
3D Compression Made Simple:
Edgebreaker on a Corner-Table

Jarek Rossignac*, Alla Safonova, Andrzej Szymczak
College of Computing and GVU Center

Georgia Institute of Technology
<jarek@cc.gatech.edu, asafonov@cc.gatech.edu, andrzej@cc.gatech.edu>

* This material is based upon work supported by the National Science Foundation under Grant 9721358.

Abstract
Edgebreaker is a simple technique for compressing 3D
triangle meshes. We introduce here a new formulation,
which leads to a simple implementation. We describe it
in terms of a data structure, the Corner Table, which
represents the connectivity of any manifold triangle
mesh as two table of integers. For meshes that are
homeomorphic to a sphere, Edgebreaker encodes these
two tables with less than 2 bits per triangle. It
compresses vertex locations using a parallelogram
predictor. Entropy encoding reduces this cost in
practice to less than a bit per triangle when the mesh is
large. The detailed compression and decompression
algorithms fit on a page. Through minor modifications,
the Edgebreaker algorithm has been adapted to
manifold meshes with holes and handles, to non-
triangle meshes, and to non-manifold meshes. A
Corner-Table implementation of these extensions will
be described elsewhere.

1. Introduction
3D graphics plays an increasingly important role in
applications where 3D models are accessed through the
Internet. Due to improved design and model acquisition
tools, to the wider acceptance of this technology, and to
the need for higher accuracy, the number and
complexity of these models are growing more rapidly
than phone and network bandwidth. Consequently, it is
imperative to continue increasing the terseness of 3D
data transmission formats and the performance and
reliability of the associated compression and
decompression algorithms.

Although many representations have been proposed for
3D models, polygon and triangle meshes are the de facto
standard for exchanging and viewing 3D models. A
triangle mesh may be represented by its vertex data and
by its connectivity. Vertex data comprises coordinates
of all the vertices and optionally the corner colors,
normal vectors, and texture coordinatges. In its simplest
form, connectivity captures the incidence relation

between the triangles of the mesh and their bounding
vertices. It may be represented by a triangle-vertex
incidence table (named V), which associates with each
triangle the references to its three bounding vertices.

In practice, the number of triangles is roughly twice the
number of vertices. Consequently, when pointers or
integer indices are used as vertex-references and when
floating point coordinates are used to encode vertex
locations, uncompressed connectivity data consumes
twice more storage than vertex coordinates.

Vertex coordinates may be compressed through various
forms of vector quantization. Most vertex compression
approaches exploit the coherence in vertex locations by
using local or global predictors to encode corrections
instead of absolute vertex data. Both the encoder and
the decoder use the same prediction formula. The
encoder transmits the difference between the predicted
and the correct vertex data. It uses variable length codes
for the corrections. The better the prediction, the shorter
the codes. The decoder receives the correction, decodes
it and adds it to the predicted data to obtain the correct
information for the next vertex. Thus the prediction can
only exploit data that has been previously received and
decoded. Most predictive schemes require only local
connectivity between the next vertex and its previously
decoded neighbors. Some global predictors require
having the connectivity of the entire mesh. Thus it is
imperative to optimize connectivity compression
techniques that are independent of vertex data.

The Edgebreaker compression scheme discussed here
has been extended to manifold meshes with handles and
holes [Ross99], to triangulated boundaries of non-
manifold solids [RoCa99], and to meshes that contain
only quadrilaterals or a combination of simply-
connected polygonal faces with an arbitrary number of
sides [King99b]. It was also optimized for meshes with
nearly regular connectivity [SKR00, SKR00b].
Nevertheless, for sake of simplicity, in this paper, we
restrict our focus to meshes that are each homeomorphic
to a sphere.

As several other compression schemes [TaRo98,
ToGo98, Gust98], Edgebreaker visits the triangles in a
spiraling (depth-first) triangle-spanning-tree order and
generates a string of descriptors, one per triangle, which
indicate how the mesh can be recreated by attaching
new triangles to previously reconstructed ones. The
popularity of Edgebreaker lies in the fact that all
descriptors are symbols from the set {C,L,E,R,S}. No
other parameter is needed. Because half of the
descriptors are Cs, a trivial code (C=0, L=110, E=111,
R=101, S=100) guarantees 2 bits per triangle. A slightly
more complex code guarantees 1.73 bits per triangle
[King99]. This upper-bound on storage does not rely on
statistic-based entropy or arithmetic coding schemes,
which in general perform poorly on small or irregular
meshes. Consequently, Edgebreaker is particularly
attractive for compressing large catalogs of small
models. For large meshes, entropy codes further reduce
the storage to less than a bit per triangle [RoSz99]. The
string of descriptors produced by Edgebreaker is called
the clers string. (No relation with any of the strings
pulled by Claire.) An efficient decompression algorithm
for the clers sequence [RoSz99] interprets the symbols
to build a simply connected triangulated polygon, which
represents the triangle-spanning tree. Then, it zips up the
borders of that polygon by matching pairs of its
bounding edges in a bottom-up order with respect to the
vertex-spanning-tree that is the dual of the triangle-
spanning-tree [TaRo98]. We describe here a compact
implementation of this decompression. A previously
proposed alternative, called Spirale Reversi [IsSo99],
interprets the reversed clers string and builds the
triangle tree from the end.

The contributions of this paper are a simple data
structure, called the Corner-Table, for representing the
connectivity of triangle meshes and very compact
descriptions of the complete Edgebreaker compression
and decompression algorithms, which trivialize their
implementation. Because the corner table is nothing
more than two arrays of integers and because the
decompression is simple and fast, the scheme may be
suitable for hardware implementation. We first define
our notation and introduce the Corner-Table, then we
present the simplified Compression and Decompression
algorithms.

Notation and Corner-Table
Vertices are identified using positive integers. Their
location is stored in an array called G for “geometry”.
Each entry of G is a 3D point that encodes the location
of a vertex. (Other vertex attributes are ignored for
simplicity here. Sorry.) We have overloaded the “+” and
“–” operators to perform additions and subtraction of

points and vectors. Thus G[1] – G[0] returns the vector
from the first vertex (G[0]) to the second (G[1]).
Edgebreaker compression stores a point and a sequence
of corrective vectors in the string called delta, using
WRITE(delta, D) statements, where D is a point or
vector. The corrective vectors will be encoded using a
variable length binary format in a separate post-
processing entropy-compression step, not discussed
here. During decompression, the first call READ(delta)
returns a decoded version of the first vertex. Subsequent
calls to READ(delta) return corrective vectors, which
are added to the vertex estimates.

As pointed out earlier, compression stores, in a string
called clers, a sequence of symbols from the set
{C,L,E,R,S}, encoded using a simple binary format: {0,
110, 111, 101, 100}. We have explicitly used this
simple format for completeness, but this code may be
easily replaced by a better one. Alternatively, the ASCII
symbols may be stored for entropy compression.

During decompression, the symbols (i.e., their binary
format) are read and used to switch to the correct
operation. We assume that the READ instruction knows
to read two more bits when the first one is a 1.

The data structure used by Edgebreaker is composed of
two global arrays (the V and O tables) and of two
temporary tables (M, U). V, O, and U have 3 times as
many entries as there are triangles. M has as many
entries as vertices. V and O hold the integer references
to vertices and to opposite corners respectively. M and
U hold binary flags indicating whether the
corresponding vertex or triangle has already been
visited.

Although Edgebreaker manipulates integer indices, we
use (our own) object-oriented notation to increase the
readability of the algorithms. We use lower-case letters
that follow a period to refer to table entries or functions
with the corresponding uppercase name. For example, if
c is an integer, c.v stands for V[c] and c.o stands for
O[c]. However, when we assign values to specific
entries in these tables, we still write V[c]=b, rather than
c.v=b, to remind the reader that we are updating an entry
in the V table. We use left-to-right expansion of this
“object-oriented” notation, thus c.o.v stands for V[O[c]].

We also introduce the “next corner around triangle”
functions: N(c), which will be written c.n and which
returns c–2, if c MOD 3 is 2, and c+1 otherwise. This
functions permits to move from one corner of a triangle
to the next according to the agreed-upon orientation of
the triangle, which we assume to be consistent
throughout the mesh. The “previous corner around
triangle” function, written as c.p stands for N(N(c)). For
example, the statement V[a.p]=b.n.v translates to
V[N(N(a))]=V[N(b)].

A corner c is the association of a triangle c.t with one of
its bounding vertices c.v. The entries in V and O are
consecutive for the 3 corners (c.p, c, c.n) of each
triangle. Thus, c.t returns the integer division of c by 3
and the corner-triangle relation needs not be stored
explicitly. For example, when c is 4, c.t is 1 and thus c
is a corner of the second triangle. We use c.t only to
mark previously visited triangles in the U table.

The notation c.v returns the id of the vertex associated
with corner c. We use this id to mark previously visited
vertices in the M table or to access the geometry of the
vertex (c.v.g). The notation c.o returns the id of the
corner opposite to c. To be precise, c.o is the only
integer b for which: c.n.v == b.p.v and c.p.v == b.n.v.
For convenience, we also define c.l as c.p.o and c.r as
c.n.o. These relations are illustrated in the figure below.
We assume a counter-clockwise orientation.

Compression
Edgebreaker compression is a state machine. At each
state it moves from a triangle Y to an adjacent triangle
X. It marks all visited triangles and their bounding
vertices. Let Left and Right denote the other two
triangles that are incident upon X. Let v be the vertex
common to X, Left, and Right. If v has not yet been
visited, then neither have Left or Right. This is case C: X
is called a C triangle and is associated with the symbol
C. If v has been visited, we distinguish four other cases,
which corresponds to states where one, both, or neither
of the Left and Right triangles have been visited. These
situations and the associated clers symbols are shown in
the figure below. The arrows indicate the direction to
the next triangle. Previously visited triangles are not
shown. Note that in the S case, Edgebreaker moves to
Right, using a recursive call, and then to Left.

The compression algorithm (see insert below) initializes
the tables and calls Compress. The initial corner c may
be chosen randomly. The initialization decodes and
marks the three vertices of the first triangle, marks the
triangle as visited, and calls Compress.

Compress is a recursive procedure that traverses the
mesh along a spiraling triangle-spanning-tree. Each
recursion starts only at a triangle that is of type S and
compresses the branch adjacent to its right edge. When
the corresponding E triangle is reached, the branch
traversal is complete and we “RETURN” from the
recursion to pursue the left branch. The encounter of an
E that does not match an S terminates the compression
process. If the tip vertex of a new triangles has not yet
been visited (“IF c.v.m != 1”), we are on a C triangle
and we encode in delta the corrective vector for the tip
of the current triangle using a parallelogram rule
[ToGo98]. We also encode a 0 in the clers string to
indicate a C triangle. When the tip of the new triangle
has been visited, we distinguish the other four cases,
based on the status of the neighboring (left and right)
triangles.

The figure below shows the labels for triangles that have
been visited during a typical early steps of compression,
producing the clers string CCCCRCCRCRC. The seed
triangle is not labeled.

The figure below shows the final steps of compression
for a branch or for the whole mesh. It appends the
symbols CRSRLECRRRLE to clers. The first triangle is
marked by an arrow.

c
c.t

c.v
c.l c.r

c.o

c.n c.p

C
C

CC
C

C

C
C

R

R

R

R
L EC

RRR
L
E

C R
S

X

v

C

X

v

R

X

v

S

X
v

L

v

X

E

Decompression
The decompression algorithm (see insert below) builds
the two arrays, V and O, of the corner Corner-Table and
also the G table of vertex locations. After initializing the
first triangle in initDecompression, the recursive
procedure DecompressConnectivity is called with
corner 1 as parameter. At each iteration of the loop in
this procedure, Edgebreaker appends a new triangle to a
previously visited triangle. It reads the binary encoding
of the next symbol from the clers string. If it is a C
(binary code 0), Edgebreaker associates the label –1
with the corner opposite the left edge. This temporary
marking is stored in the table O. It will be replaced with
the correct reference to the opposite corner by a
subsequent zip.

If the symbol is an L (binary code 101), Edgebreaker
associates a different label (–2) with the opposite edge
and tries to zip, by identifying it with the adjacent edge
on the left. When an R symbol is encountered, the
opposite edge is labeled –2. No zipping takes place.
When an E symbol is encountered, both edges are
labeled –2, and an iterative zipping is attempted. This

zipping will continue as long as the free edge on the
right of the last zipped vertex is marked with –2 and the
free edge on the left is marked –1. An S symbols forks a
recursive call to DecompressConnectivity, which will
construct a subset of the mesh that is incident to the
right edge of the current triangle. Then the
reconstruction proceeds to decode and build the branch
attached to the left edge of the current triangle (see the
last figure). Typically less than 5% of the triangles are
of type S. Then, we initialize the first three vertices and
traverse the mesh again with DecompressVertices in
order to recover the vertex locations.

Conclusion
3D mesh compression and planar graph encoding
techniques have been the subject of numerous
publications (see [Ross99] for a review of prior art). All
these approaches have been presented at a high level.
Many are complex and difficult to implement. In
comparison, the proposed compression and
decompression algorithms are trivial to implement.
More importantly, the source code is extremely small
and uses simple arrays of integers as a data structure.

PROCEDURE initCompression (c){
GLOBAL M[]={0…}, U[]={0…}; # init tables for marking visited vertices and triangles
WRITE(delta, c.p.v.g); # store first vertex as a point
WRITE(delta, c.v.g – c.p.v.g); # store second vertex as a difference vector with first
WRITE(delta, c.n.v.g – c.v.g); # store third vertex as a difference vector with second
M[c.v] = 1; M[c.n.v] = 1; M[c.p.v] = 1; # mark these 3 vertices
U[c.t] = 1; # paint the triangle and go to opposite corner
Compress (c.o); } # start the compression process

RECURSIVE PROCEDURE Compress (c) { # compressed simple t-meshes
REPEAT { # start traversal for triangle tree

U[c.t] = 1; # mark the triangle as visited
IF c.v.m != 1 # test whether tip vertex was visited

 THEN {WRITE(delta, c.v.g – c.p.v.g – c.n.v.g + c.o.v.g); # append correction for c.v
WRITE(clers, 0); # append encoding of C to clers
M[c.v] = 1; # mark tip vertex as visited
c = c.r} # continue with the right neighbor

ELSE IF c.r.t.u == 1 # test whether right triangle was visited
 THEN IF c.l.t.u == 1 # test whether left triangle was visited

 THEN {WRITE(clers, 111); RETURN } # append code for E and pop
 ELSE {WRITE(clers, 101); c = c.l } # append code for R, move to left triangle

 ELSE IF c.l.t.u == 1 # test whether left triangle was visited
 THEN {WRITE(clers, 110); c = c.r } # append code for L, move to right triangle
 ELSE {WRITE(clers, 100); # append code for S
 Compress(c.r); # recursive call to visit right branch first
 c = c.l } } } # move to left triangle

PROCEDURE initDecompression {
GLOBAL V[] = { 0,1,2,0,0,0,0,0,…}; # table of vertex Ids for each corner
GLOBAL O[] = {–1,–3,–1, –3, –3, –3…}; # table of opposite corner Ids for each corner
GLOBAL T = 0; # id of the last triangle decompressed so far
GLOBAL N = 2; # id of the last vertex encountered
DecompressConnectivity(1); # starts connectivity decompression
GLOBAL M[]={0…}, U[]={0…}; # init tables for marking visited vertices and triangles
G[0] = READ(delta); # read first vertex
G[1] = G[0]+ READ(delta); # set second vertex using first plus delta
G[2] = G[1]+ READ(delta); # set third vertex using second plus new delta
GLOBAL N = 2; # id of the last vertex encountered
M[0] = 1; M[1] = 1; M[2] = 1; # mark these 3 vertices
U[0] = 1; # paint the triangle and go to opposite corner
DecompressVertices(O[1]); } # starts vertices decompression

RECURSIVE PROCEDURE DecompressConnectivity(c) {
REPEAT { # Loop builds triangle tree and zips it up

T++; # new triangle
O[c] = 3T; O[3T] = c; # attach new triangle, link opposite corners
V[3T+1] = c.p.v; V[3T+2] = c.n.v; # enter vertex Ids for shared vertices
c = c.o.n; # move corner to new triangle
Switch READ(clers) { # select operation based on next symbol

Case 0: {O[c.n] = –1; V[3T] = ++N;} # C: left edge is free, store ref to new vertex
Case 110: { O[c.n] = –2; zip(c.n); } # L: orient free edge, try to zip once
Case 101: { O[c] = –2; c = c.n } # R: orient free edge, go left
Case 100: { DecompressConnectivity(c); c = c.n } # S: recursion going right, then go left
Case 111: { O[c] = –2; O[c.n] = –2; zip(c.n); RETURN }}}} # E: zip, try more, pop

RECURSIVE PROCEDURE Zip(c) { # tries to zip free edges opposite c
b = c.n; WHILE b.o>=0 DO b=b.o.n; # search clockwise for free edge
IF b.o != –1 THEN RETURN; # pop if no zip possible
O[c]=b; O[b]=c; # link opposite corners
a = c.p; V[a.p] = b.p.v; # assign co-incident corners
WHILE a.o>=0 && b!=a DO {a=a.o.p; V[a.p]=b.p.v};
c = c.p; WHILE c.o >= 0 && c!= b DO c = c.o.p; # find corner of next free edge on right
IF c.o == –2 THEN Zip(c) } # try to zip again

RECURSIVE PROCEDURE DecompressVertices(c) {
REPEAT { # start traversal for triangle tree

U[c.t] = 1; # mark the triangle as visited
IF c.v.m != 1 # test whether tip vertex was visited
 THEN {G[++N] = c.p.v.g+c.n.v.g-c.o.v.g+READ(delta); # update new vertex
 M[c.v] = 1; # mark tip vertex as visited
 c = c.r;} # continue with the right neighbor
ELSE IF c.r.t.u == 1 # test whether right triangle was visited

 THEN IF c.l.t.u == 1 # test whether left triangle was visited
 THEN RETURN # pop
 ELSE { c = c.l } # move to left triangle

 ELSE IF c.l.t.u == 1 # test whether left triangle was visited
 THEN { c = c.r } # move to right triangle
 ELSE { DecompressVertices (c.r); # recursive call to visit right branch first
 c = c.l } } } # move to left triangle

REFERENCES
[GuSt98] S. Gumhold and W. Strasser, “Real Time
Compression of Triangle Mesh Connectivity”, Proc.
ACM Siggraph, pp. 133-140, July 1998.

[IsSo99] M. Isenburg and J. Snoeyink, “Spirale Reversi:
Reverse decoding of the Edgebreaker encoding”, Tech.
Report TR-99-08, Computer Science, UBC, 1999.

[King99] D. King and J. Rossignac, “Guaranteed 3.67V
bit encoding of planar triangle graphs”, 11th Canadian
Conference on Computational Geometry (CCCG'’99),
pp. 146-149, Vancouver, CA, August 15-18, 1999.

[King99b] D. King and J. Rossignac, "Connectivity
Compression for Irregular Quadrilateral Meshes"
Research Report GIT-GVU- 99 -29, Dec 1999.

[RoCa99] J. Rossignac and D. Cardoze, “Matchmaker:
Manifold Breps for non-manifold r-sets”, Proceedings
of the ACM Symposium on Solid Modeling, pp. 31-41,
June 1999.

[Ross99] J. Rossignac, "Edgebreaker: Connectivity
compression for triangle meshes", IEEE Transactions on
Visualization and Computer Graphics, 5(1), 47-61, Jan-
Mar 1999. (Sigma Xi award: Best Paper from Georgia
Tech.)

[RoSz99] J. Rossignac and A. Szymczak, "Wrap&Zip
decompression of the connectivity of triangle meshes
compressed with Edgebreaker", Computational
Geometry, Theory and Applications, 14(1/3), 119-135,
November 1999.

[SKR00] A. Szymczak,. D. King, J. Rossignac, “An
Edgebreaker-based efficient compression scheme for
regular meshes”, Proc of the 12th Canadian Conference
on Computational Geometry, Fredericton, New
Brunswick, August 16-19, 2000.

[SKR00b] A. Szymczak, D. King, J. Rossignac, “An
Edgebreaker-based Efficient Compression Scheme for
Connectivity of Regular Meshes”, Journal of
Computational Geometry: Theory and Applications,
2000.

[TaRo98] G. Taubin and J. Rossignac, "Geometric
Compression through Topological Surgery", ACM
Transactions on Graphics, 17(2), 84-115, April 1998.
(IBM award: Best Computer Science Paper from IBM.)

[ToGo98] C. Touma and C. Gotsman, “Triangle Mesh
Compression”, Proceedings Graphics Interface 98, pp.
26-34, 1998.

The decompression of the clers string SLCCRRCCRRRLCRRLLLRE will generate the mesh portion below.
The left edge (vertex 1 and 2) of the first L triangle is not zipped immediately. The left edge of the second L
triangle is zipped reaching vertex 5. Then, as we encounter the subsequent three L triangles, their left edges are
zipped right away. The first left edge of the E triangle is also zipped immediately. The rest of the cracks will be
zipped later in the direction indicated by the arrows, when the left branch of the split is done.

E R
R

R

R

RR

R

L

S

C
L

L
L

L

C

CC
R

C

1
2

3

4
5

