
Modular Dynamic Simulation of Wheeled
Mobile Robots

Neal Seegmiller and Alonzo Kelly

Abstract This paper presents a modular method for 3D dynamic simulation of
wheeled mobile robots (WMRs). Our method extends efficient dynamics algorithms
based on spatial vector algebra to accommodate any articulated WMR configura-
tion. In contrast to some alternatives, our method also supports complex, nonlinear
wheel-ground contact models. Instead of directly adding contact forces, we solve for
them in a novel differential algebraic equation (DAE) formulation in which we re-
solve issues of nonlinearity and overconstraint. We demonstrate our method’s flex-
ibility and speed through simulations of two state-of-the-art WMR platforms and
wheel-ground contact models.

1 Introduction

This paper presents a modular method for 3D dynamic simulation of wheeled mo-
bile robots (WMRs). Here, “dynamic simulation” means a second-order physics-
based motion model is used, which accounts for inertias and applied forces. This
is an expansion on our previously published work on first-order velocity kinematic
motion models [15]. “Modular” means that the method accommodates any artic-
ulated WMR configuration and any wheel-ground contact model expressed as a
function in the specified format.

Our colleagues have recently made progress in model-predictive planning [10][16].
To perform well, these planners require accurate motion models that correctly ac-
count for wheel slip, rollover, actuator limits, etc. that can also be simulated much
faster than real time. Our method strikes a favorable balance between these opposing
criteria.

Our method extends efficient dynamics algorithms originally developed for ma-
nipulators to account for a non-fixed base and the enforcement of wheel-ground

All authors
Carnegie Mellon University, Robotics Institute, e-mail: {nseegmiller,alonzo}@cmu.edu

1

2 Neal Seegmiller and Alonzo Kelly

contact models. These models specify the (often nonlinear) relationship between
force and slip at the wheel-ground interface. The simplest way to incorporate these
models is to compute contact forces once per time step based on current slip values,
and directly add them at each wheel [1][19][11]. Then the dynamics equations are
simply a system of ordinary differential equations; however, the system will often be
“stiff” requiring a solver that takes very small or adaptive time steps [1]. In contrast,
we enforce wheel-ground contact models in a differential algebraic equation (DAE)
formulation using Lagrange multipliers. This requires the resolution of nonlinearity
and overconstraint issues, but ultimately proves to be more stable and efficient. We
demonstrate this through simulations of two state-of-the-art WMR platforms and
wheel-ground contact models in Section 4.

2 Related Work

Modeling wheel-ground contact is still an active research area. For example, in
robotics literature there are terramechanics-based models for rigid wheels in loose
soil [11][5][14]. In automotive literature there are models for pneumatic tires [3].
While the ultimate objective of these wheel-level contact models is to improve
vehicle-level simulations, few of these publications attempt to do so, perhaps be-
cause available simulator resources are unsuitable.

Some commercial resources exist for vehicle simulation such as Adams/Car and
CarSim. These use complex, granular models that include many subsystems and
components; as a result these require the knowledge of many parameters and can
be slow. More importantly model configurations are limited to on-road vehicles
like cars and trucks. JPL developed Rover Analysis, Modeling, and Simulation
(ROAMS) software to model the full dynamics of the Mars Exploration Rovers,
including wheel/soil slippage/sinkage interaction [13]. While ROAMS was helpful
for design evaluation, it was not feasible for use in motion planning.

Physics-based models that account for wheel slip, rollover, actuator limits, etc.
could greatly benefit WMR motion planning, but because implementation and com-
putation costs are high they are seldom used. Ishigami et al. proposed a rover plan-
ning algorithm that performs complete dynamic simulation candidate paths, but
cited computational cost issues; evaluating just 4 paths (that would each take the
rover about 3 minutes to execute) took 47 minutes [12]. Eathakota et al. approxi-
mate WMR dynamics in their RRT-like planner to ensure paths satisfy quasi-static
and friction cone constraints [7]. Muir and Tian et al. modeled WMR physics in 2D
for feedback control purposes [20][23].

Due to its ease of use, Open Dynamics Engine (ODE) is sometimes used to sim-
ulate WMRs [11][17][6][15], but it has limited options for wheel-ground contact
modeling. ODE can only enforce a rudimentary contact model with Coulomb force
limits approximated by a friction pyramid and slip velocities linearly proportional
to force. Our method supports a simulator with ODE’s ease of use, that also en-
forces nonlinear wheel-ground contact models in an unprecedented DAE formula-

Modular Dynamic Simulation of Wheeled Mobile Robots 3

tion. Furthermore, unlike ODE, our method is designed to be efficient specifically
for WMRs. This is evident in our use of joint space dynamics algorithms, a limited
collision engine, and inertia and bias force approximations as explained in Section
3.

Outside of the WMR application, there is relevant work on dynamic simulation.
Some have published on the simulation of dynamic systems with nonholonomic
constraints [18][25], of which wheel slip constraints are a type. Some have created
or proposed modular simulators for space applications, such as SpaceDyn [24] and
LRMAS [4]. Our method extends the spatial vector algorithms Featherstone orig-
inally developed for manipulator dynamics [8]. Orin applied these algorithms to a
multilegged vehicle [19], but their previous application to WMRs is limited.

3 Simulation Mathematics

This section explains the mathematics of our simulation method, but first we provide
notes on notation conventions:

• underline denotes a column vector of any dimension u
• overset harpoon denotes a 3D Cartesian coordinate vector ⇀u
• overset arrow denotes a 6D Plücker coordinate spatial vector →u
• cua

b indicates that the measurement u is of object a with respect to b, expressed
in the coordinates associated with frame c

• Ra
b denotes a rotation matrix that changes coordinates as follows: a⇀u = Ra

b(
b⇀u).

The same script notation applies to homogeneous and Plücker transforms (T ,X)
• [

⇀u]× denotes a 3×3 skew symmetric matrix formed from the elements of ⇀u. This

is used to represent cross products by matrix multiplication: ⇀a×
⇀

b = [
⇀a]×

⇀

b
• u(i) denotes the ith element of the vector u. u(1 : n) denotes a subvector comprised

of elements 1 through n. A(i, j) denotes the element of matrix A at row i, column
j. A(i,∗) denotes the ith row, A(∗, j) denotes the jth column.

Notation change. In prior
work ⇀u means not
expressed in the
coordinates of any
particular reference frame

3.1 Kinematic Model and State Space

First, a kinematic model of the WMR is constructed as a tree of frames. The root
is the body frame which has 6 DOF with respect to the navigation/world frame.
Additional frames for steering, suspension, etc. are attached via 1-DOF revolute or
prismatic joints. All branches terminate with wheel frames, which by convention are
attached via revolute joints about their y-axes. Mass properties are also specified for
each frame.

At each time step, a massless frame is also attached to each wheel in contact with
the terrain. The origin of the contact frame is the point on the circumference of the

4 Neal Seegmiller and Alonzo Kelly

Fig. 1 LandTamer frames diagram

Fig. 2 Rocky 7 frames diagram

Table 1 LandTamer frames table. Made by
PFM Manufacturing Inc.
i Frame Parent Type Act. x y z θx θy θz
1 body nav
2 FL body RY Y l w 0 0 0 0
3 FR body RY Y l -w 0 0 0 0
4 ML body RY Y 0 w 0 0 0 0
5 MR body RY Y 0 -w 0 0 0 0
6 BL body RY Y -l w 0 0 0 0
7 BR body RY Y -l -w 0 0 0 0
in inches: l=42, w=32.25, wheel radius=16.5, total mass
= 3225 lbm

Table 2 Rocky 7 frames table [22]
i Frame Parent Type Act. x y z θx θy θz
1 body nav
2 D1 body RY N k2 k3 k1 0 0 0
3 S1 D1 RZ Y k4 0 0 0 0 0
4 A1 S1 RY Y 0 0 -k5 0 0 0
5 B1 D1 RY N -k6x 0 -k6z 0 0 0
6 A3 B1 RY Y k7 0 -k8 0 0 0
7 A5 B1 RY Y -k7 0 -k8 0 0 0
8 D2 body RY N k2 -k3 k1 0 0 0
9 S2 D2 RZ Y k4 0 0 0 0 0
10 A2 S2 RY Y 0 0 -k5 0 0 0
11 B2 D2 RY N -k6x 0 -k6z 0 0 0
12 A4 B1 RY Y k7 0 -k8 0 0 0
13 A6 B1 RY Y -k7 0 -k8 0 0 0
in centimeters: k1=10.5, k2=12.075, k3=20, k4=28.8,
k5=12.5, k6x=16·sin(49◦), k6z=16·cos(49◦), k7=6.9,
k8=2, wheel radius=6.5, total mass = 11 kg

wheel that most penetrates the terrain surface. This is computed by a limited colli-
sion engine that intersects wheel and surface geometries. Wheels can be represented
as 3D circles (discretized into points) and surfaces can be bounded planes, elevation
grids, triangular meshes, etc. The contact frame z-axis is aligned with the surface
normal vector at the contact point. The contact frame x-axis is aligned with the cross
product of the normal vector and the y-axis of the parent wheel frame. Finally the
contact frame y-axis is aligned with the cross product of the z and x axes.

Frame information is stored in an ordered list such that the index of any frame is
greater than the index of its parent (p(i) < i, i = 1 is the body frame). Frame data
for two example WMRs is provided in Tables 1 and 2. Joint types are revolute (R)
or prismatic (P) about one of the axes (X,Y,Z). Act. means Actuated. The last six
columns specify the pose of each frame with respect to its parent frame when joint
displacement is zero.

We chose to use generalized (or reduced) coordinates for our method. The first
elements of the state vector (q) are the pose of the body frame with respect to the
world frame (ρ). Orientation (o) may be expressed using either Euler angles or
quaternions. The subsequent elements of the state vector are joint displacements (θ)
in the same order as the frames list.

q =

[
ρ

θ

]
ρ =

[⇀
t
o

]
(1)

Modular Dynamic Simulation of Wheeled Mobile Robots 5

Open Dynamics Engine and Baraff [2] use a different state space which contains
the 6-DOF pose of each frame. This necessitates numerous constraint equations for
lower pairs; each 1-DOF revolute or prismatic joint requires a 5-DOF constraint.
Big matrices must be inverted at every time step to solve for Lagrange multipliers,
but cost can be mitigated somewhat by exploiting sparsity.

Algorithm 1 shows how, given the frames list data and state vector, one can com-
pute homogeneous transforms between each frame and its parent frame or the nav-
igation frame. These are required in subsequent algorithms. There are n f frames
in the list (including contact frames). The function a(i) returns a number based on
joint type (RX=1, RY=2, RZ=3, PX=4, PY=5, PZ=6). Rot (line 7) returns a rotation
matrix given an axis number (1-3) and angle.

Algorithm 1 Calculation of homogeneous transforms

1: {n⇀
t b

n,o,θ}← q
2: Rn

b← o

3: T n
b =

[
Rn

b
n⇀

t b
n

0T 1

]
4: for i = 2 to n f do
5: initialize T p(i)

i as if θ(i−1) = 0
6: if a(i) ∈ {1,2,3} then
7: T p(i)

i (1 : 3,1 : 3) = T p(i)
i (1 : 3,1 : 3)Rot(a(i),θ(i−1))

8: else if a(i) ∈ {4,5,6} then
9: T p(i)

i (1 : 3,4) = T p(i)
i (1 : 3,4)+T p(i)

i (a(i)−3,1 : 3)T θ(i−1)
10: end if
11: end for
12: for i = 2 to n f do T n

i = T n
p(i)T

p(i)
i

3.2 Spatial Vector Algebra Dynamics Algorithms

We express WMR dynamics using spatial vector algebra as published by Feather-
stone [8][9]. This is compatible with our prior work on a vector algebra formulation
of WMR kinematics [15]. Spatial vectors are 6D and inhabit two vector spaces: mo-
tion and force. Spatial velocity and acceleration are motion vectors; they contain
3D angular and linear components. Spatial force likewise contains 3D moment and
linear force components.

→v =

[
⇀
ω
⇀v

]
→a =

[
⇀
α
⇀a

]
→
f =

[
⇀m
⇀

f

]
(2)

The unconstrained dynamic equation is:

6 Neal Seegmiller and Alonzo Kelly

Mq̈s + c(q, q̇s) = τ (3)

q̇s is equivalent to the first time derivative of state (q̇), except that the time deriva-
tive of pose (ρ̇) is replaced with the spatial velocity of the body frame b→vb

n. Likewise
q̈s contains the spatial acceleration. τ is a vector of actuator torques/forces applied
at the joints.

We use the Recursive Newton-Euler Algorithm (RNEA) to compute the joint
space bias force c, which includes the acceleration-independent Coriolis and cen-
tripetal force terms, as shown in Algorithm 2. When adding wheel contact forces
directly (as do [1][19][11]), they must be added to

→
f i for all contact frames before

the backwards traversal (line 11). Instead, we include these forces via constraints as
explained in Section 3.3. Instead of adding the force of gravity to each frame, we
simply accelerate the base (line 2). nw is the number of wheel (and contact) frames.
X i

p(i) is a 6×6 Plücker transform that converts motion spatial vectors from parent to
child coordinates; its transpose converts force spatial vectors from child to parent
coordinates. Ii is the 6×6 spatial inertia of frame i (which encodes mass, center of
mass, moment of inertia).

Algorithm 2 Calculation of joint space bias force using RNEA
1: →v1 = q̇s(1 : 6)

2: →a1 = b→g
3: for i = 1 to n f do
4: if i > 1 then
5:

→
h = 0

6: if i≤ n f −nw then
→
h(a(i)) = q̇s(i+5)

7: →v i = X i
p(i)

→v p(i)+
→
h

8: →ai = X i
p(i)

→ap(i)+
→v i×

→
h

9: end if
10:

→
f i = Ii

→ai +
→v i× Ii

→v i

11: end for
12: for i = n f to 2 by -1 do

13: if i≤ n f −nw then c(i+5) =
→
f i(a(i))

14:
→
f p(i) =

→
f p(i)+(X i

p(i))
T→f i

15: end for
16: c(1 : 6) =

→
f 1

We use the Composite-Rigid-Body Algorithm (CRBA) to compute the joint
space inertia, as shown in Algorithm 3. Ic

i denotes the composite inertia of the sub-
tree rooted at frame i. Note that M is symmetric.

Algorithms 2 and 3 match those in [9], except that we account for the spe-
cial structure of WMR kinematics: a non-fixed base, 1-DOF joints, and nw contact
frames at the list’s end which are massless and fixed with respect to their parent
wheel frames.

Modular Dynamic Simulation of Wheeled Mobile Robots 7

Algorithm 3 Calculation of joint space inertia using CRBA
1: Ic = I
2: for i = n f −nw to 2 by -1 do Ic

p(i) = Ic
p(i)+(X i

p(i))
T Ic

i (X
i
p(i))

3: M = 0
4: M(1 : 6,1 : 6) = Ic

1
5: for i = 2 to n f −nw do

6:
→
f c = Ic

i (∗,a(i))
7: M(i+5, i+5) =

→
f c

i (a(i))
8: j = i
9: while j > 1 do

10:
→
f c = (X i

p(i))
T→f c

11: j = p(j)
12: if j = 1 then
13: M(1 : 6, i+5) =

→
f c, M(i+5,1 : 6) = M(i+5,1 : 6)T

14: else
15: M(j+5, i+5) =

→
f c(a(j)), M(i+5, j+5) = M(j+5, i+5)

16: end if
17: end while
18: end for

3.3 Wheel-ground Contact Constraints

Each wheel-ground contact frame has three constraints: one holonomic surface con-
tact constraint which restricts motion along its z-axis, and two nonholonomic slip
velocity constraints which restrict motion along its x and y axes. As in [25], holo-
nomic constraints are converted to velocity constraints by differentiation. For a sin-
gle wheel, the constraint equations are of the form:

Aq̇s =
⇀vc (4)

The matrix A is computed according to Algorithm 4. Both revolute and prismatic
joints are supported (lines 4, 6). On line 11, the identity

⇀
ω×⇀r =−⇀r× ⇀

ω = [
⇀r]T×

⇀
ω is

used, as q̇s contains the angular velocity of the body frame. The right-hand side ⇀vc is
short for c⇀vc

n: the velocity of the contact frame with respect to the ground expressed
in contact coordinates. This is not constant, but is solved for by optimization as
explained in Section 3.4.

We express all wheel-ground contact models as functions in a common format:

⇀

f c = f (⇀vc,Rω,∆z) (5)

The forces exerted by the ground on the wheel (
⇀

f c) are dependent on ⇀vc, the product
of wheel radius and angular rate (Rω), and the displacement between the contact
point and terrain surface (∆z) due to sinkage or compression. Plots of longitudinal
force vs. slip ratio and angle for two example models are shown in Figure 3.

8 Neal Seegmiller and Alonzo Kelly

Algorithm 4 Calculation of wheel constraint matrix for a single wheel
1: c = contact frame index
2: i = p(c)
3: while i > 1 do
4: if a(i) ∈ {1,2,3} then
5: A(∗, i+5) = Rn

i (∗,a(i))× (n⇀
t c

n− n⇀
t i

n)
6: else if a(i) ∈ {4,5,6} then
7: A(∗, i+5) = Rn

i (∗,a(i)−3)
8: end if
9: i = p(i)

10: end while
11: A(∗,1 : 3) = [n

⇀
t c

n− n⇀
t 1

n]
T
×Rn

b
12: A(∗,4 : 6) = Rn

b
13: A = Rc

nA

−1
−0.5

0
0.5

1

−100

−50

0

50

100
−1

−0.5

0

0.5

1

slip ratio

Pacejka and Nicholas−Comstock model

slip angle (deg)

n
o
rm

a
liz

e
d
 l
o
n
g
it
u
d
in

a
l
fo

rc
e

(a)

−1
−0.5

0
0.5

1

−100

−50

0

50

100
−1

−0.5

0

0.5

1

slip ratio

Terramechanics−based loose soil model

slip angle (deg)

n
o
rm

a
liz

e
d
 l
o
n
g
it
u
d
in

a
l
fo

rc
e

(b)

Fig. 3 Normalized longitudinal force (fx/ fz) vs. slip ratio and angle for two wheel-ground contact
models. (a) uses equations and parameters in [3], (b) uses [11]. These plots are for fixed ∆z. Though
not shown, lateral and normal force also depend on inputs.

Constraints for all wheels are stacked into one matrix equation with 3nw rows.
Hereafter let A denote the stacked matrix and vc the stacked vector for all wheel con-
straints. Additional constraints may be appended to account for physical restrictions
on joint displacements (such as roll/pitch averaging) or to enforce desired speeds
for actuated joints.

3.4 Force-balance Optimization

The dynamics equation (3) is modified to include constraints as follows:[
M AT

A C

][
q̈s

λ

]
=

[
τ− c

b

]
(6)

Modular Dynamic Simulation of Wheeled Mobile Robots 9

where C is a matrix of zeros except for potentially non-zero “constraint force mix-
ing” values on the diagonal for the appended holonomic constraints on joint dis-
placements. These are used just as in Open Dynamics Engine to introduce compli-
ance. (6) can be rearranged to solve for the vector of Lagrange multipliers (λ) which
represent constraint forces:

λ = [AM−1AT +C]−1(b−AM−1(τ− c)) (7)

Note that the constraints on state velocity (q̇s) have been converted to constraints
on state acceleration (q̇s) as follows:

Aq̇s[i+1] = vc[i+1] (8)

A(q̇s[i]+ q̈s
∆ t) = vc[i+1] (9)

Aq̈s = (vc[i+1]−Aq̇s[i])/∆ t (10)

Aq̈s = (vc[i+1]− vc[i])/∆ t = b (11)

[i] and [i+1] denote the current and next time step. vc[i] is already computed in
Algorithm 2, whereas vc[i+1] must be computed by optimization:

argmin
vc[i+1]

‖λ (i : i ∈W)− f c‖ (12)

In short, contact point velocities are chosen such that constraint forces computed
by the dynamics equation (6) match those computed by the wheel-ground contact
model (5). f c denotes the stacked vector of contact model forces for all wheels. W
denotes the set of wheel constraint indices (does not include appended constraints).

This optimization can be performed efficiently using Newton’s method. Let x
denote the argument vc[i+ 1] and f (x) the objective function; then our guess for x
is updated as follows:

xn+1 = xn− γ[H f (xn)]
−1

∇ f (xn), 0≤ γ ≤ 1 (13)

Computing the Hessian (H f (xn)) and gradient (∇ f (xn)) requires the Jacobian of
the wheel-ground contact model output with respect to its inputs. The step size γ

is chosen such that the strong Wolfe conditions are satisfied, using a line search
algorithm like Algorithm 3.2 in [21].

WMRs have six DOF for motion of the body frame, plus one DOF for each
revolute/prismatic joint. They have three constraints for each wheel in contact, plus
any appended constraints. Many WMR configurations are overconstrained, which
results in a rank-deficient A matrix. To address this we choose and enforce a linearly
independent subset of the constraints. A well-conditioned subset can be chosen by
QR decomposition of AT . The subset contains all appended constraints, but only
some of the wheel constraints. f c in the objective function (12) is replaced with
P f c where P projects the full vector of contact forces onto the linearly independent
subspace.

10 Neal Seegmiller and Alonzo Kelly

Once q̈s is solved for, state velocity and state can be updated using symplectic
Euler integration as follows:

q̇s[i+1] = q̇s[i]+ q̈s
∆ t (14)

q̇[i+1]← q̇s[i+1] (15)

q[i+1] = q[i]+ q̇[i+1]∆ t (16)

Note that (15) requires the conversion of angular velocity to either Euler angle or
quaternion rates. Higher-order integration methods such as Runge-Kutta are also
possible. Unlike the “stiff” ordinary differential equation method, our DAE method
is stable even for large time steps.

3.5 Recommendations for Computational Speedup

One can improve computation time in several ways without compromising sim-
ulation accuracy. First, in the optimization initialize the guess of contact veloci-
ties (vc[i+ 1]) to those at the previous time step (vc[i]). WMRs frequently execute
steady-state maneuvers during which these change little. Specify a cost threshold
below which optimization via Newton’s method is not required. Next, precompute
lookup tables for the wheel-ground contact model and its Jacobian. This is particu-
larly beneficial for the terramechanics-based models in [11][14], which require the
costly integration of stress distributions along the wheel surface.

One can further speedup computation for reasonable compromises in accuracy.
First, changes in the joint space inertia matrix M may have negligible impact on
WMR motion within the predictive horizon. If so, only compute M and M−1 for the
first time step and reuse these values on subsequent steps. Additionally, the effect of
Coriolis and centripetal forces on internal articulations may be negligible. If so, the
joint space bias force c can be approximated by a vector of zeros except for:

c(1 : 6) = Ic
1(

b→g)+→v1× Ic
1
→v1 (17)

This is like considering the WMR to be a single rigid body (with all joints locked).
Ic
1 is the composite inertia of the WMR rooted at the body frame, which like M can

be computed only once.

4 Results

In this section we validate our simulation method in two tests. In the first, we simu-
late the LandTamer vehicle (Figure 1) with a Pacejka wheel-ground contact model
(Figure 3(a)). The LandTamer drives over a 20◦ ramp, then turns to the left and
right. The slip ratios and angles for all wheels are shown in Figure 4. Our method

Modular Dynamic Simulation of Wheeled Mobile Robots 11

Fig. 4 LandTamer animation
screenshot. The path of the
body frame is traced in blue;
the paths of wheel-ground
contact points are traced in
red.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

s
lip

 r
a
ti
o

 FL

FR

ML

MR

BL

BR

0 5 10 15 20

−20

−10

0

10

20

time (s)

s
lip

 a
n

g
le

 (
d

e
g

)

 FL

FR

ML

MR

BL

BR

Fig. 5 Slip ratios and angles for the
LandTamer simulation. Our method
(solid lines) produces nearly identical
output to the direct addition method
(dashed lines), but without the jitter.
As expected, the slip ratio is positive
while ascending the ramp (4-6s) and
negative while descending (7-9s) due
to gravity. The slip angle indicates lat-
eral slip away from the center of cur-
vature when turning (10-20s).

produced identical output to the common method of adding contact forces directly,
but at less cost. Our method reduced computation from 21.40 to 2.03 seconds (with
a 2.83 GHz Intel processor). Of that time, the dynamics algorithms used only 0.98s
(collision checking used the rest). Constraints were used in both methods to control
wheel velocities, as PID control of wheel torques can make the dynamics very stiff.

An adaptive integrator (MATLAB’s ode45) was required for the direct addition
method. Figure 6(a) shows that, to prevent jitter, the integrator took very small steps
relative to the .04s steps taken by our method. Figure 6(b) shows the number of
Newton’s method iterations required for our method. Notice that during steady-state
periods, zero iterations are required.

In the second test, we simulate the Rocky 7 rover (Figure 2) with a terramechanics-
based wheel-ground contact model (Figure 3(b)). The rover traverses uneven, ran-

12 Neal Seegmiller and Alonzo Kelly

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

time (s)

ti
m

e
 s

te
p
 s

iz
e
 (

s
)

(a)

0 5 10 15 20
0

1

2

3

4

5

time (s)

n
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

(b)

Fig. 6 (a) Integration time step size for the direct addition method (compare to .04s for our
method). (b) Number of Newton’s method iterations required for our method.

Fig. 7 Rocky 7 animation
screenshot.

dom terrain while turning slightly for 10 seconds. Figure 8(a) shows how compu-
tation time decreases exponentially with larger time step size. Computation times
are normalized by dividing by simulation time; values less than one indicates faster
than real time. Each of the approximations suggested in Section 3.5 reduces com-
putation time by approximately 10%. In Figure 8(b), error is the difference in pre-
dicted terminal pose with respect to the prediction using no approximations and the
minimum (.005s) time step size, per meter of travel. Error increases linearly (not ex-
ponentially) with time step size, and only modestly with approximation of the bias
force. Modest errors may be an acceptable tradeoff for significant speedup in some
planning applications.

5 Conclusions and Future Work

We presented a modular method for the simulation of wheeled mobile robots. In
contrast to existing resources such as Open Dynamics Engine, our method uses spa-
tial vector algebra dynamics algorithms which are particularly efficient for WMRs.
More importantly, in contrast to ODE, our method can accommodate complex, non-
linear wheel-ground contact models. Our enforcement of these models via con-
straints in a DAE formulation was demonstrated to be more stable and efficient than

Modular Dynamic Simulation of Wheeled Mobile Robots 13

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

time step size (s)

n
o

rm
a
liz

e
d

 c
o

m
p
u

ta
ti
o
n

 t
im

e

no approx

approx inertia

approx bias

approx both

(a)

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

time step size (s)

e
rr

o
r

p
e
r

m
e
te

r
(c

m
,d

e
g
)

no approx

approx inertia

approx bias

approx both

(b)

Fig. 8 Computation time and error vs. time step size for our dynamics method, with/without ap-
proximation of the joint space inertia and bias force. Averaged over 30 trials. In (b) solid lines are
for 2D position error, dashed lines are for yaw error.

the common method of directly adding contact forces in an ordinary differential
equation formulation.

The contribution of this paper is theoretical, but physical experiments will be
presented in future work on the calibration of WMR motion models. We plan to
implement a WMR simulator based on this method in C++ which can be used for
the fair comparison of computational cost with alternatives. We also plan to make
the simulator publicly available. This will enable existing and future research on
wheel-ground contact models to be readily applied to the prediction of full vehicle
mobility. The simulator may also be fast and accurate enough for improved model-
predictive planning in many applications.

Acknowledgements This research was made with U.S. Government support by the Army Re-
search Laboratory (W911NF-10-2-0016) and by the National Science Foundation Graduate Re-
search Fellowship (0946825).

References

1. Balakrishna, R., Ghosal, A.: Modeling of Slip for Wheeled Mobile Robots. IEEE Transactions
on Robotics and Automation 11(1) (1995)

2. Baraff, D.: Linear-time Dynamics Using Lagrange Multipliers. In: Proc. SIGGRAPH, pp.
137–146 (1996)

3. Brach, R.M., Brach, R.M.: Tire Models for Vehicle Dynamic Simulation and Accident Recon-
struction. SAE Technical Paper (2009)

4. Ding, L., Gao, H., Deng, Z., Song, P., Liu, R.: Design of Comprehensive High-fidelity/High-
speed Virtual Simulation System for Lunar Rover. In: Proc. IEEE Conference on Robotics,
Automation and Mechatronics, pp. 1118–1123 (2008)

5. Ding, L., Yoshida, K., Nagatani, K., Gao, H., Deng, Z.: Parameter Identification for Plan-
etary Soil Based on a Decoupled Analytical Wheel-Soil Interaction Terramechanics Model.
In: Proc. IEEE International Conference on Intelligent Robots and Systems, pp. 4122–4127
(2009)

14 Neal Seegmiller and Alonzo Kelly

6. Drumwright, E., Hsu, J., Koenig, N., Shell, D.: Extending Open Dynamics Engine for
Robotics Simulation. In: Proc. Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pp. 38–50 (2010)

7. Eathakota, V., Aditya, G., Krishna, M.: Quasi-static motion planning on uneven terrain for
a wheeled mobile robot. In: Proc. IEEE International Conference on Intelligent Robots and
Systems, pp. 4314–4320 (2011)

8. Featherstone, R.: Robot dynamics algorithms. Kluwer Academic Publishers,
Boston/Dordrecht/Lancaster (1987)

9. Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: Proc. IEEE Inter-
national Conference on Robotics and Automation, pp. 826–834 (2000)

10. Howard, T.: Adaptive model-predictive motion planning for navigation in complex environ-
ments. Carnegie Mellon University, Robotics Institute Tech. Report, CMU-RI-TR-09-32
(2009)

11. Ishigami, G., Miwa, A., Nagatani, K., Yoshida, K.: Terramechanics-Based Model for Steering
Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics 24(3),
233–250 (2007)

12. Ishigami, G., Nagatani, K., Yoshida, K.: Path Planning and Evaluation for Planetary Rovers
Based on Dynamic Mobility Index. In: Proc. IEEE International Conference on Intelligent
Robots and Systems, pp. 601–606 (2011)

13. Jain, A., Guineau, J., Lim, C., Lincoln, W., Pomerantz, M., Sohl, G., Steele, R.: ROAMS: Plan-
etary Surface Rover Simulation Environment. In: Proc. International Symposium on Artificial
Intelligence, Robotics and Automation in Space (2003)

14. Jia, Z., Smith, W., Peng, H.: Fast Computation of Wheel-Soil Interactions for Safe and Ef-
ficient Operation of Mobile Robots. In: Proc. IEEE International Conference on Intelligent
Robots and Systems, pp. 3004–3010 (2011)

15. Kelly, A., Seegmiller, N.: A Vector Algebra Formulation of Mobile Robot Velocity Kinemat-
ics. In: Proc. Field and Service Robotics (2012)

16. Knepper, R.: On the fundamental relationships among path planning alternatives. Carnegie
Mellon University, Robotics Institute Tech. Report, CMU-RI-TR-11-19 (2009)

17. Lamon, P., Siegwart, R.: 3D Position Tracking in Challenging Terrain. International Journal
of Robotics Research 26(2), 167–186 (2007)

18. Luca, A.D., Oriolo, G.: Chapter 7: Modeling and Control of Nonholonomic Mechanical Sys-
tems. In: Kinematics and Dynamics of Multi-Body Systems, pp. 277–342. Springer Verlag
(1995)

19. McMillan, S., Orin, D.E.: Forward Dynamics of Multilegged Vehicles Using the Composite
Rigid Body Method. In: Proc. IEEE International Conference on Robotics and Automation,
May, pp. 464–470 (1998)

20. Muir, P.: Modeling and control of wheeled mobile robots. Carnegie Mellon University,
Robotics Institute Tech. Report, CMU-RI-TR-88-20 (2009)

21. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
22. Tarokh, M., McDermott, G.: Kinematics modeling and analyses of articulated rovers. IEEE

Transactions on Robotics 21(4), 539–553 (2005)
23. Tian, Y., Sidek, N., Sarkar, N.: Modeling and Control of a Nonholonomic Wheeled Mobile

Robot with Wheel Slip Dynamics. In: Proc. IEEE Symposium on Computational Intelligence
in Control and Automation (2009)

24. Yoshida, K.: The SpaceDyn: a MATLAB toolbox for space and mobile robots. In: Proc. IEEE
International Conference on Intelligent Robots and Systems, pp. 1633–1638 (1999)

25. Yun, X., Sarkar, N.: Unified Formulation of Robotic Systems with Holonomic and Nonholo-
nomic Constraints. IEEE Transactions on Robotics 14(4), 640–650 (1998)

