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Abstract

In the near future, off-road mobile robots will feature high
levels of autonomy which will render them useful for a vari-
ety of tasks on Earth and other planets. Many terrestrial
applications have a special demand for robots to possess
similar qualities to man-driven machines: high speed and
maneuverability. Meeting these requirements in the design
of autonomous robots is a very hard problem, partially due
to the difficulty of characterizing the natural terrain that the
vehicle will encounter and estimating the effect of these
interactions on the vehicle. Here we present a dynamic trac-
tion model that describes vehicle braking on a variety of ter-
restrial soil types and in a wide range of natural landscapes
and vehicle velocities. This model was developed empiri-
cally, it is simple yet accurate and can be readily used  to
improve model-predictive planning and control. The model
encapsulates the specifics of wheel-terrain interaction,
offers a good compromise between accuracy and real-time
computational efficiency, and allows straight-forward con-
sideration of vehicle dynamics.

1 Introduction
As developing autonomous off-road vehicle technology
allows robots to travel at higher speed and negotiate rugged
terrain, vehicle modeling becomes increasingly relevant for
motion planning and control. An efficient braking traction
model can greatly enhance vehicle autonomy by addressing
two key problems: it can determine whether the path ahead,
given its slope and ground characteristics, presents risks
such as tip-over, and provide a precise estimate of the stop-
ping distance. Precision of the model is very important, but
it should also be very efficient computationally because it
has to be continually evaluated if it is used for control or
tightly coupled with the path planning algorithm. Certainly,
a gross over-estimation for the problems above will likely
keep the vehicle safe, however in cluttered natural terrain
such approach will either result in slow, inefficient tra-
versal, or may cause a failure of the path planner to gener-
ate an admissible path.

1.1 Prior Work
A great deal of research has been done in interaction of
pneumatic tires with the ground. Good tire models have
been developed for the automotive industry ([10], [21],
[22]) and work quite well for applications on paved sur-

faces. Off-road conditions certainly make things more diffi-
cult; [1] and [4] offer great overviews of automobile off-
road mobility and probabilistic approaches to soil model-
ing. Whereas these approaches may be quite general by vir-
tue of including fairly complex wheel-terrain equations of
many parameters that depend on various classes of soil,
they may not necessarily be the best for model-based
motion planning. Typically in model-predictive planning,
many candidate robot trajectories are considered and an
optimal trajectory in some sense is chosen. In this regard,
an accurate but complicated model will cause this evalua-
tion process to be much too slow for applications in real
mobile robots. Moreover, it is often not possible to deter-
mine all the many necessary model parameters ahead of
time.
Quite a few fairly detailed models of the wheel-soil interac-
tion were proposed specifically for motion planning appli-
cations. For example, [5], [6], [7] and [19] present
approaches that model the soil as a mass-spring system,
where the soil granules are considered as point-masses, and
interaction between them is modeled by spring force. These
models provide fairly good results in describing compres-
sion, shear and plastic deformations in soils. They also help
estimate many useful properties of loose soils and explain
traction of peristaltic motion [2]. However, these
approaches are yet to be thoroughly verified experimen-
tally. Moreover, the reported run-times of these modeling
methods do not appear to be fast enough to render them
feasible in real-time robot control scenarios. 
The approaches that were shown to be suited for control-
ling mobile robots tend to circumvent the issue of computa-
tional efficiency by further simplification. Usually the

Figure 1: The PerceptOR off-road mobile robot. The experiments
were performed with vehicles similar to the one pictured here.
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Coulomb principle of friction, or its derivative is used to
estimate the amount of rolling friction that the vehicle
experiences. [12] assumes that tread on the wheels is large
and the vehicle moves fairly slowly so that there is always
very good contact with loose soil. Several parameters of the
terrain are used in [15] to estimate normal and lateral tan-
gential forces at the wheel contact patch. A similar
approach to traction modeling that can also be adapted on-
line was presented in [14], and similar issues are treated in
[26]. This work is focused on planetary applications with
accompanying quasi-static assumptions. Also, it is assumed
that metal wheels are used and that terrain is smooth, so
that it is possible to consider the wheel to be rigid. Pneu-
matic tires used for terrestrial applications, however, are
elastic. Morever, in off-road applications the inflation pres-
sure is typically quite low in order to avoid rigid-mode
operation that may cause excessive compaction of soil [4].
To our knowledge there is no published work in fast sys-
tematic approaches to estimating wheel-terrain friction
with respect to braking deceleration that was also validated
on robots in a variety of natural terrestrial environments.

1.2 A New Approach
We conducted a significant field experimentation effort
with autonomous off-road robots, and this prompted an
empirical approach to capturing the complexities of wheel-
terrain dynamics in natural environments. An initial obser-
vation was that it was generally not possible to consider the
overall braking force of the vehicle (with gravity effects
removed) to be some constant value. In fact, in some cases
on soft soil the net braking force (no gravity effects) on a
slope was off by as much as 50% from its value on level
ground. Depending on vehicle dynamics, this can result in a
miscalculation of the stopping distance by several meters,
which may be a serious error when operating in cluttered
natural terrain.
We propose an approach that provides accurate estimates of
tractive braking force and involves a simple and efficient
model of several parameters. The values of the parameters
are determined experimentally by measuring the decelera-
tion during vehicle braking and combining these measure-
ments with vehicle state information. This “training”
procedure can be easily done in the field, and even autono-
mously by the robot. For example, every time the robot has
to stop, it can verify its braking model. In this manner, the
model can be refined on-line and adapted as the robot
moves into different type of terrain. This formulation of the
model was shown to work well on off-road robots operat-
ing on a wide variety terrain types, such as clay, soil with
sod cover, gravel, coarse sands, and packed snow, as well
as at various speeds and on natural slopes (typical to mid-
West region, the plains and the desert).
This model can be used in model-predictive control to esti-
mate the stopping path ([16], [17]), the guaranteed stopping
distance that is necessary for vehicle safety, which is
mainly a function of a complex relationship between vehi-
cle speed, tire-ground interface, and terrain slope. The
model can also be utilized by the path planning algorithm
to generate plans that respect this stopping path ([5], [6]).
Since the present model also estimates major forces acting
on the vehicle during braking maneuvers, it can also be
used in kinodynamic motion planning approaches [8].
Moreover, if an estimate of tire sliding friction coefficient

is available, then this model can predict whether robot’s
wheels are going to lock up (which generally must be
avoided [25]). 

2 Experimental Procedure
In this section we give the details of experiments that
prompted us to formulate this model of braking. In our
experiments, a terrain patch that is a good representative of
the overall terrain is chosen (often natural environments
have fairly uniform type of ground over large areas: mead-
ows, field, desert, etc.). The vehicle accelerates to a certain
value of velocity, , and then applies the brakes with some
known force (either maximum application for vehicles that
have no braking force feedback, or a certain known value
for those that do). Most vehicle control systems with
closed-loop velocity control estimate velocity more fre-
quently than it can significantly change, so it is possible to
achieve the temporal resolution sufficient to obtain the
velocity profile of vehicle stopping. The velocity data can
be plotted against time as in Figure 2. Note that actual
velocity in the plot goes slightly negative after reaching
zero. This is due to expansion of suspension springs that
were compressed during braking.
The time when braking was initiated (when desired veloc-
ity is set to zero) is recorded, along with the time when
velocity reached zero, . The average value of deceleration
in the particular experiment is estimated as shown in (1).

The value  is the slope of the velocity drop in the figure.
In this calculation, it is important to note that, as can be
seen in Fig. 6, there is a certain delay after the system com-
mands a zero velocity to when the velocity actually begins
to drop. This delay of propagation of the command, ,
depends solely on hardware. It was on average 0.3 sec. on
our robots. For braking at higher speeds, it is much less
than overall , yet needs to be taken into account. There-
fore, we take  as time of zero-velocity command plus

, and sample  specifically at that value of  to obtain
an accurate estimate of the slope.

Figure 2: Deceleration measurement experiment. Blue dotted line
shows commanded velocity of 0 (at t=10), and red line shows
system response.
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Throughout our experiments we made sure that the degree
of brake engagement was constant. In particular, we were
interested in maximum braking, i.e. in engaging the brakes
completely.
The same experiment was then repeated with various vehi-
cle velocities and on the ground of various slopes and ter-
rain types. We fitted the above data gathering procedure in
the robots’ controller code, so that we could obtain a data
point at any time when the robot made a stop. In this man-
ner we obtained the data over several months as the robots
were used for a variety of navigation and perception exper-
iments on the PerceptOR program. Thus we obtained thou-
sands of data points that were then analysed.
If we plot the measurements of decelerations versus slope
for a choice of terrain and subtract the effects of gravity, we
see that the resulting net braking force slightly increases
with the increase of slope angle, as we expected in our
analysis above. An example plot is presented in Figure 3,
which shows the normalized braking force, a ratio of break-
ing force to vehicle weight , as a function of slope and
velocity. The dependence of deceleration on initial velocity
is also noticeable, albeit not as pronounced. Interestingly,
these data points exhibit proportional dependence of nor-
malized braking force to slope angle. Hence, a single linear
model should be able to predict the braking force for both
downhill and uphill braking maneuvers.
Note, however, that our observations have been made in
tests on slopes well within limits of vehicle traversability,
which was about 20 degree slopes for our hardware. It is
natural to expect that beyond this range of slope values the
dependence is no longer linear. 
Also, on some vehicles it may occur that the coefficient of
proportionality of braking force to slope angle is different
for braking downhill and uphill. We believe that creating a
separate model for either case will be quite doable since it
is a simple matter to find the coefficients of the linear
dependence as described above.

3 Discussion of Results
In this section we develop the necessary concepts to under-

stand the factors influencing traction during vehicle brak-
ing. We then use the developed concepts in an effort to
explain our experimental observations and suggest a model
based on this analysis.

3.1 Vehicle Force Balance
As a starting point, we develop simple force analysis of the
vehicle during braking. Among the important notions that
we define here are normal forces on tires, pressure of the
tire contact patch, and the dynamic load transfer.
During braking, the major forces acting on the vehicle are
related through:

where  is the net braking force,  is acceleration due to
gravity,  is braking deceleration,  is vehicle
weight, and  is the terrain slope angle (here we consider
downhill slopes as negative, and uphill as positive). The
first term on the right side of (2) is the d’Alembert force
[11] (see Fig. 4).

Given that the vehicle center of gravity, , is
known, we can express the sum of torques around the con-
tact point of front wheels (for downhill slopes, assuming
positive torque is clockwise):

Here  is wheel base, and  is weight on the rear axle.
When the vehicle is stationary on level ground, the loads on
front axle, , and rear axle, , are determined by:

In case of a vehicle decelerating on a slope, we obtain the
normal forces on rear and front wheels by summing the
torques around front and rear wheel contact points, respec-
tively:

Figure 3: Normalized braking force, , versus ground slope and
vehicle velocity. 
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Figure 4: Free body diagram of a vehicle braking on a slope.
Positive torque is assumed clockwise.
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We observe from (5) that during braking downhill, there is
a significant dynamic load shift from rear to front axles.
Note that  was written with the  term to under-
score the fact that for downhill slopes .
We consider pressure on the tire contact patch for front and
rear wheels as the ratio of axle load to contact area. The
vehicles we had available for experiments in this study had
dual rear tires, so we estimate that the pressure of front
tires’ ground contact was twice that of rear tires.

3.2 Braking Force
Typically the work required to slow down a vehicle is done
by the friction force inside the braking mechanism. Sup-
pose that the braking torque results in a longitudinal force

 at the wheel-terrain interface. Since the goal of this
work was to understand the effects of maximum braking
that determines minimum allowable stopping distance and
outlines the upper bound on dynamics effects due to brak-
ing, we understand that   represents full engagement of
the brakes and depends solely on braking hardware, hence
always constant. Here we also assume that braking happens
on a straight path. We visualize the effect of this force in
the detail of interaction of an off-road tire with terrain in
Figure 5.

The hardware braking force  is counter-acted by the ter-
rain acting on tire tread. If the magnitude of this force
exceeds the shear strength of the terrain, it will no longer be
able to resist this shear force, and the wheel will skid.
The other force in the tire-ground interface that was found
to have significant effect on braking is rolling resistance

. This resistance is always present, and in the case of
pneumatic tires its value is determined by many factors,
such as tire material and design, temperature, vibration,
pressure of the ground contact patch (normal force on the
tire). Terrain compaction (related to pressure of the patch)
and bulldozing effects in soft soil are also major contribut-
ing factors to this resistance [4]. While  can be consid-
ered constant for a given vehicle, estimating  is
complicated due to the variety of factors influencing it.
Through experimentation we found that we can approxi-
mate all longitudinal forces acting on the vehicle during
braking by lumping them into the sum of the force due to
the torque supplied by the braking hardware, and the rolling
resistance. Then, the overall braking force is considered to
be:

The key to accurately predicting the braking force is esti-
mating rolling resistance .

In our experiments it was also determined that out of all
factors influencing rolling resistance, the most significant
one is the pressure at ground contact. A lesser, but notice-
able, effect has vehicle speed. In the following two sections
we explain these two factors.

3.3 Effect of Terrain Slope
It is important to consider contact pressure here because in
general rolling resistance is roughly proportional to this
pressure (although this relationship is complex and highly
non-linear) [1], [4].
For the case of level ground we can decompose (6) into the
contributions of front and rear wheels:

Here  is the same for front and rear wheels since our
vehicles had the interlocked differential. Also our robots
had dual rear tires, which resulted in twice the contact area
and half the ground contact pressure for rear tires than for
the front tires. Hence, let us suppose (only for clarification
purposes in this section) that due to the difference in con-
tact pressures, the rolling resistance values can be related
through .
As was shown earlier, during downhill braking there is a
significant dynamic load shift to front wheels, .
Because of this the pressure developed at front wheel con-
tact point greatly exceeds that at rear wheel contact, and
even more so in the case of rear dual tires.  increases
dramatically, more than  decreases (in part due to half
the contact pressure). The overall value of  becomes
greater than on level ground.
During braking uphill, similar issues come into play. How-
ever, in this case the load shift to front axle is less signifi-
cant (see (5)), in fact even less than on level ground due to

 term and because braking deceleration in these vehi-
cles was not very high. In this case , whereas for
level ground we had . However, since rear tires have
“half the effect” on rolling resistance than the front tires,
the overall braking force is less than on level ground.

3.4 Effect of Velocity
Among the factors influencing rolling resistance is vehicle
velocity [11]. The rolling resistance is directly proportional
to velocity because of increased tire deformation work and
vibration in the tire. The influence of velocity becomes
more significant when tires with lower inflation pressures
are used, as is often the case for off-road vehicles. Lower
tire pressure is used to allow tires to be more elastic, since
the work required for flexing the tire is much less than the
work of compacting and bulldozing soft soil. Greater elas-
ticity, however, causes greater hysteresis losses with
increasing vehicle velocity. The effect of velocity on rolling
resistance was found to be less significant, but still notice-
able.

4 Deriving the Model
In this section we combine our experimental observations
with the insights developed above to formulate our model
of braking force. We describe how this model could be eas-
ily adapted online and discuss the results of validating the
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Figure 5: Detail of wheel-terrain interface. We focus on two
dominating forces: braking traction force  and rolling resistance
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model through experiments with robots.

4.1 Formulating the Model
As we discussed, the results of our experiments prompted
us to make a simplifying assumption that within the range
of slope values that the vehicle can safely handle, the brak-
ing force is proportional to the slope.
The essence of our model is stated as:
• The braking force (without gravity effects) can be

approximated well by a linear model:

where  is ground slope angle and  is a coefficient.
We can fit a line  to the test data in the least-
squares manner and use it to obtain future estimates of

 based on slope.
• The coefficients  and  above also exhibits linear

dependence on initial velocity of the vehicle (right
before braking is initiated):

Thus, the overal model contains only four parameters: ,
, , and :

So that

We again underscore that the development of the model
was based on experimental data, which was available for a
range of terrain slope roughly from -15º to 15º. While this
model cannot be extrapolated outside the experimental
range in which it was defined, we can reason about the
character of  outside of this range. In particular, based on
previous discussion, we estimate that for greater uphill
slopes, the effect of rolling resistance will diminish due to
decreasing normal force, i.e. contact pressure, and  will
approach  (omitting gravity effects, as usual). At a cer-
tain point the slope becomes unsafe, when the shear capac-
ity of the wheel-terrain interface becomes equal to . For
steeper downhill slopes similar arguments apply: rolling
resistance will become less dominant with decreasing soil
contact pressure, and at some point the shear capability
may no longer support the vehicle.
In the experiments that lead to formulation of this model,
we have assumed that the degree of application of the
brakes was constant throughout the experiments (e.g. for
emergency braking, which often determines the look-ahead
distance for a path planner, maximum actuator power is
used). For other actuator modes this model is also applica-
ble, but additional coefficients may be necessary to allow
for other than maximum braking (e.g. slight, half way, etc.).
On the other hand, the benefits of this expression of the
model are that it is very simple and intuitive, quite easy to
adjust, yet powerful enough to account for peculiarities of
braking hardware and ground types, while requiring very
low online computational overhead. 

4.2 Adaptive Calibration of the Model

In order to enable the robot to adapt its braking traction
model to the terrain that may be changing, we measure
average deceleration during each time the brakes are
engaged. This measurement, along with estimates of cur-
rent pitch angle and velocity (available from robot’s state
estimator) are used as ground-truth to verify and update the
model. A sizeable collection of these data-points is gath-
ered during vehicle operation. There are several popular
methods and learning techniques to solve this problem
quite well. We have implemented a simple least-squares
estimator that uses this collection of data points to refine
the estimates of the four parameters of our model. 
First we use the measured average deceleration  and slope
angle  to estimate ground-truth values of slope-dependent
parameters  and .
We let the vector  contain  measurements
of deceleration, and , where .
Then we estimate the parameters as 

Once we have these parameters, we proceed similarly to
estimate velocity-dependent parameters:

We do exactly the same to obtain the coefficients  and
.

Depending on the mission, the robot may do quite a few
stops and assemble a fairly large collection of data points.
To make certain that memory data buffer does not over-
flow, it may be beneficial to use a FIFO data buffer of cer-
tain length.

4.3 Experimental Results
This model was verified on available data and through a
series of new experiments: braking on level ground, down-
hill and uphill, at velocities in the range (1, 4) m/s, and with
10 repetitions of each test to ensure correlation (with this
approach it was confirmed that results from repetitions had
very little variability). Afterwards, the model was tested on
the same terrain through long autonomous runs where the
system issued a total of about 200 complete stop com-
mands. The results are presented in Fig. 6 (the horizontal
axis represents stop number).
Note that the predicted value of stopping distance is always
above the actual, which is always necessary to keep the
vehicle safe. The overestimation is on average about 50cm
and can be controlled through the  parameter (see
(12)). The first 45 stops in the plot have quite a bit higher
stopping distances as they were done at higher velocities
(in excess of 3m/s) and on downhill slopes. The rest of the
data is from the usual operation of these particular vehicles:
about 2 m/s velocity and on slopes in the range (-15º, 15º).
Thus, while the model is quite easy to tune and calculate in
real time, it provides a fairly accurate prediction of vehi-
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cle's deceleration given its state and the predominant type
of soil.

5 Applications of the Model
The main motivation for estimating a braking model was
the determination of the stopping distance. Here we give
formulas for computing both stopping time and distance.
Another important application of the model is estimation of
vehicle dynamics during braking. Once the balance of
forces is known, it becomes possible to answer questions
about whether a particular slope is viable for the vehicle
(e.g. in terms of tip-over hazard).

5.1 Estimating Stopping Distance and Time
Average braking deceleration  can be obtained from (2)
once we have an estimate for braking force .
Since deceleration is negative change of velocity over time,
we estimate the stopping time, , given deceleration, , as

where  is an offset to ensure that the result is always
somewhat overestimated in order to keep the vehicle safe.
Similarly, stopping distance,  is calculated based on the
fact that deceleration is the second time derivative of dis-
tance:

where  is a similar distance offset.

5.2 Predicting Vehicle Tipover Condition
Calculating tip-over condition involves finding the sum of
torques around the point of contact of front wheels of the
vehicle (refer to (3) and Fig. 4). To find the threshold where
the vehicle will start to tip over, we need to find when the
weight acting on the rear axle, , becomes zero. However,
practically the vehicle will be in danger even before this
condition occurs. When the normal force , becomes low
enough so that the sliding friction force caused by it

becomes equal to the braking force, rear wheels will start
sliding and a loss of directional stability will occur [25].
When this happens, the capability of the rear tires to resist
lateral force is reduced to zero, and a yawing moment due
to a slight centrifugal force or other effects will develop the
inertia force about the yaw center of the front axle. There-
fore, to find a more suitable estimate of maximum allow-
able slope angle, we have to solve the equation (3) for  so
that  is equal to a relatively small value greater than 0.
This will require us to solve an equation of the form

 for . However, depending on required
accuracy it is possible to simplify the equation significantly
using small angle approximations.
The resulting  is the maximum allowable pitch angle of
the vehicle to prevent tip-over, given the longitudinal loca-
tion of its center of gravity and other parameters. Since
most of the components of equation (3) can be precom-
puted in advance, the estimation presents low computa-
tional overhead.

6 Conclusion and Future Work
We presented an empirical braking model that is very sim-
ple to estimate, yet produces quite accurate results that
exhibit appreciably small errors in a very wide variety of
off-road operation: high and low speeds, level ground and
steep slopes that high-traction vehicles can negotiate. The
model can also be extended with more analytical
approaches that utilize estimation of soil sinkage and other
peculiarities of navigating over soft, soils and sands. Also,
popular tire models can be utilized for operations on hard
surfaces. Our future work will involve testing the model on
vehicles that can operate at much higher speeds and steeper
slopes. We would also like to extend this study to maneu-
vers including steering while braking and acceleration
(speeding up as well as slowing down). We hope to look
into the application of more powerful learning techniques
to adapting the model to the variety of natural terrain.
Although the specifics can vary and further build on the
simple empirical model, the spirit remains the same: a run-
time characterization of vehicle dynamics that can support
many intelligent decisions on the part of a vehicle path
planning system operating in unpredictable off-road envi-
ronments.
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