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Abstract: Curvature polynomials of cubic order are ideal primitive trajectories for car-like robots. Unlike the
clothoids, which are linear curvature polynomials, cubic curves can be used to determine a unique trajectory to an
arbitrary target posture using a single continuous primitive. Such curves are also the lowest order curves which are
continuous in the torque applied to steering mechanisms, so they generate trajectories which are relatively easily
tracked by a real vehicle. Like the clothoids, cubic curvature polynomials are relatively difficult to compute but are
easy to execute. A real-time numerical method to compute them is described.
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1 INTRODUCTION
The fields of manipulators and mechanisms have

enjoyed the ability to compute inverse kinematics for
some time [Denavitt and Hartenberg, 1955]. The
equivalent problem for car-like robots is that of
determining the control input which causes the vehi-
cle to achieve a goal position , pose  or
posture . Earlier literature has sometimes
used the word posture to mean the 3-tuple which is
generally known as pose today. We will use posture
to refer to the 4-tuple which includes curvature.

While vehicles are typically actuated in rate
rather than position, this does not change the fact
that there are many situations where it is necessary to
achieve a precise position and the relevant inputs
must be found to accomplish the required motion.
This paper discusses a method that we have been
using for the control of various automated guided
vehicles which are required to achieve precise pos-
tures and follow precise trajectories.

1.1 Setup
The mobile robot “inverse kinematics” problem

is considerably more difficult than the manipulator
problem, in part because it is not a kinematics prob-
lem - it is a kinetics problem. One simplified variant
of the relevant state equations is:

The equations of a real system would require the
addition of terms to model the effect of vehicle mass
but these terms do not affect the subject matter of the
paper. The important point is that we have two inputs
that control four outputs. 

We consider the curvature a state because the
steering mechanism has mass and is subject to
restoring forces that depend on vehicle state and ter-
rain. These steering dynamics issues mean that the
steering actuator will move continuously and that
controllers which ask it to move discontinuously will
incur following error that may be unnecessary. 

The linear velocity  and steer angle velocity 
are the control inputs. The wheelbase is  and the
state vector is the posture defined above.

The equivalent of inverse kinematics for a
manipulator is the problem of determining the con-
trol signal over some period of time which will cause
the vehicle to achieve a goal posture. In manipula-
tion, we solve kinematic equations for a point in con-
figuration space. In mobile robots, we must solve an
underdetermined differential equation for a vector
trajectory which achieves some unknown state tra-
jectory that ends at the goal posture.

1.2 Motivation
This paper introduces methods to compute con-

trol inputs for an Ackerman steer or other car-like
robot described by the state equations above. The
velocity input does not affect trajectory shape so it
will be ignored in the balance of the paper and we
will switch to a specification of trajectories in terms
of distance rather than time. 

Consider the solution to the state equations for a
curvature input which is a third order polynomial in
arc length:
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We will refer to these control inputs as cubics in
the balance of the paper. This type of control input
specification has many advantages for our target
application.

1.2.1 Minimum Complexity / Sufficient 
Variability

Note that there are four parameters
 which determine the values of four

states . The initial position and head-
ing can be used to re-express the goal posture in the
body frame and the initial curvature is included.
Cubics are therefore the minimum order of polyno-
mial which possesses sufficient degrees of freedom
to achieve an arbitrary endpoint posture with a single
primitive curve. Cubics can go from anywhere to
anywhere subject only to the intrinsic limitations of
the vehicle.

1.2.2 Feasibility
Such inputs are continuous in the third derivative

of steering angle and hence are smooth in the torque
applied to the steering actuator. This property makes
them intrinsically executable subject only to kine-
matic limitations on the steering actuator and power
limitations on the ability to accelerate it fast enough.
There is usually no need to post-process or ‘smooth’
such inputs to make them match the capabilities of a
vehicle. Unlike the case for constant curvature arcs
and clothoids, there is no need to compute large
numbers of them to approximate some other curve
which is more easily executed.

1.2.3 Span the Set Of Feasible Controls 
Cubics cover the set of all curves for which the

fourth and all higher derivatives of curvature vanish:

Higher derivatives of curvature imply higher fre-
quency inputs which will be progressively more
attenuated by the dynamics. Hence, cubics span the
space of all feasible controls up to some limit of fre-
quency content. 

To the degree that any optimal controller
searches and ranks all possible controls, cubics can
therefore approximate the optimal control signal
very well and hence near optimal performance
should be achieved.

1.2.4 Efficient Representation
While it will turn out to be difficult to compute

the coefficients of the polynomial, cubics are conve-
nient specifications of control signals. They are eas-
ily evaluated at any particular arc length in 8 floating
point operations. 

1.2.5 Compact Representation
Cubics are also a compact trajectory description -

requiring only 5 numbers. They can be used to send
lower-frequency updates over lower bandwidth con-
nections. A complicated trajectory to move from any
posture to any other posture can be downloaded and
the controller can be expected to achieve the goal
with no further intervention from higher level pro-
cesses. 

Many hierarchical control systems which update
commands to lower levels at high rates do so simply
to approximate a higher frequency curve with a
sequence of lower frequency ones. If the controller
interface is defined in terms of steer angle or curva-
ture, or some other expression equivalent to a con-
stant radius arc, higher level processes are
potentially being robbed of resources just to interpo-
late signals.

Cubics eliminate the high frequency I/O which is
often generated over the controller interface in order
to approximate the steering control signal with
piecewise constant radius arcs. This property tends
to place more of the servo computation lower in the
control hierarchy where loops are normally closed
faster, so it generates less error due to time discreti-
zation. However, this lower update rate comes at the
cost of reasoning at higher levels with more compli-
cated trajectories.

1.2.6 Finer Control over Trajectories
Cubics control final heading and final curvature

and completely determine the trajectory to the goal.
This representation permits the measurement of
servo errors around a nominally feasible trajectory
throughout the path to the endpoint. Unlike arcs, for
example, the inherent feasibility of the cubic trajec-
tory allows control algorithms to eliminate endpoint
errors in curvature and heading while there is still
time to do so. 

1.3 Prior Work
Kanayama's original work on clothoids intro-

duced the idea of using continuous piecewise linear
curvature curves for robot trajectory generation.
This was novel because of its concern with produc-
ing posture continuous (instead of merely pose con-
tinuous) trajectories. However, as good as piecewise
clothoids are, they still result in a discontinuity in the
derivative of curvature.

Kanayama recognized the importance of curva-
ture continuity for curves to be tracked by a PWS
vehicle in [Kanayama and Nilipour, 1988] where he
proposed a classification of curves based on their
continuity in space, heading and curvature. In
[Kanayama and Hartman, 1988] he dealt with the
issue of smoothness of curves specifically for acker-
man-steered vehicles. In this context he developed
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“cubic spirals” - cubic polynomials in distance to
represent the heading state trajectory. This was done
by optimizing a cost function intended to maximize
passenger comfort.

Delingette et. al. [1991] developed a family of
trajectories called “intrinsic splines”. This family
includes our concept of cubic curvature polynomial
under the designation IS3. These authors defined the
order of postures based on the order of the highest
derivative of heading in the configuration. They use
a method which progressively deforms a straight line
between the start and end postures, generating a dis-
crete trajectory, using a cost function and deforma-
tion functional. Coefficients are then extracted from
the converged result. To achieve compatibility with
the maximum curvature constraints of a vehicle,
they split the curve into splines at points of maxi-
mum curvature, moving those points in the direction
perpendicular to the heading of the curve at that
point. At the time of publication, the level of compu-
tation involved was considered to require parallel
processing.

Our approach differs from earlier work in that we
consider constraints of higher order than Kanayama
does. Our considerations of smoothness of steer
angle acceleration turn out to be more stringent than
the ones proposed by many earlier authors for carry-
ing passengers. Our higher order primitive has sev-
eral other advantages. It converts an
underconstrained problem requiring a sequence
(spline) of primitives into one which is fully con-
strained - for which a unique or slightly redundant
solution exists.

In comparison to Delingette et. al, our approach
achieves real-time trajectory generation by simply
solving the integro-differential state equations in
reverse by converting them into four simultaneous
nonlinear equations for the endpoint posture
expressed in terms of four unknown constant param-
eters.

2 FORMULATION
The four equations of (2) can be interpreted as a

set of four nonlinear equations: 

where the line integral notation has been sup-
pressed for clarity. Let the subscript 0 denote the ini-
tial posture while an f subscript will denote the final
posture. We will express all coordinates in terms of
the initial posture so that the initial position and
heading coordinates are zero. In this case, the con-

straints that must be satisfied are:

Note that  is itself a free variable. We will sat-
isfy the initial curvature intrinsically and then con-
sider the cubic curvature polynomial that solves the
remaining four constraints to be of the form:

Figure 1 shows a typical member of this family
of curves. The four degrees of parameter freedom in

the cubic polynomial equations  are
sufficient to generate the four degrees of freedom in
the state space . We can write equa-
tion (4) in vector form:

We can linearize the above system as follows:

Sufficient degrees of freedom to control the
entire endpoint state implies that the Jacobian has
sufficient rank to invert, so that we can, in principle,
solve for the parameters iteratively using:

Many previous publications have made the prob-
lem of curve generation appear very difficult in the-
ory. We have found the above technique to be robust,
easy to understand, and efficient in real applications.
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Figure 1: Clockwise from top left, a curve of cubic
polynomial curvature, its curvature, and the first
and second derivatives of curvature.
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3 IMPLEMENTATION

3.1 Initiation/Termination
The initial heuristics used to seed the iterative

computation come from assuming the  parameter
to be zero, using a heuristic to compute , and then
solving the  and equations simultaneously
for  and . The heuristic for  is based on an
approximation of the observed average relationship
between  and the total change in heading between
the start and end postures over a large sample set.
The actual equations are as follows:

In tracking, search, or replanning applications,
the algorithm can be sped up drastically by reusing
the parameters from each cycle to seed the
initial guess for the next cycle. This will usually
result in much faster convergence, assuming the old
and new end postures are in the same neighborhood. 

The termination conditions for our algorithm
were based on the accuracy in the destination posi-
tion that was needed. We used the following values:

3.2 Forward/Inverse Solution
The forward solution produces the posture

 at any point along the curve, given the
start posture, the parameters  and the dis-
tance traveled along the curve.

The inverse solution takes two postures as input,
and produces the parameters that define a valid tra-
jectory between them. The two postures are con-
verted into a single relative posture to make the
algorithm easier to implement and more generic.

3.3 Linearization
There is no closed form solution for the forward

equations since they are related to the well-known,

and essentially transcendental Fresnel integrals. So,
for the forward solution we use numerical quadra-
ture techniques to integrate the equations. For the
inverse solution, since inverting the exact equations
is apparently too difficult to perform, we use a finite
difference approximation to the Jacobian and then
invert it at each step in the iterative update algorithm
sketched in equation (8). 

Hence, the inverse solution is performed by suc-
cessively performing the relatively straightforward
forward solution. Starting from the heuristic guess
parameters of equations (9), we generate the forward
solution using numerical quadrature. The result is
checked against the desired end posture. If it is
within the termination conditions described above,
then the algorithm terminates. Otherwise, we com-
pute an approximate Jacobian by solving for a very
nearby end posture and performing a matrix finite
difference: 

The difference between the desired and the
present state vector is then multiplied by the inverted
Jacobian to compute the necessary change to the
parameter vector. The changes are scaled down to
preserve stability, and then added to the present
parameter vector. The algorithm then repeats with
the forward solution and testing, continuing until
either the termination conditions are met, or the
maximum number of cycles is reached.

4 RESULTS/CONCLUSIONS
We have found the above algorithm to be emi-

nently practical for our vehicle over the following
relative end posture envelope: 

Figure 2 depicts some example curves:

Average computation times over this envelope
are summarized in the following table. The default
heuristic case applies when equations (9) are used,
whereas the previous parameters solution applies

Table 1: Termination Conditions

Condition Value

Allowable cross-track error 0.001 m

Allowable in-line error 0.001 m

Allowable heading error 0.1 rad

Allowable curvature error 0.005 1/m
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Figure 2: Sample cubics with differing end postures



when a nearby solution is already available.

These times are well within the ranges necessary
to facilitate real time operation of a robot vehicle.
Note that, in general, runtimes are greater for curves
that have larger absolute values of the  parameter.

4.1 Applications
There are a wide variety of applications to which

cubics have been applied. The simplest is the use of
cubics as the last fundamental representation of a
vehicle motion command in the hierarchy above the
individual axis servos. A low-level drive interface
receives commands in the form of cubics (or any
degenerate form thereof: lines, arcs, or clothoids)
and executes steering servo commands based on the
direct feed of distance traveled from the encoders.

Another basic use of cubics is the generation of a
trajectory from a start to end posture which is then
given to a lower level path tracker. By using cubics
with a destination curvature of zero for this sort of
motion, the vehicle achieves a much more straight-
on approach to its destination, resulting in less angu-
lar or cross-track error as a function of error in dis-
tance traveled. 

Splines of individual such cubics can be used to
reach fixed points when operating in the proximity
of obstacles. Individual trajectories can also be mod-
ified using equation (8) to move a point away from a
near or predicted collision. 

Cubics can be used to replace lines and arcs in
AGV guidepath networks, producing a more com-
pact representation because fewer primitives are
needed. Also, since there are essentially no execut-
able curves that cannot be represented by a cubic, all
possible trajectories can be expressed in the net-
work.

Independent of path planning and generation,
cubics have also been used in our path tracking
application. Here a cubic polynomial is generated
from the vehicle’s present posture to a goal posture
at some look-ahead point on the planned path. This
cubic is then passed to the lower level drive control,
and is updated at each cycle of path tracking. It
should also be noted that in this application espe-
cially, the reuse of the previous cubic parameters as
the initial guess for each successive tracking cycle
speeds the calculations up tremendously. The poten-

tial use of a goal curvature in this application can
lead to much higher path following performance.

A more novel application of cubics is that of
extremely smooth end posture servoing. There are
situations in which a vehicle’s desired end posture
may change unpredictably based on sensor input.
Replanning static cubic trajectories from each new
(potentially erroneous) destination posture could
result in the vehicle being unable to reach the desti-
nation by the time it knows where the destination
actually is. In order to drive as conservatively as
possible and maintain the direction of our informa-
tion-providing sensors toward our target, we employ
the following steering algorithm: 

For any given tracking cycle we search over a
space of cubics, modifying our theoretical present
curvature , looking for the cuboid with the small-
est absolute  parameter which reaches the present
destination. The steer angle corresponding to that
initial curvature is then sent as a command to the
drive interface.

Since the function of  versus  in that space is
smooth, with only one minimum in the neighbor-
hood of 'reasonable' cubics from that start to end
posture, simply commanding that corresponding
steer angle guarantees stability. This results in a
responsive and smooth approach to our destination.

Cubics can also be used as a means of testing
kinematic feasibility of a goal posture. After gener-
ating a cuboid to the goal, its curvature and deriva-
tives of curvature can be examined to determine if
their extremes lie outside the performance envelope
of the vehicle. 

5 FUTURE WORK

5.1 Near Closed Form Solutions and 
Speed Ups

Clothoids can be solved using Fresnel Integrals.
There are good approximations for Fresnel Integrals.
Cubics can be expressed in terms of Fresnel inte-
grals, so the forward solution can potentially be sped
up and have its accuracy improved over the current
algorithm. 

Infinite series or asymptotic approximations to
the forward solution promise more accurate and
faster computation. In some cases, a good series
approximation might be expected to convert the
inverse problem into an approximating polynomial
evaluation as well.

5.2 Lookup Tables
Extensive computing and curve-fitting to the sur-

face of the space of cubics might yield a smaller
lookup table-based representation which could be
computed once and yield near-instantaneous results

Table 2: Runtimes

Initial Parameter Source Avg. Runtime 
(sec.)

Default Heuristics 0.0134

Previous Cubic Parameters 0.00557
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thereafter. A classic lookup table, however, without
functions approximating its shape, would take up far
too much space (necessarily four dimensional) to be
practical for high resolution results. It would be nec-
essary to store the majority of the table in the form of
approximating equations and their parameters, and
from these derive extremely good starting points for
future computations.

5.3 Existence/Uniqueness
There is no consideration of the limits of the

vehicle motion inherent in the formulation, and
because not all points are reachable directly (in less
than 180 degrees of total rotation) by a vehicle, no
guarantee of the existence of a practical solution
exists. It may be useful to explore ways to integrate
the limits on vehicle motion with the polynomial
equations themselves. 

It is easily demonstrated that there are at least
two valid cubics for any given nondegenerate pair in
a large set of start and end postures. For example,
consider two start and end postures with curvature of
zero, and headings that mutually point at each other
as shown in Figure 3. 

Figure 3: Two different (symmetrical) cubics
reaching the same relative destination posture.

It is clear that a curve between these postures can
either curve to one side or the other to get there.
Once those two possible cubics are both computed,
modifying the destination posture slightly and reus-
ing the initial parameters of each cuboid produces
two new (now non-symmetrical) cubics which both
still reach the same relative posture. 

Figure 4: Two different (non-symmetrical) cubics
reaching the same relative destination posture.

More work is needed to examine all possible
solutions and address the numerical instability which
is expected to arise when two solutions converge.

5.4 Cost Computation/Optimality
In many practical problems, the end posture is

specified inexactly and the permitted variation can
be used to generate a space of possibilities over
which to optimize. Eventually, we might like to
compute the ‘best’ cubic curvature polynomial for
any given application
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