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Abstract

Perhaps one of the simplest mechanisms for navigation in
an area isto use real-time imagery to track vehicle motion
over a very large, previously stored, high resolution image
mosaic of the scene. In structured environments, image
mosaics of textured surfaces present a potential for inex-
pensive, highly repeatable position estimation that is both
higher performance and cheaper than existing commercial
alternatives. This paper presents a case for the feasibility
of such an approach using contemporary cameras and
computing devices.

1 INTRODUCTION

Perhaps one of the simplest mechanisms for navigation in
an areaisto use real-time imagery to track vehicle motion
over a large, previously stored, high resolution image
mosaic of the scene. This technique will be referred to
here as mosaic-based position estimation. In one sense, a
traditional paper road map is a low resolution feature-
enhanced version of such an image.

A little reflection on the ratio of required position resolu-
tion to the area of excursion leads to the conclusion that
significant memory may be needed to store the mosaic. A
little more reflection leaves one wondering if enough pro-
cessing power can be brought to bear. Issues of lack of
texture, repeated texture, occlusion and perspective fore-
shortening distortion and the difficulty of constructing the
mosaic itself also emerge.

Systematic consideration of these potential problems leads
to the conclusion that contemporary sensing and comput-
ing technology are adequate to the task in suitable environ-
ments. This is particularly true when a high frequency
position estimation system, called here a primary position
estimation system, is available to track motion between
lower frequency visual fixes.

1.1  MOTIVATION

In man-made environments, both indoor and outdoor, a
robot vehicle introduced into the environment normally
moves over amostly flat floor surface. Walls and ceilings,
if present, are also composed of locally flat surfaces punc-
tuated by occasional abrupt shape discontinuities. It is
often the case that at least some of these surfaces present
at least some areas of local visual texture.

In its oldest sense, a map is a mechanism that relates
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observations to locations. In this same sense, alarge image
or a collection of images of a scene and their relative or
absolute locations constitutes a map from which one may
navigate. The only requirements are that there be:

» a mechanism that can be used to determine the location
of pixels in the map when they happen to be observed
in the environment, and

e a mechanism that can determine camera pose from
these pixel locations.

12 PROBLEM DESCRIPTION

We are interested here in the specific problem of determin-
ing the motion, with respect to a fixed scene, of a camera,
and hence of the vehicle to which the camera is attached.
Indeed, accuracy of the mosaic, either absolute or relative,
need not necessarily be of much concern. Any applications
for which motion trajectories can be taught and replayed
will benefit significantly just from the repeatability of
mosaic-based position estimation.

It will not always be necessary for the scene surface(s) to
be a single flat surface or for the camera to move parallel
to the surface. However, the following figure illustrates

this simplest scenario.
I Camera Motion

/ Surface

Figure 1: SIMPLEST SCENARIO: Here a camera is erected
normal and at constant height with respect to a surface. It
moves parallel to the surface - hence variations in
foreshortening do not occur.

1.3 TERMINOLOGY

Our proposed system compares immediately acquired
imagery with imagery taken previously. Previous imagery

may have been acquired milliseconds ago in the current
excursion or years ago in some other excursion. We refer
to the the most immediately acquired imagery as the
image and any previously acquired imagery asrtiasaic

or map. The map may or may not have been processed
into a single coherent block of pixels. It may simply be a

list of images and their locations.

In the event the previous imagery comes from the last
image acquired, differentials are being integrated, and the




system is operating in relative mode (and may be con-
structing a map). In the event the previous imagery comes
from a map calibrated against some reference, and map-
referenced position is being generated, the system is oper-
ating in absolute mode. In the event the system is con-
structing a map by saving imagery, it is operating in
mapping mode. When referencing imagery to a precon-
structed map, the system operates in tracking mode.

1.4  Comparison to Sereo

Many of the problems of mosaic-based position estima-
tion, and their solutions, are common to stereo vision. The
difficulties associated with foreshortening in area-based
stereo vision are well known. Fundamentally, the same
part of the scene is distorted differently from different
viewpoints if the part of the scene varies in range relative
to the camera. Mosaic-based positioning, however, is a
dramatically simpler than stereo vision because:

« disparity is only required at a few (2-10) places in an
image pair in order to determine pose error.

« disparity gradient is usually guaranteed to be small and
to vary slightly and smoothly over the entire image.

« disparity is a direct measure of the quantity of interest
because pose error is directly proportional to it.
Hence, output error is a linear - not a quadratic - func-
tion of disparity error.

directions from its nominal position. The rectangular
region inside which all such searching is confined is of
size WxW whereW is called the search window size.
Also, W/2 is loosely called the search window radius.
The two window sizes are independent. Either can be the
larger.w is determined by the amount of texture ahd  is
determined by the current position estimate uncertainty.
The disparity is the difference between predicted and
actual position in the mosaic, i.e. it is the pose error in pix-
els. Computation of disparity can be accomplished
through maximizing some measure of similarity - such as
normalized correlation - by searching a sequence of can-
didate disparities.

The disparity can be determined by local brute force

search for the peak in a crosscorrelation function between
the template and the search region in the mosaigx|f)

is the normalized template intensity function avick, y)

is the normalized mosaic intensity function, then the nor-

malized correlation, computed as a function of disparity

(d d,), comes from the double integral:
wow
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1
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For these reasons, mosaic-based positioning is largely The figure below presents a template, a search region, and
immune to three of the dominant failure modes of stereo: the correlation between them as a function of two-dimen-
unsufficient texture, forshortening distortion in areas of Sional disparity.

high disparity gradient, and poor range measurement reso-
lution. Indeed, preliminary experiments indicate quite sat-
isfactory robustness in suitable environments.

1.5 PRINCIPLE OF OPERATION

Normally one real-time image is taken and compared with
a previously stored mosaic of images. A small rectangular
region of pixels in the image calledeanplate, always has

a predicted corresponding position in the mosaic. The
region surrounding that predicted position in the mosaic is
thesearch region.

Some of the notation used in the following discussion is
illustrated below. Let the template be of size w pixels
called the correlation window size. Also, although the
window is rectangular, we will loosely referto’'2  as the
correlation window radius. Similiarly, the center of the

Image Correlation
g Window
\L

k ——

w u
]

< W —>
Figure 2. IMAGE AND CORRELATION WINDOW
COORDINATES. A local coordinate system (x,y) is attached
to the image plane at the central pixel of the reference image
and another (u,v) is attached to the correlation window.

Correlation Surface

Template

Search Regio

Figure 3: PRINCIPLE OF OPERATION. The translational
pose error can be found as the position of the peak in a
surface: the correlation as a function of disparity.

The template in the above figure is a 17 X 17 pixel area
taken from a concrete floor image. A careful examination
shows it is present in the center of the search region. The
unprocessed images exhibit very little texture, so they
have been enhanced for purposes of presentation. The
position of the correlation surface peak is nonetheless
clear, and there are no other contenders within the search
region.

In stereo, disparity is limited to one dimension by virtue of
the epipolar constraint - which itself is due to the fixed
spatial relationship between the two views. Here, no such
fixed relationship exists. Disparity is unavoidably at least
a 3 dimensional quantity in mosaic-based positioning. A
guess pose may cause a template to be both positioned and
oriented incorrectly in the mosaic. For the moment, how-
ever, we will consider translational aspects of disparity
only.

correlation window will be moved slight amounts in all
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16 PRIORWORK

The practice of image mosaicing, of producing larger
images from the union of smaller ones registered in the
region of overlap, is an old one. The technique of auto-
matic construction of mosaics by computer is also rela
tively old [1].

Automated mosaicing [2] is often useful in its own right.
Applicationsinclude station keeping [3], video coding [4],
image stabilization [5], and visualization [6]. Only
recently have near real-time[7] and globally consistent [8]
mosai cing solutions emerged. However, there seems to be
little in print on the problem of navigating from mosaics.
Certainly, navigating from imagery is a basic technique in
robotics [9] [10] but such techniques often deal with the
much harder problem of athree dimensional scene - often
of unknown geometry. Yet, the notion of determining
cameraposein asceneisthe sensing half of the visual ser-
voing problem [11].

Perhaps such a lack of emphasis on the problem has
stemmed from practical inabilities to store enough imag-
ery and access it fast enough to be useful. The purpose of
the paper is to show that these historical restrictions no
longer apply.

17 OPPORTUNITY

Commercial aternatives for the positioning of vehicles in
yards and manufacturing facilities include:

e wire guidance: where crosstrack error is measured
from inductive pickoffs sensing wires that are literally
embedded in the floor of a building.

e laser guidance: where a spinning laser beam senses
the bearings and sometimes the ranges of retroreflec-
tive fiducials mounted on the walls of buildings - and
triangulates pose.

« inertial guidance: dead reckoning from gyroscopes
and accelerometers augmented by occasional position
fixes.

« radio guidance: forms of indoor GPS are reported to
be under development in industrial laboratories.

Mosaic-based positioning promises to compete favorably

with these alternatives in suitable environments because:

« Resolution is limited only by optics. It can, in fact, be
used on microscopes, cameras, and telescopes.

 Capital cost is limited to that of a camera, lighting, off-
line storage, and a capable processor - which may be
required for other reasons.

* Installation cost is limited to the labour and time
required to map the environment by driving over all
necessary guidepaths or areas only once.

Typical conditions in plants, office buildings, and yards,
combined with contemporary relatively inexpensive cam-

« the scene have sufficient visual texture which is locally
unique enough (i.e. non repetitive) to support tem-
plate matching, and

« sufficient image storage and computing power must be
available.

Following sections discuss these matters in more detail.
2 TEXTURE REQUIREMENTS

Template matching can be surprisingly robust in cases of
lack of texture and image noise. This section discusses
these matters with regard to typical floor imagery.

21 SUBJECTIVE TEXTURE IN MANY MAN-
MADE SCENES

The following figure shows images of floor scenes in man-
ufacturing facilities which exhibit typical textured pat-
terns.

Trailer Wood Floor

Loading Bay Ramp

Figure 4. MANUFACTURING PLANT FLOOR IMAGERY.
Many man made surfaces exhibit locally unique texture.

In the painted concrete image, just a little wear and tear,
when added to the physical texture of the surface, can cre-
ate enough texture to navigate.
22 TEXTURE SIGNAL STRENGTH
A very direct test of whether or not an image or part of an
image contains sufficient texture for template matching is
to compute the autocorrelation of candidate templates as a
function of disparity. A template is suitable for matching
when:

* it possesses sufficient texture,

« it has a high cross-correlation surface peak, and

« it has no competitive peaks within a neighbourhood.
All conditions together imply good noise rejection.

eras, computers, and off-line storage, present a new oppor-2.2.1 SUFFICIENT TEXTURE

tunity to produce inexpensive and highly repeatable

position estimation based on template matching of tex-

tured scenes.

Texture in the template implies that a local maximum cor-
relation will exist. Many metrics of texture have been pro-
posed but intuitively, any measure of the “edginess” or

Use of such a technique to determine position, requires gradient magnitude will suffice for a qualitative assess-

that:
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222 GOOD CROSS-CORRELATION each pixel was used. For the test image, there are no pixels

Good cross-correlation implies a high degree of similiarity for which (C,-C;)<0.2 and fewer than 1% have
between the template and the candidate mosaic region. It (C1-Cy) <04.

is important to recognize that this second condition does The conclusion that can be drawn is that this image is
not imply the first because even relatively textureless likely to be an excellent image for the purpose of template
regions may correlate perfectly. Of course, the autocorre- matching - especially when augmented by a search for
lation surface peak always has a value of unity, so it is high texture regions because the differences in peak corre-
important to realize that the real issue is the normalized lation scores is virtually everywhere large.

cross-correlation between the image template and the A preprocessing search for high texture pixels is a good
mosaic. idea for two reasons:

223 UNIQUENESS « it will shortly be shown that noise immunity is corre-
Uniqueness implies a low probability of false matches. A lated with high texture _

good measure of this third criterion is the difference in « in the following image for a 17 X 17 search region,
height between the highest and the second highest autocor- computation of a texture score for a 160 X 120 image
relation peak in the search neighbourhood. When the dif- requires 70 milliseconds, whereas the autocorrelation

score requires a full 180 seconds.

ference is large, it should be possible to correctly match
the template even in the presence of substantial random
noise because significant noise would be necessary to
lower the higher peak and/or raise the lower peak.

224 EXAMPLE

The following figure presents a quantitave assessment of
the suitability of a concrete floor image. The origina
image shows the nicks, cracks, and scratches that might be
expected due to normal wear and tear. Point imperfections,
which are particularly valuable for localization, are appar-
ent aswell.

The texture enhanced image is generated by replacing
each pixel by its suitably scaled, normalized deviation
from the mean of its local neighbourhood thus:

I"=(1-u,)/0,
For this operation, a9 X 9 window centered at each pixel Texture Score Autocorrelation Score

was used.
; ; u ; ” Figure 5. ANALYSIS OF TYPICAL FLOOR IMAGE. While it
The texture score iImage IS generated from edglness per may subjectively seem that this concrete floor image lacks

unit area. This is computed from a suitably scaled sum of sufficient texture, it is actually acceptable at every single pixel.
all intensity gradient magnitudes in a local region thus;

= Ls[@d. g
w2 &L Loy 2.25 ROBUSTNESSTO RANDOM NOISE

For this operation, a 17 X 17 window centered at each |t js possible to test the assertion that the above image is
pixel was used. The reader may detect refinements imple- cceptable by deliberately introducing noise and cross-
mented to identify and discourage one-dimensional tex- correlating the corrupted image with the original to see

ture. These are beyond our scope here. One can verify thathgw the peak location changes.

whiter pixels correspond to features of higher texture due The figure below illustrates the result of cross-correlating

to imperfections _|n the floo_r. ) _a pristine mosaic against a noisy image. A 17 X 17 search
The autocorrelation score image is generated from the dif- \yindow is used, and a peak that is mislocated by 8 pixels
ference of the highest and the second highest autocorrelais deemed a false positive. The threshold of 8 is chosen

tion peak in a search neighbourhood surrounding the pixel. hecause the radius of the correlation peak is related to the
Let C, be the correlation score of the highest peak (which gjze of the correlation window.

is unity for autocorrelation). LeC, be the correlation « "
score of the second highest peak (or it could be simply the The curve labelled *texture threshold
highest score outside the radius of the highest peak). Then
the image is a scaled version of:

depicts the highest
texture score of any false positive at the indicated injected
noise level (as determined from its deviation from ground
truth). The curve labelled “percent above threshold” is the
I” =(C;-Cy) number of image pixels whose texture score remains

For this operation, a 17 X 17 search window centered at above this threshold.
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Hence, no region whose texture score exceeds the thresh- state flash disks - similiar to those used in consumer digi-
old generates a false positive. Such regions are “safe” for tal cameras.
matching at the indicated noise level. Clearly:

. . 1E+06
« as the threshold rises, the percentage of regions above
threshold must lower. 1E+05 P
» the fact that random noise of magnitude 60 counts (out 4
of the available 255 intensity levels) is required to 3 k404
render any texture threshold useless predicts a high =
level of noise immunity. P ev03 p
Perhaps one reason for this level of noise immunity in the T
face of little absolute texture is the fact that perspective S 1E+02 »
foreshortening distortion is not an issue for a surface nor- 8
mal to the camera optical axis. Hence, the correlation win- g 1E+01 34
dow sizew can be increased to levels that impart high <
noise immunity without suffering from distortion prob- 1E+00
lems. 1E+00 1E+01  1E+02 1E+03 1E+04 1E+05
Storage in M egaB ytes
‘—T extureT hres hold P ercent AboveT hres hold
0 Figure 7. STORAGE REQUIREMENTS. Up to 10 Km of
guidepath can be stored at 1 mm resolution in 1 GByte of
100 A memory.
80 A
o 4 PROCESSING REQUIREMENTS
0 41 PROCESSING SPEED
20 - It remains to be shown that a vehicle moving at a given
0 speed can have its position continuously updated by a
o 20 20 60 8 mosaic-based positioning system.
Noise Level in P ixel Counts 411 PROCESSING REQUIRED TOLOCALIZEN
TEMPLATES
Let us suppose that normalized cross-correlation is the
Figure6: NOISE IMMUNITY. For a maximum grey level value mechanism used and that the time required to normalize
of 255, it takes random noise wih a standard deviation of 60 the image can be neglected. For a template ofssize it
ggﬁggtg’?;?;g pghs‘?ﬂvhéghe“ texture regions in the image clearly takes at least?  operations to compute its cross-

correlation coefficient with another template of equal size.

This analysis concentrates on random noise. Systematic : ; . ;
If various overhead operations such as array indexing are

image corruption is another matter entirely. Such errors included, let there b&  operations required per pixel in

are analyzed in a later section. : 2 :
the template to arrive a&tw operations per template cor-
3 STORAGE REQUIREMENTS relation.

If an entire region of siz&v/xW is to be searched, the
careful reader can verify that it is not possible to reuse any
computations, so the required processing to search for a
match to a single template VW2 Computation in fre-

When operating in absolute mode, it is necessary to have
the entire map that could be traversed available in off-line
memory. Estimates of storage requirements come down to
a determination of surface-projected pixel size and of the - X .
surface area that must be covered. For a pixebsize of 2.59UeNcy space may be a more efficient alternative but it has
mm, the following graph shows that one-tenth of a square Ot @s Yet, been explored. _ _
kilometer of area (roughly 1000 ft by 1000 ft) can be In order to determine the location of a vehicle robustly, it
stored in 10 GByte of memory. This amount of storage W|II’I|ker be necessary to process more than one template.
corresponds to a single contemporary DVD ROM. Mem- Lets.assume tha_t.N tgmpl_ates are necessary. Hence, com-
ory requirements drop quadratically if the pixel size can be Putation of a position fix will require:

mcrease_d._ _ _ _ o flops = NKW2w2

In a realistic manufacturing setting, vehicles are limited to - o _

specific guidepaths perhaps a meter wide, so the graphlf a position fix is required every_ . seconds, then the
also indicates that 100 Km of guidepath Y1€quare required computational power devoted to template match-
meters) can be stored in only 10 GByte of memory. Due in ing is:

part to demand for multimedia content on the internet, W22
L ) . . _ flops _ NKW'w
such memory capacity is already inexpensive. Many appli- fepu = =
: ; . T T
cations could already store usefully large areas in solid cyc cye
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This can be written in terms of the number of correlation intrinsic map error.
operations (“correlation ops”) required per unit time thus:

f NW2W2 Emap = O pixels = = =Emap =5 pixels
feoorr = —C}g—U = - —— Emap =10 pixels = = = =Emap = 15 pixels
cyc
It can also be written in terms of the number of template 1807 —— ———
correlations required per unit time thus: — = —
ftempl = E% = MIZ g = - == = |
Kw Teye 2
© 1405
4.1.2 Processing Required for Tracking s 7
Regardless of whether or not the mosaic itself is accurate, 3
there is a clear requirement for the system to be able to | 5§ &% =2
track its motion over the map - in order not to get lost. To 7/
do so requires that the area searched per unit time equal or 1408 HL
exceed the tracking error that has accumulated per unit 000 100 200 300 400 500
time. Here, the tracking error is the difference between the Vehicle Speed in m/s
predicted position of a template and its actual position in
the map. Figure 8 PROCESSING REQUIREMENTS. Increase with

. . vehicle speed. From bottom to top, the 4 curves are for € of
Let us assume that a dead reckoning system is used t0 5 10 and 15, pixels of size 2.5 mm. MAP

compute an estimate of where the camera is, and that the

estimate becomes the center of the template search regionThe rest of the values in the formula are given in this table:
A conservative estimate of error buildup as a function of

time is as a percentage , called the error gradient, of Table 1: Processing Speed Model Parameters

travelled distance

_ Symbol Value Symbol Value
€pr = OS
Such an error model is admittedly a simplification but it | N 4 a 0.01
renders the following analysis tractable. The general con- )
clusions do not depend on the error model chosen as long ey 0.1 secs w 17 pixels
as it is monotonically increasing with time. 5 25mm
If this error accumulates after a time periog, , then it

an be related to spead  thus: . . .
Clearly, map error can dominate the processing require-

Epr = AVTeyc ments at low speeds. Experiments have indicated that a

Also, it is likely that the map is not perfect and that, in the 300 MHz Pentium I can perform feorrelation opera-
worst case, errors due to slight mislocatieg,e of tions per second. On this basis, the mosaicing system

regions are in exactly the same direction of the dead reck- €0Uld support speeds up to 5 m/s at 10 Hz update rate.
oning error so the errors add. 41.3 UPDATE RATE FOR MINIMUM
PROCESSING REQUIREMENTS

The dependence of processing requirements on speed is
If we equate this total tracking error errefqor to the nonlinear. As cycle time is increased, the rate nominally
radius W/ 2 of the search region, we obtain a relationship goes down because the number of searches conducted per
between the template correlation rate required at a given second is smaller. However, due to build up of error over
vehicle speed when the CPU is dedicated to template time, the size of those searches increases. Hence, the rela-

€roT = €prt Emap

matching (because we assumed the variable part of thetionship is a rational polynomial i . . The former
error accumulated over exactly one cycle time). expression can be differentiated to yie)fd an expression for
2.2 ini .
o NWAWE  AN(OVT, o+ Eap) W the minimum: ) , )
corr TCyc TCyc ~ 4ANw [(aVTCyC) +2aVsMAPTCyc+ (emap)’]
The factor of 4 was introduced because the search radiusis Teye
half the search window size. This relationship is plotted herefore:
below as a function of speed for various values of the Therefore:
dfCOI’T
- 00 Teye = Emap/ (AV)

cyc
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Hence the minimum occurs intuitively when the dead
reckoning error equals the map error - when the gains in
one are exactly cancelled by the losses in the other. The
following figure shows the variation in processing require-
ments with cycletime.

18

17

16

3 15 \
- \
%) 14
5 \
- 13 \
2
T 12
E \
5 11 \
@)
© 1
> \—/
Q
= 09
0.8 T T T
0.00 0.50 100 150 2.00

Tcycin Seconds

Figure 9: MINIMUM PROCESSING REQUIREMENTS. This
curve is for € of 5 pixels of size 2.5 mm. Processing
requirements M@?S m/s for 1% of distance dead reckoning
error are minimum at TCyC = 0.5 secs.

Note that minimum error accumulation happens for mini-
mum cycle time but there are limits on how low the cycle
time can be reduced - even for a perfect map, because of
the speed of the digitization hardware. 30 Hz is typically
the fastest possible rate available.
414 PROCESSING REQUIRED FOR ON-LINE
MAPPING
When building maps, speed is limited by an entirely dif-
ferent mechanism - images must overlap at the operating
speed and cycle time if a single pass is to produce com-
plete coverage. If theimage heightis H, and B isthe frac-
tion of overlap required, the maximum speed possibleis:
v _(A-p)H
max — T
cyc
For an overlap of 30%, a height of 0.3 meters, and 10 Hz
update, this gives 1.8 m/s as the maximum vehicle speed.
When operating at any speed, the formula of the last sec-
tion applies to determine the necessary processing power.
Hence, provided the computer can support the vehicle
speed in tracking mode, it can be supported in mapping
mode.
Here, if building maps on-line, there is a clear motivation
to decrease cycle time as much as possible. Otherwise
imagery can be stored at frame rate and processed off-line.
4.15 SAFE DISTANCE AFTER LOSSOF VISUAL
LOCK

A mosaic-based position estimation system implements a
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visua lock on the mosaic. Hence, the longer the delay or
distance between position fixes, the larger the error grows.
At some point the system will be unable to recover from
temporary loss of visual lock.

Much of the analysis so far has relied on the assumption
that the template matching system is required only to
damp errorsin dead reckoning or, more generally, errorsin
any primary position estimation system. The dependence
of processing requirements on the error gradient a is qua-
dratic, and it has atypical value of 0.01. Hence, the use of
a primary system can be expected to reduce processing
requirements by a factor of 10% or equivalently, increase
permissable speed by afactor of 100.

The analysis of the impact of random image intensity error
might be expected to model system performance in the
face of dust and small dirt particles that occlude individual
separated floor pixelsin whole or in part.

Another important form of image error is the occlusion,
replacement, or obliteration of al texture in a relatively
large region. This error might occur when a liquid is
spilled, when floor coverings are replaced, or when a floor
is painted. It might also occur when the system is obliged
to move over an area that has been unmapped (in order to
avoid an obstacle on the guidepath for example).

Regardless of the source of the error, its worst case net
effect is to render a position fix impossible over that floor
region until it is restored close to its original state, or
remapped. A more immediate issue, however, is whether
or not the system can recover visual lock after leaving the
area.

One practical implementation of mosaic-based position
estimation dedicates a fixed amount of processing power,
searches a fixed large search radius W each cycle, and
therefore cycles at a more or less fixed frequency.
Although this approach may often waste processing time
searching unnecessarily, the extra search radius comes into
play immediately after driving over an unrecognizeable
region.

Recall our elementary expression for processing require-

ments.
_ NV\/2W2

corr T T
cyc

Therefore, the time required to search a region of size W

is:
_ N\N2W2
cyc T f

f

T

corr

Let the tota error in the primary position estimate again be
determined from the fixed map error and the accumulation
of dead reckoning error over the time spent in the unrecog-
nized region:

€roT = Eprt Emap = USTtEyAp

If we set this error equal to the search region radius, we
compute the situation when the system is on the threshold



of not being able to find itself. Solving for the distance
travelled leads to the largest distance that can be travelled
without a position fix before the system getslost:

s = (eror—Emap)/ @ = (W/2-gypp)/a

Thefollowing figure illustrates this relationship for apixel
size of 2.5 mm.

2

15

05

Sustainable Blind Distance in Meters

0 1 2 3 4 5 6 7 8

Map Error in P ixels

Figure 10: SUSTAINABLE EXCURSION OVER UNKNOWN
REGION. For a search radius of 8 pixels, a pixel size of 2.5
mm, and a map error of 2 pixels, 1.5 meters of excursion
over unknown, unmapped, or changed surface can be
accomodated.

5 CONCLUSIONS

This paper has presented a case for the feasiblity of avery
straightforward new approach to vehicle position estima-
tion based on tracking a camera pose during motion over a
prestored mosaic. The analysis has lead to the following
conclusions:

» Image mosaic-based position estimation is feasible on [6]
large scale mosaics today. It can be expected to pro-

duce submillimeter repeatability of vehicle position

estimates at speeds up to 5 m/s and update rates of 10 [7]
Hz. These numbers represent one set of design deci-
sions for automated guided vehicles whereas designs

for microscopic and planetary scales are equally fea-
sible. Designs for highway speeds of automobiles are
also feasible.

» A primary reason for its feasibility is the ability to
engineer a system for surface normal erection of a
camera moving parallel to the surface. Mounting a
device underneath a vehicle pointed directly down-
ward, for example, achieves such geometry. Such
geometry makes straightforward template matching
feasible - eliminating perspective foreshortening dis-
tortions. Eliminating distortion preserves highest
noise rejection in template matching. Extensions to

manage some degree of surface roughness based on

determining affine transform parameters rather than
camera pose are also clear.

» Another reason for its feasibility is a 100-fold increase

in vehicle speed or a 10,000-fold decrease in required
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computing when a primary position estimate can be
used to seed the search for a template match.

» Relatively high update rates are advisable because
computational requirements tend to be lower overall.

« Correlational template matching on typical floor imag-
ery is quite robust to noise. Since texture can be quan-
tified efficiently to prequalify templates and since
only a few templates per position fix are required, it
can be a rare event when a particular image cannot be
used to generate a fix.

A mosaic based positioning system for a 40,000 square
foot test facility has been in operation by the author for
over three years. This paper has concentrated on the origi-
nal feasibility analysis. Sequel papers will discuss mosaic
construction, tracking, and the design and performance of
the system.
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	Abstract
	Perhaps one of the simplest mechanisms for navigation in an area is to use real-time imagery to t...
	1 INTRODUCTION

	Perhaps one of the simplest mechanisms for navigation in an area is to use real-time imagery to t...
	A little reflection on the ratio of required position resolution to the area of excursion leads t...
	Systematic consideration of these potential problems leads to the conclusion that contemporary se...
	1.1 MOTIVATION

	In man-made environments, both indoor and outdoor, a robot vehicle introduced into the environmen...
	In its oldest sense, a map is a mechanism that relates observations to locations. In this same se...
	• a mechanism that can be used to determine the location of pixels in the map when they happen to...
	• a mechanism that can determine camera pose from these pixel locations.
	1.2 PROBLEM DESCRIPTION

	We are interested here in the specific problem of determining the motion, with respect to a fixed...
	It will not always be necessary for the scene surface(s) to be a single flat surface or for the c...
	Figure 1: SIMPLEST SCENARIO: Here a camera is erected normal and at constant height with respect ...
	1.3 TERMINOLOGY

	Our proposed system compares immediately acquired imagery with imagery taken previously. Previous...
	In the event the previous imagery comes from the last image acquired, differentials are being int...
	1.4 Comparison to Stereo

	Many of the problems of mosaic-based position estimation, and their solutions, are common to ster...
	• disparity is only required at a few (2-10) places in an image pair in order to determine pose e...
	• disparity gradient is usually guaranteed to be small and to vary slightly and smoothly over the...
	• disparity is a direct measure of the quantity of interest because pose error is directly propor...
	For these reasons, mosaic-based positioning is largely immune to three of the dominant failure mo...
	1.5 PRINCIPLE OF OPERATION

	Normally one real-time image is taken and compared with a previously stored mosaic of images. A s...
	Some of the notation used in the following discussion is illustrated below. Let the template be o...
	Figure 2: IMAGE AND CORRELATION WINDOW COORDINATES. A local coordinate system (x,y) is attached t...

	The disparity is the difference between predicted and actual position in the mosaic, i.e. it is t...
	The disparity can be determined by local brute force search for the peak in a crosscorrelation fu...
	The figure below presents a template, a search region, and the correlation between them as a func...
	Figure 3: PRINCIPLE OF OPERATION. The translational pose error can be found as the position of th...

	The template in the above figure is a 17 X 17 pixel area taken from a concrete floor image. A car...
	In stereo, disparity is limited to one dimension by virtue of the epipolar constraint - which its...
	1.6 PRIOR WORK

	The practice of image mosaicing, of producing larger images from the union of smaller ones regist...
	Automated mosaicing [2] is often useful in its own right. Applications include station keeping [3...
	Certainly, navigating from imagery is a basic technique in robotics [9] [10] but such techniques ...
	Perhaps such a lack of emphasis on the problem has stemmed from practical inabilities to store en...
	1.7 OPPORTUNITY

	Commercial alternatives for the positioning of vehicles in yards and manufacturing facilities inc...
	• wire guidance: where crosstrack error is measured from inductive pickoffs sensing wires that ar...
	• laser guidance: where a spinning laser beam senses the bearings and sometimes the ranges of ret...
	• inertial guidance: dead reckoning from gyroscopes and accelerometers augmented by occasional po...
	• radio guidance: forms of indoor GPS are reported to be under development in industrial laborato...
	Mosaic-based positioning promises to compete favorably with these alternatives in suitable enviro...
	• Resolution is limited only by optics. It can, in fact, be used on microscopes, cameras, and tel...
	• Capital cost is limited to that of a camera, lighting, off- line storage, and a capable process...
	• Installation cost is limited to the labour and time required to map the environment by driving ...
	Typical conditions in plants, office buildings, and yards, combined with contemporary relatively ...
	Use of such a technique to determine position, requires that:
	• the scene have sufficient visual texture which is locally unique enough (i.e. non repetitive) t...
	• sufficient image storage and computing power must be available.
	2 TEXTURE REQUIREMENTS

	Template matching can be surprisingly robust in cases of lack of texture and image noise. This se...
	2.1 SUBJECTIVE TEXTURE IN MANY MAN- MADE SCENES

	The following figure shows images of floor scenes in manufacturing facilities which exhibit typic...
	Figure 4: MANUFACTURING PLANT FLOOR IMAGERY. Many man made surfaces exhibit locally unique texture.

	In the painted concrete image, just a little wear and tear, when added to the physical texture of...
	2.2 TEXTURE SIGNAL STRENGTH

	A very direct test of whether or not an image or part of an image contains sufficient texture for...
	• it possesses sufficient texture,
	• it has a high cross-correlation surface peak, and
	• it has no competitive peaks within a neighbourhood.
	All conditions together imply good noise rejection.
	2.2.1 SUFFICIENT TEXTURE

	Texture in the template implies that a local maximum correlation will exist. Many metrics of text...
	2.2.2 GOOD CROSS-CORRELATION

	Good cross-correlation implies a high degree of similiarity between the template and the candidat...
	2.2.3 UNIQUENESS

	Uniqueness implies a low probability of false matches. A good measure of this third criterion is ...
	2.2.4 EXAMPLE

	The following figure presents a quantitave assessment of the suitability of a concrete floor imag...
	The texture enhanced image is generated by replacing each pixel by its suitably scaled, normalize...
	For this operation, a 9 X 9 window centered at each pixel was used.
	The texture score image is generated from “edginess” per unit area. This is computed from a suita...
	For this operation, a 17 X 17 window centered at each pixel was used. The reader may detect refin...
	The autocorrelation score image is generated from the difference of the highest and the second hi...
	For this operation, a 17 X 17 search window centered at each pixel was used. For the test image, ...
	The conclusion that can be drawn is that this image is likely to be an excellent image for the pu...
	A preprocessing search for high texture pixels is a good idea for two reasons:
	• it will shortly be shown that noise immunity is correlated with high texture
	• in the following image for a 17 X 17 search region, computation of a texture score for a 160 X ...
	Figure 5: ANALYSIS OF TYPICAL FLOOR IMAGE. While it may subjectively seem that this concrete floo...
	2.2.5 ROBUSTNESS TO RANDOM NOISE

	It is possible to test the assertion that the above image is acceptable by deliberately introduci...
	The figure below illustrates the result of cross-correlating a pristine mosaic against a noisy im...
	The curve labelled “texture threshold” depicts the highest texture score of any false positive at...
	Hence, no region whose texture score exceeds the threshold generates a false positive. Such regio...
	• as the threshold rises, the percentage of regions above threshold must lower.
	• the fact that random noise of magnitude 60 counts (out of the available 255 intensity levels) i...
	Perhaps one reason for this level of noise immunity in the face of little absolute texture is the...
	Figure 6: NOISE IMMUNITY. For a maximum grey level value of 255, it takes random noise wih a stan...

	This analysis concentrates on random noise. Systematic image corruption is another matter entirel...
	3 STORAGE REQUIREMENTS

	When operating in absolute mode, it is necessary to have the entire map that could be traversed a...
	In a realistic manufacturing setting, vehicles are limited to specific guidepaths perhaps a meter...
	Figure 7: STORAGE REQUIREMENTS. Up to 10 Km of guidepath can be stored at 1 mm resolution in 1 GB...
	4 PROCESSING REQUIREMENTS
	4.1 PROCESSING SPEED


	It remains to be shown that a vehicle moving at a given speed can have its position continuously ...
	4.1.1 PROCESSING REQUIRED TO LOCALIZE N TEMPLATES

	Let us suppose that normalized cross-correlation is the mechanism used and that the time required...
	If an entire region of size is to be searched, the careful reader can verify that it is not possi...
	In order to determine the location of a vehicle robustly, it will likely be necessary to process ...
	If a position fix is required every seconds, then the required computational power devoted to tem...
	This can be written in terms of the number of correlation operations (“correlation ops”) required...
	It can also be written in terms of the number of template correlations required per unit time thus:
	4.1.2 Processing Required for Tracking

	Regardless of whether or not the mosaic itself is accurate, there is a clear requirement for the ...
	Let us assume that a dead reckoning system is used to compute an estimate of where the camera is,...
	Such an error model is admittedly a simplification but it renders the following analysis tractabl...
	If this error accumulates after a time period , then it an be related to speed thus:
	Also, it is likely that the map is not perfect and that, in the worst case, errors due to slight ...
	If we equate this total tracking error error to the radius of the search region, we obtain a rela...
	The factor of 4 was introduced because the search radius is half the search window size. This rel...
	Figure 8: PROCESSING REQUIREMENTS. Increase with vehicle speed. From bottom to top, the 4 curves ...

	The rest of the values in the formula are given in this table:
	Table 1: Processing Speed Model Parameters

	4
	0.01
	0.1 secs
	17 pixels
	2.5 mm
	Clearly, map error can dominate the processing requirements at low speeds. Experiments have indic...
	4.1.3 UPDATE RATE FOR MINIMUM PROCESSING REQUIREMENTS

	The dependence of processing requirements on speed is nonlinear. As cycle time is increased, the ...
	Therefore:
	Hence the minimum occurs intuitively when the dead reckoning error equals the map error - when th...
	Figure 9: MINIMUM PROCESSING REQUIREMENTS. This curve is for of 5 pixels of size 2.5 mm. Processi...

	Note that minimum error accumulation happens for minimum cycle time but there are limits on how l...
	4.1.4 PROCESSING REQUIRED FOR ON-LINE MAPPING

	When building maps, speed is limited by an entirely different mechanism - images must overlap at ...
	For an overlap of 30%, a height of 0.3 meters, and 10 Hz update, this gives 1.8 m/s as the maximu...
	Here, if building maps on-line, there is a clear motivation to decrease cycle time as much as pos...
	4.1.5 SAFE DISTANCE AFTER LOSS OF VISUAL LOCK

	A mosaic-based position estimation system implements a visual lock on the mosaic. Hence, the long...
	Much of the analysis so far has relied on the assumption that the template matching system is req...
	The analysis of the impact of random image intensity error might be expected to model system perf...
	Another important form of image error is the occlusion, replacement, or obliteration of all textu...
	Regardless of the source of the error, its worst case net effect is to render a position fix impo...
	One practical implementation of mosaic-based position estimation dedicates a fixed amount of proc...
	Recall our elementary expression for processing requirements:
	Therefore, the time required to search a region of size is:
	Let the total error in the primary position estimate again be determined from the fixed map error...
	If we set this error equal to the search region radius, we compute the situation when the system ...
	The following figure illustrates this relationship for a pixel size of 2.5 mm.
	Figure 10: SUSTAINABLE EXCURSION OVER UNKNOWN REGION. For a search radius of 8 pixels, a pixel si...
	5 CONCLUSIONS

	This paper has presented a case for the feasiblity of a very straightforward new approach to vehi...
	• Image mosaic-based position estimation is feasible on large scale mosaics today. It can be expe...
	• A primary reason for its feasibility is the ability to engineer a system for surface normal ere...
	• Another reason for its feasibility is a 100-fold increase in vehicle speed or a 10,000-fold dec...
	• Relatively high update rates are advisable because computational requirements tend to be lower ...
	• Correlational template matching on typical floor imagery is quite robust to noise. Since textur...
	A mosaic based positioning system for a 40,000 square foot test facility has been in operation by...
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