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utomated guided vehicles (AGVs) have been operat-
ing effectively in factories for decades. These vehi-
cles have successfully used strategies of deliberately
structuring the environment and adapting the
process to the automation. The potential of

computer vision technology to increase the intelligence and
adaptability of AGVs is largely unexploited in contemporary
commercially available vehicles. 

We developed an infrastructure-free AGV that uses four
distinct vision systems. Three of them exploit naturally
occurring visual cues instead of relying on infrastructure.
When coupled with a highly capable trajectory generation
algorithm, the system produces four visual servo controllers
that guide the vehicle continuously in several contexts.
These contexts range from gross motion in the facility to

precision operations for lifting and mating parts racks and
removing them from semi-trailers. To our knowledge, this
is the first instance of an AGV that has operated successfully
in a relevant environment for an extended period of time
without relying on any infrastructure.

Overview
The market for AGVs is the oldest established market for
mobile robots. This market is probably valued at over US$900
million today [4], [17]. The largest consumer of AGVs is the
automotive industry although many other industries, includ-
ing warehousing and distribution, paper, printing, textiles, and
steel, also use these vehicles. Even large 65 ton material han-
dling vehicles in the shipyards of Rotterdam and Brisbane [2]
have been successfully automated. 
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While there are many specialized forms of AGVs, three
main types of vehicles are in use today: tugs or tractors pull
several passive loads placed on wheeled platforms behind
them. Unit loads carry a single load placed on a platform on
the vehicle. Forked AGVs carry a single load but also pick it
up and place it using fork implements. 

In part, the historical success of these vehicles has been
based on a strategy of exploiting the valid assumptions of
structured indoor environments. Such assumptions include
mostly flat floors and the assumed availability of infrastructure
that is provided to support vehicle guidance. System design
elements include reducing speeds to very safe levels, centraliz-
ing movement authority, and confining the vehicles to dedi-
cated pathways, known as guidepaths, which are kept clear of
obstacles to the highest degree possible.

Of course, such risk reduction comes at the cost of limita-
tions in performance and adaptability. Contemporary AGVs
rely heavily on specially installed infrastructure to determine
their position in the facility. Such infrastructure is costly to
install and modify. 

Motivation
AGV guidance systems have been evolving for about 50 years
[1]. Three guidance technologies have been dominant over
this time. Wire guidance uses wires embedded in the floor
that are sensed inductively in order to determine vehicle later-
al position with respect to the wire. This is an earlier technol-
ogy that is not used much today. Inertial guidance uses
gyroscopes and wheel odometry (measurements of distance
traveled). These are used to implement very accurate dead
reckoning. Magnets are placed in the floor at regular intervals
to be used to reset the inevitable drift of the dead reckoning
system. This technology is available on the market today. Laser
guidance uses a spinning laser emitter- receiver that is mounted
on the vehicle. It senses the bearings to retro reflective land-
marks placed carefully in the facility and then it triangulates an
accurate solution. This technology is also available on the
market today.

It has long been a goal of the AGV industry to reduce
dependence on guidance infrastructure—the wires, magnets,
and reflectors mentioned above. The need to preserve visibility
of infrastructure limits the capacity of vehicles to deviate from
pathways that were specified when the system was installed.
Wire-guided vehicles must stay very close to the wire, laser-
guided vehicles must avoid interrupting their line of sight to
specially mounted retro reflectors, and inertially guided vehicles
must drive over floor magnets at regular intervals.

Systems that are able to deviate significantly from their
guidepaths are known as free-ranging. When vehicles are not
free-ranging, a single failed vehicle can temporarily block a
main thoroughfare and shut down all automated traffic.

Infrastructure dependence often prevents AGVs from oper-
ating in environments where infrastructure is difficult to
employ. For example, weather conditions make outdoor envi-
ronments more challenging, although radar guidance has been
used successfully outdoors. 

For applications that involve operations in semi-trailers, it is
normally not feasible to place adequate infrastructure in the
trailer. The trailers are not usually owned by the facility and
they are not dedicated to any particular shipping route or
customer. 

A second limitation of contemporary AGVs is that they are
essentially blind. With some exceptions, contemporary sys-
tems rely on precise positioning of loads because the systems
cannot determine if the loads are imprecisely positioned.
These vehicles may not be able to interface with loads placed
by human-driven vehicles because humans do not usually
position loads with the required precision.

Problem Addressed
This article summarizes the results of a five-year program that
attempted to remove the above limitations by applying one
key technology: computer vision. The longer-term goal is to
automate all operations moving material from trailer to pro-
duction line and back in automotive stamping and assembly
plants. These kinds of operations include picking up and set-
ting down loads at a number of sites in the facility. These sites
include semi-trailers, tug AGVs that cooperate with the
forked AGVs, automated storage and retrieval systems, and
staging areas near the production line. 

Several operating scenarios are typical. In the first, a forked
AGV moves a filled parts rack (containing auto parts) from a
trailer to one of the sites mentioned above. In the second, a
forked AGV moves empty parts racks back to a trailer for
removal from the facility. In a third, a tug AGV moves several
full loads from storage to the production line, waits for
unload, and then returns for another load.

Secondary goals of the program include investigating how
costs can be reduced by retrofitting industrial trucks and by
using cameras instead of laser detection and ranging
(LADAR). Another secondary goal is determining the degree
to which AGVs can coexist and interact with human-driven
material handling vehicles.

Approach
The results of our efforts can be described in terms of four
visual servo controllers, each with a specially designed vision
system. One of these servos is always active. The servos coexist
with conventional lower level control algorithms and higher
level planning algorithms, all of which contribute to a com-
plete solution.

To our knowledge, we have demonstrated the first reliable,
infrastructure-free guidance of an AGV in a realistic setting for
an extended period of time. We have also demonstrated auto-
mated stacking of parts racks based on fiducials that could be
removed with additional development work. Our demonstra-
tions of vision-based automated load acquisition and automated
unloading of trailers were also infrastructure-free.

This article summarizes the overall effort to develop com-
puter vision-based solutions to our vehicle automation problem.
Technical details can be found in the many referenced technical
articles [8]–[12] associated with the program.
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Vehicle Retrofits
Two common material handling vehicles were initially retro-
fitted for autonomy. The retrofitted vehicles are shown in
Figure 1. In the bottom left is a Hyster model R30FT tugger
vehicle, also known as a tractor, capable of pulling several carts
carrying a total weight of up to 4,500 kg. On the right is a
5,000-kg Hyster model 50 counterweight fork lift, capable of
carrying loads up to 2,300 kg.

The sales volumes of such vehicles exceed those of AGVs
by at least two orders of magnitude, so our sponsor felt there
was long-term potential to reduce costs by exploiting a less
expensive base vehicle. In the later stages of the program, we
also tested our guidance system on commercial AGVs manu-
factured by FMC Corporation.

Although LADAR systems were used, the number of such
devices was minimized. Again, we hoped that eventual vol-
ume manufacture would lower costs as volume markets drove
down the price of cameras.

Both vehicles shared common computer hardware and
software architectures. A central PC running the Windows
NT operating system hosted a multithreaded application that
controlled vehicle motion and ran vision, planning, and navi-
gation software. The vehicles had primary power batteries at
48 V/36 V. Vicor dc-to-dc converters supplied computing,
hydraulic, and control logic power at lower voltages. 

Each vehicle was controlled through a custom relay board
that actuated the manual controls for the vehicle’s standard
hydraulics and electrics. Under computer control, the relay
board switched the throttle and hydraulic controls to be actu-
ated by an I/O board that was controlled from within the
Windows NT program.

The throttle on both vehicles was a 0–5-V analog signal
normally controlled by a potentiometer on the accelerator.
Braking was accomplished primarily through regeneration
built into the vehicles. A parking brake was used for stopping.
Steering on the fork lift was controlled using a second
hydraulic steering box that was driven by an electric motor.
Steering on the tugger was controlled by using the built-in
analog steering signals for the manual control joystick. 

Fork actuation was controlled through multispeed
hydraulic valves. The fork lift was able to tilt the mast and lift
and side-shift the forks. Initially, the width between the forks
could only be adjusted manually. The original forks were later
replaced by forks whose width could be automatically con-
trolled, as described later in this article. 

Encoders measured wheel rotation to provide feedback for
odometry. String potentiometers measured fork positioning.
Later iterations of the design used fork-mounted limit switch-
es to detect proper load engagement. Cameras were installed
on the fork lift to detect fork holes. These are the square holes
in parts racks into which the forks are inserted for lifting. A
NTSC digitizer captured images for the software system. 

To provide localization, a downward-looking vision camera
was mounted with lights beneath the vehicles. The downward
vision system was originally integrated into the central vehicle
control computer but evolved later into a stand-alone device
with a separate CPU running Linux. The vehicle computers
were networked using Ethernet. 

The rest of the article focuses on the fork truck because
every system present on the fork truck was also present on the
tugger. The computer vision solutions discussed also apply to
the tugger, except in the contexts of lifting or dropping loads.

Architecture
A central computer coordinates the activities of all of the
AGVs by communicating with them regularly over wireless
Ethernet. The vehicles do not communicate directly with
each other.

As shown in Figure 2, the software has two distinct com-
ponents: a facility segment and a vehicle segment. One
instance of the facility segment runs on the central computer.
Each vehicle has its own instance of the vehicle segment. 

Facility Segment
The facility segment is divided into on-line and off-line por-
tions. Consider first the on-line portion. The Trailer Planner
is used to generate the order in which loads are to be removed
and installed. The Task Scheduler is used to allocate vehicles
to tasks based on their capabilities and proximity to pick and
drop locations. The Path Planner uses the A∗ algorithm to
find the shortest path between any two nodes in the network

Figure 1. Vehicle retrofits. The tug AGV (bottom left) has a single
downward-looking camera mounted to the chassis in the center of
the vehicle. The fork truck (right) has two stacking cameras (cam-
eras used for automated stacking) mounted to the roll bars and a
forward-looking camera that moves with the forks. The lift and
side-shift degrees of freedom of the mast are shown in the top
left. A wheel encoder is attached to a small wheel that rides on top
of the main drive wheel as shown. String encoders measure
motions of the mast. LADARs that are normally mounted on the
rear of the fork truck and the front of the tugger are not shown.
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of guidepaths. The Execution Monitor tracks task completion
and allocates guidepath intersections to vehicles on an exclu-
sive basis in order to avoid collisions. 

The off-line portion includes three elements. The Mosaic
Editor produces globally consistent mosaics of the factory floor.
A mosaic is a large-scale composite picture that is created from
many individual pictures, each representing a small section of
the floor. The process of creating mosaics (mosaicking) is
described later in this article. The Calibration Routines cali-
brate sensor poses (pose of sensors with respect to the vehicle
coordinate frame) and camera lens distortion parameters. The
Network Editor produces and modifies the guidepaths to
which the robots are nominally confined during motion.

The planning of vehicle motions must respect certain con-
straints and policies. Tuggers cannot drive backward because
they cannot push on their loads. Fork trucks should, however,
always drive backward on long hauls. Their LADARs are rear
mounted, preventing them from being occluded when the
forks carry a load. Fork trucks must address a load in a for-
ward manner, so opportunities to turn around must be built
into their guidepaths.

Vehicle Segment
The vehicle segment is divided into vision-based positioning
systems and perception systems.

There are two positioning systems. The Downward Vision
System uses floor mosaics as navigation maps for guiding the
vehicle through the factory. The
Trailer Positioning System uses
LADAR to locate the vehicle with
respect to the walls of a trailer.

There are also two perception
systems. The Fork Hole Location
System visually detects fork holes
in loads. The vehicle uses this sys-
tem to find the position of loads
relative to the forks and to position
the forks appropriately for picking
up the loads. The Stacking Vision
System enables racks to be stacked.
It computes the position of a rack
that is currently loaded on the forks
with respect to a rack that is on the
floor, enabling their legs to be
aligned for proper stacking.

Vision Systems
This section describes the four
vision systems mentioned above
that comprise the vehicle seg-
ment. It also discusses the mosaic
creation process.

Downward Vision System
The core capacity that enables AGVs
to move autonomously in a factory is

Figure 2. System architecture. The facility software segment
runs on a computer that controls the activities of all AGVs by
communicating with them over wireless Ethernet. Each vehicle
runs the algorithms in the vehicle segment. 
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Figure 3. Concrete floor feature correlation. The concrete floors typically found in factories
and warehouses exhibit enough texture that normalized cross correlation can be used to
track specific locations on the floor as a camera moves over them. The above image is a
typical image of a concrete floor. Five features (25 × 25 pixel windows) are selected ran-
domly on a diagonal line. Of these, the two with the weakest texture scores are selected to
show that even these are good features. For each, an autocorrelation surface is computed
by displacing a copy of the window with respect to itself in both directions and computing
the correlation. A peak in the correlation surface that is strong and unique over the search
range means the feature can be distinguished readily from all points nearby, even in the
presence of noise. It is not uncommon to find that a window around any point in such an
image is a good feature.
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their capacity to localize themselves relative to the building. Our
goal was to develop an infrastructure-free, free-ranging guidance
system. Our approach for achieving this goal was both highly
unconventional and highly successful [9]. We used image
mosaicking techniques to generate a large-scale visual record of
the appearance of the floor. This composite image served as a
navigation map in a visual tracker. 

Several fundamental observations motivated our use of this
approach. First, we observed that floor texture is rich in land-
marks. Most factory floors exhibit visual texture on the mil-
limeter scale that is both persistent and locally unique. This
texture may have esthetic or operational purposes, or it may
result from normal wear and tear, or both. Bare or transpar-
ently coated concrete is the most common floor surface. This
type of flooring is generally covered in cracks, scratches, dis-
colorations, and stains, all of which are persistently visible
(Figure 3).

Second, vision algorithms are sufficiently mature. Visual
tracking can be rendered highly reliable given a good estimate
of motion between successive images, simplified scene geome-
try, and lighting control. All of these factors are achievable for
a camera that is mounted beneath an AGV for the purpose of
imaging a flat floor.

Third, sufficient storage is affordable. Typical camera reso-
lutions image a 100 cm2 area at a resolution of 0.2 mm per
pixel. After reducing this resolution to 2.5 mm, 1 GB of
offline storage (such as flash disk) can store detailed uncom-
pressed imagery of a guidepath that is 6.25 km long and 1 m
wide. Such imagery can also be highly compressed for feature
tracking by storing only descriptions of the important features.

Fourth, processing requirements are feasible. Odometry
can estimate motion between successive images to an accura-
cy of one pixel. Hence, only a very minimal amount of
searching is needed in a visual tracker that maintains a visual
lock on the mosaic. 

Our concept for the guidance system is based on the idea
that a high-resolution image of floors can be used as a naviga-
tion map. A map of sufficiently high resolution can be con-
structed by mosaicking a few hundred thousand images into
one smooth, globally consistent image. The position and ori-
entation of the vehicle can then be found by tracking the
motion of the camera over this visual map.

Major technical challenges to this approach included con-
structing the imaging module, developing a localization algo-
r ithm, and developing a globally consistent mapping
algorithm. These challenges are discussed in this section.

Imaging Module
The darkness underneath a vehicle presents both an opportu-
nity to control lighting and the difficult problem of actually
doing so. The floor clearance of an indoor vehicle is typically
on the order of 10 cm. We were unable to find a way to diffuse
a point light source sufficiently well over the 90º field of view
required to illuminate a 20-cm diameter area, so we spread the
light source itself into an LED array as shown in Figure 4.

This device incorporates several important features. Modu-
lar components that support three sizes of lighting arrays are
constructed from different numbers of the same components.
A spatially modulated intensity pattern is used to create uni-
form subject illumination. Cross polarization filtering is used
to eliminate saturation caused by specular reflections of the
light source from shiny floors. This is a commonly used tech-
nique in industrial vision systems. Light exiting the LEDs

Figure 4. Lighting and imaging module (smallest size). A stan-
dard machine vision camera is combined in this module with
custom lighting and polarization filters. Control electronics
modulate the LED intensities and synchronize the lighting with
the camera shutter.

Figure 5. Image preprocessing. Two important processes that
are applied to images are shown. (a) A typical image of a con-
crete floor. (b) Texture scores for the image. Point discol-
orations and scratches have high scores but linear features do
not. These scores are used to decide which places in the
images should be matched to the mosaic. (c) A statistically nor-
malized version of the input image. Statistical normalization is
the first step in a normalized cross correlation computation.

(a)

(c)

(b)
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passes through a filter polarized at right angles to the filter in
front of the camera. Since specular reflections preserve polar-
ization, they will not be sensed, but light that is absorbed and
re-emitted (diffuse reflections) will be sensed. 

Precise synchronization of the illumination flash to the
camera shutter produces a minimal lighting duty cycle that
significantly reduces the energy drawn from the vehicle bat-
tery. A shutter open signal is generated to tell the position
estimation CPU when to save the pose tag for the image. The
pose tag is the pose of the vehicle at the instant the shutter was
opened. It must be saved until the image arrives later at the
main computer.

Localization
The localization algorithm solves the visual tracking [7] and
pose refinement problem [6] as it occurs in the limited con-
text of rigid motion of undistorted features in the image
plane. Imagery produced on all vehicles is rectified
to remove the effects of differences in camera
mounting (pose of camera on the vehicle) and dis-
tortion in the wide-angle lenses. Once images are
rectified, mosaics produced by one vehicle can be
tracked by the other vehicles. 

Following the method of [15], we examine the
eigenvalues of a matrix of image intensity gradi-
ents in the input image to identify regions of bidi-
rectional texture. Small rectangular windows
around these points of high texture are the features
that are used for image matching. Up to 16 well-
separated features are used per image (Figure 5).

Small templates are matched, rather than the
entire image, in order to limit sensitivity to rota-
tional error. The decorrelation caused by rotation-
al error is never large enough to require a search
in orientation. However, orientation error is com-
puted for each image based on the differential
position errors of the templates.

Feature matching is a two-step process based on normal-
ized cross correlation [3]. The first step in this process is statis-
tical normalization:

x ′ = x − μw

σw
.

This step enhances texture by replacing each pixel intensity
value x by its deviation from the mean intensity μw of a
neighborhood around it. It then normalizes the result by
dividing by the standard deviation σw of the intensity in the
same neighborhood. To save computation, the mosaic is
stored in this normalized form but real-time imagery must be
normalized as soon as it is read.

The second step of feature matching computes the corre-
lation for all possible displacements in a limited search
region. The most recent vehicle pose estimate is used to pre-
dict the position of each feature in the mosaic and the search
is centered there. A unique peak and a high correlation score
corresponds to an unambiguous match (Figure 3). The dif-

ference between the true and predicted position in the
mosaic of each correctly matched feature is then used in a
Kalman filter to refine the position estimate.

Mosaic Editor and Globally Consistent Mapping
Imagine taking a set of overlapping floor images produced
while a vehicle drives sufficiently slowly in a straight line. Des-
ignate the images with sequentially assigned indices
0, 1, 2 . . . n. Each successive pair of images ( i, i + 1) is regis-
tered by matching the features that appear in both. Conceptu-
ally, image i + 1 is moved relative to image i until the features
in the region of overlap line up correctly.

The situation described so far produces a linear mosaic,
but more generally, there is a need in our application to
produce globally consistent mosaics whose final configura-
tion is a network of guidepaths containing cycles that close
correctly (Figure 6). 

The need to develop a globally consistent mosaicking
solution arises from two concerns. First, the cumulative effect
of small displacement errors (dead reckoning drift) causes large
internal discrepancies at the point of closure of large cycles.
Such discrepancies cannot be spanned by the largest possible
search windows of the real-time visual tracker, so the robot
will get lost if the discrepancies are not eliminated. Second, it
is often desirable to distort the mosaic to force it to agree with
externally derived guidepath descriptions or with factory
schematics.

In principle, the imagery used to create mosaics can be
produced by any vehicle. For the sake of efficiency, however,
we typically used a special mapping vehicle employing a large,
1-m scale imaging module.

To solve the global consistency problem, we developed an
algorithm that automatically formulates loop constraints for
arbitrarily complex guidance networks. It sets up a system of
loop constraints that are optimized and explicitly enforced to
make sure that all loops close correctly [11], [12].
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Figure 6. Cyclic mosaicking. This relatively small 150-m long mosaic was
produced from 1,836 floor images. (a) Before consistency enforcement,
the two cycles have closure errors on the order of a meter. (b) After consis-
tency enforcement, closure errors are on the order of 2 mm. An extra
guidepath has also been added that closes a third cycle.

10 m 10 m

(a) (b)
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To avoid addressing the data association problem of loop
closure, we had the human driver of the mapping vehicle use
a custom graphical user interface to establish the necessary
correspondences. Other researchers have developed automatic
solutions for similar instances of this problem [5], [13], [14]. 

LADAR-Based Guidance from Trailer Walls
While the mosaic-based guidance system can be used in trail-
ers, it requires that a large fraction of the trailer floor be
mapped. A much simpler solution was available: LADAR.

The fork truck already used a laser rangefinder for obsta-
cle avoidance. We therefore used this device to track the
position of the fork truck inside the trailer by matching the
endpoints of LADAR pixels to a rectangular model of the
trailer geometry. If the trailer’s dimensions were known,
they were used to generate the model. If the dimensions
were unknown, the vehicle used an initial LADAR scan to
find the dimensions and generate the model.

Several occlusion issues arose in this application. If
the trailer is full during loading or unloading, very little
of its walls is visible. We solved this problem by imaging
the walls of the loading area outside the trailer. To tran-
sition between the two guidance systems, the vehicle
scanned both trailer and loading area before driving off
the mosaic.

Fork Hole Finding Vision
The need to locate pallets and racks relative to the fork
truck arose in two contexts: picking them up from the
floor, and de-stacking stacked loads. Major technical chal-
lenges included designing the sensing configuration,
developing the robot-load pose refinement algorithms,
and developing the visual servo controllers used to posi-
tion the forks inside the fork holes. The first two chal-
lenges are discussed in this section; the third is discussed
later in this article.

Sensing Configuration
In this problem, the location of the loads relative
to the forks is the quantity of interest. The opti-
mal place for the associated sensor would be on
the forks themselves, allowing the sensor to
move when the forks are actuated vertically or
sideways by the hydraulics. Unfortunately, this
would put the sensor in the most vulnerable
possible position on the fork truck, where
almost all forceful interactions with the environ-
ment take place. 

Our solution (shown in Figure 7) was to
place a camera behind the existing steel back
plate and bend its field of view through a 90◦

angle using a small flat mirror. The mirror was
located behind a rectangular hole in the back
plate and imaging took place through a Plexiglas
viewfinder. Both the mirror and the viewfinder
were inexpensive and easy to replace.

Pose Refinement
Our approach to finding the position of loads rel-
ative to the fork-mounted camera was based on
three assumptions. CAD models of the specialized
parts racks used in automobile manufacturing are
assumed to be available. Rack recognition is
assumed to be unnecessary because the robot will
know when to look for a rack. The estimate of

the robot’s position is assumed to be accurate to 20 cm in posi-
tion and 30º in heading. This reflects the accuracy with which a
human truck driver might have originally placed the load.

Our pose refinement algorithm used work performed at
JPL for computer vision algorithms for the International Space
Station [16]. This approach matches line segments in a CAD
model to those detected in imagery by using an edge detector
(Figure 8). Sufficient observations are obtained to enable a
simultaneous and continuous calibration of the camera model.

IEEE Robotics & Automation Magazine SEPTEMBER 200730

Figure 8. Finding fork holes. Image edges are matched to a
CAD model of the parts rack in order to compute its pose rela-
tive to the camera. The figure shows an example processed
image. A Canny-Lowe edge detector was used.

Figure 7. Forward camera configuration. The fork camera is mounted
behind the fork back plate. (a) The aperture in the plate is visible as the
small square cut into the red plate. (b) Schematic of top view of the
design configuration. (c) A view of an empty rack from this perspective.
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The monocular vision system was easily able to compute
the lateral position of a load. Finding the range of the load was
more difficult but less important because limit switches would
tell the truck when the forks were completely inserted. 

The yaw of the load relates to the difference in the ranges
of each side. The system required a good estimate of yaw to
determine where to position the truck. This challenge is dis-
cussed later in this article.

Stacking Vision
The purpose of the stacking vision system is to compute the
position of a rack on the forks with respect to another rack on
the floor, enabling the two racks to be stacked. The bottoms
of the four legs of the top rack must fit into slightly oversized
receptacles on top of the legs of the bottom rack. Clearance
was on the order of 2 cm. Rack sizes were as large as 2 m
deep and 4 m wide. 

Analysis suggested we would barely be able to achieve this
resolution with our cameras even after formulating the follow-
ing strategy for maximizing precision [8].

Direct visual feedback was used to avoid exposure to errors
in kinematic models relating indirect measurements to the
quantity of interest. We were also able to exploit the principle
of differential measurement to generate a degree of robustness
to parameter calibration errors throughout our models. The
error geometry was favorable because the cameras were
arranged at an angle of approximately 90◦ to each other. The
four basic observations of high-quality lateral position and
low-quality range overdetermined the three degrees of pose
freedom relating the two racks in the plane.

The same pose refinement system used for finding fork holes
was used here. The camera simultaneously imaged both the top
and bottom racks (Figure 9) enabling direct measurement of
displacement from a single image. This direct differential mea-
surement was insensitive to many errors in camera calibration.
Two cameras were used: one pointing left, the other right.
Only the two front pairs of rack legs were visible. However, we
were able to align the left and right front legs well enough to
cause the two rear legs to be automatically aligned as well.

The prototype system used retro reflective fiducials placed
on the legs. A subsequent design iteration intends to replace
the reflectors with LED line generators, creating a structured
light system. The better illumination that the LED-based
lighting system provides will allow the system to position the
racks without needing reflectors on the legs.

Trajectory Generation
It soon became clear during the execution of the program that
we would need a good solution for controlling the posture of our
vehicles to position them precisely enough for this application.
The original motivation for solving this problem was that of pal-
let pickup by the fork truck. Pallets can only be picked up when
addressed from a posture that places the fork tips at the fork holes
with the right heading and with zero curvature (Figure 10).

When a vision system determines the location of the fork
holes, the goal posture may not be known until limited space

requires an aggressive maneuver to address the load correctly.
The problem (as shown in Figure 10) is that of determining a
feasible motion to connect frame F2 to frame F1, given a mea-
surement of the relationship between frame P and frame F1.

The trajectory of the vehicle is represented as curve called
a polynomial spiral whose curvature is polynomial in distance: 

κ(s) = a + b s + c s 2 + d s 3.

The system computes trajectories that satisfy constraints on
initial and final vehicle positions, headings, and curvatures [9].
Acceptable performance could only be achieved by using
good initial guesses from which to iterate to a solution. Initial
guesses for a sampling of all trajectories are stored in a pre-
computed lookup table that is interpolated when accessed
later. In order to generate initial guesses for the construction
of the lookup table, it is computed in a manner that reuses the
last nearby result to seed the search for the next (Figure 11).

The implemented algorithm was able to generate any feasi-
ble motion for the vehicles in under a millisecond of compu-
tation. Accuracy in achieving terminal states was a millimeter
in position and a milliradian in heading.
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Figure 9. Stacking two parts racks. (a) A close-up of two legs
that must be aligned. (b) Fork truck about to align the load it
is carrying with the one on the floor. Four such alignments are
needed for the racks to stack correctly.

Figure 10. Pallet pickup. To successfully pick up a pallet, a
fork truck must achieve a fairly precise target posture charac-
terized by position, heading, and zero curvature.

Pallet

Fork Truck 

F1

P

F2

(a) (b)
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The basic capacity to drive a vehicle to a goal posture has
many uses. Once a solution to the basic problem was in place,
other applications for it became clear immediately. 

A second use for the algorithm was the generation of the
representation of the guidepath network. Typical AGV
guidepaths are expressed as combinations of lines and arcs
(and, more rarely, linear curvature polynomials known as
clothoids). In all these cases, the point where two such
primitives join is likely to have a discontinuous curvature
that is not feasible for a real vehicle to execute because the
steering mechanism cannot change position instantaneously. 

Cubic polynomial spirals are the simplest curves that can be
continuous in curvature where arbitrary primitives join. We
developed a user interface for drawing polynomial spiral guide-
paths over the guidance mosaics in order to exploit this continu-
ity property. An added advantage was that of achieving, by
construction, consistency between the guidepaths and the mosa-
ic. Otherwise, we would have had to calibrate the two to agree. 

Once such paths are specified, a third use of polynomial
spiral primitive motions is for corrective trajectories in path
following. We developed a path-following algorithm based on
cubic spiral trajectories with two desirable properties. First,
corrective trajectories reacquire the target path at the correct
heading and curvature. Second, the point of reacquisition is
generated by searching along the path for the best solution,
thereby adapting the effective gain to instantaneous vehicle
state and trajectory curvature.

This algorithm typically ran at a rate of 10 Hz and it
achieved lateral path following errors under 1 cm.

Visual Servo Controllers
Having discussed both vision systems that measure vehicle
pose relative to both the plant and objects of interest as well as
a mechanism to generate feasible motions to arbitrary terminal

postures, this section discusses how both elements are used
together to cause purposeful robot motion.

Since all forms of guidance are based on a form of
vision, our vehicles operated continuously in one visual
servo controller or another. Four visual servo controllers
can be distinguished based on whether the state estimation
was derived from floor vision, LADAR scanning of trailer
walls, fork hole vision, or stacking vision. Each visual servo
controller enables the vehicle to execute a desired motion
that is specified as a polynomial spiral. Several challenges
had to be addressed to make this approach practical, as
described below. Between visual updates (which arrived at a
frequency of a few Hz), the system drove based on higher
frequency odometry information. 

Generating Guidepaths
For gross motions from one place in the plant to another, a
predefined guidepath network was used to specify the roads of
legal travel for our vehicles. By contrast, local motions to
somewhat uncertain load positions could only be defined
once the load was in sight. The specification of these motions
was performed on-line once vision informed motion planning
of the target vehicle posture. 

While our vehicles had the capacity to deviate laterally
from their guidepaths to avoid obstacles, safety policy prohibits
this in many commercial settings. The next section assumes
such path deviation is not allowed.

Guidepath Following
We developed a guidepath following algorithm that continu-
ously tries to reacquire the desired path at some slightly for-
ward position on the path. Corrective trajectories are
generated on a continuous basis to drive the following error
to zero as quickly as possible.

Both the guidepath and the corrective trajectory are polyno-
mial spirals. One distinguishing feature of our approach is that
the corrective trajectory matches the guidepath exactly in posi-
tion, heading, and curvature at the point of path reacquisition.

At some point during execution, the guidepath may come
to an end where the vehicle must achieve the state at the end-
point as closely as possible. The mechanism of following a for-
ward point then breaks down since there is no forward point.
Our approach here was to simply follow the rest of the last
generated corrective trajectory open loop using odometry
alone. The magnitude of the cross track error before opening
the loop (< 1 cm) and the short length of the open loop sec-
tion made this strategy practical.

Goal Instability
For visually generated guidepaths, an additional issue is noise
in the vision system. The most difficult aspect of this problem
proved to be computing the yaw of a load to be picked up rel-
ative to the fork truck. The situation is aggravated by the fact
that if the yaw of the load changes, the correct pickup posture
moves sideways. We typically first estimated load pose when
the fork tips were about 3 m from the load.
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Figure 11. Computing trajectory lookup tables. A lookup
table to be used for initial guesses is generated by slowly scan-
ning the goal posture through state space in such a way that
each solution is always very close to the last.

Neighboring Positions Neighboring Positions
and Headings

Neighboring Positions,Headings
and Initial Curvatures 
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In rough terms, yaw estimates improve as the vehicle
approaches the load. Continuing to use vision to refine the goal
posture is advisable but this also means that the controller finds
itself trying to achieve a moving target. To make matters worse,
the path length available to move to correct for yaw and lateral
misalignment also decreases rapidly as the load is approached.
Achieving success amounts to a computational race between
observability and controllability—that of refining estimates of
where to go before running out of time to get there. 

Our system was able to meet its specification for load posi-
tion and orientation errors but was very brittle beyond them.
One effective approach for out-of-spec loads was to back off
and try again from a new start point based on the previous
best rack position. 

Trailer Operations
We originally intended to attempt both automated trailer
unloading and loading. However, we were only able to
demonstrate unloading in a proof-of-principle context. 
Figure 12 shows the fork truck in the process of unloading a
trailer. We addressed the context of using fork trucks to
unload parts racks of nominal geometry, arranged predictably
up to two wide in trailers (also of nominal geometry). 

One major difference between loading and unloading is that
during loading, the sensors used to pick up the load are likely to
be occluded while driving into the trailer. In unloading, the fork
truck has a clear field of view in which it can search for the fork
holes using the fork hole finding algorithm described above.

Clamping Forks
The width of our racks was 5 cm less than the internal width
of the trailer. Often, parts racks are designed such that the fork
holes are oversized with respect to the cross section of the
forks. The resulting uncertainty in the pose of the rack relative
to the fork truck was unacceptable given operating wall clear-
ances on the order of 2.5 cm on each side of the rack.

Given a choice between measuring where the rack is on
the forks or forcing the rack to be in a specified position, we
picked the latter approach. A special clamping fork assembly
was retrofitted onto our fork truck. It could either squeeze or
separate the forks while applying significant force. The parallel
rectangular channels of the fork holes become predictably
aligned with the vehicle frame within a few millimeters after
application of the clamping force.

The fork truck-rack assembly then becomes a single rigid
body of known geometry, and the problem of guiding both
out of the trailer reduces to one of producing a position esti-
mate of adequate accuracy.

Results, Outlook, and Conclusions
Our efforts to produce an infrastructure-free AGV have pur-
sued multiple directions at once. The various elements have
reached differing levels of maturity and performance. Our
floor mosaic guidance system has achieved sufficient maturity
to be proven in an auto assembly plant. In the final qualifica-
tion test, we demonstrated reliable operation on a guidepath

network exceeding 1 km in total length, over a total time of
just less than 100 hours after traveling a total distance of 110
miles. During this test, 900,000 floor images were processed
and the system was unable to establish a visual lock on only
three of them. During such events, for a mere one-tenth of a
second, the system navigated solely and reliably based on
odometry. Then it reacquired visual lock in the next iteration
of the tracker. Repeatability of 1 mm and speeds up to 10
mph were routinely achieved in our own 50,000 ft 2 facility.

In our facility, the system has operated on four different
vehicles over a five-year period. These vehicles successfully
shared a common mosaic, which at times was several years
old. The floor was often far dirtier than a manufacturing facil-
ity would be allowed to become.

The globally consistent mapping work has been adapted in
straightforward manner from camera imagery to LADAR scans.
It has been applied on scales as large as hockey arenas and
grocery stores to produce LADAR-based guidance maps [10].

Fork hole and stacking vision systems were demonstrated
on a regular basis both in our facility and at Ford Motor
Company. These elements were not placed in a production
setting for testing based only on decisions of how to best pri-
oritize our efforts. Trailer unloading was demonstrated several
times at our test facility.

The trajectory generation algorithm has been continuously
improved since its original development to adapt it to arbi-
trary vehicles, complex dynamic models including wheel slip,
and even arbitrary rough terrain. The algorithm is currently in
use at Carnegie Mellon University on multiple programs as
the basis for many efforts in path following, obstacle avoid-
ance, and search space generation for discrete motion planning
in extremely cluttered environments. It is the basis of many
elements of our off-road robotics programs including
DARPA-funded UGVs and NASA-funded planetary rovers.
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Figure 12. End unloading. The robot is removing the rack of
auto parts from the trailer through the loading door. Note the
lights of the visual guidance system under the robot.
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Our goal was to explore the potential of vision-enabled,
automated guided vehicles. While it is no surprise to the
robotics research community that vision enables environmen-
tal and situational awareness for robots, it probably is signifi-
cant to know that mobile robot vision can be deployed in a
factory for several weeks without experiencing any failures.
The AGV industry has been slowly adopting vision of its own
accord for some time. For example, a LADAR-based pallet
finding system appeared on the market during our execution
of the program. Hopefully, our efforts provide an example of
what a fully vision-guided AGV might be able to do in a
more highly automated facility in the future.
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