
Chapter 4 
Dynamics 

Part 2 
4.3 Constrained Kinematics and 
Dynamics 
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Classes of ODE Models 
• Unconstrained Velocity Driven 

– Assume you know all the velocities. 
– Constraints are automatically satisfied … 
– … or satisfy them as a separate process 

• Constrained Velocity Driven 
– Assume you know unconstrained velocities. 
– Enforce constraints to determine disallowed directions and 

then integrate net velocities. 
• Constrained Force Driven 

– Assume you know applied forces 
– Enforce constraints to determine constraint and then net 

forces. 
 Mobile Robotics - Prof Alonzo Kelly, CMU RI 3 



What’s the Big Deal with Dynamics? 
• “Its all just F = ma integrated twice” Right? 
• Well, what is f1, f2, r1,and r2? 

 
 
 
 
 

• What about T = I α  ? What are all the torques 
caused by the wheels? 
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Dynamics of WMR 
• Two constraints: 

– Rolling without sliding 
– Terrain contact 

• Two Formulations 
– Second Kind: Lagrangian formulation of dynamics 

computes the constraint forces automatically. 
• Few (generalized) coordinates. Complex nonlinear equations. 

– First Kind: Augmented formulation leaves them explicit. 
• All coordinates. Simple linear equations. 
• Lets you determine if the terrain can provide the forces. 
• We will do this kind. 
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4.3 Constrained WMR Models 
• The “constraints” were not explicit in the last 

section. 
– Actually, they were, wheel equations are constraints 

too. 

• Constrained models occur in both control and 
estimation contexts. 

• Non slip constraints are nonholonomic, of 
abstract form: 

• Terrain contact constraints are holonomic, of 
abstract form: 
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Differentiating Holonomic Constraints 
• If we differentiate a holonomic constraint: 

 
• We get a form that resembles Pfaffian form: 

 
• Where the constraint gradient 𝑐𝑐𝑥𝑥 functions just 

like a disallowed direction of motion. 
• This is convenient but this differentiated 

constraint can still be integrated so the constraint 
is still holonomic. 
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Expressing Wheel Constraints 
• It is trivial to write an expression that says a wheel 

cannot move sideways. 
• The implementation issue is how does a set of 

such statements constrain the motion of the body 
frame of the vehicle. 

• We solve this problem by substituting the 
kinematics into the constraint: 
– Replace wheel velocity with body velocity. 
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4.3.1.1 Velocity Constraints 
• We can describe the condition of rolling without 

slipping using a disallowed direction 𝑤𝑤𝑐𝑐 : 
 

• Choose any coordinates to get a matrix form: 
 

• Substitute the articulated wheel equation for 𝑣𝑣𝑐𝑐𝑤𝑤 
 
 

• This is the general case in 3D for an articulated 
wheel. 
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(4.70) 



4.3.1.1 Velocity Constraints (c fixed) 
• In the special case where the contact point is fixed, the 

velocity reduces to the (nonoffset) wheel equation: 
 

• Substituting this into the wheel constraint gives: 
 

• Define a “Pfaffian radius”                            then: 
 
 

• It says translational and rotational components must 
cancel in the disallowed direction. 
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(4.40) Wheel Equation 

Wheel Constraint for c Fixed 

(4.75) 



4.3.1.2 Differentiated Velocity Constraints 
• Differentiate Eqn 4.70 wrt time: 
 
• Substitute the articulated wheel equation for 𝑣𝑣𝑐𝑐𝑤𝑤 

and 𝑎⃑𝑎𝑐𝑐𝑤𝑤. 
 

 
 

• This is the general case in 3D for an articulated 
wheel. 
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4.3.1.1 Differentiated Velocity Constraints 
(c fixed) 

• In the special case where the contact point is fixed, the 
(nonoffset) wheel equations are substituted to generate: 

 
 
 

• We defined a “Pfaffian radius rate”                          : 
 
 

• This is valid in 3D for an articulated wheel with a fixed 
contact point. 
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Diff Wheel Constraint for c Fixed 

(4.83) 



4.3.1.3 Example: Terrain Contact 
(Using a Disallowed Direction by Differentiation) 

• Assume no suspensions and fixed contact points. 
• Then, terrain normal is disallowed direction, and 

Equation 4.75 becomes … 
 

• Coordinates of contact points 
 
 

• In matrix form, constraints are: 
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4.3.1.3 Example: Terrain Contact 
• Constraint Jacobian: 

 
 
 

• Suppose L=1; θ=0 ; slopes as shown: 
 
 
 
 

• This can be verified by a more conventional 
technique. 
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4.3.2.1.1 Pfaffian Constraint in Body Frame 
• Position vector to wheel is: 

 
• Unit vectors in body frame: 
• Pfaffian radius                            is:  
• Or, as a matrix equation: 
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(4.75) 

=   -  



4.3.2.1.1 Pfaffian Constraint in Body Frame 
• So equation 4.75 is: 

 
 

 
• Writing it in terms of a state 

vector: 
 
 

• This is the equation written in 
the body frame. 
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(4.75) 

Pfaffian Form 

w(x)*x 



4.3.2.1.2 Pfaffian Constraint in Inertial Frame 
• Now the unit vectors are: 
 
 
• Writing it in terms of a state 

vector: 
 
 

• This is the equation written in 
the inertial frame. 
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(4.75) 
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4.3.2.2 Velocity Driven Bicycle 
• Simplest, sufficiently complex case to illustrate 

most issues. 
 
 
 

• 3 dof in total (x,y,θ) 
• 2 nonholonomic constraints (2 constraints) 
• 1 dof left in the tangent plane 
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4.3.2.2 Velocity Driven Bicycle 
• The first order model is: 

 
 
 

• Position vectors: 
 

• By Equation 4.87: 
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4.3.2.2 Velocity Driven Bicycle 
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Demos : Unibody Bike 
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4.3.3 Lagrangian Dynamics 
• Recall, the equations are of the form 

 
 
• Using elimination, the solution is: 

 
 
 

• Do this every time step and integrate acceleration 
twice. 
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From definition of Fd 



4.3.31 Differentiated Pfaffian Constraints 
(For a Wheel) 

• Two key components of equation 
4.83 are: 

 
• After much manipulation: 

 
 
 

• This is, by necessity, written in an 
inertial frame. 
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• Assume wheels are massless. 
• Equations of motion for body: 

 
 
• Differentiated constraints for wheels: 

 
 

• Relevant Jacobians: 
 

4.3.3.2 (Unibody) Force Driven Bicycle 
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4.3.3.3 Force Driven Bicycle 
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Simplified Wheel Constraints 
• When the system state vector uses coordinates of 

the wheel contact point            and             , so: 
 
 

• … and the derivative is: 
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(Multibody) Bicycle 
• Now have three bodies with mass. 

 
 
 

• 9 dof in total: 3 X (x,y,q) 
• 1 rigidity constraint (3 constraints) 
• 1 rotary (steer) joint (2 constraints) 
• 2 nonholonomic constraints (2 constraints) 
• 2 dof left in tangent plane (steer, V) 
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Demos : 3 Body Bike 
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Other Issues 
• Allowing wheel slip according to a specific model. 
• Computing explicit constraint forces. 
• Inconsistent constraints. 
• Redundant constraints. 
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WMR Constraints and DOFs 
• Assuming: 

– the robot will stay in contact with 
the ground. 

– 1 dof of suspension to fix 4 wheels 
on ground. 

• Terrain following: 3 dof 
– Attitude (pitch, roll) and altitude 

determined from terrain. 
• Inputs: 2 dof 

– Usually, there are only 2 very 
distinct dof actuated. 

• Wheel No Slip Constraints: 1 dof. 
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Effect of Terrain Following 
• Where the robot will go 

depends on the terrain. 
• For motion along the body 

x axis and rotation around 
body z: 
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Basic Terrain Following 
• Start with known (x,y,z) from DE: 

 
 
 
 
 
 

• Simple but not so accurate. 
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4.3.4.1 Least Residual Terrain Following 
• Assumes no suspension.  
• Minimize total residual of wheel heights and 

terrain elevations. 
 
 
 
 

• Unconstrained optimization: Solve using nonlinear 
least squares. 
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Computing Wheel Contact Points 
• These are not necessarily on the bottoms of the 

wheels. 
• Contact points occur at local minima or maxima of 

(perpendicular) distance from wheel surface. 
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• Let 𝑥𝑥 = 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑇𝑇 … 
– represent spring deflections 

• Spring forces are … 
 

• Problem formulation 
 
 
 
 

• Require suspension to be in minimum energy 
configuration. 

Least Energy Terrain Following 
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Some Terrain Following Robots 

Mobile Robotics - Prof Alonzo Kelly, CMU RI 40 

CMU Rover prototype 
called Scarab used an 
averaging suspension 
that kept the bogy at 
the average pitch of 
the left and right 
halves. 
 

EPFL rover SHRIMP uses 
four-bar mechanisms to 
achieve extended 
climbing capabilities. 
 

The MER Rovers 
Spirit and 
Opportunity used a 
rocker-bogie design 
that was intended to 
keep the forces on all 
wheels roughly 
constant. 
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4.3.5 Trajectory Estimation and Prediction 
• Up to now, we have concentrated on how you 

form the differential equation. 
• Next issue is how do you integrate it. 
• There are two purposes: 

– For state estimation, especially odometry (inputs are 
measurements) 

– For state prediction in predictive control (inputs are 
controls) 

• Convenience of using body coordinates is now 
over. Must convert velocities to earth fixed frame 
to integrate. 
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4.3.5.1 Heading, Yaw and Curvature 
• Heading z is the angle of the path tangent. 
• Yaw y is the direction of the forward 

looking axis 
• These may be related or unrelated on a 

given vehicle. 
• Curvature is a property of the path. 
• Radius of curvature is its reciprocal. 
• By the chain rule:  
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Heading and Yaw Rates 
• The rotation rate of the path tangent is given by 

the chain rule: 
 
 

• Only when ζ = ψ can we write 
 
 

• Knowing any two of these determines the third 
one. 
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Eqn 4.104 



Rate Coordinates 
• Hence there are two ways to specify the 

instantaneous motion… 
•  κ, v (Curvature-Speed) 

– (+) relates more directly to steering 
– (+) can be derived readily from path 
– (-) point turns are singular 

•  ω,v (Ang Velocity-Speed) 
– (-) curvature depends on two inputs 
– (-) need path and speed to derive 
– (+) can represent  point turns 
– (+) general case. 
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4.3.5.2 Fully Actuated WMR in Plane 
• Velocity is often intrinsically known in the body 

frame: 
 
 
 

 
• The matrix converts coordinates of velocity from 

body to terrain tangent plane. 
• The is the generic 2D velocity kinematics of any 

vehicle. 
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4.3.5.2 Fully Actuated WMR in Plane 
• If heading and yaw are the same (ζ = ψ ), lateral 

velocity vanishes by definition: 
 
 
 
 

• By assumption, the velocity vector is expressed in 
a frame aligned with the velocity vector. 
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4.3.5.3 UnderActuated WMR in Plane 
• If the vehicle frame is at center of rear wheels of a 

car then ζ = ψ. Substitute Eqn 1.104 into last 
result: 
 
 

 
• Its integral is simply: 
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4.3.5.4 Fully Actuated WMR in 3D 
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Since any vehicle has a curvature and speed, this is quite general 



4.3.5.4.1 Coordinate Transforms 
(in last figure) 

• Linear velocity: 
 
 
 
 

• Angular velocity: 
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4.3.5.4.1 Coordinate Transforms 
• If the vehicle moves instantaneously in the terrain 

tangent plane, then: 
 
 

 
• Substitute in last slide. This gives the result: 
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Summary 
• Disallowed Directions of Motion: 

– Terrain following is a holonomic constraint but it can be written 
in a form that uses a disallowed direction. 

– Wheel slip constraints are nonholonomic and use a disallowed 
direction 

– The difference is that the first direction is fixed in the world 
frame and the second in the vehicle frame. 

• WMR Kinematics and WMR (Lagrangian) Dynamics can 
both be formulated as constrained differential equations. 

• Terrain contract can also be formulated as an energy 
minimization problem. 

• Trajectory estimation and prediction require a conversion 
of body velocities to world coordinates and integration wrt 
time. 
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