Chapter 4
Dynamics

Part 2

4.3 Constrained Kinematics and
Dynamics
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Classes of ODE Models

* Unconstrained Velocity Driven
— Assume you know all the velocities.
— Constraints are automatically satisfied ...
— ... or satisfy them as a separate process

e Constrained Velocity Driven
— Assume you know unconstrained velocities.
— Enforce constraints to determine disallowed directions and
then integrate net velocities.
e Constrained Force Driven
— Assume you know applied forces

— Enforce constraints to determine constraint and then net
forces.
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What's the Big Deal with Dynamics?

e “lts all just F = ma integrated twice” Right?
 Well, whatisf,, f,, r,and r,?

e What about T=1a ? What are all the torques
caused by the wheels?
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Dynamics of WMR

e Two constraints:
— Rolling without sliding
— Terrain contact

e Two Formulations

— Second Kind: Lagrangian formulation of dynamics
computes the constraint forces automatically.

 Few (generalized) coordinates. Complex nonlinear equations.

— First Kind: Augmented formulation leaves them explicit.
e All coordinates. Simple linear equations.

e Lets you determine if the terrain can provide the forces.
 We will do this kind.
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4.3 Constrained WMR Models

The “constraints” were not explicit in the last
section.

— Actually, they were, wheel equations are constraints
too.

Constrained models occur in both control and
estimation contexts.

Non slip constraints are nonholonomic, of
abstract form: c(x,x) = 0

Terrain contact constraints are holonomic, of
abstract form: c(x) =0
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Differentiating Holonomic Constraints

If we differentiate a holonomic constraint:
c(x) =0
We get a form that resembles Pfaffian form:
¢, x =0
Where the constraint gradient ¢, functions just
like a disallowed direction of motion.

This is convenient but this differentiated
constraint can still be integrated so the constraint
is still holonomic.
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Expressing Wheel Constraints

e |tis trivial to write an expression that says a wheel
cannot move sideways.

* The implementation issue is how does a set of
such statements constrain the motion of the body
frame of the vehicle.

* \We solve this problem by substituting the
kinematics into the constraint:

— Replace wheel velocity with body velocity.

Carnegie Mellon
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4.3.1.1 Velocity Constraints

We can describe the condition of rolling without
slipping using a disallowed direction w, :

N AW

We* Ve —

0

Choose any coordinates to get a matrix form:

(4.70)

Substitute the articulated wheel equation for ECW

o

w v
—C=C

. T Vv - W T Sy -V
= w.H(r)x, +w H(r)x +w

TS
v. =0
-

C

This is the general case in 3D for an articulated

wheel.
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4.3.1.1 Velocity Constraints (c fixed)

In the special case where the contact point is fixed, the
velocity reduces to the (nonoffset) wheel equation:

. w W v X w
Wheel Equation V. =V, — [ I"f] 0 (4.40)
v v r. o
Substituting this into the wheel constraint gives:
T w ) X w —_

Define a “Pfaffian radius” p” = w'[;2]”" then:

—C

T w T w

WYV —p o = (0 (4.75)
_— =V —C o V

Wheel Constraint for c Fixed

It says translational and rotational components must
cancel in the disallowed direction.
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4.3.1.2 Differentiated Velocity Constraints

o Differentiate Eqn 4.70 wrt time: w.v. = 0 (a70)

T w I w
wca,+w v =0

—C =C —C C

* Substitute the articulated wheel equation for v%
and a? .
wl(a, = H(r)) x. + Qo) )p. + H(r)) X.+ Q(0))p’ +a.)
A (H)E + H(E)i +v)) = 0

e This is the general case in 3D for an articulated
wheel.
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4.3.1.1 Differentiated Velocity Constraints
(c fixed)
* In the special case where the contact point is fixed, the
(nonoffset) wheel equations are substituted to generate:

5 XX 7 *
r w I w | T W Vv | - I w 1 w A
W ’ I_C —V W_(‘ [ ] - W_C -V I 0 ( )

—_C —V —_—C =V

Diff Wheel Constraint for c Fixed

e We defined a “Pfaffian radius rate” éf = w_[r)]

C

e This is valid in 3D for an articulated wheel with a fixed
contact point.
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4.3.1.3 Example: Terrain Contact

(Using a Disallowed Direction by Differentiation)
 Assume no suspensions and fixed contact points.

e Then, terrain normal is disallowed direction, and
Equation 4.75 becomes ... ~ 2 —

nv, +p0) =0 z
* Coordinates of contact points L. Gm‘

Xp=x+LcO-rsb, x, = x—LcO-rs6, 4 9, 6

4
N

zp=z—Ls®—-rcOb, z, = z+LsO—-rco,

* |n matrix form, constraints are:

_ S =z _ |0 E(x) is
c(x) = {Q(xf) - _f P Terrain Elevation

. - 5 Carnegie Mellon
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4.3.1.3 Example: Terrain Contact

* Constraint Jacobian:

0C(xy) Ox; |5 0C(x,) O \f tLeB

. = (?_\f ox Ox, 00 _ |16, =1 (—16/(—Ls6) + LcB) z
= lacyox | |ocx) ox. | e (8, (s6)~ L) L»" G m’
C

— = |=
ox, Ox 0x, 00

S Terrain Gradient 5 e 6
e Suppose L=1; 0=0 ; slopes as shown:

_ 101 -11
Qx -
i -0.2 -1 -1

T, T.71 T
X = [1-¢(c,c,) ¢If(%u) = [0.9268 —0.0463 —0.1390]

e This can be verified by a more conventional
technique.
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4.3.2.1.1 Pfaffian Constraint in Body Frame

Position vector to wheel is:
- [x;‘ »
Unit vectors in body frame: =, = [cy, sy] ¥ =
Pfaffian radius p’ = [3/[r]7] is:

Or, as a matrix equation:

17

+
r;

sy v 0]
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T
iy
]

0 0 y,

r w r w
Wc]—)v Bc (Bv (4_75?

= - [0 0 (cyx}#,svyy;")} = [0 0 —(?}’-52,.)}
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4.3.2.1.1 Pfaffian Constraint in Body Frame

. : . T w T w _
So equation 4.75 is: WY, — R0,

—C =V

r w I w
wvyv —p.o. =10
—_—C 7

sy, en] [ v - [0 0 (- x)} ! =0

 Writing it in terms of a state
vector:

Pfaffian Form

I:_SV;: i (f; ; ';Cz):| |:vx vy O):IT =0 W(X)*;(

 This is the equation written in
the body frame.

Carnegie Mellon
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4.3.2.1.2 Pfaffian Constraint in Inertial Frame

e Now the unit vectors are: Wiy — 959:} (775?

—C =V

T

~

56,- = [cqry,- S\|!”y;|T Ve = [—S\I’”Yf C‘I’V;I

e Writing it in terms of a state
vector:

A I —
[—S\IW;- cyy; (1 x:‘ﬂ [Vx Yy 0)] (;87)0

e This is the equation written in
the inertial frame.

Carnegie Mellon
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4.3.2.2 Velocity Driven Bicycle

Simplest, sufficiently complex case to illustrate
most issues.

L

—

3 dof in total (x,y,0)

2 nonholonomic constraints (2 constraints)

1 dof left in the tangent plane

20
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4.3.2.2 Velocity Driven Bicycle

e The first order model is:
X =f(xu)=u

C(x,X) =w(x)x =0
CAx, %) = wlx)x =0

e Position vectors:
=L ()]T r, = [-1 0]T

* By Equation 4.87: ‘y )
T
C(x,X) =wi(x)x = [—S\p c\y —L:I [Vx v, OD] =0
9_/(3_6: X) = _1(3_5) X = [—S\py cyy Lcy} |:vJr v, 03:|T =0

Carnegie Mellon
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4.3.2.2 Velocity Driven Bicycle

00
01

02

03
04

05

06

07

08
09
10
11
12

Algorithm 4.1: First-Order Model of a Single Body Bicycle. This model can be coded
quickly and once debugged will drive the vehicle in a circle. Try steering it by setting
v = cos(2nt/t

22 Mobile Robotics - Prof Alonzo Kelly, CMU RI

algorithm JelocityDrivenBicycle ()
L<1 ; v« 0.1; wy,<—atan[(tan(y))/2]

x<—[00\pg] L ’“_[ 0—vsm(—\;0):|

At<001; t,,.
for(r< 0;r<t

«— 2n/Xx(3)
t<t+At)

max?

Yx(3); CC .« {_SW v _L} ;
. ;. Lswy ey Ley
V<« [X(]) x(g):l L v v/

f.—f.(t) ;/lorjust1; u<«fv;

)< (CCTy'(Cu) | Drift Trim Step

X< (u— CH)
X < x +t XAt
endfor
return

max)'
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Demos : Unibody Bike

arnehle Mellon

Mobile Robotics - Prof Alonzo Kelly, CMU Rl 'IHE ROBOTICS I



Outline

e 4.3 Constrained Kinematics and Dynamics
— 4.3.1 Constraints of Disallowed Direction
— 4.3.2 Constraints of Rolling without Slipping
— 4.3.3 Lagrangian Dynamics
— 4.3.4 Terrain Contact
— 4.3.5 Trajectory Estimation and Prediction

— Summary

Carnegie Mellon

24 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBO“CS INSTITUTE



4.3.3 Lagrangian Dynamics

e Recall, the equations are of the form

C 0]

M !

| S 1=

F@ Xt

Ed

e Using elimination, the solution is:

F,=-C

From definition of Fd

k—((M C ) ((M Y~ F )

x _ M (Emr_ ( ?_\,)

* Do this every time step and integrate acceleration

twice.
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4.3.31 Differentiated Pfaffian Constraints

(For a Wheel)

T w T w T, w. XXy T w T y
1/—1/‘6‘6_1"} - Ecg‘v T li}c[(i)v] }:c T v_vc"—)" — Bc(_ov = 0
 Two key components of equauorn (4.83)
4.83 are:
LVZ =y, = [—Slpy,. cxpyJT E,-T = |:0 0 _(;}'.)}fﬂ

e After much manipulation:

— a7
) I . .
—syy; | |a, (o +v)ewyy| v, <
3 . Yz
VY | |ay| T [(@ty)syy,| |, L ________ I
) "_ . ~ X
(7 x)] Lo i) | R

 This is, by necessity, written in an
inertial frame.

Carnegie Mellon
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4.3.3.2 (Unibody) Force Driven Bicycle

e Assume wheels are massless.

e Equations of moti\ﬂgr}afnor body:

Mi = F+F
_m 0 0— _ax_ _F): ext _Fx_ con
0 moO||\a,| = |F| *|F,
00 If{a] [7] | T
e Differentiated constraints for wheels:
ol T B
|:—S\|I c\y —L:| | wc\ WS\ 0 v-
—syy cyy Ley W (o +7)eyy (o +y)syy vLsy|| * ly
_OL_ _(D_ X
 Relevant Jacobians:

c - e\ ®S\Y 0 c = |:—Sl|1 c\y —L}
R (o + Y)C‘IW (o + 7)'5"|’Y 3"LSV - —s\yy cyy Ley
e Roboti  Alonzo Kellv. CMU R Carnegie Mellon
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4.3.3.3 Force Driven Bicycle

00
01

02

03
04
05

06

07

08

09

10
11

12
13
14
15

algorithm LagrangeBicycle ()
meIl<« L« 1; vy« 01; y,<—atan[(tan(y))/2]

A‘E[OOWJ;V‘(_I:X*_[ 0 —v, sm(lg))}

At < 0.0 ; M« diag( [m m ;:|),- 1, 21n/%(3)
M« inverse(M))
for(r<« 0;t<t, 1< 1+Al)

max?

vex(3); Ce (}(—[‘W’ ey "}; ® « %(3)
—Syy eyy Ley
C < |: e\ S\ 0 :|
| (o +7)eyy (O +7)syy yLsy,
~ T a - A~
ve [ i2) 0 ve /b
foefu(t) ; llorjust0; F " « fv: F,«— C%
?u—((“M ch? (( M'F™ - F))
oM =—ch)
i i+ |i< 1= cTcccty 7 x| Drift Trim Step
X < x+xAl
endfor
return

Algorithm 4.2: Lagrangian Model of a Single Body Bicycle. This model can be coded
quickly and once debugged will drive the vehicle in a circle.

Carnegie Mellon
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Simplified Wheel Constraints

* When the system state vector uses coordinates of
the wheel contact point », = 0and v, =0, so:

Vx
T _ B
we(X)x = I:—S'q,' c\ 0] v| =0
 ...and the derivative is:

— — [ . _T_ — — —_

T T
. —sy| |9y ; OV v, ocy| |Vx
w (X)X = | ey a,l — W (xX)x = (O +y)syy;| vy~ |[osy| |[v,
0 o _ 7'1'(’—";' ,jj,r_) Kol 0 Kol

Carnegie Mellon
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(Multibody) Bicycle

Now have three bodies with mass.

y bod

X

2L

—
9 dof in total: 3 X (x,y,q)

1 rigidity constraint (3 constraints)
1 rotary (steer) joint (2 constraints)

_—

2 nonholonomic constraints (2 constraints)

2 dof left in tangent plane (steer, V)

30 Mobile Robotics - Prof Alonzo Kelly, CMU RI
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Demos : 3 Body Bike
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Other Issues

Allowing wheel slip according to a specific model.

Computing explicit constraint forces.

Inconsistent constraints.

Redundant constraints.

32
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WMR Constraints and DOFs

e Assuming:
— the robot will stay in contact with
the ground.
— 1 dof of suspension to fix 4 wheels
on ground. C
e Terrain following: 3 dof v
— Attitude (pitch, roll) and altitude no My
determined from terrain. —
Constraints include no
* |Inputs: 2 dof [Wheel slip and terrainJ
followi
— Usually, there are only 2 very .

distinct dof actuated.
* Wheel No Slip Constraints: 1 dof.

Carnegie Mellon
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Effect of Terrain Following

 Where the robot will go
depends on the terrain.

 For motion along the body
X axis and rotation around
body z:

Displacement Error vs. Terrain Roughness

cos(y/(s))cos(@(x(s), ¥ (5)))ds

—30 KD O¥YN XERROR

.S
J0
.S

o
[an

F
-
— — 30'WITH OYM XERROR | .
-

y(s)=yo + [ sinfu(s)cos(elx(s). y ()

=)
o
!

s cos(g(x(s),y(s)) s)s
0 cos(e(x(s),y(S)))k( g

e —1
e ——— =

<
—~
(¥
N—
Il
<
o
+
Displacement Error (i)
{m ] [l
4 ]
b
|
]
L
1
i
1
!
\ .I
L]
§
L1
\ \
L]

\

I
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e Start with known (x,y,z) from DE:

Basic Terrain Following

Z; = terrain(x;,y;) Vi wheels
Oert = (21-23)/L

eright = (Z-124)/L

0 = (Orignt+ Oert)/ 2

(I)front = (2, -2))/W

(I)back = (Z3 =24/ W

(I) - ((I)front+ d)back)/2

e Simple but not so accurate.
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4.3.4.1 Least Residual Terrain Following

e Assumes no suspension.

 Minimize total residual of wheel heights and
terrain elevations.

Terrain

minimize:{ Ax) = é_r;_» /

where:  r(x) = z—h(x,x)

—
e

_ W
5 = (RYe)—p
Wheel position

* Unconstrained optimization: Solve using nonlinear
least squares.

Carnegie Mellon
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Computing Wheel Contact Points
e These are not necessarily on the bottoms of the
wheels.

e Contact points occur at local minima or maxima of
(perpendicular) distance from wheel surface.

Carnegie Mellon
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Least Energy Terrain Following
e Letx =[x1 X2 X3 X4]" ...
— represent spring deflections
e Spring forces are.
f; = [R, (6, <I>)f<X]
 Problem formulation

minimize: . f(x) = =

Sub]‘(?(?l‘ [o: (Mf] + WfZ + hj}; + uf;; = mg) Springs carry weight
C_J(J_C) = g—h()_C J_C) — Q 4 wheel contact constraints

 Require suspension to be in minimum energy
configuration.

Carnegie Mellon
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Some Terrain Following Robots

The MER Rovers CMU Rover prototype EPFL rover SHRIMP uses
Spirit and called Scarab used an four-bar mechanisms to
Opportunity used a averaging suspension achieve extended
rocker-bogie design  that kept the bogy at climbing capabilities.
that was intended to  the average pitch of

keep the forces on all the left and right

wheels roughly halves.

constant.

_ _ Carnegie Mellon
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4.3.5 Trajectory Estimation and Prediction

 Up to now, we have concentrated on how you
form the differential equation.

 Nextissue is how do you integrate it.

e There are two purposes:

— For state estimation, especially odometry (inputs are
measurements)

— For state prediction in predictive control (inputs are
controls)

 Convenience of using body coordinates is now
over. Must convert velocities to earth fixed frame

to integrate.

Carnegie Mellon
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4.3.5.1 Heading, Yaw and Curvature

Heading z is the angle of the path tangent.

Yaw y is the direction of the forward v
looking axis

These may be related or unrelated on a
given vehicle.

Curvature is a property of the path. « = %

Radius of curvature is its reciprocaI.R = /¢

By the chain rule: ; _ dGds
dsdt

— KV

Carnegie Mellon
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Heading and Yaw Rates
 The rotation rate of the path tangent is given by
the chain rule:

_ dids _
dsdt

P

C

KV Eqn 4.104

* Only when C =y can we write

v =oo=kV

 Knowing any two of these determines the third
one.

Carnegie Mellon
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Rate Coordinates

 Hence there are two ways to specify the
Instantaneous motion...

e K,V (Curvature-Speed)
— (+) relates more directly to steering
— (+) can be derived readily from path
— (-) point turns are singular

e o,V (Ang Velocity-Speed)
— (-) curvature depends on two inputs
— (-) need path and speed to derive
— (+) can represent point turns
— (+) general case.

Carnegie Mellon
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4.3.5.2 Fully Actuated WMR in Plane

e Velocity is often intrinsically known in the body
frame:

_x(l)_ _cosqj(l) —sin\y (1) 0 _Vx(f)_ , y
%y(t) = |siny(1) cosy(r) Of|v,(1) 1_)(' &‘A
World

(7)) 0 0 |y(n)

 The matrix converts coordinates of velocity from
body to terrain tangent plane.

 The is the generic 2D velocity kinematics of any
vehicle.

Carnegie Mellon

46 Mobile Robotics - Prof Alonzo Kelly, CMU RI THE ROBO“CS INS“TUTE



4.3.5.2 Fully Actuated WMR in Plane

 If heading and yaw are the same (C = y ), lateral
velocity vanishes by definition:

] [eoscn —sincany o] [
|| T | sin€(1) cosC(1) 0| 0
L 1<)

By assumption, the velocity vector is expressed in
a frame aligned with the velocity vector.

Carnegie Mellon
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4.3.5.3 UnderActuated WMR in Plane

e |f the vehicle frame is at center of rear wheels of a
car then C = y. Substitute Eqn 1.104 into last

result: ¢
; x(1) cosy(t) 0|1 v(1) } LL @
- v(t)| = |siny(t) 0 (V(F) World
v Lo gt

* Its integral is simply: )
x(1) x(0) ¢ | coswp (1)
()| = | v(0) +I sin (1) | V(1)
v Lo L k()

48
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4.3.5.4 Fully Actuated WMR in 3D

“u_(t) u.(t-7) K
Steering ‘
> Delay —— Dynamics ‘ > K
|
K l V[
IB Coordinate Wa)
— X — Transform ‘ > jdt ‘ 4
Vv
"y "p=[x y z[ l"”
o —— Ja e [z 0 4]
T - T
v ‘u(t—7
uV (t) V( ) Throttle ‘ \V}
> Delay — Dynamics ‘ >

Since any vehicle has a curvature and speed, this is quite general

Carnegie Mellon
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4.3.5.4.1 Coordinate Transforms

(in last figure)

e Linear velocity:

Vv

"v' = Rotz(y)Roty(0)Rotx(p)' v,

cyceO (cysOso—swed) (cysOcd +sysd)| |Va
sWweh (sysOso +cyed) (sysOcd —cyso)| |V,
| —s0 cOsd cOco INLAR

* Angular velocity:

50

A [ 5010 ¢¢r6]’ ol
10 —S
ol = |7 0 7 o,
Ny st e
w7 e ed | M

Carnegie Mellon
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4.3.5.4.1 Coordinate Transforms

e |f the vehicle moves instantaneously in the terrain
tangent plane, then:

c(¥) = |o

— X

Typo in book here

w

‘1{1.‘

— |sycO (sysOsd+cycod)

cyel (cysOso—sycd)|”

—s0 cOso

®
0

W

o v w
NI
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Outline

e 4.3 Constrained Kinematics and Dynamics
— 4.3.1 Constraints of Disallowed Direction
— 4.3.2 Constraints of Rolling without Slipping
— 4.3.3 Lagrangian Dynamics
— 4.3.4 Terrain Contact
— 4.3.5 Trajectory Estimation and Prediction

— Summary
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Summary

Disallowed Directions of Motion:

— Terrain following is a holonomic constraint but it can be written
in a form that uses a disallowed direction.

— Wheel slip constraints are nonholonomic and use a disallowed
direction

— The difference is that the first direction is fixed in the world
frame and the second in the vehicle frame.

WMR Kinematics and WMR (Lagrangian) Dynamics can
both be formulated as constrained differential equations.

Terrain contract can also be formulated as an energy
minimization problem.

Trajectory estimation and prediction require a conversion
of body velocities to world coordinates and integration wrt
time.
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