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1. Introduction

Many modern 3D range sensors, such as a Velodyne or
Kinect, generate on the order of one million data points per
second. For purposes of real-time semantic scene under-
standing, care must be made for efficient algorithms that
not only run adequately fast, but also make the best use
of the large amounts of data available. In this paper, we
propose a novel point cloud classification scheme that 1)
can be trained in a Map-Reduce framework and 2) allows
real-time inference on commodity hardware. This method
of training and classification makes the algorithm suitable
for training on large amounts of labeled point cloud data
and fast classification on new data during run-time. The al-
gorithm works by segmenting feature space using random
projections (LSH or Locality Sensitive Hashing) and train-
ing local classifiers. A separate contextual classifier is then
run on neighbors in Euclidean space as a meta-learning pro-
cedure (stacking). The end result is a fast algorithm that
outperforms the current state-of-the-art on a million point
benchmark dataset.

2. Goals

One of the most fundamental and important tasks for a
mobile robot is to be able to adequately assimilate and re-
spond to the data coming from its sensors. In the case of 3D
range sensing, modern-day sensors generate massive quan-
tities of data that are often thrown away due to lack of com-
putational resources. We would like to be able to effectively
harness the power of “big data” in this setting to not only
train simpler models [2], but to also generate fast inference
procedures, capable of running in real-time using onboard
hardware.

Our goal is to devise a method providing the descriptive
power of non-linear classifiers with the efficiency of linear
classifiers. Furthermore, we need to make sure that under-
represented classes do not get ignored and the assigned la-
bels are spatially coherent. We would like to do all of this
in a way that capitalizes on the large quantities of data we
have available.

3. Proposed Method
The proposed algorithm has two learning phases. The

first phase learns traditional per-point classification in a “lo-
cally linear” way, and the second phase learns spatial con-
text through stacking to enforce coherency among nearby
points.

3.1. Phase 1: Local Learning

Using spin images, the first phase splits up the data into
meaningful feature clusters to train local classifiers on each
cluster. The general idea is illustrated in Figure 1. The
graphic on the left shows how a linear classifier may do a
poor job on data with a non-linear decision boundary. In this
case, each feature vector has two dimensions and the clas-
sification problem is binary. The graph on the right shows
the same data, but with several partitions over one of the
features. A different linear classifier is learned per feature
partition, resulting in no misclassified examples.

Figure 1. The idea behind “locally linear” learning. Non-linear
decision boundaries can be more closely approximated by cluster-
ing the feature space and learning linear classifiers locally on each
feature cluster.

Not only will non-linear decision boundaries be more
closely approximated by several locally linear decision
boundaries, but learning locally also has computational ad-
vantages in that much of the work can be split up in parallel.
If the feature clustering can be done in an efficient way, then
each local learner can be trained simultaneously.

Unlike iterative algorithms such a k-means clustering,
LSH allows us to cluster the feature space in constant time
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Figure 2. Figure from [5]. This point cloud is colored coded by
label and was taken from the Oakland neighborhood of Pittsburgh,
PA, USA.

per point. This means that we do not need to see all of our
data to make decisions about which cluster a particular data
point belongs. This convenient property allows us to effi-
ciently segment our training data into feature clusters and
simultaneously train local learners on each cluster. Each
cluster has significantly lower class entropy after a given
segmentation, meaning that LSH effectively acts as a single
step decision tree split. The fact that the after-split entropy
is much lower means that each individual learner has an eas-
ier job teasing out the parameters that discriminate among
classes. Furthermore, rare classes often get segmented to
the same code, boosting their relative frequency within that
particular local classifier.

3.2. Phase 2: Contextual Learning

One problem of solely using Phase 1 is one of spatial
consistency. Since per point features encode local prop-
erties of surfaces only, the larger context of scene is lost.
To recover this context, we can perform a single round of
“stacking” [3], where the candidate function is a nearest
neighbor function in a global Euclidean x-y-z space on the
point cloud. In other words, we can use the Learners them-
selves to generate labels and then look at local label distri-
butions in x-y-z space for each point. A final classifier can
then be learned on this data, resulting in a learner that knows
spatial context. The intuition is that nearby class labels are
very informative to the point currently being classified, and
furthermore, the class labeling should be smooth and con-
sistent with its neighbors.

4. Results

In this work, we use the point cloud dataset first intro-
duced in [4]. It consists of roughly 1.2 million data points,
with many different labels like “car, tree, telephone wire,
curb, etc.” A picture of part of the dataset can be seen in
Figure 2 with the points color-coded by class. The scene is
from the neighborhood of Oakland in Pittsburgh, PA, USA.

We did several tests over the data using different combi-
nations of Phase 1, Phase 1+2, and the classical methods.
The results are summarized in Table 1. The first classifier,
a majority classifier, simply classifies all points as ground.

Table 1. Classification accuracies the various learning methods.

DATA SET NAIVE

MAJORITY CLASSIFIER 0.748
LINEAR SVM (LIBLINEAR) [2] 0.897
LOCALLY HASHED MAJORITY (LSH-10BIT) 0.827
LOCALLY HASHED 5-NN (LSH-9BIT) 0.870
LOCALLY HASHED SVM (LSH-4BIT+LIBLINEAR) 0.903
STACKED LOCALLY HASHED 5-NN (LSH-9BIT) 0.912
STACKED LOCALLY HASHED SVM (LSH-8BIT) 0.929
HIGH ORDER ASSOCIATIVE MARKOV NETWORK [5] 0.871
PAIRWISE ASSOCIATE MARKOV NETWORK (3-NN) [5] 0.884
PAIRWISE ASSOCIATE MARKOV NETWORK (5-NN) [5] 0.889

It is the baseline. The next classifier is linear SVM classi-
fier optimized to be efficient using large datasets and trained
over the entire data [1] (liblinear). We use this classifier as
our base local learner, unless otherwise noted. The next two
rows detail the local learner accuracies. The first is a locally
hashed majority classifier, which does slightly better than
the non-locally hashed majority classifier. This result is an
indication that LSH is doing well separating data into clus-
ters of different classes. We see that the 4-bit code with li-
blinear outperforms the globally trained liblinear. The next
two results in the table are using both training phases, ap-
plying stacking as a final classifier to add contextual infor-
mation. Here, the 8-bit stacked linear SVM classifier sig-
nificantly outperforms every other method at .929 overall
class accuracy. Finally, the last three results come from
related work, using Markov networks to perform similarly
fast contextual real-time inference. Their results are compa-
rable with the locally trained learners, but are outperformed
by the methods with stacking.
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