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Abstract

Many robotics tasks require an ability to determine
quickly the nature of the terrain surrounding the robot.
While much attention has been given to the general
problem of terrain typing, the problem of effective
real-time terrain typing remains open. For robot
missions such as construction site work, military
reconnaissance, hazardous waste removal, and
planetary exploration this problem must be addressed.
In particular, for cross country navigation with a
wheeled vehicle, the robot needs to know where the
vegetation is and where the rigid obstacles are because
frequently the optimal, if not the only, path will pass
through vegetation. Our groups have independently
researched the problem of finding vegetation in a
scene, and have developed systems tuned to the
specific demands of real-time terrain typing for robots.
This paper looks at three classifiers of increasing
dimensionality and describes their applicability to
different aspects of the terrain typing problem.

1. Background

Our research groups are studying unmanned ground
navigation. At CMU (Carnegie Mellon University),
we implement our systems on the NavLab II military
ambulance, also known as the HMMWV (High
Mobility Multi-Wheeled Vehicle). At JPL (Jet
Propulsion Laboratory) there are several robots
(including a HMMWYV) which benefit from our
research. We frequently use range images for
navigation on our robots, and in range images the
vegetation looks just like the hills, ridges, rocks, and
mounds which we must avoid. Usually we just avoid
everything for simplicity’s sake. However, this
approach limits the reachable regions in natural
environments. Additionally, this approach makes all of
our navigation less efficient, so we are developing
systems to classify every pixel in a color video image
as vegetation or not vegetation.
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Terrain typing is not unstudied, although real-time
terrain typing has often been neglected. For a real
robot, speed of processing is paramount: if a technique
for terrain typing is a perfect classifier for all terrain,
but can’t get the results before the robot next has to
decide on a direction, that technique is useless. The
trade-off between accuracy and speed can be cheated,
though, by matching as well as you can a technique to
the simplest sufficient terrain typing problem for your
navigation task. In other words, don’t solve a problem
that’s any harder than you must.

2. Our Research Goals

Towards this end, we are exploring several problems
and several techniques. Our two questions are “How
much data do we need to perform the terrain typing at
hand?”, and “Given the right data, what technique will
suffice for classification?”.

The simplest sense space we’ve used for classification
is RG-space (Red-Green space). For this task, we are
given an image, and at each pixel we decide whether
the pixel is vegetation or not based on its red and green
components (which have shown to be effective in
some scenarios). The next more complicated sense
space is RGB. This problem is the same, but we base
our decisions on the pixel’s position in the three
dimensional red, green, & blue coordinates. Finally,
we perform classification in “RGB retina-space” based
not just on the one pixel in question, but on the
qualities of a small retina about that pixel; this allows
context and texture information to be available.

The techniques we use range from linear classifiers to
classifiers capable of highly non-linear classification.
This research in the paper applies a Fisher Linear
Discriminant [4] to the RG problem, and
Backpropagation Neural Networks [10] to the RG,
RGB, and RGB-retina problems. For all of our
techniques, we start with a color video image, and
generate an equal sized image in which the intensity at



each pixel is the vegetation classification of the
corresponding pixel from the input color image.

3. The Approach: Fisher Linear Discriminant

Our simplest approach for generating the classification
image is to use a linear decision surface. The idea
behind a linear decision surface is simple: we have
data in a given space of dimension N belonging to
classes A & B, and we perform a classification by
drawing a surface of dimension N-1 and calling
everything on one side A and everything on the other
side B. The trick is to find the correct surface.

The Fisher Linear Discriminant (FLD) does this by
finding the line in N-space which maximizes the ratio
of “between-class scatter” to “within-class scatter” in
the projections of classes A & B onto that line [4].
Once we have this line, it is a simple matter to find a
classification point (everything on one side is class A
and everything on the other is class B) that maximizes
the correct classifications of sets A & B. Given the
Fisher line and the classification point, the N-1
dimensional decision surface is simply the surface
through that point perpendicular to that line in all
dimensions.

The advantage of a linear decision surface is that the
computation needed for classification in high
dimensions is very low. The necessary calculations
can also be easily implemented with special purpose
hardware.

4. The Approach: IVY

The neural network system we use for finding
vegetation called IVY (Instant Vegetation Yielder).
IVY’s role is to process an image directly after
digitization. The output is a new image, or an overlay
on the raw image, which has intensity values whose
range denotes the degree of vegetation at each pixel.
Every pixel whose intensity in the output image
surpasses a certain threshold is called vegetation. IVY
could be used to do more complicated terrain typing,
too, but this paper assumes a single division of
vegetation or non-vegetation.

IVY uses a monolithic neural network approach to
classification. The paradigm is referred to as the
operator architecture [2] since we use the neural
network much as we would any low level computer
vision operator (such as an edge detector). IVY uses a
simple 3-layer backpropagation neural network [10].
The inputs to IVY are three small retinas, a red, a
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green, and a blue one. In this paper we look at IVY
networks where the retinas are 1x1 and 7x7. The input
level units are activated with appropriately scaled
pixel values from a square retina centered around a
particular pixel in question. The single output of IVY
represents whether or not the center pixel is to be
classified as vegetation; the value of this output ranges
from -1.0 (not vegetation) to 1.0 (vegetation). The size
of the retina can be adjusted to accommodate the
amount of texture or averaging you wish to have affect
the classification (See Figure 1, on page2 for a
diagram of IVY.

The neural network approach is derivative primarily
from one of the techniques used by Marra, Dunlay, and
Mathis: the “Image Based Neural Network™ [7]. In that
work, Marra, et al, tried to classify terrain as one of six
things: brush, dirt, grass, hill, road, or sky. The Image
Based Neural Network technique had some success,
but we hope to improve on those results by focussing
more closely on classifying just vegetation. By having
such a complicated function to learn as they had, it is
not surprising that their networks had difficulty
developing internal texture representations as there
must have been significant interference (crosstalk)
caused when the training examples from different
terrains were used. An additional benefit of a narrower
problem is that we should be able a simpler neural
networks; this will give us a chance to achieve high-
resolution real-time classification (Marra, et al, could
turn a 512 by 512 raw image into a 32 x 32
classification image in more than 2 seconds on a very
fast and expensive parallel computer [using > 50
hidden units]).
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Figure 1. IVY monolithic operator network

5. Training the FLD and IVY

Training either the FLD or IVY is straightforward. We



hand-label a large number of pixels in several images
at whatever resolution we desire the classification to
occur. With a sophisticated “paint” program which
allows color range matching as well as the selection of
polygonal regions and hand drawn regions, we can do
this quite painlessly. For training the FLD we look at
every pixel that has been hand classified and store the
statistics (histogram) for both classes, vegetation and
non-vegetation. We then run the FLD algorithm on the
class data. For the IVY neural network, we randomly
select a training set with as few as 500 or as many as
5000 training exemplars (for simple mappings, 500
exemplars can be sufficient to span the set of possible
inputs). Each exemplar is a an ordered pair (x, y) in
which x is a retina about a random point in one of the
training images and y is the label for the pixel at that
point in the hand-labelled image.

6. Convexity, Linearity, and Complexity

The answer to the questions of which input space to
use and which technique to use hinges on the
complexity of the classification task. If the sets to be
classified are convex and disjoint, a linear decision
surface is all that is needed. For some tasks, though,
the mapping from image space to terrain space can be
nonlinear and complicated. A simple example is that
we often encounter very green vegetation, as well as
red and orange vegetation. We also see brown dirt
roads. To linearly classify all of the vegetation or to
classify it with a single color neighborhood match
would mean that we would incorrectly classify the
road. For this reason, some tasks demand the use of a
nonlinear classifier.

6.1. Averaging and Texture

In even more complex tasks, we may want to use
retinas larger than one pixel to achieve classification
based in part on averaging or texture. Neural network
techniques allow us to create these more complex
mappings easily. Averaging is important for complete
image classification because we get shadows both on
vegetation and on rocks and other obstacles. If we look
at individual pixels only, we will get very dark pixels
that cannot be properly classified. If, however, we look
at the surrounding pixels, too, and all of them are
vegetation-colored or vegetation-textured, then we can
classify a pixel as vegetation.

7. RG Input Space Experiments

Our first set of experiments involved classification
based only on the red and green components of each

402

pixel in the input image. Although we could guess
from the start that there will be scenarios in which
these two bands will be insufficient for terrain typing,
we were surprised to find some cases in which they
provided enough data to do reasonable classification.
More importantly, using two bands affords us the
luxury of virtually instantaneous classification of
pixels: with either the FLD or IVY classification
scheme, we need only generate a 256 by 256 array
(with the indices corresponding to Red & Green pixel
components) storing the classification for each RG
pair. When classifying in real time, we simply look up
the classification.

The first set of images and hand-classifications used to
test both techniques were generated by JPL. For the
FLD, we used a training set of 531434 pixels taken
from five 480x512 color images. Of these, 251413 had
been hand labelled as vegetation and 490776 had been
labelled as non-vegetation. For the neural network, we
used a simple IVY network with a 1x1 retina for red,
green, & blue (but disabling the connections from the
blue retina to the rest of the network). Our training set
consisted of 5000 exemplars from the set of 531434
known pixels. Exactly half of the IVY training set was
vegetation and half was non-vegetation. IVY networks
with every number of hidden units from 1 to 20 were
trained; the best one had 8 hidden units (for a2 to 8 to
1 feed-forward network).

Both techniques were test on all 531434 known pixels.
Listed below are the percent of correct classifications
over the known pixels in each of the five images for
both techniques (+ is % right of known vegetation, - is
% right of known non-vegetation, T is % right of total
known pixels per image):

Table 1: RG Input Space

FLD vy
Image + - T + - T
1 87 77 §829:] 90 71 803
2 69 87 77.0 ' 72 86 | 78.3
3 84 94 19187 88 92 9144
4 97 90 | 93.8§ 98 88 }93.7:
5 97 95 | 964 98 95 968
Total |.88.6.] 89.1 § 88.9 1 90.6.1 87.1 88.91

Both the FLD technique and the IVY network
performed equally well on the given data. The FLD



correctly classified 472769 pixels, and the IVY
network correctly classified 472157 pixels.

8. RGB Experiment

While we achieved a decent level of ultra-fast terrain
typing with both the FLD and the IVY network in the
RG-space experiments, there seems to be an upper
bound on how well we could do with that data using
only the red and green bands. We next tried a full
RGB-IVY network on the same images. In fact, we
used the exact same training set as used for the RG-
IVY network.

Again, 20 networks were trained with all numbers of
hidden units from 1 to 20. The one with 6 hidden units
provides the results listed below:

Table 2: RGB-IVY

RGB-IVY
Image + - Total
1 96 84 90.2
2 88 90 89.0:
3 90 93 92.7
4 96 90 93.3
5 96 95 95.6
Total 94.0 90.9 92:4

The IVY network using the RGB data performed
better than either of the techniques on just the RG
Input space. Red and green data is simply not enough
to do a 100% classification; there is overlap between
the vegetation and non-vegetation sets. However, once
we jump to three dimensions (RGB) we lose the
instant look-up tables of 2D RG space.

We did one small side experiment to strengthen the
position that sometimes we need the additional input
dimensions and non-linearity. We used a single image
taken from CMU in Autumn to illustrate the point. In
this image, there is dark green grass, reddish grass, and
tan, strawlike grass. The image had poor lighting and
we expected none of the classifiers to perform
especially well, and we were right, but there was a
distinct difference in performance. The FLD got 65%
correct classifications, the RG-IVY got 67% correct,
and the RGB-IVY got 70% correct.
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9. Second Set of Testing Data

We also tested the RGB IVY network on some images
gathered at CMU that had a slightly more complicated
scene (in terms of vegetation coloration). In the set of
images used in experiments detailed in previous
sections, all of the vegetation was more or less green;
in this second set, which was gathered in Autumn,
there were some red and orange plants. We used a
series of 5 high resolution images (640x480) to
generate 500 training exemplars and 500 initial testing
exemplars. Again, each pixel is defined as three
integers from O to 255. All of the images used were
digitized live from a CCD camera on the same day. It
is worth taking a close look at the training data.

Blue Blue

\R}\ k\\

a. Vegetation b. Non-vegetation

Figure 2. Plot of second training set for RGB

The dots on graph “a” represent the set in RGB space
that we wish to map to “vegetation” in terrain space.
The graphed set is a subset (randomly sampled) of all
of the points labelled “vegetation” in the training
images. Notice that there at least two major clusters,
one “above” the other with reference to the Blue axis.
The dots on graph “b” represent the set in RGB space
that we wish to map to “non-vegetation”.

The pixels in the training set for both positive and
negative exemplars of vegetation do not cover the
RGB space, which means that the ideal function which
we wish to approximate is not even defined on those
other areas of RGB space. Performance on other days
and lighting conditions is not guaranteed with such a
training set. For more generality, the training set must
cover the desired subset of RGB space.

Furthermore, there is some overlap in the positive and
negative sets. This is due largely to shadows and
specular effects, but also occurs due to natural overlap
in the two ideal sets of vegetation and non-vegetation.



The mapping is fairly easy to learn and convergence
occurs quickly. An IVY network was trained with each
number of hidden units from 1 to 15. In these trials and
in others, the function was learned reasonably well by
each network. One hidden unit usually seemed to be
not good enough, but anything from 2 or 3 up was
good. With higher numbers of hidden units,
convergence took more time, as one would expect, but
the long term results were not better. In even the best 1
pixel IVY networks the average classification error on
the given test set of 500 exemplars was more than 0.3.
The error for a given exemplar (input + known output)
is the difference between the real valued output which
ranges from -1.0 to 1.0 and the known terrain
classification (with vegetation being 1.0 and non-
vegetation being -1.0). Thus, the maximum error
possible was 2.0 and average error with random
weights would be expected to be 1.0. The average
classification error results both from misclassifications
and weaker classifications (the network will never
learn to output exactly 1.0 or -1.0, and the amount of
“slop” is related to how well the function was learned).

10. Larger Retina Experiment

In order to take advantage of averaging and texture in
the second set of test images, we also trained an IVY
network that had a 7 x 7 RGB pixel retina (147 input
units). This network’s architecture is very similar to
that used in [7], though the mapping it is to learn is
more focussed - which is an important distinction. The
same hand-labelled high resolution images were used
to generate the training and test sets for this IVY
network as for the simpler one described in the
previous section. Again, 500 exemplars were used for
a training set and 500 were used as a test set.

Training was slower in real-time for these networks
since for a given number of hidden units, the 7 x 7
input IVY 1 network had 49 times as many
connections as a 1 pixel IVY 1 network. However, the
learning “flattened out” in fewer epochs (passes
through the entire training set. This is partially because
there was significantly less overlap between the sets of
vegetation and non-vegetation, both in the ideal
mapping and in the actual training set. Again we used
a network with each number of hidden units from 1 to
15. The average error in the output over 500 test cases
(not seen in training) was as low as 0.15 (out of a
maximum of 2.0).

We also used this network on the data from the first set
of images (from JPL). The 7 x7 input IVY is not fast
enough (done in software on a serial computer) to do

404

terrain typing of each pixel of an image in real-time,
but we can compare the average error in the outputs
over test sets of 500 unseen retinas between the RG-
IVY, the RGB-IVY, and the 7x7-IVY. The results can

Table 3: RG vRGB v 7x7 IVYs

RG RGB 7x7

Avg Error 0.284 0.220 0.163

be seen in Table 3, “RG v RGB v 7x7 IVYs,” on
page 5.

11. Conclusions

The results of our experiments highlight several
important aspects of the terrain typing problem. First,
the sense space you use can limit your performance no
matter what technique you use. On the other hand,
although a sufficiently complex sense space can let
you correctly classify more pixels, you may not be
able to classify a whole image in time for it to be of use
to a robot.

Several strategies fall out of these results. If speed is
paramount, either a low input space such as RG-space
or a simple classifier will suffice. Even the RG-space
allowed almost 90% correct classification. For
scenarios in which vegetation and non-vegetation
come in large patches in an image, this could be
entirely sufficient. Also, the FLD promises to perform
well in higher dimensions (such as RGB) provided the
sets of vegetation and non-vegetation in the higher
dimensional space remain relatively disjoint and
convex.

The IVY neural networks are appropriate when the
input space is of high dimension or when the different
sets to classify are not as nice as the ones we used here.
The first benefit was seen when we were able to add
texture and averaging data, which can be essential
when correctness of classification is needed. The
second benefit, although not the focus of these tests,
would come about in the case with red and green
vegetation and brown roads: a properly trained IVY
network could classify many different colors of
vegetation.

12. Future Directions

There are three directions we wish to explore in the
immediate future as a result of this work:
is worthwhile to continue

First, we believe it



investigating simple classifiers such as the FLD and
the simpler IVY networks. The FLD promises to
perform well and quickly in higher dimensions.
Furthermore, the shortcoming of the simple techniques
is that they fall apart when the sets to be classified are
not continuous or convex. However, if, as often
happens in the real world, the sensing space has sets
that are “piecewise” continuous or convex, we can
simulate higher order behavior by combining several
simpler classifiers. Two FLDs could be used to pick
out green vegetation and red vegetation respectively,
and the union of their outputs would be correct for the
appropriate sensing environment.

Second, we will continue to develop classifiers such as
neural networks that take advantage of richer sensing
spaces (texture, averaging, etc.). We are developing a
technique using modular neural networks that allows
us to pre-select features we know to be important in
order to supplement the neural network’s learning{3].
In this way, we can guarantee the use of texture
information in the classification process. Also, by
carefully choosing the size of the retina in an IVY
network, we can get texture information and speed of
classification at the same time. Another possible speed
up is to perform classification at several layers of
resolution from low resolution to high resolution
(where necessary).

Finally, the RGB images we use are not necessarily the
most useful images for sensing vegetation. Currently
experiments are being done with the FLD and IVY
techniques on images that have a Near Infra-Red
(NIR) band in addition to the Red, Green, and Blue
bands[6]. In NIR-space, or Red-NIR space, or RGB-
NIR space, the vegetation set is sometimes completely
disjoint from (and not especially close to) the non-
vegetation set. A well-chosen input space allows use to
use faster and simpler classifiers.
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