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Abstract Disaster recovery robots must operate in unstructuredamvients where
wheeled or tracked motion may not be feasible or where it nesgulbject to extreme
slip. Many industrial disaster scenarios also precludamee on GNSS or other ex-
ternal signals as robots are deployed indoors or underdrduvo of the candidates
for precise positioning in these scenarios are visual odignaad inertial naviga-
tion. This paper presents some practical experience inehig and analysis of a
combined visual and inertial odometry system for the Cambtgellon University
Highly Intelligent Mobile Platform (CHIMP); a humanoid robcompeting in the
DARPA Robotics Challenge.

1 Introduction

Odometry is the process of measuring change in positiontowerwithout relying
on external infrastructure. It is often used in combinatidtih an absolute position-
ing system such as GPS [12] or to seed SLAM algorithms [8] eliain scenarios
it can also replace the need for these systems. One suclriscisn&le-operation
where a human is in the loop and performs the high level dpatisoning and navi-
gation while the odometry system works at a lower level tdifate tasks like laser
and image stitching or control feedback.

Odometry is often thought of as an open loop process, indéedcanonical
odometry techniques in 2D robotics involve one or two wheebelers, whose mea-
surements, over a given interval are passed through a skim@enatic model to
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produce an estimate of change in position [11]. This is gefiicin some applica-

tions but not in the presence of extreme wheel slip or terttzan is impassable to
wheeled vehicles. Two alternatives are visual odometrychvis usually accom-

plished by directly measuring the change in position andntation between two
images and inertial navigation which involves the inteigrabf acceleration and
rotation rate signals. Both can function alone, but theyehalgo have complemen-
tary features which make them ideal for combining. Tabledvigles a qualitative

comparison of visual, inertial and wheel odometry.

Table1 Qualitative comparisons of odometry techniques

Technique Sensors Characteristics

Inertial IMU ($15- Acceleration, rotation rate measured by IMU at 100-2000Hzavi®y
Navigation $100,000) model required. Position, velocity and orientation outputG3-2000Hz.
Low computational complexity. Error grows agor orientation,t? for

velocity andt® for position.
Visual Camera(s) Limited by computational complexity at frame rates higher thanfgs.
Odometry ($15- Camera calibration required. Monocular cameras subject te sceder-
$5000) tainty. High computational complexity. Error growth is compfanction
of camera intrinsics and scene characteristics but is generallyime

dependent.
Wheel Rotary Shaft speeds measured by encoder converted to linear speedsaith
Odometry encoder(s) wheel or track dimensions. Vehicle kinematic model (dimensions
($100- steering mechanism) are required to convert linear speeds tdeeler

$1000) locity and heading rate. Error is a function of distance antekiatic
model calibration as well as terrain and tire friction. Lowrgautational
complexity.

CHIMP contains all of these odometry systems and they arebowd into a
single best estimate of the robot’s motion. This paper dessrdesign and testing
for the combination of inertial navigation and visual odamen CHIMP.

2 CHIMP Robot

The Carnegie Mellon University Highly Intelligent Mobild&form (CHIMP) is
the Tartan Rescue (http://www.rec.ri.cmu.edu/projeéatsinrescue/) team entry in
the ongoing DARPA Robotics Challenge (DRC). CHIMP is a huaidmobot that
can also drive on two or four legs. The DRC event is designgdsbcompeting
robots in typical disaster recovery tasks like clearingotatand closing valves and
in ambitious locomotion strategies like climbing laddemd driving utility vehicles.
CHIMP has a visual odometry system that uses a stereo caragrfrgm Pixim
Inc. in it's head and a Honeywell Inc. HG9900 navigation gréidU in it's torso.
The cameras and IMU are seperated by an articulable neclaltbats CHIMP to
adjust it's gaze. The visual odometry subsystem runs on lt@egrade processor

and
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as part of CHIMP’s ROS based computing platform while thetiaknavigation
and vision-inertial fusion algorithms run on an embeddeatessor in CHIMP’s
torso. The two subsystems communicate via user datagrawcpt@ver CHIMP’s
onboard network.

Fig. 1 A rendering of CHIMP in four limb driving mode.

Fig. 2 A close-up of CHIMPs head, containing stereo cameras for visil@hetry, amongst other
sensors.

3 Inertial Navigation on CHIMP

Inertial navigation is a mature field in it's traditional aseof application: aircraft,

ships and military components. There are many excellems teat outline the de-

tails [12], [9]. However these references typically maksuasptions about the ap-
plication which are not often true in field robots. Some exE®jnclude access to
absolute initial heading, precise latitude informatioriuah on, knowledge of the

IMU’s height above the Earth’s reference ellipsoid etc.sTéection discusses the
IMU selected for CHIMP and the consequences associatedathbove assump-
tions.
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A summary of approximate IMU categories available in thekatare given in
Table 2. Most robotics applications that require an IMU \Wwale one that falls into
the Tactical grade category with cost and size being the mfeptor. Tactical grade
IMUs are capable of tracking orientation for extended msibut cannot be used
to track position for more than a few seconds in stand aloeeadipn. Commercial
grade sensors may be found in small robots where size andraagtbe strictly
minimized. With clever calibration they may also be capatfleacking orientation
depending on the application.

Table2 IMU categories

IMU grade Size Error Characteristics Cost

Navigation 1606m° < 1600 meters per hour in position, $70,000+
< 1/5000 degrees per hour in orientation.

Tactical 10@em® < 10’ meters per hour in position, $2,000+
< 50 degrees per hour in orientation.
Commercial ¢t ~ 10° meters per hour in position, $15+

< 3600 degrees per hour in orientation.

A Monte Carlo simulation of a typical scenario for CHIMP wasformed before
selecting the IMU, the results were compelling enough tdifjushe choice of a
navigation grade device, the Honeywell HG9900 [1]. Positiad orientation errors
for three devices that were considered in a trade study asersm Figures 3 and
4. Considering the common uses for odometry information ff@Bception, robot
control etc.), the cost and size penalty of a navigation gel/ice were preferred
to the alternative of greater reliance on vision and peraeftlgorithms which are
subject to environmental failures in low-light, low-terg, bright light etc.

—o-Tactical Grade #1
—=-Tactical Grade #2
, | |#~Honeywell HG9900|

Std. Deviation Error (m)

0 50 100 150 200 250 300
Time (s)

Fig. 3 Standard deviation of position errors for 5 minutes in simulddC scenario using an
unaided IMU.
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Fig. 4 Standard deviation of orientation errors for 5 minutes in sated DRC scenario using an
unaided IMU.

3.1 Inertial Navigation Equations

The fundamental equations of inertial navigation are [12]

Cp, = Chlafyx] — [wfx]Ch (1)
V" = Cpf° — (0l + 200fp) x V" + g )

where the following notation is used

X? Vectorx expressed in frame
Cy Rotation matrix mapping frgmpto framezs.t.x* = C{x¥

[xx] Cross product matrix version @fs.t. [Xxx]y = x x y

wg, Angular rate vector of framgrelative to framex expressed in frame

gp Plumb-bob gravity, i.e. gravitation plus centripetal effe

v IMU velocity vector.

f Non-gravitational acceleration a.k.a. specific force.

i Inertial frame of reference

b Body frame of reference, assumed to coincident with the [Iveunke of refer-
ence

e n Navigation frame of reference, a design choice with subtiglications

It is interesting to examine the errors introduced by somaroon simplifica-
tions.
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3.1.1 StaticIMU Calibration

Most tactical grade IMUs have turn-on biases larger thanh&arotation rate. In
such a scenario, it's common to calibrate the gyroscopasgmabh by simply aver-
aging their zero rate output and ascribing the result to darbias.

1a .
bw = ﬁi;w(l) (3)
(4)

In reality all gyros, regardless of their quality, are measythe Earth’s own
rotation rate (Approximately 15 degree/hour or 1 rotati@n gay). There are a
growing number of tactical grade devices that have biasifsp@ons under this
floor [2]. The correct static calibration that takes into @aoat Earth’s rotation is
given by

b = i;w(i) —Cla, (5)

This expression now requires the const@fjimatrix that maps IMU orientation
to the navigation frame during calibration. The tilt (pitahd roll) components of
this are available from average accelerometer readingthbuabsolute heading is
not available to tactical or commercial grade IMUs that aargyrocompass. This
necessitates an additional sensor like a magnetometesemtésdly you introduce a
floor in the calibration accuracy that is on the order of thelliEairate.

3.1.2 Gravity Model Error

Equation 1 requires a known gravity input. A typical modelttas is [12]

9(0) = g 1.0+0.0019318513530sf )
= at
P A /1.0— 0.0066943800229 St

which requires knowledge of the latitude of the IMA, Without GPS, this lati-
tude will be an approximation or a user input. In addition amyng with latitude,
the gravity magnitude varies with altitude. Precise aliitis often unknown at the
start of a robotic mission. There are local variations togiteevity field too [6], which
are typically mapped by national and international stasiddrodies but are mostly
unavailable to robots in the field.
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9p(0)
gp(h) = ———+— (8)
. (L0+§)?
Oequator = 9.7803267715 (9)

Figure 5 demonstrates the altitude accuracy attainable antl without correct
initial altitude and local variations compensated for.
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Fig. 5 Altitude errors with various levels of local compensation lie standard gravity model.
Knowing the initial altitude of the test and the local grawgriations reduces total vertical error
on CHIMP by 20 meters during a 3 minute task.

3.2 Initial Heading

With precise enough gyroscopes, initial absolute headirgtainable by gyrocom-
passing [12]. This involves averaging the gyroscopes|liagghe the resulting av-
erage and then taking the arctan of the expected measuré@azetit’'s rate) in each
of the x, y axes

_ 10
w==-Y wi) (10)

n &
Wjeve = CgC;OT) (112)

level )y (12)
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Not precisely aligning to absolute North has an effect @intib that of calibrating
the gyroscopes while neglecting Earth’s rotation rate. rbi@tion rate of Earth will
be incorrectly projected in the solution to the inertial @gons which will quickly
accumulate into position and orientation error. Figures® A demonstrate the ef-
fect of assuming initial heading to be zero (North) instefthe correct value, in
this case, of 33 degrees.
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Fig. 6 INS only result with and without initial alignment to absoluterh. Without precise initial
alignment, incorrectly resolved components of the Earth’atimt rate quickly accumulate into
position errors.
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Fig. 7 Altitude error with and without alignment to absolute Nortinc the misaligned compo-
nent’s of Earth’s rotation rate are in the local plane theilétie effect on altitude error.
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4 Visual Odometry

CHIMP’s visual odometry system produces a solution baset@emental struc-
ture from motion with optional key frame selection and spdegal bundle adjust-
ment. Details can be found in [10] and the references thefidia algorithm can
produce relative pose solutions at frame rate or betweenrappstically chosen
key frames. It makes use of a stereo pair to eliminate scabégarity in the result-
ing solution.

Like most visual odometry systems, it solves consequtilaive pose problems
from image correspondences and scene structure estinkaels.pose increment
is relative to the previous camera location, denatéd- 1). At each framek, the
following measurements are computed

Ztrangdation = Apggtj;%(k) (13)

Zrotation = CEE::)_l) (14)
_ ok

= Cc(k—Tl) (15)

Given initial conditionspy,(0) and CQ(O) A global pose at increment k can be
tracked via

k .
Pe = Peo) +_ch(i)ApC(l) (16)
i=
k
- o(i-1)
Cew = o) |_| Celi 17
i=

Alternatively when key frames are not in use and the algorith running at
frame rate (30fps) the translation component can be nuaibridifferentiated to
produce a velocity signal

o(k-1)
APk-1) e

Zyelocity = m (18)

Each of these three forms is available to a fusion algorithem blends the visual
odometry data with the inertial navigation system data ai-tie to produce an
optimal estimate of CHIMP’s pose.
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5 Kalman Filter for Visual and Inertial Odometry

Visual and inertial estimates are blended in an extendeth&alffilter. The Kalman
filter is a well understood algorithm and has a massive bodiyevture in regards
to aiding inertial navigation in particular. In additioncdén be easily embedded for
robust field applications.

The filter uses the common indirect inertial navigationestabdel [12]. In it's
traditional form the Kalman filter equations are [4]

Prediction:
Xkr1 = PuXy + Grwi (19)
Pxi1 = (DkPktvﬁ + GdekGI (20)
(21)
Measurement:
Zx = h(xk) (22)
(23)
Update:
S = HkPkHl + Rk (24)
dh(xk)
p— 2
K % (25)
Ki = PcHES (26)
Pl = (| — Kka)Pk(| — Kka)T-l- KkRkKE 27)
Xe = X+ Ki(z« — h(X)) (28)

Where the following definitions apply

Xk State mean at time k

@ State transition matrix mapping state evolution over time
G Noise input matrix mapping model uncertainty to states
P State covariance matrix

Qd Process noise matrix accounting for uncertainty inputs
z Measurement vector

h Measurement function mapping states to measurements
H Measurement matrix, jacobian bfw.r.t x

K Kalman gain matrix

These equations are suitable for incorporating an abseistial odometry pose
or a velocity measurement (Equations 16 and 18). They arsuitatble for incor-
porating the fundamental measurement from the visual ottgragstem, Equation
13, the relative state measurement. It has the followingifieddneasurement form
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zx = h(Xk, Xk-1) (29)

The standard filter equations have been modified to incorptiieg measurement
form in [4]. The modified equations take the following form

Ly = HkPkHE +Rk+ Jkpkfld’g,lHk + de)kflpkfl'-]l + JkPk—lyk— (30)
(X, Xk_1)

Jk = 0% 1 (32)
Kk = (PkH] + @y 1Pk 13])L, * (32)
Py = Pc—KiLkK] (33)
X = X+ Ki(zx —h(x,Xk-1)) (34)

Where thek— 1 parameters must be stored in a memory buffer or retrodicted
explicitly using thex andP variables with saved versions @f_1 andQdy_; terms

(3]

6 Delayed M easurements

Visual odometry is a costly process and is performed in & @omputing cores
separate from the embedded navigation processor. The egritypbf the computa-
tion (30 fps maximum throughput) and the additional comroatibns delay intro-
duce a non-trivial time synchronization problem. Delaysipfto 100ms can occur
between capturing an image and that data being availableet&alman filter. In
this case the previous relative state update relations eanddlified to use the ve-
locity form of the visual odometry (Equation 18) by settihg turrent measurement
jacobian to zero, giving

Hy = 0 (35)
zx = h(Xk-1) (36)
Ly = Rk+JkPk,1‘Jl (37)
Kk = (®r_1Pr1If)Lt (38)
Pl =Py— KKLKKE (39)
X = Xk +Kk(zk —h(x-1)) (40)

These now represent the equations necessary to apply aedeatagasurement
that was valid at time& — 1 but arrived at the filter at timk. It should be noted
that the interval betweeks is not required to be constant. Given the form of the
measurement function here, it is only suitable for velooitgbsolute pose versions
of the visual odometry data (Equtions 16 and 18).
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7 Calibration

Itis necessary to calibrate the relative position and ¢aigon of the visual odome-
try cameras and IMU on CHIMP. Assuming a rigid link the foliog relation holds,
wherek and | are time indices andrepresents the IMU frame whiteis the camera
frame

b, .
Cyl = C2CqCl (41)
(42)

This can be converted to a quaternion form and solved fordlative rotation
matrix between camera and IMCE. Details can be found in [5]. For the translation,
most methods involve a calibration Kalman filter [7]. Thesetinods are complex
but are necessary since they are designed for low-cost IMhuss&/position esti-
mates drift rapidly when uncorrected. The following redatmaps the relative pose
increments generated by the visual odometry system withagimcrements calcu-
lated from the CHIMPs inertial navigation system

- by
Apgt—iﬁck = Cgcnk 1(pgk + Cgkpg—m - pgk,l - Cgk,lpB—W) (43)
(44)
Re-arranging fopg%, the position offset between IMU (b) and camera (c)
by _ by
C(Cpe " —1)PBoc = AP -a+ CECn *(Ph, , —PB) (45)
(46)

which stacked over many k intervals has the form

Appc=b (47)

A least squares solution is given Ip§ .. = (ATA)~YATh. This can be trans-
formed into a weighted least squares with the standard INS erodel from the
Kalman filter prediction steps used to generate covariansethe IMU solution
drifts. Given these covariances the weighted least sqsatason then becomes

p2 .= (ATPIA)IATP1p (48)
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8 Results

The preceeding algorithms were implemented and tested est @ig consisting of
a partially constructed CHIMP, see Figure 8.

PRATT"
MILLER

)serac:

Fig. 8 A partially constructed CHIMP on a test-rig. The sensor headaoimg visual odometry
sensors and a single arm are shown. The IMU is located in a tempemalysure at the base of a
mobile frame (not shown).

Testing is still underway but initial results in an indoovgonment where the rig
was manually pushed are shown in Figures 9 and 10. The rig wasdrthrough
a variety of motions (sweeping arcs, point turns etc.) amarned to it's original
position and orientation to measure error. Future testiitiguse a motion capture
system for more precise quantification. The initial use fids tata is in generating
3D perception to transmit to CHIMP’s operator station fouational awareness and
manipulation tasks.
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