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Abstract—We present a stereo vision-aided inertial navigation
system and demonstrate its potential in power line inspection
at close range using an unmaned aerial vehicle. This is made
possible by recent developments in visual odometry and a
newly proposed algorithm for the loose coupling of an inertial
measurement unit and visual odometry. Our experiments show
promising results.

Index Terms—Visual Odometry, Inertial Navigation, Inspec-
tion, Unmanned Aerial Vehicle

I. INTRODUCTION

HE inspection of electric transmission networks is of

great importance for the power industry. It is an expensive
and fastidious task not only because power lines cover a vast
territory, but also because a significant portion of them are
located in remote and hazardous environments. Furthermore,
for safety reasons, human intervention should be reduced as
much as possible. Almost 20 years ago, it was proposed to
perform inspection using autonomous or remotely controlled
Unmanned Aerial Vehicles (UAVs) [11], [15], [30]. However,
technological limitations have slowed down their adoption.
Today, commercial UAVs are remotely controlled and require
their operators to be on site with the UAV when performing
operations at close range like power line inspection. To over-
come that limitation, UAVs should be completely autonomous
or provide the remote operator with accurate information
about its location and surroundings. In both cases, an accurate
localization system is required.

The localization problem can be split into two aspects.
Global pose is concerned with the estimation of the location
and orientation of the vehicle with regard to a global coordi-
nate system such as the one used by the Global Positioning
System (GPS). It involves such sensors as Global Navigation
Satellite System (GNSS) receivers and magnetic compasses.
The current state of the art in localization for autonomous nav-
igation relies on a combination of expensive sensors, notably
Real Time Kinematic Global Positioning System (RTK-GPS)
to achieve centimeter accuracy. Compared to conventional
GPS, this, however, requires additional ground infrastructure
that is expensive to deploy to cover very large areas.

Local pose, on the other hand, is concerned with the position
and orientation of the vehicle with respect to the environment
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immediately surrounding it. In the robotics community, Si-
multaneous Localization and Mapping (SLAM) is a typical
solution to this problem. In this work, we present a vision-
aided inertial navigation system that is useful for local pose
estimation. It is based on a stereo camera pair and an Inertial
Measurement Unit (IMU) that can be mounted on any kind
of wheeled, legged or aerial vehicle. Work is under way to
incorporate a low cost GPS receiver in our system to provide
accurate global pose as well, but it is not the topic of this
work.

In the next section, we present some relevant prior work,
followed by our vision-aided inertial navigation system in
Section III. Proof of concept experiments are presented in
Section IV followed by the conclusion in Section V.

II. PREVIOUS WORK

In this section, we review prior art on navigation systems
based on vision and inertial sensors with potential application
to UAVs.

At medium to high altitude, a common approach for motion
estimation of a UAV is to successively align ground plane
images [2], [20] using homographies. Complementary to this
approach, Demonceaux et al. use an omnidirectional camera
to detect the horizon line and estimate the altitude of the UAV
[4]. Also, Rathinam et al. propose to follow locally linear
structures such as power lines using visual feedback [23].
Those approaches are mostly suitable for long and smooth
trajectories with objects of interest (typically the ground)
located far from the UAV. For inspection at close range, a
more general vision-aided inertial navigation system offers the
advantage of estimating the motion of the UAV with respect
to the inspected object. In addition, a permanent view of the
ground is not necessary allowing more flexibility in the motion
of the UAV.

There have been several aided-inertial navigation systems
introduced in the literature with different formulations. These
are generally influenced by the choice of SLAM algorithm and
the motion model. For example, when employing Extended
Kalman Filter (EKF) based SLAM, it is natural to combine
it with the inertial EKF to jointly estimate the sensor states
and visual landmarks [17], [21], [22], [26]. Mourikis et al.
demonstrated such an approach for planetary landing appli-
cations [18]. Other approaches rely on a modified EKF to
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Fig. 1. Our positioning sensors. We treat the stereo camera and IMU as
collocated with a fixed and known rotation. The GPS is only used for ground
truth comparison.

use constraints computed on pairs of consecutive images [5],
[12], [24]. Doing so guarantees that vision measurements are
not correlated, at the expense of less accurate visual odometry
(VO).

In the computer vision community, structure-from-motion
and visual odometry are the counterparts of SLAM in the
robotics community. Rather than using a filtering formulation,
VO formulates the localization task as an optimization problem
and impressive results have been demonstrated in recent years
[13], [14], [19], [28]. In their work, Konolige et al. argue that
ignoring correlation is a price worth paying for relying on
VO rather than SLAM [14]. They propose a loosely coupled
system which combines two EKFs and stereo VO. They rely
on a cascaded EKF where a low-level EKF is used to process
inertial measurements and a high-level EKF fuses VO with
filtered inertial measurements. This allows them to perform
predictions using the VO and corrections with the IMU.
We adopt the opposite approach and predict with the IMU
measurements in our EKF, since the IMU has the highest
update frequency. Furthermore, their approach assumes that
acceleration profile is of zero mean locally in order to estimate
roll and pitch angles. As a consequence, the uncertainty needs
to be artificially high to compensate for this assumption. In
our formulation, the direction of gravity implicitly damps roll
and pitch errors without any arbitrary assumptions. As a result,
the computed uncertainties are closer to the true uncertainties.

III. VISION-AIDED INERTIAL NAVIGATION SYSTEM

Building a motion estimation system by combining an exte-
roceptive and a proprioceptive sensor is an attractive solution
because, roughly speaking, they have opposed strengths and
weaknesses. The former estimates motion based on external
observations, for example, using video cameras. As a result,
error accumulation or drift is essentially proportional to the
length of the trajectory. The drawback is that accuracy is also
dependent on the geometry of the environment. Proprioceptive
sensors, by their nature, measure their own motion. Thus,
they can operate in any kind of environment. However, error
accumulation is a function of time rather than distance which
is why they require some form of aiding.

Our navigation system consists of two loosely coupled
components. The main component is a modification to the
conventional inertial navigation Extended Kalman Filter and
the second is a stereo based VO. The filter is used to fuse the
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Fig. 2. Flow chart summarizing our visual odometry system, see Section
III-A for details. A flow chart of the EKF is shown in Figure 3.

EKF

inertial data and the motion estimates provided by the VO. In
the following, we first describe our VO algorithm followed by
our modified EKF. A more in depth description is available in
[27].

A. Visual Odometry

Historically, stereo cameras have been used as range sensors
and pose estimation was performed by successive alignment
of the current and previous point clouds with the Iterative
Closest Point (ICP) algorithm [10], [16]. Similarly to Nister
et al. and Konolige et al. , our VO instead relies on incremental
Structure From Motion (SFM) [1], [19]. In this context, there is
no fundamental difference between using a single camera or a
stereo camera. The additional camera of the stereo pair simply
provides additional information during motion estimation and
measurements for landmark triangulation. In SFM, contrary to
ICP-based solutions, the position of the observed landmarks
are estimated using all frames in which they appear. Besides
increased accuracy, this makes pose estimation possible even
when the landmarks are located far from the cameras and
have virtually zero image disparity. In addition, relying on a
stereo camera considerably reduces drift in the scale (or speed)
of the computed motion. Finally, initialization is simplified
because the depth of the landmarks can be instantly estimated.
A description of our algorithm follows and a flow chart is
given in Figure 2.

Our stereo camera is calibrated offline, a critical step for
an accurate and unbiased trajectory estimation. Images are
simultaneously obtained from both cameras and rectified to
horizontally align their epipolar lines. Features are detected
with sub-pixel accuracy in both images using the Harris corner
detector. After the first frame is obtained, sparse stereo match-
ing is performed: features from the left and right images are
matched using normalized cross correlation. Matched features
can then be triangulated yielding the first set of landmarks.
Thus, some disparity must appear in the image for proper
initialization of the system.

Every time a new set of stereo images is acquired, motion
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Steps \ Computation time (milliseconds)
Image rectification 9
Corner extraction 5
Feature matching 10
Sparse stereo matchings 1
Robust pose estimation™ 5
Bundle adjustment™® 20

TABLE I
COMPUTATION TIME ON AN INTEL CORE 2 DUO PROCESSOR. STEPS
MARKED WITH A * ARE PERFORMED ONLY AT KEY FRAMES.

estimation is performed as follows. Features corresponding
to 3D landmarks are matched with features from the new
stereo pair. Note that we rely on matching with mutual
consistency rather than tracking on correlation windows with
some rejection threshold or the Lucas Kanade tracker. This
results in a set of 2D-3D correspondences used to robustly
estimate the current position and orientation of the cameras.
By robust, we mean that it can perform pose estimation despite
a large porportion of wrong correspondences due to matching
errors. We use the 3-point algorithm [9] in conjunction with
Random Sampling and Consensus (RANSAC) [8] where the
error criterion is the reprojection error of the landmarks in
both stereo images. This is followed by iterative refinement.
In addition, we perform local bundle adjustment which simul-
taneously refines the last few pose estimates of the stereo pair
and the currently observed landmarks [29]. This is known to
significantly increase the accuracy of the estimated trajectory
[6], [14], [25]. Erroneous landmarks are rejected and replaced
by new ones using sparse stereo.

Contrary to conventional SLAM approaches [3], pose es-
timation and landmark triangulation is only performed on
a subset of frames called key frames.This allows real time
computation at 30 frames per second despite expensive non-
linear optimization techniques. Typical computation times for
each step are given in Table I. Observe that for a stereo camera
running at 30 Hz, pose estimation at every frame is impossible.
However, real-time computation is feasible if a key-frame
appears no more than every three frames. In addition, we do
not rely on a motion model or any other kind of smoothing.
Six degrees of freedom motion estimates are obtained at each
key-frame.

VO provides the relative pose between the current key
frame and the previous key frame to the EKF along with its
uncertainty. Unlike the uncertainty of the current pose in the
global frame [7] this does not require propagating uncertainties
in time. The uncertainty of the relative pose is a function of
the currently observed landmarks only. In case of failure, the
uncertainty is simply set to infinity and the current pose set
to identity (anything can in fact be used). For the EKF, this
is easy to handle as explained in the next section. Failure of
the VO only happens when the number of image features is
almost null as a result of high motion blur, over or under image
exposure or if the observed environments simply don’t have
any salient regions.
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Fig. 3. Flow chart of the EKF taking inputs from the IMU as well as from
the VO (Figure 2). Details in Section III-B.

B. Fusion

The Extended Kalman filter estimates the current system
state: position, velocity and orientation in three dimensions
as well as some calibration and noise shaping states. This
structure allows an Inertial Measurement Unit (IMU) to predict
the state at high frequency and be corrected and calibrated on-
line at lower frequencies by the VO. A flow chart summarizing
the steps taken by EKF is given in Figure 3.

To incorporate VO relative pose updates, the Kalman filter
uses a delayed state formulation where the filter states are:

o UAV’s current position and orientation (6 dof);

e gyroscope biases (3 dof);

o accelerometer biases (3 dof)

o UAV’s current velocity (3 dof);

o UAV’s position and orientation at the previous VO update
(6 dof, the ‘delayed states’).

Similar formulations have been referred to in the literature
as stochastic cloning [17]. This structure allows natural in-
corporation of the VO measurement in a loosely coupled
arrangement.

At initialization, the filter’s position, orientation and the
delayed states are identical. A global vertical reference is
provided by gravity measurement but the system does not
necessarily have any knowledge of its absolute global heading.

With each IMU measurement, integration is performed so
the states of the filter are updated with the exception of the
delayed states that remains unchanged, that is, no smoothing
is performed. Correction is performed when the VO outputs
a relative pose between the current position/orientation of
the UAV and the previous delayed states. The measurement
corrects errors introduced through the IMU particularly. After
a step of correction, the current state is copied onto the delayed
states of the vehicle. Thus, they are briefly identical, before
the IMU again begins to track the subsequent system motion.
Care is taken to handle the associated uncertainties correctly.

When the VO fails to estimate the pose of the UAV, the
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Fig. 4. We simulated a UAV flight using a hand-held mono-pod (red circle)
and 15 meter platform lift.

EKF will receive a relative pose of infinite uncertainty. In this
case, no correction is performed and the current states of the
EKF are copied to the delayed states as the next VO update
will be given with respect to that pose.

IV. PROOF OF CONCEPT EXPERIMENTS

Our system, shown in Figure 1, consists of a Honeywell
HG1930 IMU mounted underneath a PointGrey Bumblebee 2
stereo camera running at 30 Hz with a 12 centimeter baseline
and a field of view of 65 degrees. In addition, we use a Novatel
OEMV-3 GPS receiver to acquire ground truth position for
comparison. Note that conventional GPS is accurate only
to a few meters which is not enough for our application.
So we obtain centimeter accuracy by post-processing the
GPS data using Novatel proprietary software and publicly
available CORS and IGS reference stations (the data from
these reference stations are made public on the day following
their collection). Our computer is a conventional PC equipped
with an Intel Core 2 Duo clocked at 2.4 Ghz. In our system,
visual odometry is by far the most computationally expensive
component. The number of tracked features is automatically
adjusted to keep the computation in real-time whilst leaving
enough overhead to run the EKF.

We simulated a remotely controlled UAV by attaching our
navigation system to the tip of a hand held 1.5 meters mono-
pod. We placed a platform lift that could go as high as 15
meters next to a power line pole. Using the lift and hand-
held positioning sensors, we simulated the taking off and
ascent of a UAV next to the pole, inspection of the power
line and transformer followed by the descent of the UAV.
Although our system can process the data in real-time, data
from the cameras, IMU and GPS receiver were only recorded
and processed off-line. Pictures of the acquisition process are
shown in Figure 4. We acquired three datasets with trajectories
of length varying between 15 and 22 meters. This resulted in
between 1654 and 2532 key frames per dataset. The longest
of our datasets is shown in Figure 5. In this figure, only the
landmarks close to the INS are shown. In fact, a lot more
are recovered from the surrounding environments, particularly
from trees and buildings.

Naturally, the estimated trajectories suffer from drift in
both position and orientation. To assess the accuracy of the
estimated trajectories, we compare them to the post-processed
GPS. Trajectories given by INS and GPS are shown in Figure
6. The separation between the trajectories are also given in
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Fig. 5. Recovered trajectory and point cloud map from our third datasets.

Only a subset of the point cloud close to the INS (below 3 meters) is shown.
Sample images are from the left camera.

Figure 7. In the case of our longest dataset, the position error
is at most 20 cm. Note that the initial orientation of the INS is
only accurate to a few degrees. Such inaccuracies artificially
increase the perceived amount of drift of the estimated trajec-
tories. Since our goal is to quantify the accuracy of our local
pose estimate, we correct our initial orientation by minimizing
the alignment between the GPS and estimated trajectory in the
first 2 meters traveled. In general, this decreases the maximum
error by around 10 centimeters.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the potential of a vision-
aided inertial navigation system that could be mounted on
a UAV. It provides an accurate local pose as well as point
cloud map of the environments. In its current form the system
would most useful for visualization of a remotely controlled
UAV. Current work focuses on combining our INS with various
types of autonomous vehicles performing path following. In
addition, we are working towards integrating a conventional
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Fig. 6. Comparison between the three estimated trajectories and GPS. The length of the trajectories varies between 15 and 22 meters. The starting point is
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low cost GPS to reduce long term drift and provide accurate

global pose.
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