of noise immunity.

Perhaps one reason for this level of noise immunity in the
face of little absolute texture is the fact that perspective
foreshortening distortion is not an issue for a surface nor-
mal to the camera optical axis. Hence, the correlation win-
dow size  can be increased to levels that impart high
noise immunity without suffering from distortion prob-
lems.

This analysis concentrates on random noise. Systematic
image corruption is another matter entirely. Such  errors
are analyzed in a later section. 

3 STORAGE REQUIREMENTS
When operating in absolute mode, it is necessary to have
the entire map that could be traversed available in off-line
memory. Estimates of storage requirements come down to
a determination of surface-projected pixel size and of the
surface area that must be covered. For a pixel size  of 2.5
mm, the following graph shows that one-tenth of a square
kilometer of area (roughly 1000 ft by 1000 ft) can be
stored in 10 GByte of memory. This amount of storage
corresponds to a single contemporary DVD ROM. Mem-
ory requirements drop quadratically if the pixel size can be
increased.
In a realistic manufacturing setting, vehicles are limited to
specific guidepaths perhaps a meter wide, so the graph
also indicates that 100 Km of guidepath (105 square
meters) can be stored in only 10 GByte of memory. Due in
part to demand for multimedia content on the internet,
such memory capacity is already inexpensive. Many appli-
cations could already store usefully large areas in solid

state flash disks - similiar to those used in consumer d
tal cameras.

4 PROCESSING REQUIREMENTS
4.1 PROCESSING SPEED
It remains to be shown that a vehicle moving at a giv
speed can have its position continuously updated by
mosaic-based positioning system. 
4.1.1 PROCESSING REQUIRED TO LOCALIZE N 

TEMPLATES
Let us suppose that normalized cross-correlation is 
mechanism used and that the time required to norma
the image can be neglected. For a template of size 
clearly takes at least  operations to compute its cro
correlation coefficient with another template of equal siz
If various overhead operations such as array indexing 
included, let there be  operations required per pixel
the template to arrive at  operations per template c
relation.
If an entire region of size  is to be searched, t
careful reader can verify that it is not possible to reuse a
computations, so the required processing to search fo
match to a single template is . Computation in fr
quency space may be a more efficient alternative but it 
not, as yet, been explored.
In order to determine the location of a vehicle robustly,
will likely be necessary to process more than one templa
Let’s assume that N templates are necessary. Hence, c
putation of a position fix will require: 

If a position fix is required every  seconds, then th
required computational power devoted to template mat
ing is:

w

Figure 6: NOISE IMMUNITY. For a maximum grey level value
of 255, it takes random noise wih a standard deviation of 60
counts before the highest texture regions in the image
generate false positives.
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Figure 7: STORAGE REQUIREMENTS. Up to 10 Km of
guidepath can be stored at 1 mm resolution in 1 GByte of
memory.
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This can be written in terms of the number of correlation
operations (“correlation ops”) required per unit time thus:

It can also be written in terms of the number of template
correlations required per unit time thus:

4.1.2 Processing Required for Tracking
Regardless of whether or not the mosaic itself is accurate,
there is a clear requirement for the system to be able to
track its motion over the map - in order not to get lost. To
do so requires that the area searched per unit time equal or
exceed the tracking error that has accumulated per unit
time. Here, the tracking error is the difference between the
predicted position of a template and its actual position in
the map.
Let us assume that a dead reckoning system is used to
compute an estimate of where the camera is, and that the
estimate becomes the center of the template search region.
A conservative estimate of error buildup as a function of
time is as a percentage , called the error gradient, of
travelled distance .

Such an error model is admittedly a simplification but it
renders the following analysis tractable. The general con-
clusions do not depend on the error model chosen as long
as it is monotonically increasing with time.
If this error accumulates after a time period , then it
an be related to speed  thus:

Also, it is likely that the map is not perfect and that, in the
worst case, errors due to slight mislocation  of
regions are in exactly the same direction of the dead reck-
oning error so the errors add.

If we equate this total tracking error error  to the
radius of the search region, we obtain a relationship
between the template correlation rate required at a given
vehicle speed when the CPU is dedicated to template
matching (because we assumed the variable part of the
error accumulated over exactly one cycle time). 

The factor of 4 was introduced because the search radius is
half the search window size. This relationship is plotted
below as a function of speed for various values of the

intrinsic map error. 

The rest of the values in the formula are given in this tab

Clearly, map error can dominate the processing requi
ments at low speeds. Experiments have indicated tha
300 MHz Pentium II can perform 107 correlation opera-
tions per second. On this basis, the mosaicing syst
could support speeds up to 5 m/s at 10 Hz update rate. 
4.1.3 UPDATE RATE FOR MINIMUM 

PROCESSING REQUIREMENTS
The dependence of processing requirements on spee
nonlinear. As cycle time is increased, the rate nomina
goes down because the number of searches conducted
second is smaller. However, due to build up of error ov
time, the size of those searches increases. Hence, the 
tionship is a rational polynomial in . The forme
expression can be differentiated to yield an expression
the minimum:

Therefore:
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Table 1: Processing Speed Model Parameters

Symbol Value Symbol Value

4 0.01

0.1 secs 17 pixels

2.5 mm

Figure 8: PROCESSING REQUIREMENTS. Increase with
vehicle speed. From bottom to top, the 4 curves are for  of
0, 5, 10, and 15, pixels of size 2.5 mm.

εMAP

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0.00 1.00 2.00 3.00 4.00 5.00

Vehicle S peed in m/s

Emap =  0 pixels Emap = 5 pixels

Emap = 10 pixels Emap = 15 pixels

C
o

rr
el

at
io

n
 O

ps
 / 

se
c.

N α

Tcyc w

δ

Tcyc

fcorr

4Nw
2 αVTcyc( )2

2αVεMAPT
cyc

εMAP( )2
+ +[ ]

Tcyc
------------------------------------------------------------------------------------------------------------------=

Tcycd

dfcorr 0 Tcyc⇒ εMAP αV( )⁄= =
Page 6



Hence the minimum occurs intuitively when the dead
reckoning error equals the map error - when the gains in
one are exactly cancelled by the losses in the other. The
following figure shows the variation in processing require-
ments with cycle time. 

Note that minimum error accumulation happens for mini-
mum cycle time but there are limits on how low the cycle
time can be reduced - even for a perfect map, because of
the speed of the digitization hardware. 30 Hz is typically
the fastest possible rate available.
4.1.4 PROCESSING REQUIRED FOR ON-LINE 

MAPPING
When building maps, speed is limited by an entirely dif-
ferent mechanism - images must overlap at the operating
speed and cycle time if a single pass is to produce com-
plete coverage. If the image height is , and  is the frac-
tion of overlap required, the maximum speed possible is:

For an overlap of 30%, a height of 0.3 meters, and 10 Hz
update, this gives 1.8 m/s as the maximum vehicle speed.
When operating at any speed, the formula of the last sec-
tion applies to determine the necessary processing power.
Hence, provided the computer can support the vehicle
speed in tracking mode, it can be supported in mapping
mode.
Here, if building maps on-line, there is a clear motivation
to decrease cycle time as much as possible. Otherwise
imagery can be stored at frame rate and processed off-line.
4.1.5 SAFE DISTANCE AFTER LOSS OF VISUAL 

LOCK
A mosaic-based position estimation system implements a

visual lock on the mosaic. Hence, the longer the delay or
distance between position fixes, the larger the error grows.
At some point the system will be unable to recover from
temporary loss of visual lock.
Much of the analysis so far has relied on the assumption
that the template matching system is required only to
damp errors in dead reckoning or, more generally, errors in
any primary position estimation system. The dependence
of processing requirements on the error gradient  is qua-
dratic, and it has a typical value of 0.01. Hence, the use of
a primary system can be expected to reduce processing
requirements by a factor of 104, or equivalently, increase
permissable speed by a factor of 100.
The analysis of the impact of random image intensity error
might be expected to model system performance in the
face of dust and small dirt particles that occlude individual
separated floor pixels in whole or in part. 
Another important form of image error is the occlusion,
replacement, or obliteration of all texture in a relatively
large region. This error might occur when a liquid is
spilled, when floor coverings are replaced, or when a floor
is painted. It might also occur when the system is obliged
to move over an area that has been unmapped (in order to
avoid an obstacle on the guidepath for example).
Regardless of the source of the error, its worst case net
effect is to render a position fix impossible over that floor
region until it is restored close to its original state, or
remapped. A more immediate issue, however, is whether
or not the system can recover visual lock after leaving the
area.
One practical implementation of mosaic-based position
estimation dedicates a fixed amount of processing power,
searches a fixed large search radius  each cycle, and
therefore cycles at a more or less fixed frequency.
Although this approach may often waste processing time
searching unnecessarily, the extra search radius comes into
play immediately after driving over an unrecognizeable
region. 
Recall our elementary expression for processing require-
ments:

Therefore, the time required to search a region of size 
is:

Let the total error in the primary position estimate again be
determined from the fixed map error and the accumulation
of dead reckoning error over the time spent in the unrecog-
nized region:

If we set this error equal to the search region radius, we
compute the situation when the system is on the threshold

Figure 9: MINIMUM PROCESSING REQUIREMENTS. This
curve is for  of 5 pixels of size 2.5 mm. Processing
requirements at 2.5 m/s for 1% of distance dead reckoning
error are minimum at  = 0.5 secs.

εMAP

Tcyc

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.00 0.50 1.00 1.50 2.00

T cyc in S eco nds

M
eg

a 
C

o
rr

el
at

io
n

 O
ps

 / 
se

c.

H β

Vmax
1 β–( )H

Tcyc
---------------------=

α

W

fcorr
NW

2
w

2

Tcyc
------------------=

W

Tcyc
NW

2
w

2

fcorr
------------------=

εTOT εDR εMAP+ αs εMAP+= =
Page 7



e

se
. 

n-

t
be

are
or
rigi-
aic
 of

e

n

J.
r.

re-
ns.

.
-
n

-
r

D.
th
p

eo
to
on
,

d

r

n

of not being able to find itself. Solving for the distance
travelled leads to the largest distance that can be travelled
without a position fix before the system gets lost:

The following figure illustrates this relationship for a pixel
size of 2.5 mm.

5 CONCLUSIONS
This paper has presented a case for the feasiblity of a very
straightforward new approach to vehicle position estima-
tion based on tracking a camera pose during motion over a
prestored mosaic. The analysis has lead to the following
conclusions:
• Image mosaic-based position estimation is feasible on

large scale mosaics today. It can be expected to pro-
duce submillimeter repeatability of vehicle position
estimates at speeds up to 5 m/s and update rates of 10
Hz. These numbers represent one set of design deci-
sions for automated guided vehicles whereas designs
for microscopic and planetary scales are equally fea-
sible. Designs for highway speeds of automobiles are
also feasible.

• A primary reason for its feasibility is the ability to
engineer a system for surface normal erection of a
camera moving parallel to the surface. Mounting a
device underneath a vehicle pointed directly down-
ward, for example, achieves such geometry. Such
geometry makes straightforward template matching
feasible - eliminating perspective foreshortening dis-
tortions. Eliminating distortion preserves highest
noise rejection in template matching. Extensions to
manage some degree of surface roughness based on
determining affine transform parameters rather than
camera pose are also clear.

• Another reason for its feasibility is a 100-fold increase
in vehicle speed or a 10,000-fold decrease in required

computing when a primary position estimate can b
used to seed the search for a template match.

• Relatively high update rates are advisable becau
computational requirements tend to be lower overall

• Correlational template matching on typical floor imag-
ery is quite robust to noise. Since texture can be qua
tified efficiently to prequalify templates and since
only a few templates per position fix are required, i
can be a rare event when a particular image cannot 
used to generate a fix.

A mosaic based positioning system for a 40,000 squ
foot test facility has been in operation by the author f
over three years. This paper has concentrated on the o
nal feasibility analysis. Sequel papers will discuss mos
construction, tracking, and the design and performance
the system.
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Figure 10: SUSTAINABLE EXCURSION OVER UNKNOWN
REGION. For a search radius of 8 pixels, a pixel size of 2.5
mm, and a map error of 2 pixels, 1.5 meters of excursion
over unknown, unmapped, or changed surface can be
accomodated.
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	Perhaps one of the simplest mechanisms for navigation in an area is to use real-time imagery to t...
	1 INTRODUCTION

	Perhaps one of the simplest mechanisms for navigation in an area is to use real-time imagery to t...
	A little reflection on the ratio of required position resolution to the area of excursion leads t...
	Systematic consideration of these potential problems leads to the conclusion that contemporary se...
	1.1 MOTIVATION

	In man-made environments, both indoor and outdoor, a robot vehicle introduced into the environmen...
	In its oldest sense, a map is a mechanism that relates observations to locations. In this same se...
	• a mechanism that can be used to determine the location of pixels in the map when they happen to...
	• a mechanism that can determine camera pose from these pixel locations.
	1.2 PROBLEM DESCRIPTION

	We are interested here in the specific problem of determining the motion, with respect to a fixed...
	It will not always be necessary for the scene surface(s) to be a single flat surface or for the c...
	Figure 1: SIMPLEST SCENARIO: Here a camera is erected normal and at constant height with respect ...
	1.3 TERMINOLOGY

	Our proposed system compares immediately acquired imagery with imagery taken previously. Previous...
	In the event the previous imagery comes from the last image acquired, differentials are being int...
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	Many of the problems of mosaic-based position estimation, and their solutions, are common to ster...
	• disparity is only required at a few (2-10) places in an image pair in order to determine pose e...
	• disparity gradient is usually guaranteed to be small and to vary slightly and smoothly over the...
	• disparity is a direct measure of the quantity of interest because pose error is directly propor...
	For these reasons, mosaic-based positioning is largely immune to three of the dominant failure mo...
	1.5 PRINCIPLE OF OPERATION

	Normally one real-time image is taken and compared with a previously stored mosaic of images. A s...
	Some of the notation used in the following discussion is illustrated below. Let the template be o...
	Figure 2: IMAGE AND CORRELATION WINDOW COORDINATES. A local coordinate system (x,y) is attached t...

	The disparity is the difference between predicted and actual position in the mosaic, i.e. it is t...
	The disparity can be determined by local brute force search for the peak in a crosscorrelation fu...
	The figure below presents a template, a search region, and the correlation between them as a func...
	Figure 3: PRINCIPLE OF OPERATION. The translational pose error can be found as the position of th...

	The template in the above figure is a 17 X 17 pixel area taken from a concrete floor image. A car...
	In stereo, disparity is limited to one dimension by virtue of the epipolar constraint - which its...
	1.6 PRIOR WORK

	The practice of image mosaicing, of producing larger images from the union of smaller ones regist...
	Automated mosaicing [2] is often useful in its own right. Applications include station keeping [3...
	Certainly, navigating from imagery is a basic technique in robotics [9] [10] but such techniques ...
	Perhaps such a lack of emphasis on the problem has stemmed from practical inabilities to store en...
	1.7 OPPORTUNITY

	Commercial alternatives for the positioning of vehicles in yards and manufacturing facilities inc...
	• wire guidance: where crosstrack error is measured from inductive pickoffs sensing wires that ar...
	• laser guidance: where a spinning laser beam senses the bearings and sometimes the ranges of ret...
	• inertial guidance: dead reckoning from gyroscopes and accelerometers augmented by occasional po...
	• radio guidance: forms of indoor GPS are reported to be under development in industrial laborato...
	Mosaic-based positioning promises to compete favorably with these alternatives in suitable enviro...
	• Resolution is limited only by optics. It can, in fact, be used on microscopes, cameras, and tel...
	• Capital cost is limited to that of a camera, lighting, off- line storage, and a capable process...
	• Installation cost is limited to the labour and time required to map the environment by driving ...
	Typical conditions in plants, office buildings, and yards, combined with contemporary relatively ...
	Use of such a technique to determine position, requires that:
	• the scene have sufficient visual texture which is locally unique enough (i.e. non repetitive) t...
	• sufficient image storage and computing power must be available.
	2 TEXTURE REQUIREMENTS

	Template matching can be surprisingly robust in cases of lack of texture and image noise. This se...
	2.1 SUBJECTIVE TEXTURE IN MANY MAN- MADE SCENES

	The following figure shows images of floor scenes in manufacturing facilities which exhibit typic...
	Figure 4: MANUFACTURING PLANT FLOOR IMAGERY. Many man made surfaces exhibit locally unique texture.

	In the painted concrete image, just a little wear and tear, when added to the physical texture of...
	2.2 TEXTURE SIGNAL STRENGTH

	A very direct test of whether or not an image or part of an image contains sufficient texture for...
	• it possesses sufficient texture,
	• it has a high cross-correlation surface peak, and
	• it has no competitive peaks within a neighbourhood.
	All conditions together imply good noise rejection.
	2.2.1 SUFFICIENT TEXTURE

	Texture in the template implies that a local maximum correlation will exist. Many metrics of text...
	2.2.2 GOOD CROSS-CORRELATION

	Good cross-correlation implies a high degree of similiarity between the template and the candidat...
	2.2.3 UNIQUENESS

	Uniqueness implies a low probability of false matches. A good measure of this third criterion is ...
	2.2.4 EXAMPLE

	The following figure presents a quantitave assessment of the suitability of a concrete floor imag...
	The texture enhanced image is generated by replacing each pixel by its suitably scaled, normalize...
	For this operation, a 9 X 9 window centered at each pixel was used.
	The texture score image is generated from “edginess” per unit area. This is computed from a suita...
	For this operation, a 17 X 17 window centered at each pixel was used. The reader may detect refin...
	The autocorrelation score image is generated from the difference of the highest and the second hi...
	For this operation, a 17 X 17 search window centered at each pixel was used. For the test image, ...
	The conclusion that can be drawn is that this image is likely to be an excellent image for the pu...
	A preprocessing search for high texture pixels is a good idea for two reasons:
	• it will shortly be shown that noise immunity is correlated with high texture
	• in the following image for a 17 X 17 search region, computation of a texture score for a 160 X ...
	Figure 5: ANALYSIS OF TYPICAL FLOOR IMAGE. While it may subjectively seem that this concrete floo...
	2.2.5 ROBUSTNESS TO RANDOM NOISE

	It is possible to test the assertion that the above image is acceptable by deliberately introduci...
	The figure below illustrates the result of cross-correlating a pristine mosaic against a noisy im...
	The curve labelled “texture threshold” depicts the highest texture score of any false positive at...
	Hence, no region whose texture score exceeds the threshold generates a false positive. Such regio...
	• as the threshold rises, the percentage of regions above threshold must lower.
	• the fact that random noise of magnitude 60 counts (out of the available 255 intensity levels) i...
	Perhaps one reason for this level of noise immunity in the face of little absolute texture is the...
	Figure 6: NOISE IMMUNITY. For a maximum grey level value of 255, it takes random noise wih a stan...

	This analysis concentrates on random noise. Systematic image corruption is another matter entirel...
	3 STORAGE REQUIREMENTS

	When operating in absolute mode, it is necessary to have the entire map that could be traversed a...
	In a realistic manufacturing setting, vehicles are limited to specific guidepaths perhaps a meter...
	Figure 7: STORAGE REQUIREMENTS. Up to 10 Km of guidepath can be stored at 1 mm resolution in 1 GB...
	4 PROCESSING REQUIREMENTS
	4.1 PROCESSING SPEED


	It remains to be shown that a vehicle moving at a given speed can have its position continuously ...
	4.1.1 PROCESSING REQUIRED TO LOCALIZE N TEMPLATES

	Let us suppose that normalized cross-correlation is the mechanism used and that the time required...
	If an entire region of size is to be searched, the careful reader can verify that it is not possi...
	In order to determine the location of a vehicle robustly, it will likely be necessary to process ...
	If a position fix is required every seconds, then the required computational power devoted to tem...
	This can be written in terms of the number of correlation operations (“correlation ops”) required...
	It can also be written in terms of the number of template correlations required per unit time thus:
	4.1.2 Processing Required for Tracking

	Regardless of whether or not the mosaic itself is accurate, there is a clear requirement for the ...
	Let us assume that a dead reckoning system is used to compute an estimate of where the camera is,...
	Such an error model is admittedly a simplification but it renders the following analysis tractabl...
	If this error accumulates after a time period , then it an be related to speed thus:
	Also, it is likely that the map is not perfect and that, in the worst case, errors due to slight ...
	If we equate this total tracking error error to the radius of the search region, we obtain a rela...
	The factor of 4 was introduced because the search radius is half the search window size. This rel...
	Figure 8: PROCESSING REQUIREMENTS. Increase with vehicle speed. From bottom to top, the 4 curves ...

	The rest of the values in the formula are given in this table:
	Table 1: Processing Speed Model Parameters

	4
	0.01
	0.1 secs
	17 pixels
	2.5 mm
	Clearly, map error can dominate the processing requirements at low speeds. Experiments have indic...
	4.1.3 UPDATE RATE FOR MINIMUM PROCESSING REQUIREMENTS

	The dependence of processing requirements on speed is nonlinear. As cycle time is increased, the ...
	Therefore:
	Hence the minimum occurs intuitively when the dead reckoning error equals the map error - when th...
	Figure 9: MINIMUM PROCESSING REQUIREMENTS. This curve is for of 5 pixels of size 2.5 mm. Processi...

	Note that minimum error accumulation happens for minimum cycle time but there are limits on how l...
	4.1.4 PROCESSING REQUIRED FOR ON-LINE MAPPING

	When building maps, speed is limited by an entirely different mechanism - images must overlap at ...
	For an overlap of 30%, a height of 0.3 meters, and 10 Hz update, this gives 1.8 m/s as the maximu...
	Here, if building maps on-line, there is a clear motivation to decrease cycle time as much as pos...
	4.1.5 SAFE DISTANCE AFTER LOSS OF VISUAL LOCK

	A mosaic-based position estimation system implements a visual lock on the mosaic. Hence, the long...
	Much of the analysis so far has relied on the assumption that the template matching system is req...
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	Regardless of the source of the error, its worst case net effect is to render a position fix impo...
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	Let the total error in the primary position estimate again be determined from the fixed map error...
	If we set this error equal to the search region radius, we compute the situation when the system ...
	The following figure illustrates this relationship for a pixel size of 2.5 mm.
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