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Abstract Disaster recovery robots must operate in unstructured environments where
wheeled or tracked motion may not be feasible or where it may be subject to extreme
slip. Many industrial disaster scenarios also preclude reliance on GNSS or other ex-
ternal signals as robots are deployed indoors or underground. Two of the candidates
for precise positioning in these scenarios are visual odometry and inertial naviga-
tion. This paper presents some practical experience in the design and analysis of a
combined visual and inertial odometry system for the Carnegie Mellon University
Highly Intelligent Mobile Platform (CHIMP); a humanoid robot competing in the
DARPA Robotics Challenge.

1 Introduction

Odometry is the process of measuring change in position overtime without relying
on external infrastructure. It is often used in combinationwith an absolute position-
ing system such as GPS [12] or to seed SLAM algorithms [8]. In certain scenarios
it can also replace the need for these systems. One such scenario is tele-operation
where a human is in the loop and performs the high level spatial reasoning and navi-
gation while the odometry system works at a lower level to facilitate tasks like laser
and image stitching or control feedback.

Odometry is often thought of as an open loop process, indeed,the canonical
odometry techniques in 2D robotics involve one or two wheel encoders, whose mea-
surements, over a given interval are passed through a simplekinematic model to
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produce an estimate of change in position [11]. This is sufficient in some applica-
tions but not in the presence of extreme wheel slip or terrainthat is impassable to
wheeled vehicles. Two alternatives are visual odometry, which is usually accom-
plished by directly measuring the change in position and orientation between two
images and inertial navigation which involves the integration of acceleration and
rotation rate signals. Both can function alone, but they have also have complemen-
tary features which make them ideal for combining. Table 1 provides a qualitative
comparison of visual, inertial and wheel odometry.

Table 1 Qualitative comparisons of odometry techniques

Technique Sensors Characteristics

Inertial
Navigation

IMU ($15-
$100,000)

Acceleration, rotation rate measured by IMU at 100-2000Hz. Gravity
model required. Position, velocity and orientation output at100-2000Hz.
Low computational complexity. Error grows ast for orientation,t2 for
velocity andt3 for position.

Visual
Odometry

Camera(s)
($15-
$5000)

Limited by computational complexity at frame rates higher than 30 fps.
Camera calibration required. Monocular cameras subject to scale uncer-
tainty. High computational complexity. Error growth is complex function
of camera intrinsics and scene characteristics but is generallynot time
dependent.

Wheel
Odometry

Rotary
encoder(s)
($100-
$1000)

Shaft speeds measured by encoder converted to linear speeds withknown
wheel or track dimensions. Vehicle kinematic model (dimensions and
steering mechanism) are required to convert linear speeds to vehicle ve-
locity and heading rate. Error is a function of distance and kinematic
model calibration as well as terrain and tire friction. Low computational
complexity.

CHIMP contains all of these odometry systems and they are combined into a
single best estimate of the robot’s motion. This paper describes design and testing
for the combination of inertial navigation and visual odometry on CHIMP.

2 CHIMP Robot

The Carnegie Mellon University Highly Intelligent Mobile Platform (CHIMP) is
the Tartan Rescue (http://www.rec.ri.cmu.edu/projects/tartanrescue/) team entry in
the ongoing DARPA Robotics Challenge (DRC). CHIMP is a humanoid robot that
can also drive on two or four legs. The DRC event is designed totest competing
robots in typical disaster recovery tasks like clearing rubble and closing valves and
in ambitious locomotion strategies like climbing ladders and driving utility vehicles.
CHIMP has a visual odometry system that uses a stereo camera pair from Pixim
Inc. in it’s head and a Honeywell Inc. HG9900 navigation grade IMU in it’s torso.
The cameras and IMU are seperated by an articulable neck thatallows CHIMP to
adjust it’s gaze. The visual odometry subsystem runs on a desktop grade processor
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as part of CHIMP’s ROS based computing platform while the inertial navigation
and vision-inertial fusion algorithms run on an embedded processor in CHIMP’s
torso. The two subsystems communicate via user datagram protocol over CHIMP’s
onboard network.

Fig. 1 A rendering of CHIMP in four limb driving mode.

Fig. 2 A close-up of CHIMPs head, containing stereo cameras for visual odometry, amongst other
sensors.

3 Inertial Navigation on CHIMP

Inertial navigation is a mature field in it’s traditional areas of application: aircraft,
ships and military components. There are many excellent texts that outline the de-
tails [12], [9]. However these references typically make assumptions about the ap-
plication which are not often true in field robots. Some examples include access to
absolute initial heading, precise latitude information atturn on, knowledge of the
IMU’s height above the Earth’s reference ellipsoid etc. This section discusses the
IMU selected for CHIMP and the consequences associated withthe above assump-
tions.
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A summary of approximate IMU categories available in the market are given in
Table 2. Most robotics applications that require an IMU willhave one that falls into
the Tactical grade category with cost and size being the major factor. Tactical grade
IMUs are capable of tracking orientation for extended periods but cannot be used
to track position for more than a few seconds in stand alone operation. Commercial
grade sensors may be found in small robots where size and costmust be strictly
minimized. With clever calibration they may also be capableof tracking orientation
depending on the application.

Table 2 IMU categories

IMU grade Size Error Characteristics Cost

Navigation 1600cm3 < 1600 meters per hour in position,
< 1/5000 degrees per hour in orientation.

$70,000+

Tactical 100cm3 < 107 meters per hour in position,
< 50 degrees per hour in orientation.

$2,000+

Commercial 1cm3
∼ 109 meters per hour in position,
< 3600 degrees per hour in orientation.

$15+

A Monte Carlo simulation of a typical scenario for CHIMP was performed before
selecting the IMU, the results were compelling enough to justify the choice of a
navigation grade device, the Honeywell HG9900 [1]. Position and orientation errors
for three devices that were considered in a trade study are shown in Figures 3 and
4. Considering the common uses for odometry information (3Dperception, robot
control etc.), the cost and size penalty of a navigation grade device were preferred
to the alternative of greater reliance on vision and perception algorithms which are
subject to environmental failures in low-light, low-texture, bright light etc.
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Fig. 3 Standard deviation of position errors for 5 minutes in simulatedDRC scenario using an
unaided IMU.
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Fig. 4 Standard deviation of orientation errors for 5 minutes in simulated DRC scenario using an
unaided IMU.

3.1 Inertial Navigation Equations

The fundamental equations of inertial navigation are [12]

Ċ
n
b = Cn

b[ω
b
ib×]− [ωn

in×]Cn
b (1)

v̇n = Cn
bfb

− (ωn
en +2ωn

ie)×vn +gn
p (2)

where the following notation is used

• xz Vectorx expressed in framez
• Cz

y Rotation matrix mapping framey to framez s.t.xz = Cz
yxy

• [x×] Cross product matrix version ofx s.t.[x×]y = x×y
• ωz

xy Angular rate vector of framey relative to framex expressed in framez
• gn

p Plumb-bob gravity, i.e. gravitation plus centripetal effects.
• v IMU velocity vector.
• f Non-gravitational acceleration a.k.a. specific force.
• i Inertial frame of reference
• b Body frame of reference, assumed to coincident with the IMU frame of refer-

ence
• n Navigation frame of reference, a design choice with subtle implications

It is interesting to examine the errors introduced by some common simplifica-
tions.
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3.1.1 Static IMU Calibration

Most tactical grade IMUs have turn-on biases larger than Earth’s rotation rate. In
such a scenario, it’s common to calibrate the gyroscopes at turn on by simply aver-
aging their zero rate output and ascribing the result to turnon bias.

bω =
1
n

n

∑
i=1

ω(i) (3)

(4)

In reality all gyros, regardless of their quality, are measuring the Earth’s own
rotation rate (Approximately 15 degree/hour or 1 rotation per day). There are a
growing number of tactical grade devices that have bias specifications under this
floor [2]. The correct static calibration that takes into account Earth’s rotation is
given by

bω =
1
n

n

∑
i=1

ω(i)−Cn
b
⊺ωn

ie (5)

This expression now requires the constantCn
b matrix that maps IMU orientation

to the navigation frame during calibration. The tilt (pitchand roll) components of
this are available from average accelerometer readings butthe absolute heading is
not available to tactical or commercial grade IMUs that cannot gyrocompass. This
necessitates an additional sensor like a magnetometer or essentially you introduce a
floor in the calibration accuracy that is on the order of the Earth’s rate.

3.1.2 Gravity Model Error

Equation 1 requires a known gravity input. A typical model for this is [12]

gp(0) = gequator
1.0+0.0019318513530sin2 λ

√

1.0−0.0066943800229sin2 λ
(6)

gequator = 9.7803267715 (7)

which requires knowledge of the latitude of the IMU,λ . Without GPS, this lati-
tude will be an approximation or a user input. In addition to varying with latitude,
the gravity magnitude varies with altitude. Precise altitude is often unknown at the
start of a robotic mission. There are local variations to thegravity field too [6], which
are typically mapped by national and international standard’s bodies but are mostly
unavailable to robots in the field.
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gp(h) =
gp(0)

(1.0+ h
Re
)2

(8)

gequator = 9.7803267715 (9)

Figure 5 demonstrates the altitude accuracy attainable with and without correct
initial altitude and local variations compensated for.
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Fig. 5 Altitude errors with various levels of local compensation to the standard gravity model.
Knowing the initial altitude of the test and the local gravityvariations reduces total vertical error
on CHIMP by 20 meters during a 3 minute task.

3.2 Initial Heading

With precise enough gyroscopes, initial absolute heading is attainable by gyrocom-
passing [12]. This involves averaging the gyroscopes, levelling the the resulting av-
erage and then taking the arctan of the expected measurement(Earth’s rate) in each
of the x, y axes

ω̄ =
1
n

n

∑
i=1

ω(i) (10)

ω̄ level = C⊺

θ C⊺

φ ω̄ (11)

ψ = arctan
−ω̄ level,y

ω̄ level,x
(12)

Not precisely aligning to absolute North has an effect similar to that of calibrating
the gyroscopes while neglecting Earth’s rotation rate. Therotation rate of Earth will
be incorrectly projected in the solution to the inertial equations which will quickly
accumulate into position and orientation error. Figures 6 and 7 demonstrate the ef-
fect of assuming initial heading to be zero (North) instead of the correct value, in
this case, of 33 degrees.
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Fig. 6 INS only result with and without initial alignment to absolute North. Without precise initial
alignment, incorrectly resolved components of the Earth’s rotation rate quickly accumulate into
position errors.
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Fig. 7 Altitude error with and without alignment to absolute North. Since the misaligned compo-
nent’s of Earth’s rotation rate are in the local plane there is little effect on altitude error.
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4 Visual Odometry

CHIMP’s visual odometry system produces a solution based onincremental struc-
ture from motion with optional key frame selection and sparse local bundle adjust-
ment. Details can be found in [10] and the references therein. The algorithm can
produce relative pose solutions at frame rate or between opportunistically chosen
key frames. It makes use of a stereo pair to eliminate scale ambiguity in the result-
ing solution.

Like most visual odometry systems, it solves consequtive relative pose problems
from image correspondences and scene structure estimates.Each pose increment
is relative to the previous camera location, denotedc(k−1). At each framek, the
following measurements are computed

ztranslation = ∆pc(k−1)
c(k−1)→c(k) (13)

zrotation = Cc(k−1)
c(k) (14)

= Cc(k)⊺
c(k−1) (15)

Given initial conditionspn
vo(0) andCn

c(0) A global pose at increment k can be
tracked via

pn
c(k) = pn

c(0)+
k

∑
i=1

Cn
c(i)∆pc(i) (16)

Cn
c(k) = Cn

c(0)

k

∏
i=1

Cc(i−1)
c(i) (17)

Alternatively when key frames are not in use and the algorithm is running at
frame rate (30fps) the translation component can be numerically differentiated to
produce a velocity signal

zvelocity =
∆pc(k−1)

c(k−1)→c(k)

t(k)− t(k−1)
(18)

Each of these three forms is available to a fusion algorithm that blends the visual
odometry data with the inertial navigation system data in real-time to produce an
optimal estimate of CHIMP’s pose.
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5 Kalman Filter for Visual and Inertial Odometry

Visual and inertial estimates are blended in an extended Kalman filter. The Kalman
filter is a well understood algorithm and has a massive body ofliterature in regards
to aiding inertial navigation in particular. In addition itcan be easily embedded for
robust field applications.

The filter uses the common indirect inertial navigation state model [12]. In it’s
traditional form the Kalman filter equations are [4]

Prediction:

xk+1 = ΦΦΦkxk +Gkwk (19)

Pk+1 = ΦΦΦkPkΦΦΦ⊺

k +GkQdkG⊺

k (20)

(21)

Measurement:

zk = h(xk) (22)

(23)

Update:

Sk = HkPkH⊺

k +Rk (24)

Hk =
∂h(xk)

∂xk
(25)

Kk = PkH⊺

k S−1
k (26)

P+
k = (I−KkHk)Pk(I−KkHk)

⊺+KkRkK⊺

k (27)

x+k = xk +Kk(zk −h(xk)) (28)

Where the following definitions apply

• xk State mean at time k
• ΦΦΦ State transition matrix mapping state evolution over time
• G Noise input matrix mapping model uncertainty to states
• P State covariance matrix
• Qd Process noise matrix accounting for uncertainty inputs
• z Measurement vector
• h Measurement function mapping states to measurements
• H Measurement matrix, jacobian ofh w.r.t x
• K Kalman gain matrix

These equations are suitable for incorporating an absolutevisual odometry pose
or a velocity measurement (Equations 16 and 18). They are notsuitable for incor-
porating the fundamental measurement from the visual odometry system, Equation
13, the relative state measurement. It has the following modified measurement form
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zk = h(xk,xk−1) (29)

The standard filter equations have been modified to incorporate this measurement
form in [4]. The modified equations take the following form

Lk = HkPkH⊺

k +Rk +JkPk−1ΦΦΦ⊺

k−1Hk +HkΦΦΦk−1Pk−1J⊺k +JkPk−1J⊺k (30)

Jk =
∂h(xk,xk−1)

∂xk−1
(31)

Kk = (PkH⊺

k +ΦΦΦk−1Pk−1J⊺k )L
−1
k (32)

P+
k = Pk −KkLkK⊺

k (33)

x+k = xk +Kk(zk −h(xk,xk−1)) (34)

Where thek−1 parameters must be stored in a memory buffer or retrodicted
explicitly using thex andP variables with saved versions ofΦΦΦk−1 andQdk−1 terms
[3].

6 Delayed Measurements

Visual odometry is a costly process and is performed in it’s own computing cores
separate from the embedded navigation processor. The complexity of the computa-
tion (30 fps maximum throughput) and the additional communications delay intro-
duce a non-trivial time synchronization problem. Delays ofup to 100ms can occur
between capturing an image and that data being available to the Kalman filter. In
this case the previous relative state update relations can be modified to use the ve-
locity form of the visual odometry (Equation 18) by setting the current measurement
jacobian to zero, giving

Hk = 0 (35)

zk = h(xk−1) (36)

Lk = Rk +JkPk−1J⊺k (37)

Kk = (ΦΦΦk−1Pk−1J⊺k )L
−1
k (38)

P+
k = Pk −KkLkK⊺

k (39)

x+k = xk +Kk(zk −h(xk−1)) (40)

These now represent the equations necessary to apply a delayed measurement
that was valid at timek − 1 but arrived at the filter at timek. It should be noted
that the interval betweenks is not required to be constant. Given the form of the
measurement function here, it is only suitable for velocityor absolute pose versions
of the visual odometry data (Equtions 16 and 18).
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7 Calibration

It is necessary to calibrate the relative position and orientation of the visual odome-
try cameras and IMU on CHIMP. Assuming a rigid link the following relation holds,
wherek and j are time indices andb represents the IMU frame whilec is the camera
frame

C
b j
bk

= Cb
cC

c j
ck Cb⊺

c (41)

(42)

This can be converted to a quaternion form and solved for the relative rotation
matrix between camera and IMUCb

c . Details can be found in [5]. For the translation,
most methods involve a calibration Kalman filter [7]. These methods are complex
but are necessary since they are designed for low-cost IMUs whose position esti-
mates drift rapidly when uncorrected. The following relation maps the relative pose
increments generated by the visual odometry system with similar increments calcu-
lated from the CHIMPs inertial navigation system

∆pck−1
ck−1→ck = Cc

bCbk−1
n (pn

bk
+Cn

bk
pb

b→c −pn
bk−1

−Cn
bk−1

pb
b→c) (43)

(44)

Re-arranging forpb
b→c, the position offset between IMU (b) and camera (c)

Cc
b(C

bk−1
bk

− I)pb
b→c = ∆pck−1

ck−1→ck +Cc
bCbk−1

n (pn
bk−1

−pn
bk
) (45)

(46)

which stacked over manyj, k intervals has the form

Apb
b→c = b (47)

A least squares solution is given bypb
b→c = (A⊺A)−1A⊺b. This can be trans-

formed into a weighted least squares with the standard INS error model from the
Kalman filter prediction steps used to generate covariancesas the IMU solution
drifts. Given these covariances the weighted least squaressolution then becomes

pb
b→c = (A⊺P−1A)−1A⊺P−1b (48)
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8 Results

The preceeding algorithms were implemented and tested on a test rig consisting of
a partially constructed CHIMP, see Figure 8.

Fig. 8 A partially constructed CHIMP on a test-rig. The sensor head containing visual odometry
sensors and a single arm are shown. The IMU is located in a temporaryenclosure at the base of a
mobile frame (not shown).

Testing is still underway but initial results in an indoor environment where the rig
was manually pushed are shown in Figures 9 and 10. The rig was moved through
a variety of motions (sweeping arcs, point turns etc.) and returned to it’s original
position and orientation to measure error. Future testing will use a motion capture
system for more precise quantification. The initial use for this data is in generating
3D perception to transmit to CHIMP’s operator station for situational awareness and
manipulation tasks.

Acknowledgements Michel Laverne and Dane Bennington designed and built much of the posi-
tioning hardware. JP Tardif provided the visual odometry subsystem.

References

1. Honeywell Aerospace (2009) HG9900 IMU
http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-
documents/MilitaryAC/HG9900IMU.pdf

2. KVH Industries (2011) CG-5100 KVH’s Commercial IMU Solution.
http://www.kvh.com/ViewAttachment.aspx?guidID=230CBC8B-2733-4FE7-B860-
DD271A6E4476. Cited 16 Sep 2013

3. Bar-Shalom Y (2002) Update with Out-of-Sequence Measurements in Tracking: Exact Solu-
tion. IEEE Trans Aerosp Electron Syst vol 38 no 3 769–778

4. Brown R, Hwang P (1997) Introduction to Random Signals andApplied Kalman Filtering,
3rd edn. John Wiley & Sons, New York.



14 Michael George and Alonzo Kelly

−20 −15 −10 −5 0 5 10 15 20 25
−15

−10

−5

0

5

10

15

20

25

North (m)

E
as

t (
m

)

 

 

IMU + VO
Start
End
IMU Only
VO Only

Fig. 9 Indoor path of 105m, with error assessed as closure discrepency whenreturning to the
origin. 2D error is 72cm or 0.6% of distance. VO Only has an arbitrary initial alignment. IMU only
results drift 8m.
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