
May 20, 2001

WORKSHOP PAPERS

Tutorial Dialogue
Systems

ii

iii

AIED-2001 Workshop on Tutorial Dialogue Systems
Sunday, May 20, 2001

Organizing committee

Vincent Aleven

Human Computer-Interaction Institute

Carnegie Mellon University

aleven@cs.cmu.edu

Mark Core

Human Communication Research Centre

University of Edinburgh

markc@cogsci.ed.ac.uk

Jérôme Lehuen

Equipe Langue et Dialogue

Laboratoire d’Informatique

Université du Maine

Jerome.Lehuen@lium.univ-lemans.fr

Rachel Pilkington

Computer Based Learning Unit,

The University of Leeds,

R.M.Pilkington@cbl.leeds.ac.uk

Carolyn Penstein Rose

Learning Research and Development Center

University of Pittsburgh

rosecp+@pitt.edu

Florence M. Reeder

George Mason University /

The MITRE Corporation

freeder@mitre.org

Jeff Rickel

USC Information Sciences Institute

rickel@ISI.EDU

Peter Wiemer-Hastings

Human Communications Research Centre

University of Edinburgh

peterwh@cogsci.ed.ac.uk

Beverly Park Woolf

Department of Computer Science

University of Massachusetts

bev@cs.umass.edu

iv

v

Table of Contents

vii Introduction

1 Using a Model of Collaborative Dialogue to Teach Procedural Tasks
Jeff Rickel, Neal Lesh, Charles Rich, Candace L. Sidner, and Abigail Gertner

13 AMANDA - An Intelligent Dialog Coordination Environment
Marco A. Eleuterio, Jean-Paul Barthès, Flávio Bortolozzi, and Celso A. Kaestner

23 The Design and Formative Analysis of a Dialog-Based Tutor
Neil T. Heffernan and Kenneth R. Koedinger

35 A Decision-Theoretic Architecture for Selecting Tutorial Discourse Actions
R. Charles Murray, Kurt VanLehn, and Jack Mostow

47 AutoTutor: An Intellient Tutor and Conversational Tutoring Scaffold
Arthur C. Graesser, Xiangen Hu, Suresh Susarla, Derek Harter, Natalie Person, Max

Louwerse, Brent Olde, and the Tutoring Research Group

50 Simple Natural Language Generation and Intelligent Tutoring Systems
Barbara Di Eugenio, Michael Glass, Michael J. Trolio, and Susan Haller

59 Pedagogical Content Knowledge in a Tutorial Dialogue System to Support Self-
Explanation

Vincent Aleven, Octav Popescu, and Kenneth R. Koedinger

71 Introducing RMT: A dialog-based tutor for research methods
Peter Wiemer-Hastings and Kalloipe-Irini Malatesta

vi

vii

Introduction
Human one-on-one tutoring is the most effective form of instruction. Although the best intelligent

tutoring systems have been shown to be more effective than classroom instruction, they are only

half as effective as human tutors. Much of the success of human tutors seems to hinge on their

ability to engage students in dialog. It is therefore an interesting and promising hypothesis that

intelligent tutoring systems will be more effective if they engage students in dialog or support

effective dialog between learners. This raises a number of broad research questions:

• what is good tutorial dialog?

• why is it effective?

• what kind of architectures can support good tutorial dialog?

The workshop will deal with all issues related to these broad questions, including (but not limited

to) empirical studies of tutorial discourse, the use of natural language understanding and

generation technologies, the representation of pedagogical strategies and knowledge, the use of

dialog and text planning, and studies of the effectiveness of tutorial dialog systems.

Although the field of AI & Education has a long-standing interest in these questions, they

are more in the foreground now than before, due to advances in technologies such as natural

language processing, knowledge representation, virtual reality, and multi-modal interfaces. The

recent AAAI Fall Symposium on the topic of tutorial dialog systems reflects the surge of interest

in both the AI & Education and computational linguistics communities.

Special Focus: Understanding The Trade-Offs Between Architectural Complexity

And Pedagogical Effectiveness

The workshop will focus on understanding the trade-offs between the complexity of a tutorial

dialog system and its pedagogical effectiveness. Tutorial dialog systems tend to be complex.

They contain not just the components found traditionally in intelligent tutoring systems, but many

other components as well, such as a parser, semantic analyzer, dialog planner, text planner,

natural language realization component, and a virtual reality module. In the face of this

complexity, it is good to ask, where is the biggest bang for the buck? What level of architectural

complexity gives the greatest pedagogical pay-off? Is adding complexity always a good thing?

What minimum level of complexity is required? Complexity can be measured, among other ways,

in terms of development effort or the elaborateness of the architecture. Effectiveness on the other

hand can be measured as the range of dialog phenomena that the system supports, the generality

of the approach, the ease of maintenance, or, ultimately, the students’ learning gains.

It may well be that the trade-offs differ depending on the application domain, the overall

pedagogical approach of the system, and the purpose for which it uses natural language

processing. Nonetheless, it is likely that some common trade-offs, and ways of dealing with them,

can be found that hold across domains.

viii

Using a Model of Collaborative Dialogue
to Teach Procedural Tasks

Jeff Rickel,1 Neal Lesh,2 Charles Rich,2 Candace L. Sidner2 and Abigail Gertner3
1 USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA, 90292

rickel@isi.edu, http://www.isi.edu/isd/rickel
2 Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA, 02139

lesh,rich,sidner@merl.com, http://www.merl.com/projects/collagen
3 MITRE Corporation, 202 Burlington Road, Bedford, MA, 01730
gertner@mitre.org, http://www.mitre.org/resources/centers/it/g068

Abstract

Previous research on building intelligent tutoring systems has not leveraged general mod-
els of collaborative discourse, even though tutoring is an inherently collaborative and often
discourse-based activity. Similarly, previous research on collaborative discourse theory has
rarely addressed tutorial issues, even though teaching and learning are crucial components of
collaboration. We help bridge the gap between these two related research threads by present-
ing a tutorial agent, called Paco, that we built using an application-independent collaboration
manager, called Collagen. Our primary contribution is to show how a variety of tutorial be-
haviors can be expressed as rules for generating candidate discourse acts in the framework of
collaborative discourse theory.

1 Introduction

Our research objective is to develop computer tutors that collaborate with students on tasks in simu-
lated environments. Towards this end, we seek to integrate two separate but related research threads:
intelligent tutoring systems (ITS) and collaborative dialogue systems (CDS). Research on ITS (e.g.,
[1, 21, 23]) focuses on computer tutors that adapt to individual students based on the target knowl-
edge the student is expected to learn and the presumed state of the student’s current knowledge.
Research on CDS (e.g., [8, 13, 22]), with an equally long history, focuses on computational models
of human dialogue for collaborative tasks.

Unfortunately, there has been a surprising lack of cross-fertilization between these two research
areas. Work on tutorial dialogue for intelligent tutoring systems (e.g., [3, 14, 24]) has not leveraged
general models of collaborative dialogue. Similarly, research on collaborative dialogues has focused
on modeling conversations between peers or between an expert and novice, but has rarely addressed
tutorial issues.

To help integrate ITS and CDS, we developed a tutorial agent in Collagen [17], a middleware
system based on a long line of research on collaborative discourse [8, 6, 7, 5, 13]. Collagen main-
tains a model of the discourse state shared by the user (e.g., student) and the computer agent (e.g.,
tutor). The discourse state includes information about the current focus of attention and the col-
laborators’ mutually believed plans. Agents constructed using Collagen use the discourse state to
generate an agenda of candidatediscourse acts, including both “physical” actions and utterances,
and then choose one to perform or utter.

Vincent Aleven
1

Our tutorial agent, Paco (Pedagogical Agent for Collagen), teaches students procedural tasks in
simulated environments, building on ideas from earlier tutoring systems [18, 19]. While Paco can
engage in slightly more sophisticated conversations than previous such tutors, our primary contribu-
tion is to show how a variety of tutorial behaviors can be expressed as rules for generating candidate
discourse acts in Collagen. Translating behaviors developed in ITS into the framework of CDS is
a first step towards building tutoring agents that can leverage advances in collaborative discourse
theory. Also, since Paco is domain-independent, its tutorial actions can be added to the set of can-
didate discourse acts of any agent built with Collagen, allowing such agents to tutor in addition to
their normal role as assistants. Finally, a third goal of this work is to report on Collagen’s value
for building tutorial agents, both in terms of the theory it reflects and the software architecture it
supports.

2 Pedagogical Approach

We designed Paco to support simulation-based training, in which students learn tasks by performing
them in a simulation of the real work environment. (Of course, if the target work environment is
actually a software application, that application can serve as the simulator.) The computer tutor’s
instruction and assistance are situated in the performance of domain tasks in the simulated world.
That is, the tutor chooses a scenario (task to perform starting from a particular simulation state),
works through it with the student, and then repeats until all scenarios have been mastered.

Our pedagogical approach is based on the apprenticeship model of learning [2], which requires
two capabilities. First, the tutor must be able to perform and explain the task. Second, it must
be able to monitor the student as she performs the task, providing assistance when needed as well
as critique or positive feedback when appropriate. As the student gains proficiency, the assistance
provided should decrease. Ideally, students should learn to flexibly apply well-defined procedures
in a variety of situations.

Figure 1 shows an example dialogue with our current implementation of Paco that illustrates
some of the key features we support. Paco is teaching the student how to operate the gas turbine
engines that propel naval ships. Paco has previously worked through a simple scenario in which
the student engaged one of the turbine engines. Now, Paco is going to teach the same procedure
under slightly more complicated conditions: (1) a high vibration alarm has occurred on the gas
turbine generator, shutting the generator down, so the student will have to reset the alarm before
starting the generator; and (2) a second engine is already running, so the student will have to stop it
before starting up the desired engine. The remainder of the paper will use this example dialogue to
illustrate aspects of our design.

If there were no overlap among tasks and scenarios, Paco could be implemented in an obvious
way: the tutor would first demonstrate the entire task, then repeatedly let the student practice the
task, providing assistance where necessary. However, different tasks often share common subtasks
or actions, and different scenarios often require variants of the same task. Therefore, at any moment,
a student’s level of mastery may differ across the different parts of a task. For example, a new
scenario may require branches of a task that the student has not yet seen (e.g., lines 8-12 and 18-35
in the example dialogue) while also requiring steps and subtasks that have been mastered already.

To address this issue, Paco uses a student model to dynamically interleave demonstration and
coached practice, using the approach introduced by Rickel [18]. As the student and Paco progress
through a task, Collagen will repeatedly identify the set of valid next steps in the plan to solve the
current task. Paco consults the student model to see whether the student has sufficient knowledge to
choose the next step. If so, it will expect the student to take the next step, and will provide assistance

Vincent Aleven
2

only if the student requests it or makes a mistake. If not, Paco will intervene and teach the student
what to do next (e.g., lines 8-12 and 18-35). Thus, as Paco and the student work through tasks,
initiative will pass back and forth between them based on the student’s prior experience. Whenever
Paco decides that the initiative should shift, it will let the student know through verbal comments
(e.g., “You take it from here”).

Paco represents the procedures it will teach using Collagen’s declarative language for domain-
specific procedural knowledge. This knowledge serves as a model of how domain tasks should be
performed. Each task is associated with one or morerecipes(i.e., procedures for performing the
task). Each recipe consists of several elements drawn from a relatively standard plan representation.
First, it includes a set of steps, each of which is either a primitive action (e.g., press a button) or a
composite action (i.e., a subtask). Composite actions give tasks a hierarchical structure. Second,
there may be ordering constraints among the steps; these constraints define a partial order over
the steps. Third, a task and its steps can have parameters, and a recipe can specify constraints
(bindings) among the parameters of a task and its steps. Finally, steps can have preconditions (to
allow Collagen to determine whether a step can be performed in the current state) and postconditions
(to determine whether the effects of a step have been achieved).

3 Collagen as a Foundation for Teaching Procedural Tasks

Collagen’s main value for building tutoring systems is that it provides a general model of collab-
orative dialogue based on well-established principles from computational linguistics. The model
includes two main parts: (1) a representation of discourse state and (2) a discourse interpretation
algorithm that uses plan recognition to update the discourse state given the actions and utterances of
the user and agent. Previous tutoring systems for procedural tasks do not include dialogue managers
with the same level of generality.

Based on the work of Grosz and Sidner [6], Collagen partitions the discourse state into three
interrelated components: the linguistic structure, the attentional state, and the intentional structure.
The linguistic structure, implemented as asegmented interaction historyin Collagen, groups the
dialogue history into a hierarchy of discourse segments. Each segment is a contiguous sequence
of actions and utterances that contribute to somepurpose(e.g., performing a task or subtask). For
example, Figure 2 shows the segmented interaction history for a portion of the example dialogue.

The attentional state, i.e., what the user and agent are talking about and/or working onnow,
is represented by a stack of discourse purposes called the focus stack [6]. When a new discourse
segment is begun, its purpose is pushed onto the stack. When a discourse segment is completed
or discontinued, its purpose is popped off the stack. The stack mechanism is crucial for the proper
treatment of interruptions. Additionally, the attentional state maintained by Collagen includes an
extension to the original model of Grosz and Sidner to capture which participant holds the conver-
sational initiative. This allows Paco to decide when to explicitly pass the initiative to the student
(e.g., “You take it from here.”).

An explicit representation of attentional state is important in tutoring systems so that the tutor
does not confuse the student with unexpected shifts in focus. For example, if the student begins
work on a subtask and then asks for help, the tutor’s advice should relate to that subtask, even
if other actions outside that subtask could be done next. For tutoring systems that follow a strict
sequence through domain tasks, a focus stack may not be needed. However, to support mixed-
initiative dialogues where the student and tutor have more freedom to choose the execution order
for tasks and initiate topics for discussion, a focus stack helps ensure the coherence of the tutor’s
responses.

Vincent Aleven
3

(1) Paco sets the state of the simulator.

(2) Paco “I’ve reset the simulation so that we can try en-
gaging an engine under slightly different condi-
tions.”

(3) Paco “Let’s engage engine one.”

(4) Student “Ok.”

(5) Paco “You take it from here.”

(6) Student “Let’s start the generator.”

(7) Paco “Good.”

(8) Paco (Pointing) “Now, notice that the alarm light is
on.”

(9) Paco “Before starting a generator, always make sure
that the alarm light is off so that you’ll know when
a new alarm appears.”

(10) Paco (Pointing) “Press the alarm reset button on the
generator in order to extinguish the alarm.”

(11) Student presses the alarm reset button on the genera-
tor.

(12) Paco “Good.”

(13) Student “Ok.”

(14) Paco “You take it from here.”

(15) Student presses the on button on the generator.

(16) Paco “Great.”

(17) Paco “We succeeded in starting the generator.”

(18) Paco (Pointing) “Now, notice that engine two is run-
ning.”

(19) Paco “Before starting an engine, always make sure
that the other engine is stopped.”

(20) Paco “Let’s stop engine two.”

(21) Paco (Pointing) “First, press the disengage button on
engine two in order to disengage the clutch.”

(22) Student presses the disengage button on engine two.

(23) Paco “Right.”

(24) Paco “The next step of stopping engine two is to close
the fuel valves on engine two.”

(25) Student “Ok.”

(26) Paco “You take it from here.”

(27) Student closes fuel valve one on engine two.

(28) Paco “Good.”

(29) Student closes fuel valve two on engine two.

(30) Paco “Good job.”

(31) Paco (Pointing) “The next step is to press the off but-
ton on engine two.”

(32) Student presses the off button on engine two.

(33) Paco “Great.”

(34) Paco (Pointing) “The indicator light tells us that en-
gine two is stopped.”

(35) Paco “So, we succeeded in stopping engine two.”

(36) Student “Ok.”

(37) Paco “You take it from here.”

(38) Student opens fuel valve one on engine one.

(39) Paco “Good.”

(40) Student opens the bleed valve on engine one.

(41) Paco “That was a correct action, but I wasn’t expect-
ing you to do it now.”

(42) Paco “Let’s go back to opening the fuel valves on en-
gine one.”

(43) Student opens fuel valve two on engine one.

(44) Paco “Great.”

(45) Student presses the engage button on engine one.

(46) Paco “Whoops, you can’t do that yet.”

(47) Student “What next?”

(48) Paco (Pointing) “Press the on button on engine one.”

(49) Student presses the on button on engine one.

(50) Paco “Good.”

(51) Student “I think I should set the throttle speed.”

(52) Paco “Right.”

(53) Student “What should the speed be?”

(54) Paco “The speed should be stop.”

(55) Student sets the throttle speed to stop.

(56) Paco “Good.”

(57) Student presses the engage button on engine one.

(58) Paco “Good job.”

(59) Paco “We succeeded in engaging engine one.”

Figure 1: An example dialogue in which Paco teaches steps in the current task (e.g., lines 21,
31), teaches that subtasks are finished (e.g., lines 17, 35), provides help when requested (e.g., line
48), passes initiative to the student when she should know what to do next (e.g., lines 5, 14, 26),
provides positive feedback (e.g., lines 7, 16, 23), diagnoses and critiques incorrect actions (e.g., line
46), explains why steps needs to be done (e.g., line 9), discusses postconditions for actions (e.g.,
lines 8, 34), and helps the student stay focused on the current subtask (e.g., line 42).

Vincent Aleven
4

Engaging engine one
3 Paco says "Let’s engage engine one."
4 Student says "Ok."
5 Paco says "You take it from here."

Done successfully starting the generator.
6 Student says "Let’s start the generator."
7 Paco says "Good."

Done user successfully pressing the alarm reset button on the generator.
8 Paco says "Now, notice that the alarm light is on."
9 Paco says "Before starting a generator, always make

sure that the alarm light is off so that
you’ll know when a new alarm appears."

10 Paco says "Press the alarm reset button on the
generator in order to extinguish the alarm."

11 Student presses the alarm reset button on the generator.
12 Paco says "Good."
13 Student says "Ok."
14 Paco says "You take it from here."
15 Student presses the on button on the generator.
16 Paco says "Great."
17 Paco says "We succeeded in starting the generator."

Figure 2: The segmented interaction history for a portion of the dialogue in Figure 1.

While the linguistic structure and attentional state closely reflect the actual temporal order of
actions and utterances in the dialogue, the intentional structure represents the decisions that have
been made as a result of those actions and utterances, independent of their order. Collagen represents
the intentional structure asplan trees, which are a partial implementation of SharedPlans [7, 5].
Nodes in the tree represent mutually agreed upon intentions (e.g., to perform a task), and the tree
structure represents the subgoal relationships among these intentions. Plan trees also record other
types of decisions, such as whether a recipe has been chosen for a task, whether any of its parameters
have been determined, and who is responsible for performing the task (e.g., student, agent, or both).

The heart of Collagen is the discourse interpretation algorithm, which specifies how to update
the discourse state given a new action or utterance by either the user or agent. Its objective is to de-
termine how the current act contributes to the collaboration. For example, the act could contribute
to the current discourse segment’s purpose (DSP) by directly achieving it (e.g., pressing a button
when that action is the current DSP), proposing how it can be achieved (i.e., suggesting a recipe),
proposing or performing a step in its recipe, or proposing a value for one of its unspecified param-
eters. Collagen extends Lochbaum’s discourse interpretation algorithm [13] with plan recognition,
which can recognize when an act contributes to a DSP through one or more implicit acts [12].

Collagen’s discourse interpretation algorithm proceeds as follows. If the current act contributes
to the current DSP, it is added to the segment and the plan tree is updated accordingly. If not,
Collagen searches up through the plan tree to see if an act contributes to any other action in the
plan; if so, and if the act is a valid next step, it represents a shift in focus. Collagen pops all
purposes off the stack that are not parents of the matched step, then pushes any necessary purposes
on until the act is in focus. Finally, if nothing in the plan tree matches the current act, it is treated as
an interruption and pushed onto the stack without popping anything.

Collagen has recently been extended to perform “near-miss” plan recognition if it cannot find
a correct interpretation of an act. It systematically searches for extensions to the plan tree that
would explain the current act if some constraint were relaxed. For example, it can recognize acts
that would violate an ordering constraint, unnecessarily repeat a step that was already performed,
or perform a step that should be skipped because its effects are already satisfied. Thus, near-miss

Vincent Aleven
5

Domain Task
Knowledge

Student
Model

Student
utterances

PACO
utterances

PACO domain
actions

Student
domain
actions

All domain
actions and

events
Discourse

state
PACO

utterances

Student

Simulator PACO

COLLAGEN

Figure 3: Paco’s Architecture

plan recognition attempts to find plausible interpretations of student errors, providing a domain-
independent capability for student diagnosis. It is also extensible, allowing a domain author to
define new types of errors or even add explicit buggy recipes. Additionally, Collagen is being
extended to use causal information in recipes to repair plans after an incorrect action, or external
event, occurs.

3.1 Architecture

Figure 3 shows how Paco fits into the general Collagen architecture. The three software components
in this architecture are the simulator, Collagen, and the agent (e.g., Paco). Collagen makes very few
assumptions about the simulator. Primarily, it assumes that the user (e.g., student) and agent (e.g.,
Paco) can both perform domain actions (e.g., open a fuel valve) and can observe the actions taken
by each other. Collagen provides an API for such event messages, so that it will be able to interpret
them. Collagen makes no assumptions about the simulator’s user interface. The simulator can,
however, optionally specify a screen location for domain actions, which allows the agent to use a
pointing hand to draw the user’s attention to an object or indicate that the agent is performing an
action.

Collagen represents utterances using an artificial discourse language derived from earlier work
by Sidner [20]. The language is intended to include the types of utterances that people use when col-
laborating on tasks. Currently, Collagen’s language includes utterance types for agreeing (“yes” and
“OK”) and disagreeing (“no”), proposing a task or action (e.g., “Let’s engage engine one”), indicat-
ing when a task has been accomplished (e.g., “We succeeded in stopping engine two”), abandoning
a task, asking about or proposing the value of a parameter to a task or action, asking or proposing
how a task should be accomplished, and asking what should be done next (“What next?”). Cur-
rent work is extending Collagen’s language to include additional elements from Sidner’s language,
especially to support negotiation about task decisions.

To bypass natural language understanding issues, Collagen provides a window to allow the
user to construct utterances and to display the agent’s utterances. In both windows, it converts its
internal discourse language into English (or other language) strings, using a combination of domain-
independent and (optional) domain-specific text templates. In the user window, users construct
utterances by selecting from a menu of utterances and utterance types, and they can modify any
utterance by selecting any phrase within it (representing a field in the original text template) and
choosing a replacement phrase. Optionally, Collagen can also use speech recognition software to

Vincent Aleven
6

allow the user to speak these utterances rather than creating them through the GUI, and it can use
speech synthesis software to allow the agent to speak its utterances.

4 Tutorial Behaviors as Collaborative Discourse Acts

Table 1 is a summary of our progress in integrating ITS and CDS: it lays out in detail how Paco’s
tutorial behaviors are generated from Collagen’s discourse state representation and Paco’s student
model. The first column of the table is a ranked list of the tutorial act types. The second column
describes procedures that generate zero or more instances of each act type from the current discourse
state and student model. When it is Paco’s turn, it constructs a prioritized agenda by evaluating the
procedures for each act type and then selects the highest ranked act in this agenda.1 The third column
of the table shows the semantics of each act type in Sidner’s [20] artificial discourse language, which
determines how the act will be interpreted by Collagen’s discourse interpretation algorithm. Several
of the act types have subcases, shown in the fourth column, which share the same basic semantics,
but differ in how they are rendered into English (fifth column).

Paco uses several elements of the discourse state to generate its discourse acts including the
focus of attention, the initiative, and plan trees. The focus of attention is used, for example, to avoid
teaching a step unless its purpose is in focus. The focus stack also indicates when the student has
interrupted the current task, which causes Paco to generate a discourse act which would end the
current interruption. In addition to the shared focus maintained by Collagen, Paco also maintains a
private focusbecause it prefers to finish teaching an action before moving on. If the student starts
working on another part of the plan (thus popping the current focus from the shared focus stack)
while there are still legal steps within Paco’s private focus (e.g., line 40 in Figure 1), then Paco
will add a Correct Focus action (e.g., line 42) to the agenda. Paco might choose to execute a higher-
ranked element on the agenda first (e.g., line 41) but will re-generate the Correct Focus action unless
the student returns to the previous subtask by herself.

The various conditions for generating discourse acts are easy to compute given the data struc-
tures maintained by Collagen. For example, several of the acts operate on thevalid next actions,
which refers to the plan steps that can be executed next based on precondition and ordering con-
straints.2 Collagen computes this information during discourse interpretation. Additionally, Col-
lagen’s near-miss recognition computes the conditions needed to generate the various subcases of
Negative Feedback (e.g., line 46). Finally, when the student asks for help (e.g., line 47) this pushes a
discourse purpose of helping the student onto the stack which remains there until the agent provides
the help (e.g., line 48).

Using the generic capabilities of Collagen to record information about a user, Paco maintains
a simple overlay model [4] that records, for each step in a recipe, whether the student has been
exposed to it. In Table 1, the condition “the student knows step!” means that the student has been
taught this step before. The condition “student knows step! needs to be done” means the student
has been taught all the steps that connect! to the root of the current plan. Finally, Paco’s student
model also records which actions the student has been told that she has completed (e.g., line 17).
The condition “the student knows when! is complete” means that the tutor has told the student
when! was complete, at least once before.

We use Collagen’s generic representation for recipes to store domain-specific knowledge about
why actions need to be performed. That is, Paco’s domain knowledge includes recipes that achieve
the subgoal of explaining why an action, or more specifically a step of a recipe, should be performed.

1An agent that was more of an assistant might also include acts in Collagen’s default agenda in its ranking.
2Paco also uses information about the preferred order of executing actions to determine which actions to teach.

Vincent Aleven
7

Tutorial Add instance to Semantics Subcases Example
act type agenda for ... (if any) gloss

Positive the user’s most recent accept(should(�)) � finished subtask Great job.
feedback action� if it was, or � wasn’t proposed by tutor Nice.
(rank 1) proposed, a valid next � caused unnecessary That was a correct action,

action and has not yet focus shift but I wasn’t expecting you
received feedback to do it now.

� finished top-level goal We’re done with this scenario.
none of above Good.

Negative the user’s most recent reject(should(�)) � was already done Whoops, you already did that.
feedback action� if it was, or �’s purpose was already Whoops, you didn’t need to
(rank 1) proposed, an invalid achieved do that.

next action and has not � has an unsatisfied Whoops, you can’t do
yet received feedback precondition that yet.

executing� violates Whoops, it’s too soon to
an ordering constraint do that.

End each step! that is an propose(:should(!) ! has known purpose Let’s stop closing the
interrupt- unstopped interruption fuel valves.
ion on the focus stack ! has unknown purpose That is not relevant
(rank 2) to our current task.
Teach each non-primitive! in propose(achieved(!)) We succeeded in closing
complete the current plans:t: the fuel valves.
(rank 3) ! is complete and the

student does not know
when! is complete

Correct step! if it is the propose(should(!)) Let’s return to
Focus tutor’s private focus opening the fuel valves.
(rank 4) but not the action on

top of the focus stack
Give any valid next plan step propose(tutor has just Go ahead.
initiative ! that the student knows initiative = user) proposed!
(rank 5) needs to be done, if the tutor has not just You take it from here.

tutor has initiative and proposed!
the student has not
requested help

Explain every plan step! that first step of Before starting an engine,
Why is teachable (see Teach explanation recipe always make sure that the
(rank 6) Step) and is currently other engine is stopped.

unexplained and has an
explanation recipe

Teach every valid next plan propose(should(!)) ! is primitive Now, you should press
step step! that the the on button.
(rank 7) student does not know ! is non-primitive The next step of engaging

and whose parent is the engine is to open
in focus the fuel valves.

Remind every valid next plan propose(should(!)) You need to press
step step! that the the on button.
(rank 8) student knows and

whose parent is
in focus

Propose purpose!, if the current propose(should(!)) Let’s try another
new plan is complete, scenario. Let’s engage
scenario where! is the engine one.
(rank 8) next task to work on
Shift every plan step! that propose(should(!)) Let’s open the fuel valves.
Focus is not currently on
(rank 8) top of the focus stack

and the student knows
has to be done and has
a childc that is a valid
next plan step andc is
not known by the student

Table 1: Tutorial discourse acts

Vincent Aleven
8

Typically, these recipes are composed of one or more utterances of text written by a domain expert,
but in principle, explanation recipes can contain any type of primitive or abstract actions.3 Whenever
Paco generates a candidate discourse act to teach a step, it also checks to see if an explanation recipe
exists for that step. If so, and if the step has not already been explained, Paco generates a candidate
discourse act of executing the first step of the recipe.

The conditions for generating discourse acts represent necessary, but not sufficient, conditions
for Paco to perform the act. An advantage of making explicit all necessary conditions for a discourse
act is to make it easier to extend Paco with new discourse acts or extend other agents with the ability
to perform Paco’s tutorial actions. However, this approach leaves open the question of how to choose
which act to perform. Paco chooses which act to perform based on the rankings of the discourse
acts, given in the first column of Table 1. For example, Paco prefers to give initiative when the
student knows what to do next rather than teach or remind her what to do next. We hypothesize
that different rankings or other methods for choosing an act from the agenda will produce different
tutoring styles.

5 Discussion

To facilitate comparison between Paco and other tutorial dialogue systems, the following list out-
lines some of the main dimensions along which such systems can be compared, categorizes Paco
along these dimensions, and provides some of the motivations and trade-offs involved in our design
choices:

� Our work focuses on the pragmatics of natural language understanding, i.e., the use of a
discourse interpretation algorithm and a rich representation of discourse state. Our claim is
that tutorial dialogues will be more natural for students if computer tutors follow the principles
of human collaborative dialogues, on which much research in computational linguistics has
focused. We do not yet have strong evidence to substantiate this claim, but investigating that
hypothesis is the primary focus of our work.

� Paco performs relatively sophisticated domain reasoning, based on the application of Colla-
gen’s domain-independent algorithms to a domain-specific task model (recipe library). Speci-
ficially, Collagen decides which domain actions can be done next based on its recipe library,
its knowledge of which actions and utterances have been performed so far, and its knowl-
edge of the current simulation state. Its reasoning does not yet include a full planner, as can
be found in Rickel and Johnson’s Steve tutor [19], but we recognize that such planning ca-
pabilities are important in many domains, and we are currently extending Collagen in that
direction. Collagen’s advantage over Steve is that it requires less domain knowledge (specif-
ically, it does not require causal links among task steps), but this limits its ability to recover
from some student errors (e.g., that would require repeating earlier actions) and to recognize
when some steps can be skipped (e.g., because they only establish preconditions for later
steps whose postconditions are already satisfied).

� Paco currently uses a simple overlay student model. The student model is crucial for Paco’s
approach to interleaving demonstration and coached practice. We do not currently use a
bug library, which would allow Paco to recognize common errors and provide more specific
feedback aimed directly at those errors, but Collagen’s near-miss capability is capable of
exploiting such knowledge if it is provided.

3Collagen’s facilities for executing recipes in a collaborative setting can be used to complete the explanation

Vincent Aleven
9

� Text and gesture generation are currently relatively simple in Paco, but this is only a matter of
research focus. Collagen uses text templates for text generation, and it uses a pointing hand to
direct the student’s attention to elements of the simulator. We believe this approach suffices
for simple 2D simulations. However, more sophisticated text generation would certainly
improve Paco, and elsewhere we have elaborated on the costs and benefits of more fully
embodied pedagogical agents [10]. As for graphics, we assume that the simulator will provide
appropriate graphics for the simulated world, and some additional graphics could be useful in
helping students understand the inner workings of equipment they are learning to operate [9],
but this has not been a focus of our work.

� Paco does not include a conventional dialogue planning module, i.e., an explicit search for
a sequence of utterances that will achieve a desired mental state in the student. The agent’s
utterances are selected (using a simple priority scheme) from the candidate discourse acts
that follow naturally from the current discourse state. We are interested in investigating more
sophisticated dialogue planning, but we have no strong evidence yet that it will be required
for teaching procedural tasks. One intermediate position that we are currently exploring is
the use of “tutorial recipes,” which can be viewed as cached dialogue plans. Collagen can use
such recipes to guide its interaction with students using the same mechanisms by which it uses
domain recipes. Also, Collagen’s plan trees can be viewed as plan-like structures that encode
expectations for future utterances and actions that will complete the current task, including
ordering constraints and subgoal relationships among these discourse acts. Thus, while Paco
does not plan its dialogue acts in a traditional sense, its plan trees play a similar role.

� Paco does not allow free-form student utterances, so it does not include any parsing or seman-
tic interpretation of sentences. Instead, the student constructs utterances through a GUI. This
is mainly because we are focusing on the dialogue manager; we are not making any claims
about the utility of natural language understanding for teaching procedural tasks. However,
we do believe that a GUI will be adequate for teaching many procedural tasks, although full
natural language understanding would certainly be better if it could be achieved.

The use of Collagen as a dialogue manager for a tutorial system, as an alternative to building
such a system from scratch, also presents some trade-offs. To connect an application and agent
to Collagen, one must make several commitments. First, one must write a software module that
maps application events into Collagen discourse acts and vice versa. However, a similar module
is required to connect any tutor to an external simulator, and Collagen provides a nice interface
for making such connections. Second, Collagen requires a recipe library that encodes domain task
knowledge, but, again, something similar will be required for any intelligent tutoring system for
procedural tasks. One important commitment is that the domain task knowledge must be expressed
in Collagen’s recipe library representation, as opposed to having the freedom to express it procedu-
rally (e.g., as production rules) or through a custom declarative language. The biggest disadvantage
this poses is that Collagen may not exploit some types of knowledge (e.g., causal links or temporal
constraints) that are important in a domain, or its semantics (e.g., the definition and implications of
ordering constraints) may not be appropriate for some domains. Similarly, one must map all student
and tutor utterances into Collagen’s act types, although this may not be a serious limitation since
Collagen allows new act types to be added. The benefit of providing a recipe library and mapping
to Collagen’s act types is that it maintains the discourse state based on principles from collaborative
discourse theory, and it includes both normal and near-miss plan recognition.

We are interested in several areas of future work. Paco thus far has been primarily a reimple-
mentation (on a new foundation) of fairly standard ITS behaviors. As the next step, we plan to better

Vincent Aleven
10

leverage Collagen’s rich discourse state representation to implement aspects of tutorial dialogue that
have not been treated in a fully general way in previous ITS work. We are also interested in broad-
ening the types of tutorial discourse acts we consider to include those used in recent analyses of
human tutorial dialogues [11, 15, 16], and we are especially interested in exploring the relationship
of “hinting” strategies to collaborative discourse theory. Some of these issues may require integrat-
ing information in Paco’s student model into Collagen’s discourse interpretation algorithm. Finally,
we would like to experimentally evaluate Paco’s ability to teach procedural tasks.

6 Conclusion

In conclusion, we believe that building Paco has been a demonstration of successful cross-fertilization
between research in intelligent tutoring and collaborative dialogue systems in at least three respects.
First, we showed how a variety of tutorial behaviors can be expressed as rules for generating can-
didate discourse acts in the framework of CDS. This allows us to immediately apply many notions
from CDS in our tutorial agents.

Second, building Paco has given us the opportunity to evaluate the suitability of a particular
piece of CDS technology, namely Collagen, for building ITS systems. Our experience has been
that using Collagen as the starting point for implementing Paco was a great improvement over
programming tutorial agents “from scratch,” as we have done in the past. Also, using Collagen led
us to design Paco as a composition of a generator of candidate discourse acts and a set of preferences
for selecting from these acts. This approach makes it easier to understand, explain, and share tutorial
behaviors.

Third, building a tutorial agent in Collagen has revealed some implicit biases in how Collagen
operates. As a result, we are exploring various generalizations and extensions to Collagen to better
support the full spectrum of collaboration.

References

[1] J. R. Carbonell. AI in CAI: An artificial-intelligence approach to computer-assisted instruction.IEEE
Transactions on Man-Machine Systems, 11(4):190–202, 1970.

[2] A. Collins, J. S. Brown, and S. E. Newman. Cognitive apprenticeship: Teaching the crafts of reading,
writing, and mathematics. In L. Resnick, editor,Knowing, Learning, and Instruction: Essays in Honor
of Robert Glaser. Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[3] R. K. Freedman.Interaction of Discourse Planning, Instructional Planning and Dialogue Management
in an Interactive Tutoring System. PhD thesis, Northwestern University, 1996.

[4] I. P. Goldstein. Overlays: A theory of modelling for computer-aided instruction. Artificial Intelligence
Laboratory Memo 495, Massachusetts Institute of Technology, Cambridge, MA, 1977.

[5] B. J. Grosz and S. Kraus. Collaborative plans for complex group action.Artificial Intelligence,
86(2):269–357, 1996.

[6] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of discourse.Computational
Linguistics, 12(3):175–204, 1986.

[7] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. Cohen, J. Morgan, and M. Pollack, editors,
Intentions in Communication, chapter 20, pages 417–444. MIT Press, 1990.

[8] B. J. Grosz [Deutsch]. The structure of task oriented dialogs. InProceedings of the IEEE Symposium
on Speech Recognition, Pittsburgh, PA, April 1974. Carnegie-Mellon University. Also available as
Stanford Research Institute Technical Note 90, Menlo Park, CA.

Vincent Aleven
11

[9] J. D. Hollan, E. L. Hutchins, and L. Weitzman. Steamer: An interactive inspectable simulation-based
training system.AI Magazine, 5(2):15–27, 1984.

[10] W. L. Johnson, J. W. Rickel, and J. C. Lester. Animated pedagogical agents: Face-to-face interaction in
interactive learning environments.International Journal of Artificial Intelligence in Education, 11:47–
78, 2000.

[11] S. Katz, G. O’Donnell, and H. Kay. An approach to analyzing the role and structure of reflective
dialogue.International Journal of Artificial Intelligence in Education, 11:320–343, 2000.

[12] N. Lesh, C. Rich, and C. L. Sidner. Using plan recognition in human-computer collaboration. In
Proceedings of the Seventh International Conference on User Modeling, pages 23–32, Banff, Canada,
1999.

[13] K. E. Lochbaum. A collaborative planning model of intentional structure.Computational Linguistics,
24(4):525–572, 1998.

[14] N. K. Person, A. C. Graesser, R. J. Kreuz, V. Pomeroy, and the Tutoring Research Group. Simulating
human tutor dialog moves in autotutor.International Journal of Artificial Intelligence in Education, 12,
2001. Forthcoming.

[15] K. Porayska-Pomsta, C. Mellish, and H. Pain. Aspects of speech act categorisation: Towards generating
teachers’ language.International Journal of Artificial Intelligence in Education, 11:254–272, 2000.

[16] A. Ravenscroft and R. M. Pilkington. Investigation by design: Developing dialogue models to support
reasoning and conceptual change.International Journal of Artificial Intelligence in Education, 11:273–
298, 2000.

[17] C. Rich and C. L. Sidner. COLLAGEN: A collaboration manager for software interface agents.User
Modeling and User-Adapted Interaction, 8(3-4):315–350, 1998.

[18] J. Rickel. An intelligent tutoring framework for task-oriented domains. InProceedings of the Inter-
national Conference on Intelligent Tutoring Systems, pages 109–115, Montr´eal, Canada, June 1988.
Université de Montréal.

[19] J. Rickel and W. L. Johnson. Animated agents for procedural training in virtual reality: Perception,
cognition, and motor control.Applied Artificial Intelligence, 13:343–382, 1999.

[20] C. L. Sidner. An artificial discourse language for collaborative negotiation. InProceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 814–819, Menlo Park, CA,
1994. AAAI Press.

[21] D. Sleeman and J. Brown, editors.Intelligent Tutoring Systems. Academic Press, 1982.

[22] D. R. Traum.A Computational Theory of Grounding in Natural Language Conversation. PhD thesis,
Department of Computer Science, University of Rochester, Rochester, NY, 1994.

[23] E. Wenger.Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos, CA, 1987.

[24] B. P. Woolf. Context-Dependent Planning in a Machine Tutor. PhD thesis, Department of Computer
and Information Science, University of Massachusetts at Amherst, 1984.

Vincent Aleven
12

AMANDA - An Intelligent Dialog
Coordination Environment

Marco A. Eleuterio1
PUC-PR/UTC

marcoa@hds.utc.fr

Jean-Paul Barthès
UTC, France

barthes@utc.fr

Flávio Bortolozzi
PUC-PR, Brazil

fborto@ppgia.pucpr.br

Celso A. Kaestner
PUC-PR, Brazil

kaestner@ppgia.pucpr.br

1 Sponsored by CNPq, Brazil

Abstract
This paper describes AMANDA2 - an intelligent
system intended to coordinate collective dialog
sessions in distance learning environments. The
overall objective of AMANDA is to help tutors
achieve better results from group discussions
and improve knowledge transfer among the
participants. This is done by integrating the
collective dialog as a disciplined and well-
coordinated activity in distance learning
situations. For this purpose, the dialog is
represented as an argumentation tree, a
structured collection of questions, alternatives
and arguments which evolves along sequential
dialog cycles. The intelligent behavior of the
system is due to its coordination actions taken in
response to reasoning over the dialog. We
describe how AMANDA coordinates the dialog
process by generating a sequence of dialog
cycles based on a set of coordination
parameters. In this paper we briefly describe
AMANDA’s functional modules, internal
structures and coordination algorithms. The
knowledge models that support system
reasoning are described, as well as our practical
experience in domain modeling. We have tested
the system in actual training situations, for
which we chose a test course and modeled the
corresponding domain knowledge. Although
some modules of the system are still under
development, specially those related to semantic
reasoning, we discuss the application of
semantic parameters and identify some
techniques which may improve the coordination
algorithm.

2 AMANDA - Agent de Modélisation et ANalyse de Dialogues
Argumentés - is a joint R&D effort between the Pontifical
University of Paraná, Brazil (PUC-PR), the Technology
University of Compiègne, France (UTC) and their respective
partners Siemens Telecomunicações, Brazil and Cegos, France.

1. Introduction
Collaborative learning is about promoting
knowledge transfer among the apprentices
through a series of learning interactions. We
recall a well-known knowledge management
theory (Nonaka, 99) in which a knowledge
transfer environment is composed of four
knowledge-transfer spaces, namely the
socialization space, the dialoguing space, the
systematization space and the internalization
space. In each of these spaces, a specific
implicit↔explicit knowledge conversion
occurs. By applying this approach to a
collaborative learning environment, as detailed
in (Eleuterio, 1999a), we categorize AMANDA
as a dialoguing space in which the articulation
of knowledge is the key for knowledge transfer.
In traditional distance learning environments,
this dialoguing space is normally implemented
by discussion forums.

Our experience with discussion forums in
Eureka (Eleuterio, 1999b), a web-based
environment developed in partnership with
Siemens and extensively used in academic and
professional training contexts, shows that
traditional discussions forums often fail to
promote group learning. They either grow two
much to be efficiently followed up by the tutor
or suffer from the lack of participation and
coordination. Similar problems are described in
(Leary, 1998) when identifying common
problems in discussion groups of knowledge
management systems. From our observations,
the two main reasons why discussion forums
often fail are (i) the lack of discipline due to the
poor integration of the discussion process into
the regular activities of the course and (ii) the
lack or articulation and coordination of the
discussion.

Vincent Aleven
13

With the purpose of overcoming the identified
problems, we propose a dialog framework that
covers both aspects, i.e. automatically
coordinates the dialog while engaging the
participants by generating dialog activities.

We identify three main differences between
AMANDA and a traditional discussion forum.
Firstly, the presence of domain models in
AMANDA’s architecture enables a certain degree
of semantic reasoning over the dialog.
Secondly, its coordination mechanism relieves
the tutor from time-consuming coordination
tasks, such as finding relations between users’
inputs, measuring the degree of commitment of
the participants, detecting disagreement topics
and measuring the coverage of discussion
topics. Thirdly, the system manages the dialog
by generating discussion cycles, in which the
participants express their supporting and
opposing ideas in relation to another
participant’s input, thus creating a suitable
context for the articulation and confrontation of
ideas and points of view.

The proposed coordination mechanism allows
various degrees of knowledge representation
without impairing dialog control. It means that,
if the system has no knowledge models, it can
coordinate the dialog as well, gracefully
degraded, by considering only structural
parameters. This is possible due to the
separation between structural and semantic
aspects in the coordination mechanism (see
section 4). This separation allows applying

AMANDA to situations where knowledge
modeling is neither feasible, e.g. open domain
discussions, nor desirable, e.g. short-term
courses.

Merging Two Complementary Approaches
Tutorial dialog has been subject of important
research efforts, such as the CoLLeGE
architecture (Ravenscroft & Pilkington, 2000)
which analyzes dialog moves, conceptual
changes and world models as the basis of the
dialog process. Such work deeply inspects the
tutor-apprentice interaction, but doesn’t give
much emphasis on the collective aspect of the
dialog. On the other hand, the argumentative
discourse environment (Karacapilidis, 1998)
describes an argumentation framework applied
to multi-agent decision making, which is fully
devoted to formalize argumentative discourses.
Our objective is to merge both approaches,
which seem to be complementary, in a single
dialog coordination system applied to
collaborative distance learning environments.

2. System Overview
AMANDA is an autonomous domain-
independent intelligent dialog coordination
system applied to collective discussions. By
domain-independent we mean that domain-
dependent behavior is achieved by providing the
corresponding domain knowledge models. By
intelligent coordination system we mean that
AMANDA takes coordination actions by
reasoning over the structure and the semantics

DIALOG

CONTROL

HTML
module

Dialog
Schedule

Session
Schedule

HTML
worksheets

WS

1

2

3

4 5

DIALOG

CONTROL

KB
MODULE

DE
GENERATOR

Dialog
Tree

Domain
models

Tutor interface

GUI

HTML
MODULE

User interface

HTML

Planning

Figure 1a: System overview Figure 1b: Dialog control – simplified

Dialog
Tree

Vincent Aleven
14

of the dialog. The autonomous feature of
AMANDA is due to its capability of coordinating
the dialog without direct interference of the
human tutor. Figure 1a shows the main modules
of the system and the paragraphs below describe
the modules, structures and processes that take
part in the dialog coordination.

2.1. Dialog Control Module
This module is AMANDA’s central coordination
mechanism. Its principle is to organize the
dialog in sequential periods called sessions,
each one representing a time interval in which a
certain number of discussions will be carried on.
During each session, the system triggers a
number of dialog cycles in order to update the
dialog tree with input from the participants.

In the setup stage, the Dialog Control module
reads the dialog schedule �, where all sessions
are described. It then repeatedly generates
dialog cycles by producing worksheets � until
a satisfactory degree of agreement is achieved.
Each time the system receives input from the
participants �, the Dialog Control module
analyzes and updates the dialog tree � and
decides upon producing a new cycle or closing
the dialog. The items below detail the structures
handled by the Dialog Control module.

2.1.1. Dialog Planning
The dialog planning is represented by the dialog
schedule and the session schedule.

Dialog Schedule
The dialog schedule is the overall planning of
the dialog. It specifies the dialog sessions, the
corresponding start/end dates and the respective
domain of discourse (Figure 2).

Session SD ED DS (domain of discourse)

S-1 Sd Ed (c1 … cm)

S-2 Sd Ed (c1 … cn)

 :

S-n Sd Ed (c1 … cp)

S-n: the nth session of the dialog
SD: start date; ED: end date

DS: a set of concepts from
the domain ontology

Figure 2: The dialog schedule Session

Session Schedule
The session schedule, on the other hand, is a
dynamic structure automatically produced and
updated by the system during a given session
(Figure 3). Each entry of the session schedule is
a dialog cycle which specifies a dialog task to
each participant. A dialog task is the set of all
nodes from the dialog tree (see item 2.1.2)
which are assigned to the same participant at a
certain dialog cycle.

A dialog task is represented by a worksheet
assignment of the type (id, list-of-WEs), in
which a list of worksheet elements (we) is
assigned to a particular participant (id).
Worksheet elements map directly to specific
nodes of the dialog tree.

Cycle SD ED WS assignment

C-1-x Sd Ed ((id (we-y-1 … we-y-n)) …)

C-2-x Sd Ed ((id (we-y-1 … we-y-n)) …)

 :

:

C-n-x Sd Ed ((id (we-y-1 … we-y-n)) …)

C-n-x: the nth dialog cycle
of session x

SD: start date
ED: end date

WS: worksheet, a set of ordered
pairs of the type (id-x we-y)

id: the ID of the participant
we: worksheet element

Figure 3: The session schedule

2.1.2. Dialog Tree
The dialog tree, shown in Figure 4 is the
structure that represents the dialog. Its internal
nodes can be of five types: DIALOG,
SESSION, DE, ALT and ARG. Its internal
structure was adapted from the argumentation
model (Karacapilidis, 1998). The paragraphs
below describe each type of node and their
corresponding relations to the dialog process.

DIALOG node
The DIALOG node is the uppermost node of the
tree. It contains a reference to a number of
dialog sessions. When a dialog is created, this
node is initialized with the information
contained in the dialog schedule (Figure 2.a).

SESSION node
The SESSION node is the uppermost node of a
dialog session. Dialog sessions are intended to
organize the discussion into separate time
periods, each one assigned to a certain domain

Vincent Aleven
15

of discourse. The SESSION node contains a
reference to all discussion elements (DEs)
which are scheduled for discussion within this
session.

DE node
The DE node represents a discussion element,
i.e. a natural language question that will
originate a specific discussion. Examples of
DEs are: “which are the elements of a training
budget?” or “what types of connection elements
exist in a computer network?”.

A DE can be classified as a content-expected
interrogative speech act (Porayska-Pompa,
2000), for which we expect an answer with a
certain “content” as response. According to the
argumentation model of (Karacapilidis, 1998), a
DE node is an issue to be debated.

ALT node
The ALT node is an answer to a question. It is
an alternative response to a certain DE. The
answer contained in an ALT node is the
“content” expected by its corresponding DE
node. In Karacapilidis’ model, an ALT node is a
position over an issue.

ARG node
The ARG node, or argumentation node,
represents a supporting or opposing reaction
from a given participant over a dialog element
placed by another participant. An ARG node
can either refer to an ALT node or to another
ARG node.

Argumentation nodes are key elements of the
dialog. When analyzed as a whole, they

represent the level of collective agreement over
a given position. Each ARG node conveys a
supporting or opposing intention, or polarity.
This intention is expressed by four levels: total
agreement (++), partial agreement (+), partial
disagreement (-) and total disagreement (--).

A substantial coordination effort of AMANDA is
concentrated in analyzing the effects of the
ARG nodes over the dialog tree (more details in
item 4).

2.1.3. Dialog Control Interface
The Dialog Control module has a graphical
interface which allows us to view the dialog tree
and perform editing and follow-up functions
over the dialog. This interface, primarily
designed to follow up the dialog, can also be
used to simulate dialog situations and evaluate
the coordination algorithms.

Figure 5 shows the Dialog Control interface. It
allows to (i) view the dialog tree, (ii) edit its
nodes, (iii) view the internal parameters of the
dialog and (iv) simulate a dialog by means of
control buttons.

2.2. KB Module
This module is responsible for managing the
knowledge model and providing semantic
parameters to the Dialog Control module. The
central knowledge representation is the domain
ontology, but other structures may be added,
such as the domain task structure. The KB
module evaluates the dialog from the semantic
point of view, by calculating a certain number
of parameters, such as the semantic proximity
between two text-based messages, the
conceptual distance between ontology concepts
or the conceptual coverage of a certain dialog
session.

2.2.1. Domain Models
AMANDA requires domain models to perform
semantic reasoning over the dialog. In order to
enable different types of domain models to be
“plugged” into the KB module, we decided to
use an ontology-centered approach. This allows
to build various models, such as conceptual
maps and task structures, which refer to the
ontology concepts when applicable.

DIALOG

Session-1

DE-1

Alt-1 Alt-n

DE-n

Arg-1 Arg-n

++ -

- +

Discussion
elements

Alternatives
(direct answers)

Argumentation
levels

Arg-1 Arg-n

Session-n

Figure 4: The dialog tree

Vincent Aleven
16

Domain Ontology
The domain ontology is AMANDA’s central
knowledge representation. Its role is to organize
domain concepts so as to enable reasoning.
Apart the various definitions found in the
knowledge representation literature, it is a
consensus that ontologies are conceptual models
that explicit the nature of the concepts. The
basic type of ontology, the “terminological
ontology”, or “level 1” ontology (Mizoguchi,
2000), contains primarily is-a links. In some
cases, formal definitions are needed to
completely reason over a concept. In such cases,
more powerful ontologies, like interpretable or
executable ontologies, are required.

In our system, since the ontology is used mainly
for terminological purposes, we adopted a
simple structure which organizes concepts by
means of is-a and part-of links. We decided to
merge is-a and part-of links for practical
reasons. We were faced with situations in which
a concept would be better represented by a part-
of decomposition than by a taxonomy relation.
In fact, in certain domains, the use of part-of
links is the only way to construct ontologies, as
in the case of the PLINIUS project (Van der Vet
& Mars, 1998). However, depending on the
rigor demanded by the ontology application,
merging is-a and part-of links may result in
tangled hierarchies and confuse the reasoning

mechanisms. A formal approach
to this problem is described in
(Guarino, 2000).

Task Structure
Due to the inherent task-oriented
nature of the test course, we used
a task structure as a
complementary knowledge
model. It represents the
decomposition of a task by means
of two types of links: the
sequence link and the type link.
Sequence links decompose a
complex task in a sequence of
more detailed sequential
subtasks, while type links specify
different methods of performing a
certain task. A detailed

description of task structures can be found in
(Chandrasekaran, 1992) and (Decker, 1995).
Figure 6 shows the Task Model section of the
KB interface.

2.3. DE Generator
This module produces natural language
questions based on the available knowledge
models. Questions are generated by the system
in order to include a given domain topic to the
dialog. In practice, this is done to move the
focus of the dialog to a desired sub-domain. The
content of the questions are based on the links
and concepts available in the knowledge
models.

Figure 5: The Dialog Control interface

Figure 6: KB interface – Task Model section

Vincent Aleven
17

Suppose an ontology in the “computer network”
domain containing an is-a link from the concept
<connection element> toward the concepts
<hub> and <router>. The semantics of this
relation is: “hubs and routers are types of
connection elements”. For the DE Generator,
this link would produce a sentence of the type
“what differs hubs from routers since
both are connection elements?”. This
sentence conveys a pre-defined intention
to find out the identity criteria, or a
distinguishing property, between two
concepts belonging to the same parent.
We could generalize this principle by
stating: “if there is a taxonomic
distinction between two concepts, there
must be a set of properties capable to
distinguish them” (Guarino, 2000). For
each type of semantic relation contained
in the knowledge models, we can define
a set of generic principles that can be
used for sentence generation.

As in the propositions of (Ravenscroft,
2000), the sentences produced by the
DE Generator carry a specific intention in the
discourse. In our case, they are meant to
investigate the domain along five different axes,
each one assigned to a specific semantic link of
the knowledge model. The ontology contributes
with two axes: (i) the nature of the concepts (is-
a links) and (ii) the elements of a composed
concept (part-of links). The task model
contributes with the remaining three axes: (i)
the use of the concepts by a certain task
(resource link); (ii) the decomposition of a
complex task into sub-tasks (sequence link); and
(iii) different ways of performing a task (type
link). Each of these axes maps to a set of
sentence structures of the type shown in the
example above. The DE Generator can thus be
considered the linguistic level of the knowledge
models.

2.4. The HTML Module
This module is responsible for the interface
between AMANDA and the participants of the
dialog. This is done by the dynamic generation
of worksheets in HTML format (see figure 7).

These worksheets are accessed by the
participants, filled in and sent back to the

system. Once the worksheets are returned, the
Dialog Control module updates the dialog tree.

The HTML module was implemented by a PHP
script running on an HTTP server. The
communication between the HTML module and
the Dialog Control module (see Figure 1.b �) is
done by intermediate files.

3. The Dialog Process
This item explains how AMANDA starts and
conducts the dialog process, as well as the
related algorithms.

3.1. Dialog Setup
The dialog starts with the creation of a session
schedule based on the available dialog schedule
(Figures 2 and 3). Once the dialog session is
established, i.e. the SESSION node and the
related DE nodes are created, the system can
trigger the first dialog cycle.

3.2. First Dialog Cycle
The first dialog cycle, identified as the ALT
level in the dialog tree, is intended to distribute
the DEs among the participants. To do so,
AMANDA takes the set of DEs, as well as the set
of participants, and executes the DE-assignment
algorithm. This algorithm generates DE
assignments of the type (DE, list-of-ids) and
can be parameterized according to the desired
load of DE/participant and the presence/absence
of the tutor(s) in the discussion (see Figure 8).

Figure 7: Worksheets in HTML format

Vincent Aleven
18

3.3. Argumentation Cycles
As a result of the first cycle, the system receives
a number of answers to the proposed DEs, or so
called alternatives. These alternatives,
represented by ALT nodes in the dialog tree,
will be subject of analysis in the argumentation
cycles. From this moment on, AMANDA will
generate a sequence of dialog cycles in order to
expand the tree either in depth or in breadth,
until a satisfactory degree of agreement is
reached. At this point we distinguish two key
concepts: the dialog level and the dialog cycle.

Dialog level
The dialog level is the depth level of the dialog
tree, i.e. the distance from a certain node to the
root. A large number of dialog levels means that
the dialog has grown in depth, i.e. an original
answer of a given DE has been subject of many
subsequent argumentation cycles.

High dialog levels indicate that either the
answer has been repeatedly opposed or
progressively clarified, depending on the
polarity of the ARG nodes. Certain typical
behaviors in argumentative discourse, such as
belief change, can only be detected with high
dialog levels.

In practice, however, high dialog levels lead to
interpretation difficulties that must be handled
by the interface design. For example, suppose
that a participant receives a discussion element
of argumentation level 3, i.e. an Arg-3 node. It
means that he is supposed to analyze his parent
node (argument Arg-2) that refers to another
argument (Arg-1), which in turns refers to an

answer (Alt) to a given question (DE). If the
user interface is not carefully designed, it’s
likely that we misinterpret the participant’s
contribution due to the large number of previous
elements. On the other hand, we must present
the whole history of the discussion so that the
user can trace the ideas and place his
contribution. This problem opens a design issue
which must not be overlooked.

Dialog cycle
The dialog cycle, on the other hand, is a time
period in which the dialog tree expands,
possibly in depth but not necessarily. A large
number of dialog cycles means that the dialog
has evolved through a large number of
interactions, but not necessarily that it has
grown in depth. This is the distinction between
the dialog level and the dialog cycle.

To exemplify, suppose that a certain answer
(ALT node) exhibits low local support level
(typically negative values) and low participation
level (i.e. few lower level ARG nodes). This is
the case, for example, when an answer is
opposed by some counter-arguments, but has
not been broadly discussed within the group. In
this case, the system may decide to create a
specific dialog cycle to re-launch this answer to
be analyzed by other participants. This new
dialog cycle will only increase the breadth of
the tree, keeping the dialog depth unchanged.

4. Reasoning Over the Dialog
The coordination actions taken by the system
are based on a certain degree of reasoning over
the dialog tree. Two types of reasoning are
proposed: structural and semantic reasoning.

Structural reasoning concerns to the structural
aspect of dialog tree, specially the distribution
of the ARG nodes and their corresponding
polarities. Semantic reasoning, on the other
hand, analyzes the content of the textual
information in order to find semantic relations
among the nodes.

The separation between structural and semantic
reasoning allows AMANDA to coordinate the
dialog even in the absence of domain models.
The following paragraphs identify and propose
some of the parameters to be evaluated in each
type of reasoning.

Figure 8: The DE-assignment interface

Vincent Aleven
19

4.1. Structural reasoning
Structural reasoning analyses the structure of
the dialog tree, mainly the distribution of ARG
nodes and their embedded supporting/opposing
intentions, to decide which nodes will be re-
launched and to which participants they will be
assigned. The main structural parameter is the
support level of a node in respect to its lower
level sub-tree. The items below detail the
implementation of this reasoning.

4.1.1. Evaluating the support level
Before initiating a new dialog cycle, AMANDA
evaluates the overall agreement level of each
DE and decides upon creating a new cycle or
closing the discussion tree for the corresponding
DE. This decision takes into consideration the
concepts of local and transmitted support level.

Local support level
Each “supportable” node of the dialog tree (i.e.
nodes of the type ALT or ARG) can be assigned
a local support level (LS). This level represents
the degree of consensus of this node regarding
its lower level sub-tree. The support levels are
calculated by traversing the dialog tree from the
leaves to the root and assigning support levels to
each ALT or ARG node. The local support level
is a real number ranging from –1.0 to +1.0,
respectively meaning total disagreement and
total agreement. This number is the average
level of transmitted support from all its direct
descendant nodes (see Eq. 1). If the node has no
direct child nodes, i.e. in the case of leaf nodes,
the local support level is assigned the maximum
value of +1.0.

The local support level of a node N, LS(N), is
expressed by Eq. 1 and exemplified in Figure 9.

 Σ (TS(child(N))/n if n > 0
LS(N) =
 +1.0 if n = 0

Where:

− TS is the transmitted support level (Eq. 2),

− child(N) returns the next child of node N

− “n” is the number of child nodes.

Eq. 1: The local support level (LS)

Figure 9 Local and transmitted support levels

The transmitted support level
The principle is that each descendant ARG node
transmits to its direct parent a certain level of
support – the transmitted support level. This
level depends on the type of argument (++, +, -
, --) and the local support level of the
transmitting node itself. The nominal level that
a node of type ++/+/-/-- transmits to its parent is
respectively +1.0/+0.5/-0.5/-1.0.

For example, an ARG++ transmits to its direct
parent a support level of +1.0 multiplied by its
own local support level. Analogously, an ARG-
node transmits to its direct parent a support
level of -0.5 multiplied by its own local support
level. In other words, the local support level acts
as a “damping” parameter that tends to reduce
the transmitted support level if the node does
not exhibit total support from its lower levels.
The support level TS(N) transmitted by a node
N to its direct parent is expressed by Eq.2.

 +1.0 × LS’(N) if arg-type(N) = ”++”

TS(N) = +0.5 × LS’(N) if arg-type(N) = ”+”

 -0.5 × LS’(N) if arg-type(N) = ”-”

 -1.0 × LS’(N) if arg-type(N) = ”--”

Where LS’(N) = min(0, LS(N))

Eq. 2: The transmitted support level (TS)

An important assumption of the algorithm is
that nodes with negative LS are disabled to
transmit TS level to their parent by being
excluded from the set of children in LS
calculation. This is done to prevent highly
opposed nodes from influencing their respective
ascendants. In addition, this is necessary to
avoid undesirable situations in which the
original polarity of a node (supporting or
opposing) is inverted by its negative LS.

LS(N1)
+0.25

LS(N2)
+1.0

LS(N3)
+1.0

[N1]

[N2] [N3]

TS(N2) = +1.0 TS(N3) = -0.5

TS(N1) = +0.125
(0.5 x 0.25)

(++) (-)

(+)

(leaf nodes)

Vincent Aleven
20

The algorithm starts the evaluation by assigning
LS values of +1.0 to all leaf nodes and then
“climbs” up the tree by calculating the
corresponding LS values for all nodes up to the
DE node.

Tests performed in actual dialog situations show
that the support levels obtained by this
algorithm reflect the collective agreement of a
dialog contribution within the discussion. They
are used to compute a priority value that defines
which nodes are to be re-launched in the next
dialog cycle.

Figure 10 shows the interface for opening a new
dialog cycle. It shows the nodes to be re-
launched, their corresponding re-launch score
and support levels and the assignment proposed
by the system.

4.2. Semantic Reasoning
Due to the text-based nature of the dialog
contributions and the domain dependency of the
dialog, it seems reasonable to apply semantic
matching techniques to improve the
coordination mechanism. We identify two
semantic parameters with large potential for this
purpose.

The first parameter is the semantic proximity
between textual inputs, such as direct answers
or arguments. This may be useful to discover
hidden relations among users’ input, specially in
extensive dialog trees with large amounts of
textual information. The availability of a
domain ontology may extend the traditional

word-matching by adding concept-based
matching, as described in (Honkela, 1995).

The second parameter is the conceptual
coverage, which aims to detect missing or
insufficiently covered topics in dialog sessions.
Such topics can be identified by analyzing the
occurrence of certain words of domain in a
given dialog sub-tree. As a response, specific
DEs can be generated with the objective of
bringing such subjects back to the dialog (see
section 2.3).

Other text techniques, such as ontology-based
information retrieval, can be applied for finding
related concepts among textual information
(Guarino, 1999).

One of the difficulties to apply semantic
reasoning is the need for comprehensive and

well constructed knowledge
models, which are difficult to
achieve even by experienced
knowledge experts. In
addition, lexical diversity may
impose difficulties in relating
similar concepts from different
user inputs. This suggests that
semantic reasoning might give
better results when applied to
very specific domains with low
terminology diversity.

5. Conclusion
Our system was developed
under empirical observations
over distance learning

environments, specially over the poor results
achieved in traditional discussion forums. The
large potential in terms of knowledge transfer of
such environments encouraged us to go beyond
traditional approaches and to design an
environment that takes advantage of the
collective discussions.

The real problem that we aim to solve is that
successful distance discussion sessions require
participants to be highly committed and
represent a very time-consuming effort from the
tutors. As a result, very few discussion forums
end up satisfactorily.

Figure 10: Opening a new dialog cycle

Vincent Aleven
21

We created a dialog framework that attempts to
keep up the commitment of the participants by
generating regular dialog activities and relieve
the tutor from the dialog coordination task. This
framework has been applied in actual distance
training situations and has been the test-bed for
various algorithms and coordination strategies.

A modular approach for the coordination
mechanism, which separates structural from
semantic parameters, allows it to be applied to
situations where domain models are not
available.

The next steps of this work are to implement the
semantic reasoning over the dialog and to
consolidate the results obtained in actual
training situations.

Acknowledgements
We are grateful to CEGOS for its financial
support and active participation in the context of
the CEGOS-UTC partnership and to Siemens
Telecomunicações Brasil for its financial
support of the LAMI laboratory in the context
of the PUCPR-Siemens partnership.

6. References
Chandrasekaran B., Johnson T., Smith J. Task-
structure analysis for knowledge modeling.
Communications of the ACM (CACM 35) no.9,
1992, pp. 1124-137.

Decker K. Environment Centered Analysis and
Design of Coordination Mechanisms; Ph.D.
thesis. Department of Computer Science;
University of Massachusetts, Amherst, 1995.

Eleuterio M., Eberspächer H. A Knowledge
Management Approach to Virtual Learning
Environments. International Workshop on
Virtual Education (WISE), 1999.

Eleuterio M., Eberspächer H.,Vasconcelos C.,
Jamur J. Eureka: um ambiente de aprendizagem
cooperativa baseado na Web para Educação à
Distância. In: Brazilian Symposium on
Informatics in Education (SBIE), 1999.

Guarino N., Masolo C., and Vetere G.,
OntoSeek: Content-Based Access to the Web,
IEEE Intelligent Systems 14(3), May/June
1999.

Guarino N., Welty, C. Ontological Analysis of
Taxonomic Relationships. In, Laender, A. and
Storey, V., eds, Proceedings of ER-2000: The
19th International Conference on Conceptual
Modeling. Springer-Verlag LNCS. 2000.

Honkela T. Self-organizing maps in natural
language processing. Ph.D. thesis. Helsinki
University of Technology, 1995.

Karacapilidis N., Papadias D. A computational
approach for argumentative discourse in multi-
agent decision making environments. AI
communications 11 (1998) 21-23.

Leary D. Using AI in Knowledge Management:
Knowledge Bases and Ontologies; IEEE
Intelligent Systems, May/June, 1998.

Mizoguchi R., Bourdeau J. Using Ontological
Engineering to Overcome Common AI-ED
Problems; International Journal of Artificial
Intelligence in Education 2000.

Nonaka I., Toyama R., Konno N. SECI, Ba, and
Leadership: A Unified Model of Dynamic
Knowledge Creation; D.J. Teece and I. Nonaka
(Eds). Oxford University Press, 1999.

Porayska-Pompa K, Pain H. Aspects of Speech
Act Categorisation: Towards Generating
Teacher’s Language. International Journal of
Artificial Intelligence in Education, 2000.

Ravenscroft A., Pilkington R. Investigation by
design: developing dialog models to support
reasoning and conceptual change. International
Journal of Artificial Intelligence in Education,
2000.

Van der Vet P., Mars N. Bottom-up
Construction of Ontologies. IEEE Transactions
on Knowledge Engineering, vol. 10 no. 4, 1998.

Vincent Aleven
22

The Design and Formative Analysis of a Dialog-Based Tutor

Neil T. Heffernan (neil@cs.cmu.edu)
Kenneth R. Koedinger (koedinger@cmu.edu)

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
Symbolization is the ability to translate a real world
situation into the language of algebra. We believe

that symbolization is the single most important skill

students learn in high school algebra. We present
research on what makes this skill difficult and

report the discovery of a “hidden” skill in
symbolization. Contrary to past research that has

emphasized that symbolization is difficult due to
both comprehension difficulties and the abstract

nature of variables, we found that symbolization is

difficult because it is the articulation in the
“foreign” language of “algebra”. We also present

Ms. Lindquist, an Intelligent Tutoring System (ITS)
designed to carry on a tutorial dialog about

symbolization. Ms. Lindquist has a separate tutorial
model encoding pedagogical content knowledge in

the form of different tutorial strategies, which were

partially developed by observing an experienced
human tutor. We discuss aspects of this human

tutor’s method that can be modeled well by Ms.
Lindquist. Finally, we present an early formative

showing that students can learn from the dialogs
Ms. Lindquist is able to engage student in. Ms.

Lindquist has tutored over 600 students at

www.AlgerbaTutor.org.

Introduction
The mission of the Center for Interdisciplinary

Research on Constructive Learning Environments
(CIRCLE) is 1) to study human tutoring and 2) to

build and test a new generation of tutoring systems
that encourage students to construct the target

knowledge instead of telling it to them (VanLehn

et. al., 1998). CAI (Computer Aided Instruction)

systems were 1st generation tutors. They presented a
page of text or graphics and depending upon the

student’s answer, put up a different page. Model-
tracing ITSs are 2nd generation tutoring systems that

allow the tutor to follow the line of reasoning of the

student. ITS have had notable success (Koedinger
et. al., 1997) despite the fact that human tutoring

can look very different (Moore, 1996). One way
they are different is that there is a better sense of a

dialog in human tutoring and maybe this is
important. After analyzing over 100 hours of

untrained tutors in naturalistic tutoring sessions

Graesser et. al. (in press) believe “there is
something about interactive discourse that is

responsible for learning gains.”
The members of CIRCLE are working on

3rd generation tutoring system that are meant to

engage in a dialog with students, using multiple
strategies, to allow students to construct their own

knowledge of the domain. We have built a new
ITS, called Ms. Lindquist, which not only is able to

model-trace the student’s actions, but can be more
human-like in carrying on a running conversation,

complete with probing questions, positive and

negative feedback, follow-up questions in
embedded sub-dialogs, and requests for explanation

as to why something is correct. In order to build
Ms. Lindquist we have expanded the model-tracing

paradigm so that Ms. Lindquist not only has a
model of the student, but also has a model of

tutorial reasoning (e.g. Clancey, 1982). Based on

observation of an experienced tutor and cognitive
research, this tutorial model has multiple tutorial

strategies at its disposal.
The task domain we are working on is

symbolization, which is the task of writing an

Vincent Aleven
23

algebraic expression given a real-world problem
context, often presented in the form of a word

problem. Symbolization is important because if
students can’t translate problems into algebra, they

will not be able to apply algebra to solve real world
problems. This domain makes it easy to avoid

some difficult natural language issues because we

can ask students to write algebraic expressions and
those expressions are easy for the computer to

“understand”. We take advantage of this property
of the domain to avoid any serious natural language

processing; we also use pull-down menus to allow
students to construct explanations. Instead, we

focus our energies on modeling tutorial reasoning

which includes capturing the pedagogical content

knowledge (Shulman, 1986) of an experienced

human tutor. Pedagogical content knowledge is the
knowledge that a good tutor has about how to teach

a specific skill. A good tutor is not just one who

knows the domain, nor is it simply one who knows
generally tutoring rules. A good tutor is one who

also has content specific strategies that can help a
student overcome common difficulties. We have

set out to observe and model some of these
strategies for our specific domain of symbolization.

Lets look at one example of a content-specific

pedagogical strategy for symbolization. The
following was collected and transcribed from a one

hour long one-on-one tutoring session between an
experienced human tutor and an eighth grade

student working on the “bike-trip” problem, which
we use as one of several running examples.

240. Student: [reads problem1] Cathy took a "m"

mile bike ride. She rode at a speed of "s"
miles per hour. She stopped for a "b" hour

break. Write an expression for how long the
trip took.

241. S: uhm [writes "s/m+b" but should be
“m/s+b”]

242. Tutor: How do you calculate the amount of

time it takes you? If you’re, if you’re, if
you’re riding at, let’s make it simple. If you

are riding at 20 miles per hour, OK, and you

1 Throughout this paper, text in square brackets are

comments, and S and T stand for “student” and “tutor”

respectfully.

go 100 miles, how many hours did that take
you?

243. S: Um 5
244. T: 5. And how did you get that 5? How did

you use the numbers 100 and …
245. S: 100 miles divided by miles per hour

246. T: So you took the miles and divided it by

the [garbled, but possibly “speed”]
247. S: Miles divided by s plus b equals time

[writes m/s+b]
248. T: Right.

The tutor in the above dialog, appears to have done
two things to scaffold this problem. First, the tutor

focused on the problem of calculating the time

actually on the bikes by decomposing what had
been a problem with two operators into a problem

that had only one operator. Presumably this is
because the student indicated he understood that the

goal quantity was found by adding for the amount

of the break (“b”) to the time actually on the bikes.
The second scaffolding move the tutor did

was to change the problem question from a
symbolization question to a presumably simpler

compute question by asking the student to calculate
the speed using 100 and 20 rather than “m” and “s”.

Then in line 244 the tutor asked for the articulation

step of "How did you get that 5?" Finally, the
student is prompted for the generalization step of

writing the expression using variables.
Our experienced tutor often invited the

student to use concrete numbers. We call this
strategy the concrete articulation strategy

(Koedinger & Anderson, 19982). McArthur et. al.

(1990) also observed that human tutors often used
what he called curriculum scripts and micro-plans,

which often involved a series of questions designed
to remediate particular difficulties. We call these

scripts knowledge construction dialogs to emphasis
the fact that that we are trying to build a tutor that

encourages students to build their own knowledge

by less often telling them a hint and more often
asking them a question.

The impediments to building a third
generation tutor is not just technical. We think

2 Then called the inductive support strategy.

Vincent Aleven
24

that if you want to build a good ITS for a domain
you need to:

• Study what makes that domain difficult,
including discovering any hidden skills, as well

as determining what types of errors students
make.

• Construct a theory of how students solve these

problem. (We instantiated that theory in a
cognitive model.)

• Observe experienced human tutors to find out
what pedagogical content knowledge they have

and then build a tutorial model that, with the
help of the theory of domain skills, can capture

and reproduce some of that knowledge.

We look at these each of these steps in turn.

What Makes Symbolization
Difficult?

Symbolization is a difficult task for students. For
instance, only 13% of student correctly answered

the following question “Anne is in a rowboat in a
lake that is 2400 yards wide. She is 800 yards from

the dock. She rows back towards the dock at a
speed of 40 yards per minute for ‘m’ minutes. How

far is Ann from the dock?” To determine what

makes symbolization difficult we conducted two
difficulty factors assessments (e.g., Koedinger &

MacLaren, 1997) which are paper and pencil tests
that we gave to groups of 80+ students (Heffernan

& Koedinger, 1997 and 1998). First, we identified

three hypotheses about what makes symbolization
difficult.

The first of these is the comprehension

hypothesis. Much of the prior research (e.g., Lewis

& Mayer, 1987) on word problem solving has
focused on students' comprehension abilities. For

instance, Nathan, Kintsch, & Young (1992) "claim

that [the] symbolization [process] is a highly
reading-oriented one in which poor comprehension

and an inability to access relevant long term
knowledge leads to serious errors.''. Kintsch (1991)

also states the "the premise of [his work] is that
comprehension failures are central to the difficulty

of word algebra problems." The general conclusion

from the above research is that comprehension rules

are key knowledge components students must
acquire to become competent problem solvers.

A second hypothesis is the generalization

hypo thes i s . According to this hypothesis,

symbolization is difficult because students must
learn how to use variables to generalize arithmetic

procedures..

More recent research by Koedinger and
Anderson (1998), and which we confirmed

(Heffernan & Koedinger, 1997 and 1998), showed
that students could comprehend many problems

well enough to find a numerical answer, but they
nevertheless failed to correctly symbolize.

Although this refutes the comprehension hypothesis

it does not refute the generalization hypothesis
because the symbolization problems had variables

in them. Therefore, we compared students’ ability
to symbolize a problem that contained a variable

(with an answer like “800-40m”) to their ability to

symbolize a problem with just constants. In the
“constants” case the students were asked to write

an expression for their answer (i.e. “800-40*3”)
instead of finding a numerical solution (like “680”).

Even if we counted as correct the very few students
who did not follow the directions and evaluated the

answer, we found that the presence of the variable

in the problem did not make problems more
difficult. Therefore, the generalization hypothesis

was refuted.
So what can explain why symbolization is

so difficult? We propose the articulation

hypothesis which suggests that there is a “hidden”

skill that is not obvious to most teachers and

researchers. The hidden skill is the ability to
produce symbolic sentences in the language of

algebra. It appears that many students are able to
figure out all the conceptual relations in a problem,

but are not able to express those relationships in
algebra. If we asked students to translate a story

written in English into Greek we would not be

surprised if many fail because they don’t know
Greek. But teachers and researchers often fail to

realize that algebra too is a language. And a
language that students have had relatively little

practice in “speaking” By “speaking” we mean

producing sentences of symbols, not verbalizing.

Vincent Aleven
25

This was demonstrated anecdotally by one of our
students who when asked to symbolize a problem

with the answer of “(72-m)/4” responded with “72-
m=n/4=”. Many commentators have noted that

students will incorrectly use an equal sign in a way
that makes sense if “=” means “results in.” Sfard

et. al. (1993) gives the following example “3*4=12-

5=7.” Another example is the student who when
working on a problem with an answer of “550/(h-

2)” answered with
h-2 à h)550

This student means to suggest that first she would
subtract 2 from “h.” The arrow seems to indicate

that this new decremented value of h should be

assigned back to the symbol “h”. Then 550 should
be divided (indicated with the grade school way of

expressing division) by this new value of “h.” Both
of these examples indicate students who probably

understand the quantitative structure and the

sequence of operations that should happen, but
nevertheless, failed to express that structure in

normative algebra. What does such a student need
to learn? A computer scientist or linguist might say

that the student needs to learn the correct grammar
for algebraic expressions. The novice student

knows how to write one-operator expression like

“5+7” using the following simple grammar:
<expression> = <literal> <operator> <literal>

<literal> = 1|2|3|4….
<operator> = “+” | “-“ | “*” | “/”

But the competent student knows how to write
multiple operator expression indicated by these

grammar rules:

<expression> = <expression> <operator>
<expression>

| “(“ <expression> “)” | <literal>
Phrased differently, what the student needs to be

told is that “You can always wrap parentheses
around an expression and substitute an expression

anywhere you normally think a number can go.

There are also rules for when you can leave out the
parenthesis but you can always put them in to be

sure that your expression won’t be misinterpreted.”
We found experimental evidence that supports

the articulation hypothesis when we performed the

following manipulation (Heffernan & Koedinger,

1997 and 1998). We started with a two-operator
problem, like

Composed: Ann is in a rowboat in a lake.
She is 800 yards from the dock. She then

rows for "m" minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.

Write an expression for Ann's distance from

the dock.
and decomposed the problem into two new

separate questions like the following.

Decomposed: A) Ann is in a rowboat in a

lake. She is 800 yards from the dock. She
then rows "y" yards back towards the dock.

Write an expression for Ann's distance from

the dock.
B) Ann is in a rowboat in a lake. She then

rows for "m" minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.

Write an expression for the distance Ann has

rowed.
Then we compared the ability of a student to

answer the composed problem with their ability to
get both decomposed parts correct. We found that

the composed problems were much harder. Why?
We speculated that many students could not

compose the two decomposed expressions together;

just because you know that you need to first add
two quantities together and then multiply them by a

number, doesn’t mean you know how to express
this correctly in the language of algebra. The

following is an example of a student who appeared
to be missing just this skill of composing

expressions together. This example occurred while

the first author was tutoring a student on the
following “two-jobs” problem:

T: Debbie has two jobs over the summer. At one
job she bags groceries at Giant Eagle and

gets paid 5 dollars an hour. At the other job
she delivers newspapers and gets paid 7

dollars an hour. She works a total of 30

hours a week. She works "g" hours bagging
groceries. Write an expression for the total

amount she earns a week. [the correct
answer is “5g+7(30-g)”]

S: A=5*g, B=30-g, C=7*B and D=A+C

Vincent Aleven
26

This student clearly understands the 4 math
operations that need to be performed, and the order

in which to perform them. This student
spontaneously introduced new variables (A, B, C,

and D) to stand for the intermediate results. We
were surprised to find that this student could not

easily put this together and write “5g+7(30-g)”.

This student appears to be ready for a strategy that
will help him on just one skill; combining

expressions by substitution. (We also turn this idea
into a tutoring strategy which is presented below in

the section on Tutorial Strategies.)
To see if substitution really is a hidden

component skill in symbolization, we designed the

following transfer experiment. Thirty-nine students
were given one hour of group instruction on

algebraic substitution problems like the following:
Let X= 72-m. Let B= X/4. Write a new

expression for B that combines these two

steps.
The student were guided in practicing this skill. The

students got better at this skill, but that is not the
interesting part. By comparing pre-tests and post-

tests, we found statistically significant increases in
the students ability to do symbolization problems,

even though they did not get instruction involving

word problems! The students transferred
knowledge of the skill of substitution to the skill of

symbolization revealing a shared skill of being able
to “speak” complicated (more than one-operator)

sentences in the foreign language of algebra. This
is strong supporting evidence for the articulation

hypothesis.

This research has put a new focus on the
production side of the translation process. This

work also has ramifications for sequencing in the
algebra curriculum. If learning how to do algebraic

substitution involves a sub-skill of symbolization,
perhaps algebraic substitution should be taught

much earlier. In many curriculums (e.g. Larson,

1995) it is not taught until students get to systems of

equations half-way through the year .

Cognitive Student Model
Our student model is similar to traditional student
models. We use the Turtle (Anderson & Pelletier,

1991) production system, which is a simplification
of the ACT (Anderson, 1993) Theory of Cognition.

A production system is a group of if-then rules
operating on a set of what are called working

memory elements (wmes). We use these rules to
model the cognitive steps a student could use to

solve a problem. Our student model has 68

production rules. Our production system can solve
a problem by being given a set of wme that encodes

the problem at a high level.
We model the common errors that students

make with a set of “buggy” productions. From our
data, we compiled a list of student errors and

analyzed what were the common errors. We found

that the following list of errors was able to account
of over 75% of the errors that students made. We

illustrate the errors in the context of the “two-jobs”
problem which has a correct answer of “5g+7(30-

g)”.

1) Wrong operator (e.g. “5g-7(30-g)”)
2) Wrong order of arguments (e.g. “5g+7(g-30)”)

3) Missing parentheses (e.g. “5g+7*30-g”)
4) Confusing quantities (e.g. “7g+5(30-g)”)

5) Missing a component (e.g. “5g+7g” or
“g+7(30-g)” or “5g+30-g”)

6) Omission: correct for a subgoal. (e.g. “7(30-g)”

or “5g”)
7) Combinations of errors (e.g. “5g+7*g-30” has

the wrong order for “g-30” and is missing
parenthesis)

These “buggy” productions are used to allow us to
make sense of a student’s input even if she has

made several incorrect steps. We don’t want a

computer system that can’t understand a student if
she gives an answer that has parts that are

completely correct and parts that are wrong. We
want the system to be able to understand as much

as possible of what a student says and be able to
give positive feedback even when the overall

answer to a question might be incorrect.

Traditional model-tracing tutors have a bug
message attached to each buggy production that

generates a message through the use of a template.
We do not do that. We feel such an architecture

confuses student reasoning with tutorial reasoning.

We instead have the student model report its full

Vincent Aleven
27

diagnosis (which is represented with a set of wmes)
to the tutor model that will then decide what to do.

If the student makes several errors, traditional
model-tracing tutors are sometimes in a quandary

as to what to do. Some ITSs do not deal with
multiple bugs and instead rely on breaking down

the problem into finer steps. A problem with this

approach is that you can’t break down a skill like
symbolization easily without decreasing the overall

difficulty. Another solution is to ask the student
what the subgoals should be and then tutor them on

the subgoals individually (Corbett & Anderson,
1995.) However, a problem remains about what the

ITS should do if the student makes more than one

distinct error in a given input. This is addressed
below.

The Tutorial Model
As mentioned already, we collected and transcribed
one hour of experienced human tutoring. We

wanted to observe what experienced tutoring in this
domain looked like. The tutor worked as a full time

math tutor for over a year before teaching middle

school math for 5 years. She was given a list of
symbolization problems and told her goal was get

the student to learn how to solve such problems.
After transcribing the dialog we have been

able to extract some regularities in terms of the

tutorial strategies. One caveat: our tutorial model is
informed by this observation of human tutoring, but

it doesn’t model any one individual or make claims
to being the most effective model.

Now we will look at the components of the
tutorial model shown in Figure 1. A fundamental

distinction in the intelligent tutoring system (ITS) is

between the student model, which does the
diagnosing, and the tutorial models, which chooses

the pedagogical plan that best responds to that
particular diagnosis. It is composed of a tutorial

agenda component, as well as tutorial questions that
can be used alone or in combination to make a

tutorial strategy. The system currently has 4

tutorial strategies. Through empirical study, we
plan to learn which strategies are most effective.

The tutorial model is implemented with 77
productions. This approach is similar to Freedman's

(2000). First, we deal with how Ms. Lindquist
decides what to focus problem attention upon.

Dealing with the diagnosis: The Focusing Heuristic
Ms. Lindquist uses a heuristic to decide what to

focus the conversation on. In cases when the

student model’s diagnosis indicates that the student
had some correct elements and some incorrect

elements. For instance, we considered giving the
following positive feedback on an answer like that

in line 242 : “Your answer of ‘s/m+b’ has some
correct elements; it is true that you need to add the

time of the break to the time on the bikes to find the

total trip time.” This feedback was meant to
confirm the “+b” portion of the answer. After

looking at what our human tutor did we decided not
to give positive feedback unless the student has two

operands correct and the correct operator. We give
an example of this in the context of the “two-jobs”

problem.

T: [problem with answer of 5g+7*(30-g)]
S: 5g+7*g

ITS

Tutorial Model

Student Model

Tutor's
Response

Tutorial

Reasoning

Agenda Questions

Pedagogical
Strategies

Student Input

Diagnosis

Figure 1: Ms. Lindquist's Architecture

Vincent Aleven
28

T: No, but, 5*g does represent the amount Debbie
earned bagging groceries. Let me ask you a

simpler question. Can you tell me how much
she made delivering newspapers?

If the student has made more than one error,
the tutor decides to come up with a strategy to deal

with each error. The errors are considered in the

order they would be encountered in a post-order
traversal of the parse tree of the correct answer (i.e

visited “bottom-up.”) Therefore, the tutor might
add multiple questions to the tutorial agenda

depending upon the tutorial strategy selected for
each error.

If a student says something the student

model doesn’t understand (e.g. says “5/30-5*7/g”
when the answer is “5g+7(30-g)”) we will still want

a robust ITS to be able to pick a reasonable strategy
for a response. This is important because many

times the tutor (humans or computers) will not be

able to make sense of the student’s input. Graesser
et. al. (in press) reports in their study of human

tutors that they “found that the human tutors and
learners have a remarkably incomplete

understanding of each other’s knowledge base and
that many of each other’s contributions are not

deeply understood… Most tutors have only an

approximate assessment of the quality of student
contributions.” We want our ITS to be able to

operate under these same difficult conditions and
still be robust enough to say something reasonable.

Tutorial Agenda
Ms. Lindquist has a data structure we called the

agenda, that stores the ideas she wants to talk about
next. This agenda ordinarily operates like a push

down stack, but we give an example of when the
stack order is violated below in the section on the

Concrete Articulation Strategy.

Tutorial Questions
The tutorial model can ask the following kinds of

tutorial questions illustrated with an example of

how the question can be phrased:
1) Q_symb : Symbolize a given quantity (“Write

an expression for the distance Anne has
rowed?”)

2) Q_compute: Find a numerical answer
(“Compute the distance Anne has rowed?”)

3) Q_explain: Write a symbolization for a given
arithmetic quantity. This is the articulation

step. (“How did you get the 120?”)
4) Q_generalize: Uses the results of a Q_explain

question (“Good, Now write your answer of

800-40*3 using the variables given in the
problem (i.e. put in ‘m’)”)

5) Q_represents_what: Translate from algebra to
English(“In English, what does 40m

represent?” (e.g. “the distance rowed so far”))
6) Q_explain_verbal: Explain in English how a

quantity could be computed from other

quantities. (We have two forms: The reflective
form is “Explain how you got 40*m” and the

problem solving form is “Explain how you
would find the distance rowed?”)

7) Q_decomp: Symbolize a one operator answer,

using a variable introduced to stand for a sub-
quantity. (“Use A to represent the 40m for the

distance rowed. Write an expression for the
distance left towards the dock that uses A.”)

8) Q_substitute: Perform an algebraic substitution
(“Correct, that the distance left is given by 800-

A. Now, substitute “40m” in place of A, to get

a symbolization for the distance left.”)
You will notice that questions 1, 3, 4, and 8 all ask

for a quantity to symbolize. Their main difference
lies in when those questions are used, and how the

tutor responds to the student’s attempt. Questions 5
and 6 ask the student to answer in English rather

than algebra. To avoid natural language the student

is prompted to use pull down menus to complete
this sentence “The distance rowed is equal to <noun

phrase> <operator> <noun phrase>.” The noun
phrase menu contains a list of the quantity names

for that problem. The operator menu contains
“added to”, “subtracted from”, “multiplied by” and

“divided by.”

Below we will see how these questions
can be combined into strategies.

Tutorial Strategies
We will now look at three different tutorial
strategies that Ms Lindquist uses; "Concrete

Articulation", "Introduced Variable", and finally

Vincent Aleven
29

"Explain in English First" (There is a fourth
strategy that we don't have space to illustrate. This

strategy is that if a students makes an error the tutor
tells the student the answer and then asks the

student questions to see if the student understands
the answer.) The first strategy we will look at is

Concrete Articulation strategy.

Concrete Articulation Strategy
The concrete articulation strategy usually uses three

questions of type Q_compute, Q_explain and

Q_generalize. Here is an example of the dialog
generated by Ms. Lindquist which we believe

parallels the experienced human tutor closely.
T1: [Doing the “bike-trip” problem] Please write

an expression for the total time the trip took.
[Q_symb]

S1: s/m+b

T2: No. Let me ask you an easier question.
Please compute the time actually on bikes if

the speed was 20 miles per hour, and the
distance ridden was 100 miles?

[Q_compute]
S2: 5

T3: Correct. What math did you do to get that

five? [Q_explain]
S3: 100/20

T4: Correct. Now write your answer of 100/20
using the variables given in the problem (i.e.

put in ‘m’ and ‘s’)? [Q_generalize]
S4: b+m/s

T5: Correct.

We will walk through what Ms. Lindquist did here.
First, the student model diagnosed S1 (“s/m+b”) as

having the quantity “s/m” with reversed arguments
(bug type #2.) The diagnosis also said that the

student understood that the total trip time was the

time of the break (“b”) plus the time actually on the
bikes. This diagnosis was passed to the tutorial

model that could have selected among competing
strategies. In this case the tutorial model decided to

conduct a concrete articulation knowledge
construction dialog. Therefore, the tutor model

generated quest ions for the compute,

explain/articulation and generalization steps. The
tutor put these three questions on the agenda.

At S2, the student answers the compute
question correctly, and the tutor decides to continue

with its plan. It has to be sensitive to what the
student typed. If the student typed 100/20 instead

of 5, then both the compute and explain questions
would be removed from the agenda and the tutor

would skip to the generalize step. An example of

this sort of flexibility is demonstrated in T5. T4
was a question to articulate the time actually on

bikes. The tutor was hoping the student would type
“m/s” but instead the student answered “b+m/s.”

Only a pedantic tutor wouldn’t accept that answer
as it indicates an understanding that subsumes the

understanding required for the sub-goal. This is

where the tutorial agenda behaves differently than a
stack because Ms. Lindquist pops both of the

questions off the agenda.
To show you an example of how the previous

situation could have come out differently, lets look

at the following dialog
T1: Hello. [Doing the “bike-trip” problem]

Please write an expression for the total time
the trip took. [Q_symb]

S1: help!
T2: Let me ask you an easier question. Please

compute the time actually on bikes if instead

the speed was 20 miles per hour, the time of
the break was 2 hours, and the distance

ridden was 100 miles? [Q_compute]
S2: 7

T3: Correct. What math did you do to get that 7?
[Q_explain 7]

S3: 2+5

T4: Okay, but how did you get the 5? [Q_explain
5]

S4: 100/20
T5: Correct Now lets try this again, what math

did you do to get the 7? [Q_explain 7]
S5: 2+100/20

T6:Correct. Now write your answer of ‘2+100/20’

using the variables given in the problem (i.e.
put in ‘m’, ‘b’ and ‘s’)? [Q_generalize]

S6: b+m/s
T7: Correct.

This example is interesting in the way Ms.

Lindquist responds at T4. The system has bug rules

Vincent Aleven
30

to apply to questions other than symbolization
questions. In this case, the student model reported

that the student’s answer of “2+5” is a partially
complete articulation but that the student didn’t

spell out where the “5” came from. So the tutorial
model is able to “dig-down” into the student's

reasoning with an embedded sub-dialog. This

involved adding the additional question of
explaining how the student got the “5”.

Introduced Variable Strategy
A second example of a tutorial strategy is what we
call the Introduced Variable strategy, which was

alluded to above when we looked at the student
who answered the “two-jobs” problem with

“A=5*g, B=30-g, C=7*B and D=A+C”. Below we
present an real example of Ms. Lindquist tutoring

an ninth grader with this strategy. This strategy

uses both Q_decomp and Q_substitute questions.
Question Q_decomp sets the stage for this strategy,

and is used to break down the originally composed
problem into separate decomposed one-operator

problems (as shown below in T2 and T3),
introducing new variables when appropriate (as in

T3.) The real meat of this strategy is shown at line

4, where the tutor introduces the variable "A" to
stand for a sub-quantity. Question Q_substitute is

used to scaffold the substitution step as shown in
T5.

T1: Hello. Jane is "j" years old. Peg is "p" years
old. Mary is Peg's age minus Tom's age.

Tom is 3 years younger than Jane. Peg is

"x" years older that Mark. Write an
expression for Mary's age. [Q_symb]

S1:(p-3)-(3-j)+(p+x) [correct answer is “p-(j-
3)”]

T2:Hmm. No. Let me ask you and easier

question. Use j and 3 to calculate Tom's age.
[Q_decomp]

S2:3-j
T3:Hmm. No. Try again please. What is Tom's

age? Hint: pick one of these: j-3, 3-j, j+3,
j*3, j/3, or 3/j. [This is a rephrasing as

explained in the hint section below]

S3:j-3

T4:Correct. Calculate Mary's age. Use A instead
of j-3 for Tom's age. [Q_decomp]

S4:p-a
T5:Correct. You are correct that p-A is Mary's

age. Now, can you state this in terms of the
numbers given in the problem.

[Q_substitute]

S5:p-(j-3)
T6:Correct.

We note that this strategy is not one inspired by
looking at human tutors but by our cognitive

analysis that informed us that a crucial difficulty
occurs when a student has to treat an expression

(i.e., "j-3") like a number, so this strategy breaks

that hard step into two steps (i.e., T4 and T5).

"Explain in English" Strategy
Mathematical communication is increasingly seen

as a goal for students, and in particular translating
between an algebraic representation, an English

verbal representation, and a concrete representation
of numerical instances (Schoenfeld et. al., 1992,

Koedinger & Nathan) Other researchers are also
interested in wanting an ITS to elicit explanations

from students (e.g. Conati et. al., 1997.) We noticed

in the dialog we collected from an experienced
human tutor that she would often ask the student to

explain how to compute a quantity in English and
afterward, ask the student to say it in symbols.

(Heffernan, 2001). Therefore, we have
implemented similar questions in the form of

Q_represents_what and Q_explain_verbal as

shown below.
T1: Hello. [Doing the “bike-trip” problem]

Please write an expression for the total time
the trip took. [Q_symb]

S1: m/s

T2: What does “m/s” represent (e.g. the speed on
the bike?)[Q_represents_what]

S2: the total time of the trip
T3: No, “m/s” represents the actual time on the

bikes. Can you explain how you would find
the total time of the trip using the time on

the bikes? [Q_explain_verbal]

S3: The total time of the trip is equal to [1st menu]
"the amount of time for the break" [2n d

Vincent Aleven
31

menu] "plus" [3rd menu] "the actual time on
the bikes". [Composed using three pull

down menus.]
T4: Good, now say what the total trip time is in

symbols [Q_symb]
S4: b+m/s

T5: Correct

This strategy is based on the hypothesis that
students will learn more if they are asked to explain

in English how to compute a quantity.

Hints
Giving the students a hint is the simplest tutorial

strategy we have and is a common way that a
traditional model-tracing tutors gives help. Each

question has a hint chain which is simply a list of
rephrasings of the question. The rephrasings get

progressively more explicit, eventually, possibly,

telling the student exactly what to do3.

Formative Evaluation
We have performed a early formative analysis of

Ms. Lindquist, by comparing her to a traditional
computer-aided instruction(CAI) control condition

that simply told students the answer (if they got the
problem wrong). This study answers the question

of whether the dialogs Ms. Lindquist has with

students lead to increased student learning, but
ignores the question of whether it is worth the

additional time. That is because we controlled for
the number of problems, and not the amount of

time. Students in the condition that received Ms.
Lindquist were expected to take more time.

Procedure
The procedure and the results are more fully

explicated in Heffernan's dissertation (2001). In
summary, 20 high school students participated in

the study. They were given pretests and posttests
on symbolization. They were blocked into groups

3 The question of how explicit to make the “bottom-out”,

or last hint (i.e. “Do you tell the student the answer?”) is

not a question that we, or this architecture, makes a
commitment about. Some of our hint chains end with

multiple choice questions while others tell the student

exactly what to type.

according to their pretests. Students proceeded
though the curriculum consisting of 68 problems.

Students in the experimental condition received a
partially random combination of the different

strategies Ms. Lindquist is capable of.

Results
The students in the control condition, as expected,
took half the amount of time, since they did not

engage in dialogs with Ms. Lindquist. Students
performed better on a pretest after having just

received instruction from Ms. Lindquist. We
performed a ANOVA that showed only a

marginally statical ly signif icant effect

(F(1,37)=2.6,p=.12) but with a respectable effect
size of .7 standard deviations.

Discussion
Now that we have established that this dialogs
appear to lead to better learning, our next

experiment will control for "time on task" in order

to determine if the additional time required to have
a dialog is worth it.

The following example from this
experiment nicely illustrates some of the aspects of

Ms. Lindquist, including embedded dialogs
(starting on lines 4 and 10), as well as the

embedded feedback shown at the beginning of line

8. The number of seconds it takes the student to
respond is in square brackets.

1) Problem: Jane is "j" years old. Peg is "p" years
old. Mary is Peg's age minus Tom's age. Tom

is 3 years younger than Jane. Peg is "x" years
older than Mark. Write an expression for

Mary's age

2) Tutor: Hello. Please write an expression for
Mary's age.

3) Student [143]: Student hit the help button
[should be p-(j-3)]

4) Tutor: Let me try to give you some help. We
will come back to Mary's age. Let me try to

break this down for you. Please compute

Mary's age if Jane's age was "20" years, and
"Peg's age" was "40" years?

5) Student: [169]: 23 [correct]

6) Tutor: Correct. Using only 40, 20, and 3 write

an expression for Mary's age.

Vincent Aleven
32

7) Student [126]: (20-3)-40 [should be 40-(20-3)]

8) Tutor: No. Your answer of "(20-3)-40" equals

"-23", but you wanted to write an expression
that equaled "23". Using only 40, 20, and 3

write an expression for Mary's age. Hint: Use
40 for Peg's age and 20-3 for Tom's age.

9) Student [47]: (40-20)+3 [should be 40-(20-3)]

10) Tutor: Hmm. No. Let me ask you a different
question. Using only 20, and 3 write an

expression for Tom's age.
11) Student [15]: 20-3 [correct]

12) Tutor: Correct. Now, lets try this question
again: Using only 40, 20, and 3 write an

expression for Mary's age. Hint: Use 40 for

Peg's age and 20-3 for Tom's age.
13) Student [138]: 40-(20-3) [correct]

14) Tutor: Correct. Now, say that again but this
time use the variables from the problem.

15) Student [25]: p-(j-3) [correct]

16) Tutor: Correct
Notice that this example shows a student how could

compute an instance (line 5), but had trouble
articulating how to write the complete expression

(lines 7, and 9), which is consistent with what our
cognitive analysis predicted about the relatively

difficulty of these tasks. Also consistent is the fact

that using a variable, per se, does not appear to
have been difficult (line 15). This students

performance is consistent with our theory that
articulation, and not comprehension of word

problems or variables per se is what makes
symbolizing difficult for students.

Conclusion
McArthur et. al. criticized Anderson’s et. al. (1985)

model-tracing ITS and model-tracing in general
“because each incorrect rule is paired with a

particular tutorial action (typically a stored
message), every student who takes a given step gets

the same message, regardless of how many times
the same error has been made or how many other

error have been made. … Anderson’s tutor is

tactical, driven by local student errors (p. 200)”
and goes on to argue for the need for a more

strategic tutor. Ms. Lindquist meets that criticism.
Ms. Lindquist’s model of tutorial reasoning is both

strategic (i.e. has multi-step plans) and tactical (i.e.
reasons to produce output at the single question

level.) She also intelligently handles multiple
errors and reasons about the order in which to deal

with them and then constructs a plan to deal with
each of them. Ms. Lindquist is a modest step on the

path to making a more dynamic tutor.

We have released Ms. Lindquist onto the
web at www.AlgebraTutor.org, and have had over

600 students who have been tutored by Ms.
Lindquist, the results of which are now in

preparation. In addition she has won various
industry awards from teacher related web sites such

as USAToday Education and the National Council

of Teachers of Mathematics. Ms. Lindquist is a
system that combines the student modeling of

traditional model-tracing tutors with a model of
tutorial dialog based on an experienced human

tutor. Early analysis reveals Ms. Lindquist can be

effective, but more analysis is needed to determine
where the biggest "bang for the buck" is to be

found.

Acknowledgements
This research was supported by NSF grant number

9720359 to CIRCLE and the Spencer Foundation.

References
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:

Erlbaum.
Anderson, J. R., Boyle, D. F., & Reiser, B. J. (1985).

Intelligent tutoring systems. Science, 228, 456-462.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., &

Pelletier, R. (1995) Cognitive tutors: lessons

learned. The Journal of the Learning Sciences, 4
(2), 167-207.

Anderson, J. R. & Pelletier, R. (1991) A developmental

system for model-tracing tutors. In Lawrence

Birnbaum (Eds.) The International Conference on

the Learning Sciences. Association for the

Advancement of Computing in Education.
Charlottesville, Virginia (pp. 1-8).

Clancey, W. J., (1982) Tutoring rules for guiding a case

method dialog. In D. Sleeman & J. S. Brown (Eds.)

Intelligent Tutoring Systems London: Academic

Press. (pp. 201-226.)
Corbett, A. T., and Anderson, J. R., (1995) Knowledge

decomposition and subgoal reification in the ACT

Vincent Aleven
33

programming tutor. in Proceedings of Artificial

Intelligence in Education (pp. 469-476)
Conati, C., Larkin, J. and VanLehn, K. (1997) A

computer framework to support self-explanation. In

: du Bolay, B. and Mizoguchi, R.(Eds.) Proceedings

of AI-ED 97 World Conference on Artificial

Intelligence in Education. Vol.39, pp. 279-276,

Amsterdam: IO Press.
Freedman, R. (2000) Using a reactive planner as the

basis for a dialogue agent. In Proceedings of the

Thirteenth Florida Artificial Intelligence Research

Symposium (FLAIRS ’00), Orlando.

Graesser, A.C., Wiemer-Hastings, P., Wiemer-Hastings,
K., Harter, D., Person, N., & the TRG (in press).

Using latent semantic analysis to evaluate the

contributions of students in AutoTutor. Interactive

Learning Environments.

Heffernan, N. T. (2001). Intelligent Tutoring Systems

have Forgotten the Tutor: Adding a Cognitive

Model of an Experienced Human Tutor.

Dissertation. Carnegie Mellon University, Computer

Science Department. http://gs260.sp.cs.cmu.edu/diss

Heffernan, N. T., & Koedinger, K. R.(1997) The

composition effect in symbolizing: the role of
symbol production versus text comprehension.

Proceeding of the Nineteenth Annual Conference of

the Cognitive Science Society 307-312. Hillsdale,

NJ: Erlbaum.

Heffernan, N. T., & Koedinger, K. R. (1998) A

developmental model for algebra symbolization:
The results of a difficulty factors assessment. In

Proceedings of the Twentieth Annual Conference of

the Cognitive Science Society, (pp. 484-489).

Hillsdale, NJ: Erlbaum.

Kintsch, W. (1991). A theory of discourse
comprehension: Implications for a tutor for word

algebra problems. In Learning and instruction:

European research in an international context. M.

Carretero, M. L. Pope and et al. Oxford, England

UK, Pergamon Press. 3: 235-253.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., &
Mark, M. A. (1997). Intelligent tutoring goes to

school in the big city. International Journal of

Artificial Intelligence in Education, 8, 30-43.

Koedinger, K. R., & Anderson, J. R. (1998). Illustrating

principled design: The early evolution of a
cognitive tutor for algebra symbolization. In

Interactive Learning Environments, 5, 161-180.

Koedinger, K. R., & MacLaren, B. (1997). Implicit

strategies and errors in an improved model of early

algebra problem solving. In Proceedings of the

Nineteenth Annual Meeting of the Cognitive

Science Society (pp. 382-7). Mahwah, NJ: Erlbaum.
Koedinger, K. R. & Nathan, M. J. (submitted to). The

real story behind story problems: Effects of

representations on quantitative reasoning.

Submitted to Cognitive Psychology.

Larson, R., Kanold, T., & Stiff, L. (1995) Algebra 1: An

Integrated Approach. D.C. Heath. Lexington, MA.
Lewis, A. B. & Mayer, R. E. (1987). Journal of

Educational Psychology, 79(4), 363-317.

McArthur, D., Stasz, C., & Zmuidzinas, M. (1990)

Tutoring techniques in algebra. Cognition and

Instruction. 7 (pp. 197-244.)
Moore, J. D. (1996) Discourse generation for

instructional applications: Making computer-based

tutors more like humans. Journal of Artificial

Intelligence in Education, 7(2), 118-124

Nathan, M. J., Kintsch, W. & Young, E. (1992). A theory

of algebra-word-problem comprehension and its
implications for the design of learning

environments. Cognition & Instruction 9 (4): 329-

389.

Sfard, A., & Linchevski, L. (1993). The gain and the

pitfalls of reification- the case of algebra.
Educational Studies in Mathematics, 00: 1-38.

Schoenfeld, A., Gamoran, M., Kessel, C., Leonard, M.,

Or-Bach, R., & Arcavi, A. (1992) Toward a

comprehensive model of human tutoring in complex

subject matter domains. Journal of Mathematical

Behavior, 11, 293-319
Shulman, L. (1986). Those who understand: Knowledge

growth in teaching. Educational Researcher, 15, 4-

14.

VanLehn, K, Anderson, J., Ashley, K., Chi. M.,

Corbett, A., . Koedinger, K., Lesgold, A., Levin, L.,
Moore, M., and Pollack, M., NSF Grant 9720359.

CIRCLE: Center for Interdisciplinary Research on

Constructive Learning Environments. NSF

Learning and Intelligent Systems Center. January,

1998 to January, 2003.

Vincent Aleven
34

A Decision-Theoretic Architecture for Selecting Tutorial Discourse
Actions

R. Charles Murray
Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260

rmurray@pitt.edu

Kurt VanLehn
LRDC

University of Pittsburgh
Pittsburgh, PA 15260

vanlehn@pitt.edu

Jack Mostow
Project LISTEN

Carnegie Mellon University
Pittsburgh, PA 15213
mostow@cs.cmu.edu

Abstract

We propose a decision-theoretic architecture for selecting tutorial discourse ac-
tions. DT Tutor, an action selection engine which embodies our approach, uses a
dynamic decision network to consider the tutor�s objectives and uncertain beliefs
in adapting to the changing tutorial state. It predicts the effects of the tutor�s dis-
course actions on the tutorial state, including the student�s internal state, and then
selects the action with maximum expected utility. We illustrate our approach
with prototype applications for diverse target domains: calculus problem-solving
and elementary reading. Formative off-line evaluations assess DT Tutor�s ability
to select optimal actions quickly enough to keep a student engaged.

1 Introduction
A tutoring system achieves many of its objectives through discourse actions intended to influence
the student�s internal state. For instance, a tutor might tell the student a fact with the intended ef-
fect of increasing the student�s knowledge and thereby enabling her to perform a problem-solving
step. The tutor might also be concerned with the student�s goals, focus of attention, and affective
or emotional state, among other internal attributes. However, a tutor is inevitably uncertain about
the student�s internal state, as it is unobservable. Compounding the uncertainty, the student�s state
changes throughout the course of a tutoring session�after all, that is the purpose of tutoring. To
glean uncertain information about the student, a tutor must make inferences based on observable
actions and guided by the tutor�s beliefs about the situation. The tutor is also likely to be con-
cerned with observable attributes of the tutoring situation, or tutorial state, including the discourse
between tutor and student and their progress at completing tutorial tasks (e.g., solving problems).

The tutor�s actions depend not only on the tutorial state, but also on the tutor�s objectives. Tuto-
rial objectives often include increasing the student�s knowledge within a target domain, helping
the student solve problems or complete other tasks, and bolstering the student�s affective state
(Lepper et al., 1993). Tutors also generally want to be cooperative discourse partners by coher-
ently addressing topics that are relevant to the student�s focus of attention. Objectives and priori-
ties may vary by tutor and even for an individual tutor over time. Furthermore, tutors must often
strike a �delicate balance� among multiple competing objectives (Merrill et al., 1992, p. 280).

To model the tutor�s uncertainty about the student�s internal state, probabilistic reasoning is be-
coming increasingly common. However, almost all probabilistic tutoring systems still model the
tutor�s objectives implicitly at best, and use heuristics to select tutorial actions. DT Tutor uses a
decision-theoretic approach to select tutorial actions, taking into account both the tutor�s uncer-
tain beliefs and multiple objectives regarding the changing tutorial state. This paper describes DT
Tutor�s approach along with prototype applications for diverse domains, calculus problem-
solving and elementary reading.

Vincent Aleven
35

2 General Approach

2.1 Belief and Decision Networks
DT Tutor represents the tutor�s uncertain
beliefs in terms of probability using
Bayesian belief networks. A belief net-
work is a directed acyclic graph with
chance nodes representing beliefs about
attributes and arcs between nodes repre-
senting conditional dependence relationships among the beliefs. Beliefs are specified in terms of
probability distributions. DT Tutor�s chance nodes represent the tutor�s beliefs about the tutorial
state. For each node with incoming arcs, a conditional probability table specifies the probability
distribution for that node conditioned on the possible states of its parents. For nodes without in-
coming arcs, prior probability distributions are specified.

At any particular time, each node within a belief network represents an attribute whose value is
fixed. For an attribute whose value may change over time (such as a tutorial state attribute), sepa-
rate nodes can be used to represent each successive value. Dynamic belief networks do just that.
For each time in which the values of attributes may change, a dynamic belief network creates a
new slice. Each slice is of a set of chance nodes representing attributes at a specific point in time.
For tutoring, slices can be chosen to represent the tutorial state after a tutor or student action,
when attribute values are likely to change. Nodes may be connected to nodes within the same or
earlier slices to represent the fact that an attribute's value may depend on (1) concurrent values of
other attributes and (2) earlier values of the same and other attributes.

Decision theory extends probability theory to provide a normative theory of how a rational deci-
sion-maker should behave. Quantitative utility values are used to express preferences among pos-
sible outcomes of actions. To decide among alternative actions, the expected utility of each alter-
native is calculated by taking the sum of the utilities of all possible outcomes weighted by the
probabilities of those outcomes occurring. Decision theory holds that a rational agent should
choose the alternative with maximum expected utility. A belief network can be extended into a
decision network (equivalently, an influence diagram) by adding decision and utility nodes along
with appropriate arcs. For DT Tutor, decision nodes represent tutorial action alternatives, and util-
ity nodes represent the tutor�s preferences among the possible outcomes.

A dynamic decision network (DDN) is like a dynamic belief network except that it has decision
and utility nodes in addition to chance nodes. DDNs model decisions for situations in which deci-
sions, attributes or preferences can change over time. The evolution of a DDN can be computed
while keeping in memory at most two slices at a time (Huang et al., 1994).

2.2 General Architecture
DT Tutor�s action selection engine uses a DDN formed from dynamically created tutor action
cycle networks (TACNs). A TACN consists of three slices, as illustrated in Figure 1. The tutorial
state (States) within each slice is actually a sub-network representing the tutor�s beliefs about the
tutorial state at a particular point in time (slice)1. The T Act1 decision node represents the tutorial
action decision, the S Act2 chance node represents the student turn following the tutor�s action,
and the Util2 utility node represents the utility of the resulting tutorial state.

Each TACN is used for a single cycle of tutorial action, where a cycle consists of deciding a tuto-

1 For sub-network and node names, a numeric subscript refers to the slice number. A subscript of
s refers to any appropriate slice.

T Act 1

Slice 0
 Slice 1 Slice 2

State 1

S Act 2

 Util 2

State 2

State 0
Figure 1. Tutor Action Cycle Network, overview

Vincent Aleven
36

rial action and carrying it out, observing the subsequent student turn, and updating the tutorial
state based on the tutor and student actions. During the first phase (deciding upon a tutorial ac-
tion), slice 0 represents the tutor�s current beliefs about the tutorial state. Slice 1 represents the
tutor�s possible actions and predictions about their effects on the tutorial state. Slice 2 represents a
prediction about the student�s next turn and its effect on the tutorial state. The DDN update algo-
rithm calculates which tutorial action has maximum expected utility.

In the next phase of the cycle, the tutor executes that action and waits for the student response.
The tutor then updates the network based on the observed student action(s).

At this point, the posterior probabilities in State2 represent the tutor�s current beliefs. It is now
time to select another tutor action, so another TACN is created and the DDN is rolled forward:
Posterior probabilities from State2 of the old TACN are copied as prior probabilities to State0 of
the new TACN, where they represent the tutor�s current beliefs. The old TACN is discarded. The
tutor is now ready to begin the next cycle by deciding which action to take next.

With this architecture, the tutor not only reacts to past student actions, but also anticipates future
student actions and their ramifications. Thus, for instance, it can act to prevent errors and im-
passes before they occur, just as human tutors often do (Lepper et al., 1993).

In principle, the tutor can look ahead any number of slices without waiting to observe student ac-
tions. The tutor simply predicts probability distributions for the next student turn and the resulting
State2, rolls the DDN forward, predicts the tutor�s next action and the following student turn, and
so on. Thus, the tutor can select an optimal sequence of tutorial actions for any fixed amount of
look ahead. However, a large amount of look ahead is computationally expensive with decreasing
predictive accuracy.

3 Application Domains

3.1 Calculus Problem-Solving
CTDT (Calculus Tutor, Decision-Theoretic) is a prototype action selection engine for calculus
related rates problems (Murray & VanLehn, 2000). Singley (1990) developed a tutoring system
for this domain with an interface designed to make student problem-solving actions observable,
including goal-setting actions that are normally invisible. CTDT presumes an extension to Sing-
ley�s interface to make all problem-solving actions observable. This makes it easier to select tuto-
rial actions for two reasons. First, as each problem-solving action is executed through the inter-
face, CTDT has the opportunity to intervene. (However, CTDT can select a null action on its turn
and thus allow the student to execute multiple actions without tutorial intervention). This means
that CTDT can select a response for only a single student action per turn, rather than deciding
which of multiple student actions to respond to. Moreover, it is easier to predict a single student
action per turn than to predict a combination of multiple actions.

Second, when CTDT can observe all of the student�s prior actions, it knows exactly what portion
of the problem solution space the student had already completed and thus what steps the student
is likely to attempt next. Calculus related rates problems, like problems in many other domains,
have a prerequisite structure that induces a partial order in which problem steps may be com-
pleted � for instance, the chain rule (e.g., dx/dy * dy/dz = dx/dz) cannot be applied until the com-
ponent equations are in the required form. The student is unlikely to be able to successfully com-
plete problem steps for which prerequisites have not been completed, and is therefore less likely
to attempt them. The student is also unlikely to repeat problem-solving steps that have already
been completed successfully. This means that the student is most likely to attempt problem steps
that (1) have not already been completed, and (2) have no uncompleted prerequisite steps. We

Vincent Aleven
37

call these ready steps. Thus, by observing which steps the student has already completed, CTDT
can easily determine the set of ready steps that the student is most likely to attempt next.

Even so, predicting the next student action is still not trivial, since there may be more than one
way to solve a calculus related rates problem (i.e., more than one solution path), and there may be
multiple orders in which the steps of a solution path can be executed.

3.2 Project LISTEN�s Reading Tutor
RTDT (Reading Tutor, Decision-Theoretic) is a prototype action selection engine for Project
LISTEN�s Reading Tutor, which uses mixed-initiative spoken dialogue to provide reading help
for children as they read aloud (Mostow & Aist, 1999). The Reading Tutor has helped to improve
the reading of real students in real classrooms (Mostow & Aist, in press). It displays one sentence
at a time for the student to read, and a simple animated persona that appears to actively watch and
patiently listen. As the student reads, the Reading Tutor uses automated speech recognition to
detect when the student may need help, which it provides using both speech and graphical display
actions. Thus, the Reading Tutor already has an extensively developed interface. This is in con-
trast to CTDT, for which we assumed an interface built to our specifications. Inter-operability
with existing tutoring systems is a key to extending the applicability of DT Tutor�s approach.

RTDT models some of the Reading Tutor�s key tutorial action decisions in just enough depth to
determine the feasibility of applying DT Tutor to this domain. We targeted two types of unsolic-
ited help: (1) preemptive help before the student attempts a sentence, and (2) corrective feedback
after the student has stopped reading (whether or not the student has completed the sentence). The
Reading Tutor provides preemptive help when it believes that the student is likely to misread a
word, and corrective feedback when it detects words read incorrectly, skipped words and disflu-
ent reading. To avoid disrupting the flow of reading, the Reading Tutor ignores errors on a list of
36 common function words (e.g., a, the) that are unlikely to affect comprehension. For the Read-
ing Tutor�s corpus of readings, approximately two-thirds of the words in a sentence are non-
function words, or content words.

Tutoring reading differs enough from coaching calculus problem-solving to pose challenges for
adapting DT Tutor�s approach. First, student turns may consist of multiple reading actions, where
each action is an attempt to read a word. Therefore, in contrast to CTDT, RTDT must predict and
respond to multiple student actions per turn. Student turns may indeed include multiple actions in
many target domains, so meeting this challenge is important for extending DT Tutor�s generality.

Second, beginning readers often make repeated attempts at words or phrases and sometimes omit
words, with the effect of jumping around within a sentence. Even when jumping around, a student
may be able to read each individual word. Thus, the order in which beginning readers attempt
words is not always sequential, and has very little prerequisite structure. This means that the set
of actions that the student is likely to attempt next is less constrained than with CTDT, posing a
challenge for predicting the student�s next turn. A similar challenge must be faced for tutoring in
any target domain with weak structure for the order in which actions may be completed.

4 Tutor Action Cycle Networks in More Detail

4.1 TACN Components

Figure 2 provides a closer look at the major TACN components and their interrelationships. The
States representation in each slice actually consists of several sub-networks. These include the
Knowledges, Focuss, and Affects sub-networks which compose the student model, and the Task
Progresss and Discourse States sub-networks. Arcs between corresponding sub-networks in dif-

Vincent Aleven
38

ferent time slices represent the stability of attributes over time. For instance, the student�s knowl-
edge in slice 1, Knowledge1, is likely to be about the same as the student�s knowledge in slice 0,
Knowledge0, except as influenced by the tutor�s action, Tutor Action1.

The architecture shown in Figure 2 is generic. Depending on the needs of the application, fewer
or more components may be required. For instance, the initial implementation of the RTDT
prototype lacks a model of the student�s affective state because we focused on modeling other
tutorial state attributes, such as multiple student actions per turn. Therefore, its TACNs do not
include the Affects sub-networks. However, RTDT also has Tutor Efficacys sub-networks to model
the efficacy of the various tutorial help alternatives. The Tutor Efficacys sub-networks dynami-
cally tune RTDT�s model of the effects of the tutor�s actions on the student�s knowledge, helping
RTDT to avoid repeating ineffective tutorial actions and reducing the need for accurate condi-
tional probabilities regarding the influence of Tutor Action1 on Knowledge1.

Selected components are described below along with illustrations from CTDT and RTDT.

4.1.1 Tutor Action1 Nodes

The purpose of the TACN is to compute the optimal alternative for Tutor Action1, which may
consist of one or more decision nodes. For CTDT, Tutor Action1 consists of two decision nodes,
one to specify the topic of the tutor action and one to specify the action type. The action topic is
the problem-related focus of the action, such as a problem step or related rule in the target do-
main. The type is the manner in which the topic is addressed, including prompt, hint, teach, posi-
tive or negative feedback, do (tell the student how to do a step) and null (no tutor action).

For RTDT, Tutor Action1 is currently a single decision node with values null (no tutor action),
move_on (move on to the next sentence), read_move_on (read the sentence to the student and
then move on), hint_sentence (e.g., read the current sentence to the student), and hint_word_i for
each content word i in the current n-content-word sentence, i = {1, 2, �, n}. The hint_sentence
and hint_word_i alternatives specify the topic but not the type of the tutorial action � e.g., they
don�t specify whether the Reading Tutor should hint about a particular word by saying the word
itself or by giving a rhyming hint. Deciding among action type alternatives would require infor-
mation than was not available for the prototype implementation. For instance, information about

Utility2

Tutor Action1

Slice 0 Slice 1 Slice 2

Student
Model0

Student
Model2

Discourse
State2

Task
Progress2

Student
Model1

Focus0 Focus2 Focus1

Student
Action2

Knowledge0 Knowledge2 Knowledge1

Affect0 Affect2 Affect1

Discourse
State0

Task
Progress0

Discourse
State1

Task
Progress1

Figure 2. TACN architecture in more detail

Vincent Aleven
39

the student�s knowledge of the letter-sound mappings pertinent to a particular word would help
RTDT determine the likelihood that a rhyming hint would supply the required knowledge.

CTDT considers tutoring only on ready problem steps and related rules, plus the step that the stu-
dent has just completed (e.g., to give positive or negative feedback). RTDT considers every action
alternative for preemptive help, including hinting on each content word. However, for fast re-
sponse time on corrective feedback, RTDT does not consider hinting on words that the student
has already read correctly, because such hints are less likely to be pedagogically productive.

4.1.2 Student Model Knowledges Sub-Network
The Knowledges sub-network represents the tutor�s beliefs about the student�s knowledge related
to the target domain. Each Knowledges node has possible values known and unknown. For CTDT,
the student�s knowledge related to each problem is represented in a belief (sub-)network whose
structure is obtained directly from a problem solution graph. See Figure 3 for an example. The
top two rows of nodes in the figure represent rules licensing each problem step. The remaining
nodes represent problem steps, from the givens (the goal Find dx/dz for z=c and the facts x=ayb,
y=ezf and z=c) through each goal-setting and fact-finding step in all solution paths (this example
has only one solution path) until the answer is found (dx/dz=bayb-1fecf-1). Arcs represent depend-
ence between nodes. For instance, knowledge of a step depends on knowledge of both its prereq-
uisite steps and the rule required to derive it.

For RTDT, Knowledges includes nodes to represent the student�s knowledge of how to read each
content word and the sentence. For each content word i, a Know_Word_is node represents the stu-
dent�s knowledge of how to read the word. A Know_Sentences node represents the student�s
knowledge of how to read the sentence as a whole.

In slice 1, each Knowledge1 node is influenced by the tutor�s action. For instance, a tutorial hint
about a particular problem step or word increases the probability that the node corresponding to
the knowledge element is known. After the student turn has been observed, Knowledge1 is up-
dated diagnostically to reflect its causal role in the success of the student�s action(s).

Knowledge2 is not directly influenced by the student�s turn because student actions generally do
not influence student knowledge without feedback (e.g., by the tutor). Instead, Knowledge2 is in-
fluenced by Knowledge1, which is diagnostically influenced by the student�s turn.

4.1.3 Student Model Focuss Sub-Network
The Focuss sub-network represents the student�s focus of attention within the current tutorial task.
For CTDT, the focus may be any problem step, so Focuss has the same problem solution graph
structure as Knowledges. Ready steps are most likely to be in focus. Nodes representing these
steps have some distribution over the values ready and in_focus, where in_focus means that the
step is in the student�s focus of attention. Consistent with a human depth-first problem-solving
bias (Newell & Simon, 1972), any such steps that are in the student�s current solution path are
most likely to be in_focus. Focus aging is also modeled: the probability that an uncompleted step
is in_focus attenuates with each passing time slice as other problem steps come into focus.

For RTDT, Focuss models the likelihood of each content word being the first word in the stu-
dent�s focus of attention. Focus_Word_is nodes for each content word i in the current sentence
have possible values in_focus and out_of_focus, where in_focus means that the word is the first
content word in the student�s focus of attention.

In slice 1, each Focus1 node is influenced by the tutor�s action. For instance, if the tutor hints
about a problem step or word, the corresponding node is likely to be in_focus. For RTDT, a tutor
hint about the sentence as a whole increases the probability that the student will attempt to read

Vincent Aleven
40

the entire sentence (starting with the first word), increasing the probability that Focus_Word_11 is
in_focus. In slice 2, the student action influences the tutor�s beliefs about the student�s focus of
attention (in Focus2). For instance, if the student experiences an impasse on a problem step or a
word, the corresponding node is more likely to be in_ focus.

4.1.4 Student Action2 Nodes
These nodes represent one or more actions taken on the student�s turn. For CTDT, a single stu-
dent action is assumed. This action is represented by two nodes, one for the action topic and an-
other for the action type. The action topic may be any problem step and the action type may be
correct, error, impasse, or null (no student action).

For RTDT, the student turn may include multiple reading actions, where each action is an attempt
to read a word. Student action Word_i2 nodes represent the student�s reading of each content
word i as not_read, error, or correct. This representation models student turns ranging from no
productive attempt (all words not_read � e.g., a silent impasse), to all words read correctly (all
words correct), to any combination of words not_read, read in error, and read correctly. In addi-
tion, a student action Sentence2 node models the student�s reading of the sentence as a whole as
either fluent or disfluent.

Both CTDT and RTDT probabilistically predict the next student action. For CTDT, Focus1 influ-
ences the student action topic. Given the action topic, whether the action type will be correct, er-
ror or impasse depends on the student�s knowledge. Therefore, both the student action topic and
Knowledge1 influence the student action type.

For RTDT, influences on each Word_i2 node from the corresponding Focus_Word_i1 node prob-
abilistically predict which word the student will attempt first. For any word that the student at-

R C h a in
E x e c

R D if f
L H S

R E v a l
O p s

R E v a l
E x e c

R E v a l
L H S

R C h a in
O p s

R C h a in
L H S

R D if f
E x e c

z = c d x /d z =
b a y b - 1 f e z f - 1

A p p ly
C h a in

F in d
d x /d z : z

y = e z f

F in d
d x /d z : z

A p p ly
D if f 2

d y /d z =
f e z f- 1

x = a y b A p p ly
D if f 1

F in d
d x /d y : y

d x /d y =
b a y b - 1

d x /d z =
b a y b - 1 f e c f - 1

F in d
d x /d z : z = c

A p p ly
E v a l

Figure 3. Problem solution graph for CTDT

Vincent Aleven
41

tempts, an influence from the corresponding Know_Word_i1 node predicts whether the reading
will be in error or correct. We assume that if a student reads one word correctly, she is most
likely to attempt the next word, and so on, until she gets stuck or makes an error. Therefore, arcs
from each node Word_i2 to node Word_i+12, i = {1, 2, �, n-1}, model the influence of reading
word i correctly on the likelihood that the student will attempt word i+1. For a fluent reading of
the sentence, each word must be correct without pauses in between � i.e., the student must be
able to read each word and the sentence as a whole. The Sentence2 node is therefore influenced by
each Word_i2 node and by the Know_Sentence1 node.

4.1.5 Discourse States Sub-Network

For CTDT, a Coherence node represents the coherence of the tutor�s action in response to the
previous student action as either coherent or incoherent. For instance, negative feedback in re-
sponse to a correct student action is incoherent. A Relevance node, with values high and low,
models how well the tutor cooperates with the student�s focus of attention by assessing the extent
to which the same problem steps are in_focus before and after the tutor�s action: Problem steps
that are in the student�s focus of attention are likely to be in_focus in Focus0. A tutorial action
which addresses a problem step or related rule that is in the student�s focus of attention will fur-
ther increase the probability that the problem step is in_focus in Focus1. Therefore, if the same
problem steps are most likely in_focus in Focus0 and Focus1, Relevance is most likely high.

For RTDT, Discourse States is simply the number of discourse turns, counted as a measure of
success at avoiding spending too much time on a sentence.

4.1.6 Utility2 Nodes

Utility2 consists of several utility nodes in a structured utility model representing tutor preferences
regarding tutorial state outcomes. Total utility is a weighted sum of the utilities for each tutorial
state component (e.g., student knowledge, focus, and affect; task progress; discourse state). The
utility value for each component may in turn be a weighted sum of the utilities for each sub-
component. For instance, Knowledge2 rules that are important to the curriculum may be weighted
more heavily than certain problem steps.

The tutor�s behavior can easily be modified by changing the utilities or their weights. For in-
stance, it may be that the best way for the tutor to improve the student�s domain knowledge is to
focus on the student�s knowledge at the expense of helping the student make progress on tutorial
tasks (e.g., solving problems). The tutor will do this automatically if a high weight is assigned to
the utility of student knowledge and a low weight is assigned to the utility of task progress.

4.2 Implementation
With input from a problem solution graph (CTDT) or text (RTDT), DT Tutor creates a TACN
with default values for prior and conditional probabilities and utilities. Default values are speci-
fied by parameter for easy modification. An optional file specifies any prior probability or utility
values that differ from the defaults. After creating the initial TACN, DT Tutor recommends tuto-
rial actions, accepts inputs representing tutor and student actions, updates the network, and adds
new TACNs to the DDN as appropriate.

We automated construction of the large number of conditional probability table entries using a
much smaller number of rules and parameters. For instance, for RTDT, the rule for the probabil-
ity that a student will remember in slice 2 a word that she knew in slice 1 is:

P(Know_Word_i2=known | Know_Word_i1 = known) = 1.0 � word-forget-probability

word-forget-probability is a parameter that specifies the probability that the student will forget a

Vincent Aleven
42

known word between slices.

Both of DT Tutor�s applications are prototypes for testing the viability and generality of the ap-
proach. CTDT does not yet have an interface, and RTDT has not been integrated with the Read-
ing Tutor. Therefore, we used simulated student input for formative evaluations.

5 Formative Evaluation
Our goal was to determine whether DT Tutor�s prototype applications can select optimal actions
quickly enough to keep a student engaged.

5.1 Response Time

One of the major challenges facing probabilistic systems for real-world domains is tractability.
We performed response time testing on a 667-MHz Pentium III PC with 128-MB of RAM. Using
Cooper�s (1988) algorithm for decision network inference using belief network algorithms, we
tested with three algorithms: an exact clustering algorithm (Huang & Darwiche, 1996) and two
approximate, sampling algorithms, likelihood sampling (Shachter & Peot, 1989) and heuristic
importance (Shachter & Peot, 1989), with 1,000 samples each. Response times reported are the
mean over 10 trials. The times for the approximate algorithms were extremely close, with neither
holding an advantage in all cases, so they are reported as one below.

For CTDT, only the approximate algorithms had reasonable response times for both problems
tested: 1.5 seconds for a 5-step problem and 2.1 seconds for an 11-step problem.

For the Reading Tutor�s corpus of readings, sentence length ranges from approximately 5 to 20
words as reading level progresses from kindergarten through fifth grade, with approximately two-
thirds content words, so we tested response times for preemptive help on sentences with 2 to 14
content words. Our response time goal was 0.5 seconds or less. For all three algorithms, response
times for sentences with up to 7 content words were less than 0.5 seconds, ranging from 0.04 sec-
onds for 2 content words to .49 seconds for 7 content words. Response times for the exact algo-
rithm blew up starting at 10 content words with a time of 12.48 seconds. Response times for the
approximate algorithms remained promising (as explained below) for up to 12 content words,
ranging from .59 seconds for 8 content words to 3.14 seconds for 12 content words. However,
response times for even the approximate algorithms blew up at 13 content words with times of
23-26 seconds. Therefore, response time for preemptive help was satisfactory for students at
lower reading levels, did not meet the goal for longer sentences (starting at 8 content words), and
was entirely unsatisfactory even with the approximate algorithms for the longest sentences (13-14
content words). Response time would tend to increase if the number of tutor action types is in-
creased (see section 4.1.1), although the amount of increase would be at most linear in the propor-
tion of additional action alternatives considered.

For decision-making purposes, it is sufficient to correctly rank the optimal alternative. When only
the rank of the optimal alternative was considered, the approximate algorithms were correct on
every trial. While this result cannot be guaranteed, it may make little practical difference if the
alternative selected has an expected utility that is close to the maximum value. Moreover, many
sampling algorithms have an anytime property that allows an approximate result to be obtained at
any point in the computation (Cousins et al., 1993), so accuracy can continue to improve until a
response is needed. For RTDT, response times for corrective feedback should generally be faster
because RTDT does not consider helping with words that have already been read correctly. In any
case, faster response times can be expected as computer hardware and probabilistic reasoning
algorithms continue to improve. Therefore, the response times reported above for the approximate
algorithms show promise that DT Tutor applications for real-world domains will be able to re-

Vincent Aleven
43

spond accurately enough within satisfactory response time. To handle the more challenging cases
(such as the longest sentences faced by RTDT) in the near-term, application-specific adjustments
may be required � e.g., abstraction in the knowledge representation within TACN components.

5.2 Action Selections

DT Tutor�s decision-theoretic representation guarantees that its decisions will be optimal given
the belief structure and objectives that it embodies. Nevertheless, the first step in evaluating a tu-
toring system is to see if it behaves in a manner that is consistent with strong intuitions about the
pedagogical value of tutorial actions in specific situations. Such a sanity check cannot of course
be a complete test. The space of network structures and probability and utility values, in combina-
tion with all possible student actions, is infinite, so the most we can do is sample from this space.
However, if DT Tutor can handle many situations in which our intuitions are strong, we are more
apt to have faith in its advice in situations where intuitions are less clear, and this is a prerequisite
for testing with human subjects. Therefore, we tested DT Tutor�s behavior in clear-cut situations.

First, we used default parameters to initialize TACNs with intuitively plausible probability and
utility values. Next, we simulated student action inputs while perturbing probability and utility
values to probe dimensions of the situation space. For instance, to test whether CTDT and RTDT
would give preemptive help when warranted, we simply perturbed the prior probabilities for stu-
dent knowledge of one or more domain elements (e.g., problem steps or words) to be most likely
unknown and then verified that the application would suggest appropriate preemptive help.

The tests showed that DT Tutor is capable of selecting tutorial actions that correspond in interest-
ing ways to the behavior of human tutors. Notable action selection characteristics include the fol-
lowing:

• Preemptively intervenes to prevent student errors and impasses, as human tutors often do
(Lepper et al., 1993).

• Does not provide help when the student does not appear to need it. Human tutors often foster
their students� independence by letting them work autonomously (Lepper et al., 1993).

• Adapts tutorial topics as the student moves around the task space and predicts the influence of
the tutor�s actions on the student�s focus of attention.

• With equal utilities for knowledge of rules and steps, CTDT tends to address the student�s
knowledge of rules rather than problem-specific steps (because rule knowledge helps the stu-
dent complete steps on her own). Effective human tutoring is correlated with teaching gener-
alizations that go beyond the immediate problem-solving context (VanLehn et al., in press).

• CTDT tempers its actions based on consideration of the student�s affective state (e.g., avoiding
negative feedback). Human tutors consider the student�s affect as well (Lepper et al., 1993).

• RTDT avoids repeating ineffective tutorial actions.

6 Related Work
Very few tutoring systems have used decision theory. Reye (1995) proposed a decision-theoretic
approach for tutoring systems, mentioning an implementation in progress for tutoring SQL. Reye
(1996) also proposed modeling the student�s knowledge using a dynamic belief network. CAPIT
(Mayo & Mitrovic, 2001, to appear), a decision-theoretic tutor for capitalization and punctuation,
bases its decisions on a single objective and ignores the student�s internal state in order to focus
on observable variables. DT Tutor is a domain-independent architecture which considers multiple
objectives, including objectives related to a rich model of the student�s internal state.

Tutoring is a type of practical, mixed-initiative interaction. Within this broader domain, systems

Vincent Aleven
44

by Horvitz and colleagues (e.g., Horvitz et al., 1998; Horvitz & Paek, 1999) also model the state
of the interaction, including the user�s state, with connected sets of Bayesian models, and employ
decision theory for optimal action selection. Some of these systems (e.g., Horvitz & Paek, 1999)
use value-of-information to guide user queries and observation selection, which DT Tutor does
not (yet) do. To model temporal evolution, a number of probabilistic approaches have been tried,
including dynamic and single-stage network representations (e.g., Horvitz et al., 1998). DT Tutor
appears to be alone among systems for mixed-initiative interaction in (1) using a dynamic deci-
sion network to consider uncertainty, objectives, and the changing state within a unified para-
digm, and (2) explicitly predicting the student�s next action and its effect on the interaction.

7 Future Work and Discussion
We are currently selecting the domain for the first full-fledged implementation of DT Tutor�s ac-
tion selection engine in a complete tutoring system, either by combining it with an existing tutor-
ing system (such as the Reading Tutor) or by building our own user interface. We are also inves-
tigating applications that are more explicitly dialogue-oriented. Whichever domain we select, our
next major milestone will be testing the effectiveness of DT Tutor�s approach with students.

Efficiently obtaining more accurate probability and utility values is a priority. However, precise
numbers may not always be necessary. For instance, diagnosis (say, of the student�s knowledge)
in Bayesian systems is often surprisingly insensitive to imprecision in specification of probabili-
ties (Henrion et al., 1996). For a decision system, it is sufficient to correctly rank the optimal de-
cision alternative. Moreover, if the actual expected utilities of two or more alternatives are very
close, it may make little practical difference which one is selected.

This work has shown that a decision-theoretic approach can be used to select tutorial discourse
actions that are optimal, given the tutor�s beliefs and objectives. DT Tutor�s architecture balances
tradeoffs among multiple competing objectives and handles uncertainty about the changing tuto-
rial state in a theoretically rigorous manner. Discourse actions are selected both for their direct
effects on the tutorial state, including the student�s internal state, and their indirect effects on the
subsequent student turn and the resulting tutorial state. The tutorial state representation may in-
clude any number of attributes at various levels of detail, including the discourse state, task pro-
gress, and the student�s knowledge, focus of attention, and affective state. A rich model of the
tutorial state helps DT Tutor to select actions that correspond in interesting ways to the behavior
of human tutors. Response time remains a challenge, but testing with approximate algorithms
shows promise that applications for diverse real-world domains will be able to respond with satis-
factory accuracy and speed.

As an action-selection engine, DT Tutor plays at most the role of a high-level discourse planner,
leaving the specifics of dialogue understanding and generation (parsing, semantic interpretation,
surface realization, etc.) to other components of the tutoring application. It performs near-term
discourse planning by anticipating the effects of its actions on the student�s internal state, the stu-
dent�s subsequent discourse turn, and the resulting tutorial state. To predict how its actions will
influence the tutorial state, including the student�s internal state, DT Tutor�s architecture includes
strong domain reasoning and student modeling.

Acknowledgments
This research was sponsored by the Cognitive Science Division of the Office of Naval Research
under grant N00014-98-1-0467. For decision-theoretic inference, we used the SMILE reasoning
engine contributed to the community by the Decision Systems Laboratory at University of Pitts-
burgh (http://www.sis.pitt.edu/~dsl). We thank the reviewers for several helpful suggestions.

Vincent Aleven
45

References
Cooper, G. F. (1988). A method for using belief networks as influence diagrams. In Workshop on

Uncertainty in Artificial Intelligence, pp. 55-63.
Cousins, S. B., Chen, W., & Frisse, M. E. (1993). A tutorial introduction to stochastic simulation

algorithms for belief networks. Artificial Intelligence in Medicine 5, pp. 315-340.
Henrion, M., Pradhan, M., Del Favero, B., Huang, K., Provan, G., & O'Rorke, P. (1996). Why is

diagnosis in belief networks insensitive to imprecision in probabilities? In 12th Annual Confer-
ence on Uncertainty in Artificial Intelligence, pp. 307-314.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998). The Lumiere project:
Bayesian user modeling for inferring the goals and needs of software users. In 14th Conference
on Uncertainty in Artificial Intelligence, pp. 256-265.

Horvitz, E., & Paek, T. (1999). A computational architecture for conversation. In Seventh
International Conference on User Modeling, pp. 201-210.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide. Interna-
tional Journal of Approximate Reasoning 15, 225-263.

Huang, T., Koller, D., Malik, J., Ogasawara, G., Rao, B., Russell, S., & Weber, J. (1994). Auto-
mated symbolic traffic scene analysis using belief networks. In 12th National Conference on
Artificial Intelligence, pp. 966-972.

Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J.-L. (1993). Motivational techniques
of expert human tutors: Lessons for the design of computer-based tutors. In S. P. Lajoie & S. J.
Derry (Eds.), Computers as Cognitive Tools, pp. 75-105. Lawrence Erlbaum Associates.

Mayo, M., & Mitrovic, A. (2001, to appear). Optimising ITS behaviour with Bayesian networks
and decision theory. International Journal of Artificial Intelligence in Education 12.

Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. (1992). Effective tutoring techniques: A
comparison of human tutors and intelligent tutoring systems. The Journal of the Learning Sci-
ences 2(3), 277-306.

Mostow, J., & Aist, G. (1999). Giving help and praise in a reading tutor with imperfect listening -
- because automated speech recognition means never being able to say you're certain. CALICO
Journal 16(3), 407-424.

Mostow, J., & Aist, G. (in press). Evaluating tutors that listen: An overview of Project LISTEN.
In K. Forbus & P. Feltovich (Eds.), Smart Machines in Education: The coming revolution in
educational technology. MIT/AAAI Press.

Murray, R. C., & VanLehn, K. (2000). DT Tutor: A dynamic, decision-theoretic approach for
optimal selection of tutorial actions. In Intelligent Tutoring Systems, 5th International Confer-
ence, pp. 153-162.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Prentice-Hall, Inc.
Reye, J. (1995). A goal-centred architecture for intelligent tutoring systems. In J. Greer (Ed.)

World Conference on Artificial Intelligence in Education, pp. 307-314.
Reye, J. (1996). A belief net backbone for student modeling. In Intelligent Tutoring Systems,

Third International Conference, pp. 596-604.
Shachter, R., & Peot, M. (1989). Simulation approaches to general probabilistic inference on be-

lief networks. In 5th Annual Conference on Uncertainty in Artificial Intelligence, pp. 221-231.
Singley, M. K. (1990). The reification of goal structures in a calculus tutor: Effects on problem

solving performance. Interactive Learning Environments 1, 102-123.
VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (in press). Human tutoring:

Why do only some events cause learning? Cognition and Instruction.

Vincent Aleven
46

AutoTutor: An Intelligent Tutor and Conversational Tutoring Scaffold

Arthur C. Graesser1, Xiangen Hu1, Suresh Susarla1, Derek Harter1, Natalie Person2, Max
Louwerse1, Brent Olde1, and the Tutoring Research Group1

1University of Memphis
2Rhodes College

The Tutoring Research Group (TRG) at the University of Memphis has developed a computer
tutor (called AutoTutor) that simulates the discourse patterns and pedagogical strategies of a
typical human tutor (Graesser, P. Wiemer-Hastings, K. Wiemer-Hastings, Kreuz, & TRG, 1999).
The dialog mechanisms of AutoTutor were designed to incorporate conversation patterns that
exist in naturalistic tutoring sessions (Graesser, Person & Magliano, 1995), as well as some ideal
strategies for promoting learning gains. AutoTutor was originally designed to help college
students learn introductory computer literacy, such as the fundamentals of hardware, operating
systems, and the Internet. Evaluations of AutoTutor have shown that the tutoring system
improves learning and memory of the lessons by .5 to .6 standard deviation units compared to
rereading a chapter (Graesser, Person, Harter, & TRG, in press).

Instead of merely being an information delivery system, AutoTutor is a collaborative scaffold
that assists the student in actively constructing knowledge by holding a conversation in natural
language. A dialog manager coordinates the conversation that occurs between a learner and a
pedagogical agent, whereas lesson content and world knowledge are represented in a curriculum
script and latent semantic analysis (Landauer, Foltz, & Laham, 1998). LSA and surface language
cues guide the evaluation of the quality of student input (Wiemer-Hastingset al., 1999). There is
an animated conversational agent with facial expressions, synthesized speech, and some
rudimentary gestures. The modules of AutoTutor are uniformly weak rather than strong when
considering parsing, semantic interpretation, dialog planning, domain reasoning, student
modeling, and discourse production; the weakness of these modules arguably reflects the
capabil ity of human tutors. We are currently developing a hybrid version of AutoTutor that
incorporates both weak and strong computational modules.

As an example of a weak module, a dialog advancer network (DAN) manages the exchange by
specifying appropriate discourse markers (e.g., Moving on, Okay), dialog move categories, and
frozen expressions within the tutor’s turn. The content of selected dialog move category is
generated by a separate mechanism, so there is a natural segregation of dialog functions from
substantive content. There are the following different categories of dialog moves that AutoTutor
generates: main question, short feedback (i.e., positive, neutral, negative), pumps (uh huh, tell me
more), prompts (The primary memories of the CPU are ROM and _____), prompt response (and
RAM), hints, assertions, corrections, and summaries. The DAN is formally an augmented state
transition network because the selection of a dialog move category on tutor turn N+1 is sensitive
to a large space of parameters computed from the dialog history. The DAN in AutoTutor-1 does
a fairly impressive job in managing the conversation, based on our performance data (Person,
Graesser, Pomeroy, Kreuz, & TRG, in press), even though it does not incorporate sophisticated
dialog planning capabil ities.

AutoTutor was designed to be reusable for other knowledge domains that do not require
mathematical precision and formal specification. In order to test the portabil ity of the AutoTutor
architecture, we developed a version for the domain of conceptual physics. Together with
computer literacy, conceptual physics is one of the fields in which extra tutoring sessions are

Vincent Aleven
47

needed. The target population for the tutor was undergraduate students taking elementary courses
in conceptual physics.

In the transition of AutoTutor from computer li teracy to physics only three modules needed to be
changed for the new subject matter: (1) a glossary of terms and definitions for physics, (2) an
LSA space for conceptual physics, (3) a curriculum script with deep reasoning questions and
associated answers for physics. The three modules can loosely be aff iliated with metacognition,
comprehension, and production. Changing the glossary required approximately 15 man hours.
This process is relatively easy: definitions from text books need to be included in order to give
AutoTutor the possibili ty of accurately answer metacognitive questions (“What does X mean?”).
The majority of AutoTutor’s comprehension mechanisms use LSA, so setting his long-term
memory representation is an important process. The LSA space needs to be trained with an
adequate corpus of texts applicable to the knowledge domain, such as text books, chapters, and
technical articles. After the corpus is prepared in an electronic form, we declare the parameters
of LSA, such as the number of dimensions and size of document units. The training of the LSA
space takes less than an hour (Cleaning up the corpus (removing code, pictures, etc.), however,
could be time consuming, in our case approximately 10 hours). Most of the work, however, lies
in the curriculum script. Since AutoTutor’s architecture only allows one particular format, the
curriculum script needs to be carefully changed. Questions need to be defined, ideal answers
need to be formulated, hints, prompts and pumps need to be included. AutoTutor’s application to
computer literacy had three topics, each consisting of 12 deep-reasoning questions. Changing the
curriculum script to conceptual physics required approximately 20 hours for 3
questions/problems. However, an authoring tool makes this process less time-consuming than
most intelligent tutoring systems because the format of the entries are descriptions in English
rather than structured code (e.g., Lisp, Prolog). Several lesson planners can simultaneously work
on the transition and do not require sophisticated programming expertise.

Figure 1. Screen shot of AutoTutor interface

Vincent Aleven
48

TUTOR

Okay, l et ' s begi n. H el l o, I ' m Mar co. I ' m one o f t he co mput er
t ut ors devel oped by t he Tut or in g R es ear ch Gr oup, a t t he
Uni ver si t y of M emphi s. I t r y t o h el p st udent s l ear n ab out
Physic s, b y havi ng a c onv er sat i on w it h t hem. L et' s g et
s t r aig ht t o t he de monst ra t i on. Suppos e a r unner i s r unni ng in
a s t ra i ght li ne at c onsta nt sp eed, an d t he r unner t hr ows a
pumpki n s t r ai ght up. W her e w il l t he pumpki n l and? E xpl ai n.

STUDENT The pu mpki n l ands behi nd t he r unner .
TUTOR Anyt hi ng e l se ?
STUDENT I d on’ t k now.
TUTOR Okay. What is t he hor i zont al vel oc i ty o f t he p umpki n?
STUDENT The p umpki n h as a co nst ant hor iz ont al vel oci t y .
TUTOR so? Th e h or iz ont al v el oci t y of t he pu mpkin i s t he s ame a s t he?
STUDENT Coul d you r epeat t hat ?
TUTOR Once agai n, t he ho r i zonta l v el oc i t y of t he p umpki n i s t he s ame

as t he?
STUDENT r unner .
TUTOR The sa me a s t he ru nner . Okay. Al so, t he ma n a nd t he pu mpki n

have t he s ame h ori zont al vel oc i t y. Wh at ca n w e sa y a bout t he
hor i zo nt al ve l ocit y o f th e p umpki n if t her e i s no f orc e a ct in g
on t he p umpki n i n t he h or i zont al d i re ct i on?

STUDENT i t s co nst ant.

Note that this transcript only presents a small part of the rich information (pauses, intonation, gestures) that
AutoTutor provides in the interaction with a student.
Table 1. Sample of a student interaction transcript

Acknowledgements

Research on AutoTutor was supported on grants from the National Science Foundation (SBR
9720314) and the Off icie of Naval Research (N00014-00-1-0600).

References

Graesser, A.C., Person, N., Harter, D., & TRG (in press). Teaching tactics and dialog in

AutoTutor. International Journal of Artificial Intelligence in Education.
Graesser, A.C., Person, N.K., & Magliano, J.P. (1995). Collaborative dialog patterns in

naturalistic one-on-one tutoring. Applied Cognitive Psychology, 9, 359-387.
Graesser, A.C., VanLehn, K., Rose, C., Jordan, P., & Harter, D. (in press). Intelligent tutoring

systems with conversational dialogue. AI Magazine.
Graesser, A.C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., & TRG (1999).

AutoTutor: A simulation of a human tutor. Journal of Cognitive Systems Research, 1, 35-51.
Landauer, T.K., Foltz, P.W., Laham, D. (1998). An introduction to latent semantic analysis.

Discourse Processes, 25, 259-284.
Person, N.K., Graesser, A.C., Kreuz, R.J., Pomeroy, V., & TRG (in press). Simulating human

tutor dialog moves in AutoTutor. International Journal of Artificial Intelligence in Education.
Wiemer-Hastings, P., Wiemer-Hastings, K., and Graesser, A. (1999). Improving an intell igent

tutor's comprehension of students with Latent Semantic Analysis. In S.P. Lajoie and M. Vivet,
Artificial Intelligence in Education (pp. 535-542). Amsterdam: IOS Press.

Vincent Aleven
49

Simple Natural Language Generation and
Intelligent Tutoring Systems

Barbara Di Eugenio, Michael Glass, Michael J. Trolio
Electrical Engineering and Computer Science Department

University of Illinois at Chicago
Chicago, IL, 60607 USA

fbdieugen,mglass,mtrolio g@eecs.uic.edu

Susan Haller
Computer Science Department

University of Wisconsin Parkside
Kenosha, WI 53141, USA
haller@cs.uwp.edu

Abstract

In this paper, we report on our approach to adding
Natural Language Generation (NLG) capabilities to
ITSs. Our choice has been to apply simple NLG
techniques to improve the feedback provided by an
existing ITS, specifically, one built within the DIAG
framework (Towne 1997). We evaluated the original
version of the system and the enhanced one with a
between subjects experiment. On the whole, the en-
hanced system is better than the original one, other
than in helping subjects remember the actions they
took. Current work includes exploiting more sophis-
ticated NLG techniques but still without delving into
full fledged text planning. We are also conducting a
constrained data collection, in which students and
tutors interact via the ITS.

Introduction
Today, many projects aim at providing ITSs with a
full-fledged dialogue interface, e.g. see the work
at the CIRCLE center (http://www.pitt.edu/˜circle/),
or (Humeet al. 1996; Moore, Lemaire, & Rosen-
bloom 1996; Ros´e, Di Eugenio, & Moore 1999;
Freedman 1999; Graesseret al. 2000). On the con-
trary, our approach to adding NLG capabilities to an
Intelligent Tutoring System falls on the weak side of
the divide: we are concentrating on simple sentence
planning with no or minimal amounts of text plan-
ning. Our choice is partly a development strategy,
because we set out to rapidly improve the language
feedback provided by an existing ITS shell, partly a
desire to evaluate how effective the system can be
with a relatively small effort. A similar approach —
using simple generation techniques for surface re-
alization in tutoring dialogues — is taken in YAG
(McRoy, Channarukul, & Ali 2000). Our results so
far suggest that simple NLG can help, but the gains
are small enough to suggest that moving to some-
what more sophisticated techniques should be ben-
eficial, even if we still don’t intend to develop a full
fledged NLG interface.

We take this approach for two reasons. First, we
want to understand what can be accomplished by
interfacing an NL generator to an ITS taken as a
blackbox: can the ITS tutoring strategy be left as

is, or is there a point in which the dialogue strate-
gies and the original tutoring strategy are at odds
with each other? Second, we are interested in
finding out what is the “added value” of an NL in-
terface to an ITS. One way to do so is to com-
pare a system that does not use NL techniques to
a version of the same system that uses NL. We are
aware of only one other experiment in this direc-
tion (Traftonet al. 1997), in which subjects gave
input to a cartographic system using either NL only,
direct manipulation only, or a combination of the
two. Subjects were given instructions such as “go
to intersection X”; time on task and score on map
drawing after the session were recorded. In the
NL only condition, subjects performed the poorest
on the map drawing task. However, it is not clear
which conclusions should be drawn from this work,
given that the system they describe does not seem
to qualify as a real ITS. In general, the evaluation
of NL interfaces to ITSs is an area that needs in-
vestigation. ITSs are often evaluated in terms of
pre/post-test score, however task performance mea-
sures may be appropriate as well. To our knowledge,
the only ITSs with an NL interface which has been
formally evaluated is CIRCSIM (Evenset al. 1993;
Kim, Glass, & Evens 2000), but the results of the
evaluation are not available yet.

We will first discuss DIAG, the ITS authoring
shell we are using. We will then discuss the work
we have completed; this comprises the aggregation
rules we implemented within EXEMPLARS and the
formal evaluation we conducted. We will then dis-
cuss some current work on generating more coher-
ent feedback by exploiting more sophisticated NLG
techniques, and the data collection we have started,
to study how tutors verbalize the information that
the ITS wants to communicate.

DIAG
DIAG (Towne 1997) is a shell to build ITSs that
teach students to troubleshoot complex artifacts and
systems, such home heating and circuitry. DIAG in
turn builds on the VIVIDS authoring environment
(Munro 1994). VIVIDS based tutors deliver instruc-

Vincent Aleven
50

tion and practice in the context of graphical simula-
tions. Authors build interactive graphical models of
complex systems, and build lessons based on these
graphical models.

A typical session with a DIAG application
presents the student with a series of troubleshoot-
ing problems of increasing difficulty. DIAG’s tutor-
ing strategy steers the student towards performing
the tests that have the greatest potential for reduc-
ing uncertainty (Towne 1997). Most of the times, a
test consists of the visual observation of anindica-
tor. DIAG keeps track of the tests the student per-
forms, and the inferences that could be made from
the symptoms shown. The student interacts with the
application by testing indicators and trying to infer
which faulty part (RU) may cause the detected ab-
normal states. RU stands forreplaceable unit, be-
cause the only course of action open to the student
to fix the problem is to replace faulty components
in the graphical simulation. Figure 1 shows one
of the graphical views in a DIAG application that
teaches how to troubleshoot a home heating system.
The subsystem being displayed is the furnace sys-
tem. Some of its components are indicators (e.g.,
the gauges labeled Burner Motor RPM and Water
Temperature). Others are either replaceable units,
or other complex modules that contain indicators
and replaceable units, e.g. the Oil Burner. Complex
components are in turn zoomable.

At any point, the student can consult the built-in
tutor in one of several ways. For example, if the stu-
dent suspects an RU to be faulty, s/he can ask the tu-
tor to specify the likelihood that this part is the cause
of the fault. The tutor will also indicate the state of
any indicators that the student has explored and try
to imply a correlation, positive or negative, between
the states of the indicators to the RU in question. By
utilizing the tutor’s feedback, the student can deduce
relationships among the system parts and continu-
ally refine his/her solution.

Language Generation in DIAG
After deciding which content to communicate, the
original DIAG system (DIAG-orig) uses very simple
templates to assemble the text to present to the stu-
dent. The result is that the feedback that DIAG pro-
vides is repetitive, both as a sequence of replies to
requests for feedback, and within each verbal feed-
back. In many cases, the feedback presents a sin-
gle long list of many parts. This problem is com-
pounded by the fact that most DIAG applications in-
volve complex systems with many parts. Although
there are different levels of description in the system
model, and hierarchies of objects, the verbal feed-
back is almost always in terms of individual indi-
cators or units. The top part of Figure 2 shows the
reply originally provided by DIAG to a request of

information regarding the indicator named “Visual
Combustion Check”.

We set out to improve on DIAG’s feedback mech-
anism by applying aggregation rules. For example,
a long list of parts can be broken down by classify-
ing each of these parts in to one of several smaller
lists and then presenting the student with this set of
lists. The bottom part of Figure 2 shows our aggre-
gation rules at work. The revised output groups the
parts under discussion by the system modules that
contain them (Oil Burner and Furnace System), and
by the likelihood that a certain RU causes the ob-
served symptoms. Notice how theIgnitor Assembly
is singled out in the revised answer. Among all men-
tioned units, it is the only one that cannot cause the
symptom. This fact is lost in the original answer.

As our sentence planner, we chose EXEMPLARS
(White & Caldwell 1998) over better known sys-
tems such as FUF (Elhadad 1993) and Penman
(Bateman 1994) because of the complexity and
learning curve of the latter two. Efficiency and rapid
prototyping are among the reasons we chose EX-
EMPLARS.

EXEMPLARS is an object-oriented, rule based
generator. The rules (calledexemplars) are simi-
lar to schema-like text planning rules because they
are meant to capture an exemplary way of achiev-
ing a communicative goal in a given communicative
context, as determined by the system designer. EX-
EMPLARS is a hybrid system that mixes template-
style and more sophisticated types of text planning.
The text planner selects rules by traversing the ex-
emplar specialization hierarchy. The applicability
conditions associated with each exemplar are suc-
cessively evaluated in order to find the most specific
exemplar for the current context.

In the enhanced version of the system (DIAG-
NLP), DIAG passes the information to be communi-
cated to EXEMPLARS (the two systems communi-
cate via a text file). EXEMPLARS performs essen-
tially three tasks:

1. it determines the specific exemplars needed;

2. it adds the chosen exemplars to the sentence plan-
ner as a goal;

3. it linearizes and lexicalizes the feedback in its fi-
nal form, writing it to an external file which is
passed back to DIAG for display in the appropri-
ate window.

In DIAG-NLP, we concentrated on rules for ag-
gregation, some of which also affect format and lay-
out. Our choices were suggested by the need to re-
late the language feedback to the hierarchical struc-
ture of the physical system. We have two main kinds
of rules, description rules and aggregation rules.

Description rules are used when the full descrip-
tion of a part is required, such as whether the part is

Vincent Aleven
51

Figure 1: A screen from a DIAG application on home heating

in a normal state, its current reading, and, if abnor-
mal, what the normal state should be (see the first
sentence in the bottom part of Figure 2).

The aggregation rules are used to group large lists
of parts into smaller lists. They allow composite ag-
gregation, so that nested lists are created. Among
our aggregation exemplars are:
� AggByContainer: each part within this DIAG ap-

plication is contained within a larger block, called
a system module. TheAggByContainerrule ac-
cepts a list of parts, classifies each part by its con-
taining module, and then creates a set of lists by
module;

� AggByFufer: it groups replaceable units accord-
ing to the likelihood of being at fault for a specific
symptom;

� AggByState: it groups indicators by their normal
/ abnormal state.
A final exemplar, invoked by the other aggrega-

tion rules, deals with formatting, namely, creating
vertical lists, spacing, etc.

The most frequent application of the aggregation
rules is to group parts according to the system mod-
ule they belong to, and within each module, to group
replaceable units by how likely it is they may cause
the observed symptom, as shown in Figure 2.

In this version ofDIAG-NLP, morphology, lexical
realization and referring expression generation were
all treated ad hoc, i.e., they were directly encoded in
the appropriate exemplars.

Experiments
Intuitively, the contrast between the feedback pro-
duced byDIAG-orig and byDIAG-NLP (top and
bottom in Figure 2) suggests that even simple ag-
gregation rules dramatically improve the language
feedback. To provide a real assessment of this claim,
we conducted an empirical evaluation designed as
a between-subject study. Both groups interact with
the same DIAG application that teaches them to
troubleshoot a home-heating system. One group in-
teracts withDIAG-orig and the other withDIAG-

Vincent Aleven
52

Figure 2: Original (top) and revised (bottom) answers provided by DIAG to the sameConsult Indicatorquery

Vincent Aleven
53

NLP.
Seventeen subjects were tested in each group.

Our subject pool comprised 13 undergraduates, 18
graduates, and 3 research staff, all affiliated with
our university. Participation in the experiment was
restricted to science or engineering majors. Each
subject first reads some short material about home
heating that we developed. Afterwards, each sub-
ject goes through the first problem as a trial run.
Each subject then continues through the curriculum
on his/her own. The curriculum consists of three
problems of increasing difficulty. Subjects are en-
couraged to interact with DIAG as much as possi-
ble. At the end of the experiment, each subject is
administered a questionnaire.

Metrics. A detailed log is collected while the sub-
ject solves problems. It includes how many prob-
lems the subject solved, and, for each problem: total
time, and time spent reading feedback; how many
and which indicators and RUs the subject consults
DIAG about; how many, and which RUs the subject
replaces.

Questionnaire. The questionnaire is divided into
three parts. The first part tests the subject’s un-
derstanding of the domain. Because the questions
asked are fairly open ended, this part was scored as
if grading an essay.

The second part concerns the subjects’ recollec-
tion of their actions, specifically, of the indicators
they consulted the system on and of the RUs they
replaced. By taking the log of the subject’s actions
as the target, we can compute the usual measures of
precision and recall. We compute precision as the
percentage of correct answers out of the total num-
ber of answers the subject gave; whereas recall is the
percentage of correct answers they gave with respect
to the log of their actions. We also compute the F-

measure,(�
2+1)PR
�2P+R , that smooths precision and re-

call off, with � = 1.
The third part of the questionnaire asks the sub-

ject to rate the system’s feedback along four dimen-
sions on a scale from 1 to 5 (see Table 3).

Comments on collected measures.As the re-
viewers of this paper pointed out, almost all the
measures we collected, and whose significance is
analyzed below, pertain to task performance or user
satisfaction, rather than to learning per se — only
Essay scoredirectly addresses learning. We agree
that learning measures should be the ultimate test of
the success of the NL interface to the ITS. However
we would argue that performance measures are im-
portant too: they provide indirect evidence of the ef-
fectiveness of the system, including issues of usabil-

DIAG-orig DIAG-NLP
Time 29.8’ 28.0’
Feedback Time 6.9’ 5.4’
Consultations 30.4 24.2
Indicator consultations 11.4 5.9
RU consultations 19.2 18.1
Parts replaced 3.85 3.33
Essay score 81/100 83/100

Table 1: Performance measures

DIAG-orig DIAG-NLP
Indicator Precision .33 .17
Indicator Recall .33 .27
Indicator F-measure .44 .29
RU Precision .74 .65
RU Recall .73 .63
RU F-measure .72 .63

Table 2: Precision / recall

ity. For example, the lower number of indicator con-
sultations inDIAG-NLP is evidence in favor of the
effectiveness of the aggregated feedback: because
the feedback highlights what is important (such as
that the Ignitor Assembly can never cause the Vi-
sual Combustion check to ignite, see Figure 2), sub-
jects can focus their troubleshooting without asking
as many questions of the system. We would argue
that an ITS whose NL feedback leads the student
more effectively towards the solution of a problem is
a better ITS. This holds for usability as well (the four
measures in Table 3): presumably, in a real setting,
students should be more willing to sit down with a
system that they perceive as more friendly and us-
able than a system that engenders similar learning
gains, but is harder to use.

The measures in Table 2 measure something in
between learning and performance. One could ar-
gue that remembering what you did correlates with
learning — e.g., if you remember that to solve a cer-
tain problem you checked whether the furnace was
combusting (the “Visual Combustion Check” in Fig-
ure 2) and that gave you crucial information, you
may be able to apply similar knowledge in simi-
lar problems. However, it is unlikely that detailed
quantitative measures such as those we collected in
this experiment are telling in this regard; and in fact,
we would be happy to eliminate them, as they ac-
tually show an advantage forDIAG-orig. However,
we collected them because they are relevant to the
more general question of the added value of NL in-
terfaces to applications, which we are also interested
in.

Vincent Aleven
54

DIAG-orig DIAG-NLP
Usefulness 4.35 4.47
Helped stay on right track 4.35 4.35
Not misleading 4.00 4.12
Conciseness 3.47 3.76
Average score 4.04 4.18

Table 3: Subjective rating of DIAG’s feedback

Results. Every student solved all the problems,
but differences emerge with respect to other mea-
sures. Tables 1, 2, 3 show the results for the cumu-
lative measures across the three problems (measures
on individual problems show the same trends).

On the whole, Tables 1 and 3 show a cumulative
effect in favor ofDIAG-NLP, whereas Table 2 does
not. Focusing first on Tables 1 and 3, differences on
individual measures are not statistically significant;
the measure that individually comes closest to statis-
tical significance isindicator consultations, which
exhibits a non-significant trend in the predicted di-
rection (Mann-Whitney test, U=98, p=0.11). We
have discussed individual measures at length in (Di
Eugenio & Trolio 2000); here, we provide a differ-
ent statistical analysis to assess whether thecumula-
tive effect of these measures shows thatDIAG-NLP
performs better thanDIAG-orig.

We consider only independent measures (for ex-
ample, the total number of consultations in Table 1
is clearly not independent from indicator and RU’s
consultations, given it is the sum of these two mea-
sures). For each measure, we decide whether its
value indicates a “success” forDIAG-NLP. We are
not looking at the magnitude of the difference be-
tween the two values of the measure, but simply
at the fact that the values differ. Every measure
in Table 1 is inDIAG-NLP favor, and so is every
measure apart fromhelped stay on right trackin
Table 3 (we consider a tie as a success forDIAG-
orig). We then ask, what is the probability that the
msuccesses forDIAG-NLPout of then independent
measures are simply due to chance? We can answer
via B(m � 1; n; 0:5), the binomial cumulative dis-
tribution function throughm � 1 for sample sizen
and probability of success p = 0.5: it gives us the
probability that ofn random trials, the number of
successes will fall between 0 andm � 1, inclusive.
Thus,1�B(m� 1; n; 0:5) gives us the probability
thatm or more successes out ofn are due to chance.

As an example, consider Table 4, in which we
combine the independent measures from Tables 1
and 3 and note whether they represent a success
for DIAG-orig or DIAG-NLP. The probability of
8 successes out of 9 measures is p = 0.020 (1 �
B(7; 9; 0:5)). If we leaveTotal Timeout because

DIAG-orig DIAG-NLP
Total Time

p

Indicator consultations
p

RU consultations
p

Parts replaced
p

Essay score
p

Usefulness
p

Helped stay on right track
p

Not misleading
p

Conciseness
p

Table 4: Successes forDIAG-orig andDIAG-NLP

it may not be an independent measure,1 the prob-
ability of 7 successes out of 8 is p = 0.035 (1 �
B(6; 8; 0:5)). Finally, if instead of using the four
subjective measures we use their average (which
constitutes a success forDIAG-NLP),2 we obtain
p = 0.016, and if we eliminate time in this last case,
we obtain p = 0.031. To conclude, in whatever way
we combine these measures, we obtain evidence that
the better scoresDIAG-NLPobtains, albeit individ-
ually not statistically significant, cumulatively show
thatDIAG-NLPoutperformsDIAG-orig.

However, we have not discussed Table 2 yet.
This table shows that subjects inDIAG-orig re-
member what they did better than those inDIAG-
NLP. The measures concerning indicators achieve
or show trends towards statistical significance: indi-
cator precision and indicator F-measure are signif-
icant (t-test, respectively 2.19, p = 0.04 and 2.51,
p = 0.02), and indicator recall is marginally signif-
icant (Mann-Whitney, U = 93.5, p = 0.08). All in
all, this is a puzzling result, especially because sub-
jects inDIAG-orig consult the system on indicators
almost twice as many times as the subjects inDIAG-
NLP, thus we would expect them to have more prob-
lems remembering what they did. Perhaps this re-
sult can be related to (Kintsch 1998), that shows that
high-quality text does not necessarily lead to better
performance.

Finally, the reader may wonder what happens to
the cumulative effect that showsDIAG-NLP better
than DIAG-orig if we take into account the mea-
sures in Table 2 as well. By adding to Table 4 two
successes forDIAG-orig,3 we compute the proba-
bility of obtaining 8 suceesses out of 11 measures

1One could argue the time went down because of the
smaller number of consultations.

2A reviewer pointed out that including all four mea-
sures gives much more weight to the subjective measures
than e.g. to the singleessay scorelearning measure.

3Given their definitions, precision and recall cannot
be considered as really independent measures, and cer-
tainly the F-measure that combines them is not indepen-
dent from either of them. So we synthesize Table 2 as two
successes forDIAG-orig, one for indicators, one for RU’s.

Vincent Aleven
55

by chance. We obtain p = 0.113, which shows a non
significant trend in the predicted direction. How-
ever, recall that we are being conservative: for ex-
ample, we countedhelp stay on right trackin favor
of DIAG-orig even if it is a tie; if we count it in favor
of DIAG-NLP, p goes down to 0.033.

Current and future work
The results of the study we just discussed make us
confident that it is not necessary to add a full fledged
NL generator to an existing ITS or to change the ITS
original tutoring strategies to obtain reasonable re-
sults. Better language can be added at a relatively
low cost (the implementation took one graduate stu-
dent six months), and it can be effective.

As a consequence, we are now pursuing two lines
of research. The first is to add some more sophisti-
cated NL techniques without plunging into full text
planning, because we want to see how far the weak
approach can go. Second, we are conducting a con-
strained data collection to help us discover some
empirical foundations on which to base the realiza-
tion of the facts the ITS intends to communicate.

We now discuss both efforts in more detail.

Focusing and rhetorical relations
In the work done so far, we imposed coherence on
the tutor turn by means of aggregation rules. How-
ever, the turn could be made more coherent by in-
troducing appropriate referential expressions (gen-
erated ad hoc so far), and a few domain or rhetorical
relations among the facts to be expressed. For exam-
ple, the fact that the ignitor assembly never causes
the abnormal indication in Figure 2 as opposed to
the other parts within the oil burner always causing
it, could be given more prominence if the relevant
propositions were linked by acontrastrelation4 ren-
dered via an appropriate cue phrase, such asbut ((A)
and (B) are used later to refer to the appropriate part
of the explanation):

(1) The visual combustion check indicator is ignit-
ing which is abnormal in startup mode. Normal
in this mode is combusting.
(A) Within the oil burner, the oil nozzle, oil supply
valve, oil pump, oil filter and burner motor al-
ways produce this abnormal indication when they
fail. (B) But the ignitor assembly never does.

In ongoing work, we have coupled EXEMPLARS
to a knowledge base built via the SNePS represen-
tation system (Shapiro & Rapaport 1992). SNePS
is a semantic network formalism where each node
represents a proposition. In general, it is very dif-
ficult to access the knowledge about the physical

4We are using relations from Rhetorical Structure The-
ory (Mann & Thompson 1988).

structure of the system and causal relationships in
VIVIDS-based tutors. These types of knowledge
are often only indirectly present: they are reflected
in how changes to graphical objects affect other ob-
jects, but this is not sufficient to generate language.
When they are present, they are expressed in a very
non-symbolic way. In a sense we need to extract
some of this knowledge from the existing tutor and
represent it in a usable form for the NL genera-
tor — this was done inDIAG-NLP by represent-
ing the required knowledge via Java classes, as EX-
EMPLARS is written in Java (SNePS is written in
LISP, communication between the different systems
is achieved via a Java API).

The need to replicate some of the knowledge
present in DIAG may be seen as inconsistent with
our earlier claim that we treat the ITS as a black-
box. Actually, we intended that claim to apply only
to the tutoring strategies the ITS embodies, not to its
underlying knowledge. However, it is certainly true
that a full fledged blackbox approach cannot work
if the ITS is built without taking into account the
knowledge needed for communication. For exam-
ple, the CIRCSIM tutor embodies domain knowl-
edge at three different levels, because it was found
that all three levels are necessary for communica-
tion (Khuwajaet al. 1992), even if only one level is
directly relevant to the material to be mastered.

SNePS make it easy to represent and reason about
entire propositions, not just about objects. For ex-
ample, it is straightforward to represent the various
individual propositions that underlie Ex. 1 above,
and the causal relations between the failure of the
individual parts and the abnormal state of the visual
combustion check. Moreover, it is also easy to rep-
resent the contrast relation between the two complex
propositions (A) and (B). Finally, because proposi-
tions are full fledged entities in the representation,
they can become part of the discourse model, and be
referred to with appropriate referential expressions.
In this version of the generator, we implemented the
GNOME algorithm to generate referential expres-
sions (Kibble & Power 2000).

This revised version of the generator renders the
same facts underlying Figure 2 as shown in Figure 3.
The deicticThis is generated by the GNOME algo-
rithm and is used to refer to the proposition repre-
senting the abnormal state of the visual combustion
check indicator; this cuts down on some of the repet-
itiveness of the feedback generated by bothDIAG-
orig and DIAG-NLP, cf. Figure 2. However, the
indefinite articles in Figure 3 are incorrect (the al-
gorithm we implemented does not take into account
the visual context, or the fact that there is only one
part with that description). The contrastive particle
but is not included because we have not yet imple-
mented exemplars to generate cue phrases; however,

Vincent Aleven
56

A visual combustion check indicator is igniting in startup mode.
The visual combustion check indicator igniting in startup mode is abnormal.
Within the furnace system,
This is sometimes caused when a system control module replaceable unit is inop-
erative.
Within the oil burner,
This is never caused when an ignitor assembly replaceable unit is inoperative.
This is sometimes caused when a burner motor, oil filter, oil supply valve, or
oil nozzle is inoperative.

Figure 3: Adding a bit more of sophistication to the generator

as soon as we do so, it will be straightforward to
generate it, as the appropriate rhetorical relation is
included in the SNePS representation of the mes-
sage to be conveyed.

First observations of human consulting
The aggregation rules we implemented in EXEM-
PLARS appear to be plausible, but they have no em-
pirical foundation. To understand how a human tu-
tor may verbalize a collection of facts, we are col-
lecting tutoring dialogues between a student inter-
acting with the same DIAG application we have pre-
viously discussed and a human tutor. In this experi-
ment the tutor and the student are in different rooms,
sharing images of the same DIAG tutoring screen.
When the student exercises the consult function the
tutor sees the information that DIAG would use in
generating its advice — exactly the same informa-
tion that DIAG gives to EXEMPLARS inDIAG-
NLP. The tutor then types a response that substi-
tutes for DIAG’s response. Although we cannot
constrain the tutor to provide feedback that includes
all and only the facts that DIAG would have com-
municated at that specific moment, we can still see
the effects of how the tutor uses the information pro-
vided by DIAG. As of this writing, we have prelim-
inary observations of several human tutors, consist-
ing of about 200 human responses to DIAG consult
requests, in over 20 sessions.

The two most striking patterns we observe in the
human-generated advice are 1) they often eschew
syntactic aggregation of part lists and instead de-
scribe or name functional aggregations of parts, and
2) they give advice on the problem-solving process,
either directly or indirectly. In the following exam-
ples, the pairs of utterances show two tutors inde-
pendently describing the same assemblages of parts
and giving similar problem-solving advice:

1. Referring to oil nozzle, supply valve, pump,
filter, etc:

a) “. . . check the other items on the fuel line”
[Tutor 1]

b) “. . . follow the path of the oil flow” [Tutor 2]

2. Referring to all the burner parts:

a) “What are the parts that control the combus-
tion?” [Tutor 1]

b) “. . . consider the units that are involved with
heating the water” [Tutor 2]

The assemblages we see in the human discourse
are not necessarily represented in the training docu-
mentation or the functional diagrams on the DIAG
screen; it appears the tutors are constructing them.
In general the assemblages seem to be fixed col-
lections. But the tutor sometimes constructs an im-
promptu subset according to the discourse context,
as in “the valve is open, so you have to check the
point below the filter,” which appears to be a refer-
ence to the parts in the fuel line “below” the filter.

The problem-solving advice generally con-
forms to the patterns of “point-to” and “convey-
information” hints observed by (Humeet al. 1996).

Some of the other phenomena we have observed:

� In contrast with DIAG, tutors less often mention
parts thatcannotbe causing the problem (e.g., the
ignitor assembly in Figure 2), except when the
student consults precisely on those parts.

� Tutors frequently introduce devices for inter-turn
coherence. For example, two adjacent turns were
introduced by “not a good choice” and “better
choice,” respectively. Another turn was intro-
duced by “the question is now,” indicating the rea-
soning was in some way following from the pre-
vious turn.

� The human tutors occasionally justify a state-
ment, frequently by appealing to causal reason-
ing. For example, one tutor wrote “The oil fil-
ter is normally clean. A dirty and clogged oil fil-
ter blocks the flow of oiland should be replaced”
(emphasis added). By contrast, DIAG merely
states whether a broken oil filter can cause the
problem, without interpolated explanation.

As our experiments with human tutors continue,
we should be able to produce a more complete cat-
alog of language and discourse phenomena. Of
particular interest, given our emphasis on aggrega-

Vincent Aleven
57

tion, is the parts assemblages the tutors use, espe-
cially how they are described and when they are in-
voked, and how to organize the knowledge the sys-
tem needs in order to replicate human tutors.

Acknowledgements. This work is supported by
grants N00014-99-1-0930 and N00014-00-1-0640
from the Office of Naval Research, Cognitive, Neu-
ral and Biomolecular S&T Division. We are grate-
ful to CoGenTex Inc., in particular to Mike White,
for making EXEMPLARS available to us; and to
Michael Scott for suggesting the binomial cumula-
tive distribution.

References
Bateman, J. A. 1994. KPML: TheKOMET-Penman
(Multilingual) Development Environment. Tech-
nical report, Institut f¨ur Integrierte Publikations-
und Informationssysteme (IPSI), GMD, Darm-
stadt. Release 0.6.

Di Eugenio, B., and Trolio, M. J. 2000. Can sim-
ple sentence planning improve the interaction be-
tween learners and an intelligent tutoring system?
In Building Dialogue Systems for Tutorial Appli-
cations (AAAI Fall Symposium). American Asso-
ciation for Artificial Intelligence.

Elhadad, M. 1993. FUF: the universal unifier –
user manual version 5.2. Technical Report CUCS-
038-91, Columbia University.

Evens, M. W.; Spitkovsky, J.; Boyle, P.; Michael,
J. A.; and Rovick, A. A. 1993. Synthesizing tu-
torial dialogues. InProceedings of the Fifteenth
Annual Conference of the Cognitive Science Soci-
ety, 137–140. Hillsdale, New Jersey: Lawrence
Erlbaum Associates.

Freedman, R. K. 1999. Atlas: a plan manager for
mixed-initiative, multimodal dialogue. InAAAI99
Workshop on Mixed-Initiative Intelligence. Or-
lando, FL: American Association for Artificial In-
telligence.

Graesser, A. C.; Wiemer-Hastings, K.; Wiemer-
Hastings, P.; Kreuz, R.; and the Tutoring Research
Group. 2000. Autotutor: A simulation of a human
tutor. Journal of Cognitive Systems Research.

Hume, G. D.; Michael, J. A.; Rovick, A. A.; and
Evens, M. W. 1996. Hinting as a tactic in one-
on-one tutoring.Journal of the Learning Sciences
5(1):23–47.

Khuwaja, R. A.; Evens, M. W.; Rovick, A. A.; and
Michael, J. A. 1992. Knowledge representation
for an intelligent tutoring system base on a multi-
level causal model. In Frasson, C.; Gauthier, G.;
and G.I.McCalla., eds.,Intelligent Tutoring Sys-
tems, Second International Conference.

Kibble, R., and Power, R. 2000. Nominal gener-
ation in GNOME and ICONOCLAST. Technical
report, Information Technology Research Institute,
University of Brighton, Brighton, UK.
Kim, J. H.; Glass, M.; and Evens, M. W. 2000.
Learning use of discourse markers in tutorial di-
alogue for an intelligent tutoring system. In
COGSCI 2000, Proceedings of the 22nd Annual
Meeting of the Cognitive Science Society.
Kintsch, W. 1998. Comprehension. A paradigm
for cognition. Cambridge University Press.
Mann, W. C., and Thompson, S. 1988. Rhetorical
Structure Theory: toward a Functional Theory of
Text Organization.Text8(3):243–281.
McRoy, S. W.; Channarukul, S.; and Ali, S. 2000.
Text realization for dialog. InBuilding Dialogue
Systems for Tutorial Applications (AAAI Fall Sym-
posium). American Association for Artificial Intel-
ligence.
Moore, J. D.; Lemaire, B.; and Rosenbloom, J. A.
1996. Discourse generation for instructional appli-
cations: Identifying and exploiting relevant prior
explanations. Journal of the Learning Sciences
5(1):49–94.
Munro, A. 1994. Authoring interactive graphical
models. In de Jong, T.; Towne, D. M.; and Spada,
H., eds.,The Use of Computer Models for Explica-
tion, Analysis and Experiential Learning. Springer
Verlag.
Rosé, C. P.; Di Eugenio, B.; and Moore, J. D. 1999.
A dialogue based tutoring system for basic elec-
tricity and electronics. InAI-ED 99, Proceedings
of the 9th International Conference on Artificial In-
telligence in Education.
Shapiro, S., and Rapaport, W. 1992. The SNePS
Family. Computers and Mathematics with Appli-
cations, Special Issue on Semantic Networks in Ar-
tificial Intelligence, Part 123(2–5).
Towne, D. M. 1997. Approximate reasoning tech-
niques for intelligent diagnostic instruction.Inter-
national Journal of Artificial Intelligence in Edu-
cation.
Trafton, J. G.; Wauchope, K.; Raymond, P.; Deub-
ner, B.; Stroup, J.; and Marsch, E. 1997. How
natural is natural language for intelligent tutoring
systems? InProceedings of the Annual Confer-
ence of the Cognitive Science Society.
White, M., and Caldwell, T. 1998. Exemplars: A
practical, extensible framework for dynamic text
generation. InProceedings of the Ninth Interna-
tional Workshop on Natural Language Generation,
266–275.

Vincent Aleven
58

Pedagogical Content Knowledge in a Tutorial Dialogue
System to Support Self-Explanation

Vincent Aleven, Oct av P opescu, and Kennet h R. Koedi nger

H um an -Co mp uter In ter actio n In stitu te

Car negie Mello n U niver sity

aleven@ cs.cm u .edu , o ctav @ cm u.ed u , k oeding er @cs .cmu .ed u

Abstract: We are engaged in a research project to create a tutorial dialogue system that helps
students learn through self-explanation. Our current prototype is able to analyze students’
general explanations of their problem-solving steps, stated in their own words, recognize the
types of omissions that we often see in these explanations, and provide feedback. Our approach
to architectural tradeoffs is to equip the system with a sophisticated NLU component but to keep
dialogue management simple. The system has a knowledge-based NLU component, which
performed with 81% accuracy in a preliminary evaluation study. The system’s approach to
dialogue management can be characterised as “classify and react”. In each dialogue cycle, the
system classifies the student input with respect to a hierarchy of explanation categories that
represent common ways of stating complete or incomplete explanations of geometry rules. The
system then provides feedback based on that classification. We consider what extensions are
necessary or desirable in order to make the dialogues more robust.

INTRODUCTION

Self-explanation is an effective metacognitive strategy. Explaining examples or problem-solving
steps helps students learn with greater understanding (Chi, et al., 1989; 1994; Berardi-Coletta, et
al., 1985; Gagne & Smith, 1962). Yet few students are good self-explainers, even when prompted
(Renkl, et al., 1998). So how can we leverage self-explanation to improve learning in actual
classrooms? The AI & Education literature provides evidence that self-explanation can be
supported effectively by 2nd-generation tutors (Aleven et al 1999; Conati & VanLehn, 2000).
However, these systems did not interact in natural language. It is plausible that students will learn
even better when they explain in their own words. Natural language allows for flexible expression
of partial knowledge: Students can show what they know and the tutor can help them to construct
more complete knowledge. Also, articulation forces attention to relevant features. Finally,
combining visual and verbal learning modes may create “dual codes” in memory which may
facilitate recall (Paivio, 1986). However, it appears that these potential advantages will not be
fully obtained without tutoring or giving feedback to students. When students worked with a tutor
version that prompted them to explain their steps in their own words, but did not check
explanations, they often ignored these prompts and provided almost no good explanations
(Aleven & Koedinger, 2000b).

We are preparing to test the hypothesis that students learn better when they explain in their
own words and receive feedback on their explanations. To this end we are developing a tutorial
dialogue system, the Geometry Explanation Tutor, that assists students as they generate general
explanations of their problem-solving steps in their own words. The system engages students in a
restricted form of dialogue to help them improve explanations that are not sufficiently precise.
We have a working prototype and are starting a phase of pilot testing. The Geometry Explanation

Vincent Aleven
59

Tutor is built on top of an existing 2nd-generation system for geometry problem solving, the
PACT Geometry Tutor (Aleven et al., 1999), which is currently in use in about five schools in the
Pittsburgh area and elsewhere.

In designing the architecture of the system, we are faced with a number of choices. Thus we
find ourselves asking the question, as phrased in the call for papers, “Where is the biggest bang
for the buck?” A significant architectural decision has been to equip the system with a fairly
sophisticated NLU component (Popescu & Koedinger, 2000). A detailed understanding of the
explanations is needed if the system is to provide detailed feedback. A second decision has been
to keep the system’s dialogue planning and management component as simple as possible, but in
Einstein’s words, no simpler than that. We follow the approach taken by Heffernan and
Koedinger (2000) in developing Ms. Lindquist, an algebra symbolization tutor, and focus on
identifying the pedagogical content knowledge needed to help students produce accurate and
complete explanations. By pedagogical content knowledge they mean domain-specific strategies
that experienced human tutors use to help students deal with common difficulties and to scaffold
students’ problem-solving efforts. Pedagogical content knowledge also includes knowledge about
students, their typical errors and typical, often rugged, pathways to learning success.

We foresee that a tutor that helps students to generate accurate geometry explanations needs
to have knowledge about (1) how to provide good and detailed comments that help students to
improve explanations that are incomplete and (2) how to lead students to good explanations if
they have difficulty getting started. So far, we have focused on the first need. The analysis of
several small corpora of student explanations indicated that students explanations of geometry
tend to be incomplete more often than wrong. The system therefore has a hierarchy of explanation
categories that represent common ways of stating full and partial explanations of geometry rules.
It decides what feedback to give to student explanations primarily by classifying them into this
hierarchy. While it is not difficult to see the limitations of the current system, it is not easy to
predict what improvements will give the greatest bang for the buck. Thus, in extending the
system, we plan to be guided by results of frequent preliminary evaluation and pilot studies,
adding more sophisticated mechanisms or strategies only when the data suggest that they will
improve students’ learning.

In this paper, we describe the current architecture of the Geometry Explanation Tutor and
illustrate its current capabilities by means of dialogue examples. We present results from a

Fig ure 1 : Th e Geo metr y Exp lan atio n Tutor

Vincent Aleven
60

preliminary evaluation of the accuracy of the system’s NLU component. Finally, we discuss what
limitations need to be addressed most urgently: What pedagogical content knowledge we will
need to add and how far we will have to push the system’s dialogue management architecture.

THE GEOMETRY EXPLANATION TUTOR

The Geometry Explanation Tutor covers one of the six units that make up the curriculum of the
original PACT Geometry Tutor, namely, the unit that deals with the geometric properties of
angles. The Geometry Explanation Tutor provides problem-solving support, just like other
Cognitive Tutors (Koedinger, et al., 1997). It monitors students as they work through problems
and provides assistance in the form of feedback and context-sensitive hints. Unlike other
Cognitive Tutors, the Geometry Explanation Tutor requires that students explain their steps and
engages students in a restricted form of dialogue in order to help students state geometry rules
accurately (Popescu & Koedinger, 2000; Aleven, et al., in press). The system has been pilot-
tested with 20 of our colleagues and staff and with two high-school students.

System Architecture

The Geometry Explanation Tutor is based on the standard Cognitive Tutor architecture (Anderson
et al., 1995), augmented with a NLU component (see Figure 2). In each dialogue cycle, the NLU
component creates a semantic representation of the student’s explanation and classifies that
representation with respect to the system’s hierarchy of explanation categories. The Cognitive
Tutor module then checks whether the student’s explanation focuses on the right geometry rule
and decides how to react (i.e., what feedback to give to the student).

An important knowledge source is the hierarchy of explanation categories, which constitutes
the system’s pedagogical content knowledge. The explanation categories in this hierarchy
represent ways of stating each geometry rule correctly, as well as frequently occurring ways of
stating rules incorrectly. An excerpt of this hierarchy is shown in Figure 3. Each node represents a
class of explanations that have the same meaning, but may have vastly different surface forms. A
canonical example of a sentence that falls in each category is shown in each node. Explanation

Figure 2: Architecture of the Geometry Explanation Tutor

Vincent Aleven
61

categories at the bottom of the hierarchy represent correct and complete ways of stating the
isosceles triangle rule. Explanations categories higher up in the hierarchy represent progressively
more incomplete ways of stating this rule. The hierarchy also includes information about how to
respond to student explanations. Attached to each category is a feedback message that is
appropriate when an explanation by the student is classified under that category. We have
identified about 140 explanation categories, related to the 25 geometry rules that make up the
tutor’s Angles unit. A key point is that these categories were driven from observations of real
student data, contained in several corpora of student explanations. Thus, this rich network
captures categories that occur frequently as learners progress towards success.

The hierarchy is implemented as a Loom knowledge base (MacGregor, 1991). This
knowledge base also contains an ontology of the domain, which consists of geometry objects
such as angles and lines, as well as relations such as congruency, adjacency, etc. The ontology
covers the material of the Angles unit of the tutor curriculum. Currently, the knowledge base
contains definitions for about 310 concepts and 90 relations.

The NLU component parses student input using a unification-based approach. We employ
the LCFLEX parser, an active chart parser (Rose & Lavie, 1999), in combination with a feature
structure unifier. We have developed a grammar of about 200 rules. The parser and unifier build a
feature structure encoding the syntax of the sentence. They also direct Loom to build a semantic
representation. In the process, the Loom classifier tests the coherence of the semantic
representation with respect to semantic constraints expressed in the system’s domain ontology.
When a coherent semantic representation has been constructed, Loom classifies it with respect to
the explanation categories.

The Cognitive Tutor module decides how to respond to the student. First, the tutor
determines which geometry rule the student should be explaining. This rule must be one that
justifies the current problem-solving step. The tutor determines the set of applicable geometry
rules by running its cognitive model of geometry problem solving. This model captures the
typical and desired knowledge of geometry students, represented in the form of production rules.
The tutor then selects an appropriate feedback message as follows. If the student explanation is a
complete statement of a relevant geometry rule, the tutor accepts the explanation. If the
explanation is only a partial statement, the tutor selects an appropriate feedback message.
Usually, this will be the feedback message associated with the category under which the
explanation was classified. If the explanation is only the name of a geometry rule, the tutor asks

Figure 3: Excerpts from the explanation hierarchy, represented in the system’s knowledge base

Vincent Aleven
62

the student to state the rule. Finally, if the explanation focuses on the wrong geometry rule, the
tutor will inform the student of this fact.

We have begun to experiment with the integration of a statistical Naïve Bayes text classifier
(Mitchell, 1997, Ch. 6). When the knowledge-based NLU component fails to produce an analysis,
the statistical classifier is used to determine whether the student’s explanation is in the ballpark
(i.e., focuses on the correct geometry rule). If so, the tutor will print a feedback message saying
that the student appears to be on the right track. This helps in dealing with unexpected input, as is
illustrated below. We are looking for further ways to leverage the statistical text classifier.

EXAMPLE DIALOGUES WITH THE GEOMETRY EXPLANATION TUTOR

The Geometry Explanation Tutor’s capabilities are illustrated in two dialogues shown in Tables 1
and 2. These dialogues are adapted from protocols collected during a session in which about 20 of
our colleagues and staff worked with the system. In order to make the dialogs reflect the system’s
current capabilities, we have replaced the system’s responses with responses generated by the
current system version. The downside is that the dialogues are not 100% realistic.

In the first example, the tutor helps a student in explaining the isosceles triangle theorem,
which says (stated somewhat informally) that the base angles in an isosceles triangle are
congruent. Starting with a minimum effort explanation (step 1) and testing the tutor’s sense of
humor along the way (steps 3-5), the student incrementally refines an explanation until the
explanation is accepted by the tutor (step 10). The tutor produces appropriate responses using its
pedagogical content knowledge, captured in the explanation hierarchy. For example, category
CONGRUENT-BASE-ANGLES-OF-ISOSCELES-TRIANGLE represents correct and complete
statements of the isosceles triangle rule (see Figure 3, bottom left). Student explanations in this
category get the thumbs up from the tutor, provided of course that the isosceles triangle rule
justifies the problem-solving step being explained (see step 9 and 10). On the other hand,
category CONGRUENT-BASE-ANGLES-OF-TRIANGLE represents statements such as “the

Table 1: Example dialogue with the Geometry Explanation Tutor. Shown on the left are a student’s
successive attempts at explaining the given geometry rule (underlining shows what was added since the
previous attempt) and the tutor’s responses. Shown on the right is the explanation category under which
the tutor classified the student’s explanation.

1 . S : co ng ru ent N IL

2 . T : T he G eo m etry Tu to r is no t able to un d erstan d y ou r exp lan atio n . Sorry! P lease ad d
to yo ur ex planation or ty pe som eth in g d ifferen t. Please state a G EN E RA L g eo metry
rule. D o no t m en tio n th e n am es of th e an gles in th e pro blem .

3 . S : the b ase ang les are co ng ruent

4 . T : Y ou are getting there, b u t yo u n eed to be m o re p recise. Are b ase an g les alw ay s
con gruen t?

CON GRUEN T- BA SE-
A NG LES

5 . S : th e base an g les are con g ru en t h ere

6 . T : Y ou are getting there, b u t yo u n eed to be m o re p recise. Are b ase an g les alw ay s
con gruen t?

CON GRUEN T- BA SE-
A NG LES

7 . S : Base an gles in a trian gle are co n gruen t

8 . T : W ell.... Alm ost! A re th e b ase ang les in EV E RY triang le co ng ruent?

CON GRUEN T- BA SE-
A NG LES- O F- TRI AN GLE

9 . S : Th e base an g les in an iso sceles triang le are con gru en t

1 0. T : [A CC EP TE D as correct ex planation . Stu dents g et n o n-verb al po sitiv e feedb ack .]

CON GRUEN T- BA SE-
A NG LES- O F-
I SO SCELES- TRI AN GLE

Vincent Aleven
63

base angles of a triangle are congruent,” which are incomplete (Figure 3, left, one level from
bottom). In response to statements in this category, the tutor generates a feedback message that
suggests that the statement is an overgeneralization, provided again that the rule that needs to be
explained is the isosceles triangle rule (steps 7 and 8). The feedback message is the one
associated to the given category. Generally, the dialogue is smooth. Of course one prefers to
avoid tutor responses like “the tutor does not understand,” as shown in step 2 or instances where
the tutor repeats itself in subsequent dialogue turns, (steps 4 and 6). Under the given
circumstances however these responses were quite appropriate.

In the second dialogue (shown in Table 2), the student starts off rather well. The student’s
first explanation attempt could have been completed simply by adding “of a triangle” at the end,
so that the sentence reads “180 is what you get when you add the interior angles of a triangle.”
Unfortunately, the tutor feedback does not make this clear. After a minimalist strategy in step 3,
the student quickly gets on track again and gradually improves the explanation until it is complete
in step 13. With the exception of the first tutor message, the tutor’s feedback seems appropriate
and helpful. The reason that the tutor did not produce a more helpful message in step 2 is that the
NLU component currently does not handle the construction “is what you get when you add …”

The example illustrates that the statistical text classifier sometimes enables the tutor to
produce a more helpful feedback message than it could if it only had the knowledge-based NLU
component. In step 3, the student’s answer “interior” is not classified under any explanation
category by the knowledge-based NLU component. The statistical classifier however returns
TRIANGLE-SUM as the most likely category. This enables the tutor to acknowledge (in step 4)
that the student is on the right track (“it appears that you are getting at the right rule, the triangle
sum rule”). Without the statistical classifier, the tutor could only have said, “the tutor does not
understand your explanation.”

Table 2: Example Dialogue with the Geometry Explanation Tutor

1 . S : 1 80 is w hat y ou g et wh en yo u ad d the in terio r an g les

2 . T : C an y ou be m o re specific? W hat is 18 0? A nd w hat tells yo u that this is so ?

EQU AL-1 8 0

3 . S : interio r

4 . T : It ap pears th at y ou are g etting at th e righ t rule, th e trian g le sum ru le. B ut the tu to r
h as d ifficulty un derstan d in g yo u r ex p lanatio n. P lease m ake sm all chang es .

N IL

5 . S : trian gle sum

6 . T : It lo ok s lik e y ou h ave th e righ t idea. Can y ou state th is geo metry rule m ore
com pletely ?

REFEREN T

7 . S : trian gle sum is 18 0

8 . T : V ery clo se. T he sum of w h at exactly is eq ual to 1 80 ? N ot o f the triang le itself bu t o f
its... ?

SUM-O F- TRI AN G LE-
1 80

9 . S : add the in terio r an g les is 1 80

1 0. T : T hat is go od , b ut y o u need to b e m ore specific. W hich in terio r an gles do yo u mean?

I NTERIO R-A NG LES-
1 80

1 1. S : interio r ang les add u p to 18 0

1 2. T : V ery go o d. T h e su m o f in terio r ang les o f WH A T is 18 0 deg rees?

I NTERIO R-A NG LES-
SUM-1 80

1 3. S : interio r ang les o f th e trian g le ad d up to 1 8 0

1 4. T : [A CC EP TE D as correct ex planation . Stu dents g et n o n-verb al po sitiv e feedb ack .]

A NG LES- SUM-O F-
TRI AN GLE-1 80

Vincent Aleven
64

Further, the example dialogue illustrates that the tutor accepts some common forms of
abbreviations that students make. Students very often say “the angles are 180” when they mean
strictly speaking that the measures of the angles are 180. This is a form of metonymy, the
phenomenon of referring to a concept by means of a related concept [Jurafsky & Martin, 2000]. A
prime example is “New York called” where it was the guy or girl from that city who called. The
tutor accepts common forms of metonymy without complaint. For example, the tutor responds to
the sentence “interior angles add up to 180” (step 11) as if the student said “the measures of
interior angles add up to 180”. Similarly, the sentence “a linear pair is 180” is treated as if the
student had said “the measures of the angles in a linear pair are 180” (double metonymy).

However, the tutor is not so accommodating that it accepts all abbreviations or elliptical
expressions. Nor should it be. A tutor whose goal it is to help students learn to “speak
mathematics” should be helpful but should also insist on a certain level of precision in language.
For example, the tutor does not interpret “triangle sum is 180” (step 7) as meaning “the sum of
the measures of the angles of a triangle is 180 degrees,” even though one might argue that this is
what was meant. The tutor does not assume that the sum was implied.

The challenge in dealing with metonymy is to construct a semantic representation that
observes semantic constraints even though the input sentence does not. Some forms of metonymy
are dealt with in our system by having the NLU component recover the missing structure
(Popescu & Koedinger, 2000). The semantic representations that are constructed in this way are
the same as those that would have been built if the same sentence had occurred without
abbreviations. The abbreviations that the tutor needs to know about are handled differently. The
semantic representation that is constructed reflects the abbreviation, so that the tutor can take
notice. For example, for the sentence “a triangle sums to 180” the NLU component builds a
semantic representation that does not include angles. This gives the tutor the option of insisting
on a more complete explanation (step 8). Exactly on what level of precision the system should
insist is not easy to determine. The choice should ultimately be driven by what is best for student
learning.

PRELIMINARY EVALUATION OF THE NLU COMPONENT

We conducted a preliminary evaluation of the classification accuracy of the knowledge-based
NLU component. As test data we used a corpus of 648 explanations collected during a session in
which about 20 of our colleagues and staff worked on the system. The explanations were labeled
by hand by two authors of the paper, who assigned each explanation to the most specific category
in the explanation hierarchy to which it belongs. New categories were invented as needed. A total
of 138 categories were used, 92 of which were represented in the data set. The system’s
knowledge base was then extended to include definitions for many of the new categories. The
system was then run to classify the 648 explanations.

Table 3: Classification accuracy of the knowledge-based NLU component

Classification result N %
Classified correctly

Explanation was actually complete 194 29.9
Explanation was actually incomplete 227 35.0
Explanation was actually a reference 102 15.7

Classified under overly general category
Explanation was actually complete 60 9.3
Explanation was actually incomplete 38 5.9

Classified incorrectly 3 0.5
Not classified 24 3.7
Total 648 100

Vincent Aleven
65

As shown in Table 3, the system classified 81% of the explanations correctly. Of the
correctly classified explanations, 80% (421 out of 523) fall under categories of full or partial
explanations. The rest were references, meaning that the student stated only the name of a
geometry rule. The system classified a further 15% of the explanations under categories that were
too general, although not strictly wrong. The remaining 4% of explanations were either not
classified at all or under categories that were unrelated to the correct category. Interestingly, when
the system classified an explanation as being complete, it was correct 100% of the time.

An accuracy score of 81% is very encouraging, especially given the fact that we are dealing
with a very fine-grained classification task, where small differences between categories are the
rule rather than the exception. There are two caveats. First, the accuracy results were obtained
with a data set that was used during the development of the system. Second, this data set was
obtained with subjects who are more advanced than those in the target population (high-school
students). More work is needed before we expect to see the same accuracy score with new data
and students from the target population. Nonetheless, the results provide a preliminary indication
that knowledge-based NLU is an appropriate choice for analysing geometry explanations.

LIMITATIONS OF CLASSIFY AND REACT

Currently, the system’s response in each dialogue turn is based only on the classification of the
student’s last explanation attempt. No further context is taken into account. This way, the tutor
can respond to the types of omissions we often see in students’ explanations and can sometimes
produce a sense of coherent dialogue, as illustrated in the examples. However, one does not have
to look far to see the limitations of the approach. For example, the system has no memory of what
went on before in the dialogue. It is therefore not able to detect situations where students stagnate
or regress and will not respond adequately. Also, the tutor is not able to engage in multi-turn
strategies or to lead students through a directed line of reasoning, as human tutors often do. But
which of these limitations is most worth addressing? Which will have the greatest impact on
learning? In the next section, we illustrate two multi-turn tutorial strategies for the current domain
and discuss how we plan to explore their utility. In the current section, we illustrate a form of
stagnation and discuss how the tutor can be made to respond in a more helpful manner.

In contrast to the previous examples, the current dialogue example (see Table 4) involves a
student of the same age as students in the target population (10th graders), although the student
was definitely better than average. Further, the responses shown are the actual system responses.

Table 4: Example Dialogue with the Geometry Explanation Tutor

9 . S : that tw o ang les in a iso sceles trian g le are equ al

1 0. T : C orrect, except for on e thing : are all th ree ang les in an iso sceles trian gle
con gruen t?

CON GRUEN T-
A NG LES- O F-
I SO SCELES- TRI AN GLE

1 1. S : that tw o con gruan t an gles in a isosceles triang le are eq ual

1 2. T : C orrect, except for on e thing : are all th ree ang les in an iso sceles trian gle
con gruen t?

CON GRUEN T-
A NG LES- O F-
I SO SCELES- TRI AN GLE

1 5. S : that tw o con gruan t b ase an g les are eq u al

1 6. T : Y ou are getting there, b u t yo u n eed to be m o re p recise. Are b ase an g les alw ay s
con gruen t?

CON GRUEN T- BA SE-
A NG LES

1 9. S : b ase an g les in a isosceles triang le are eq ual

2 0. T : [A CC EP TE D as correct ex planation . Stu dents g et n o n-verb al po sitiv e feedb ack .]

CON GRUEN T- BA SE-
A NG LES- O F-
I SO SCELES- TRI AN GLE

Vincent Aleven
66

We skip the first part of the dialogue and omit two steps from the dialogue that contained spelling
errors—at the time, the tutor did not have spelling correction, but currently it does. In step 9, the
student is very close to the correct explanation (“two angles in an isosceles triangle congruent”).
The explanation is missing only the term “base angles”. The tutor’s response in step 10, “Are all
three angles in an isosceles triangle congruent?” was designed to hint at that fact but is not quite
appropriate. The message writer had not anticipated that the student might use the word “two” in
his explanation. This can be fixed simply by crafting a better message.

Next, the student adds the word “congruant” [sic] to the explanation (step 11). This is not an
improvement over the previous explanation attempt (step 9). One might say it is worse, because
the purported explanation is now a tautology. This may well be a sign that the student does not
fully understand what he typed. The tutor however is oblivious to the problem and simply repeats
the feedback message that it gave before, in spite of the fact that this message did not help (step
13). This is unsatisfactory. A likely cause of the problem is that the student does not know the
concept of base angles or at least does not think of using the term in this context1. The tutor
should realize that and provide more helpful feedback. For example, the second time around, the
tutor should have said: “WHICH angles in an isosceles triangle are congruent? What is the right
term to use here?” If that message again does not help, then the tutor should cut to the chase and
simply tell the student to use the term “base angles” and explain what the term means.

This problem needs to be addressed. In the current example, the students quickly gets back
on track, but this will not happen as easily with all students. The tutor needs to be able to help
students over the hump if they get stuck. In order to be able to detect this kind of stagnation, the
tutor needs to keep a history list of the categories under which the student’s explanation attempts
were classified. Further, it needs to have multiple, increasingly specific messages associated with
each explanation category. As a further way to help avoid stagnation, the system needs to provide
helpful hints when the student clicks the “Help” button. These messages need to be sensitive to
the current state of the student’s explanation and need to be coordinated with the feedback
messages, so that help and feedback can be interleaved in any order. Quite possibly, this can be
achieved simply by using the same sequences of messages for help and feedback. We will have to
make sure that students do not abuse the feedback messages and help messages to let the tutor
provide the explanation without making a real effort to come up with an explanation themselves.
(We have observed similar minimum effort tactics in the patterns of students hint use, see Aleven
& Koedinger, 2000a.) One way to discourage such tactics is not to make the tutor too
forthcoming with information, even if this may conflict with other maxims of good tutoring.

TUTORIAL STRATEGIES TO HELP STUDENTS EXPLAIN

A category of pedagogical content knowledge that is currently not addressed in the tutor is
strategies that can be used to lead students to explanations, if they are struggling to produce an
explanation. We look at two examples of such strategies.

Using a “procedural replay” as a bridge

We have observed that students often provide a “procedural replay” when asked to provide an
explanation of a geometry problem-solving step. That is, they merely restate the arithmetic that
was used to come up with a numeric answer. Such an “explanation” of course does little to justify
why that was the correct thing to do. However, the prevalence of procedural replays suggest that
one way to help students who are struggling to provide an explanation is (a) to ask how they came

1 One might argue that the student’s response in step 11 indicates that he does not know the meaning of the
term “congruent”, an important term in geometry. However, the use of the term congruent might reflect a
superficial repair strategy, a shot in the dark. The student does not know how to improve the explanation in
step 9. The tutor has just introduced the term “congruent” (step 10), so why not use that term?

Vincent Aleven
67

up with their numeric answer (thus inviting them to provide a procedural replay) and then (b) to
ask how they knew that this procedure was the right thing to do. This strategy thus grounds the
explanation task in an activity that the student has just completed successfully. This strategy is
not unlike the “concrete instance” strategy in Ms. Lindquist (Heffernan & Koedinger, 2000). The
strategy is illustrated in the following hypothetical dialogue about the triangle sum theorem.

Tutor: How did you find your answer?
Student: subtracted 76 and 61 from 180.
Tutor: So you subtracted two other angles from 180. Which angles?
Student: XZY and YXZ
Tutor: OK, And why did you use the 180? How did you know that this was the right number
to use?
Student: Because of the triangle.
Tutor: OK. So there is a triangle and there is the 180. Can you state a general rule about
triangles?
Student: The triangle totals 180.
Tutor: …

One of us tried out this tutorial strategy on a few occasions while assisting students during a
classroom study with a tutor version that did not provide feedback (Aleven & Koedinger, 2000b).
The strategy seemed natural and effective at least for some of the geometry rules. We note that
this strategy goes well beyond what the Geometry Explanation Tutor currently can do. First, the
dialogue shown above does not conform to the assumption made in the current system that each
utterance by the student is an attempt at providing a complete explanation. Further, the dialogue
shown above seems to require some form of dialogue planning. Before we add such facilities to
the system, we need to know more about how effective this tutorial strategy (and others that
human tutors may use) will be in improving students’ learning. A Wizard of Oz kind study, in
which a human tutor communicates with the student through the computer interface (simulating
the smarts of a computer tutor) would be appropriate to explore that question further.

Counterexamples

A second tutorial strategy that is likely to be useful involves the use of counterexamples when
students state overgeneralizations. Consider the angle addition theorem, which says: “The
measure of an angle formed by two adjacent angles is equal to the sum of the measures of those
two angles.” This rule appears to be one of the more difficult rules to explain. Let us assume that
the student needs to explain the angle addition rule and starts out with the kind of intuitive,
informal explanation that students tend to provide with some frequency (shown below). How to
get the student to state this geometry rule more formally? The judicious use of counterexamples
may be a lot better than just asking “can you state your explanation in more mathematical terms?”

Student: the big angle is equal to the sum of the two small ones.
Tutor: OK - true in this diagram. Now let us look for a general rule. Did you mean that
whenever you have a big angle and two small ones, the big one is the sum of the two small
ones?
Student: Yeah, like it is in the problem here.
Tutor: Let me change this problem diagram a little bit [in a drawing of the diagram, moves
the two adjacent angles apart and draws a third angle]. Here we have a big angle and two
small ones. According to your theory, the big angle is the sum of the two small ones. Correct?
Student: no the two small ones need to be next to each other
Tutor: OK, they need to be adjacent. So you are saying that whenever you have two adjacent
angles and a third angle, the third angle is equal to the sum of the other two?
Student: Yes.

Vincent Aleven
68

Tutor: Well, let me change this diagram one more time. [Moves the two angles so that they
are adjacent again but keeps a third angle.]

It seems very worthwhile to have the tutor show counterexamples, as this would expose
students to a venerable and ubiquitous strategy of mathematical reasoning. On the other hand, it is
not clear that this kind of extended dialogue should be carried out in the context of problem-
solving exercises. This might distract too much from solving the geometry problem at hand. It
may be better to have students engage in activities that focus explicitly on creating and stating
definitions based on examples and non-examples of the term to be defined. The (very influential)
curricular guidelines of the National Council of Teachers of Mathematics include this kind of
mathematical argumentation as an important objective (NCTM, 1989).

The current system is not capable of generating the dialogue shown above, for much the
same reasons that it cannot generate the “procedural replay as bridge” dialogue. This is not to say
that the current system could not present counterexamples. Certainly, its feedback messages could
be modified to do just that. However, within the classify-and-react framework, it may be quite
difficult to recover when the student does not understand the counterexample. Also, it may be
difficult to stick to the strategy when a first counterexample gets the student to go only halfway
(as illustrated in the dialogue shown above). At this point it is not quite clear how important it is
to have such capabilities. This question is best explored by means of a Wizard of Oz study.

CONCLUSION

We are involved in a project to develop a tutorial dialogue system that helps students learn
through self-explanation. The main purpose is to help students learn geometry problem-solving
skills with greater understanding. A secondary purpose is to get students to learn to “speak
mathematics”, that is, to help students to learn basic math communication skills. With respect to
the field of cognitive science, our goal is to test the hypothesis that self-explanation has a greater
impact on learning if students explain in their own words, rather than through a structured
computer interface, such as a menu.

Our development strategy is to equip the system with a sophisticated NLU component and to
keep the dialogue management component simple. Thus, our efforts so far have focused on
developing an NLU component that provides detailed analysis of students’ explanations. A
preliminary evaluation study showed that this component accurately classifies 81 % of student
explanations and somewhat reasonable classifications on all but 4% of student explanations.
Work on the NLU component continues in order to improve its performance.

Currently, the system’s pedagogical content knowledge consists of a hierarchy of
explanation categories, which represent common ways of providing complete or partially
complete statements of geometry rules. The system uses this knowledge in each dialogue turn to
classify the student’s explanation and to select appropriate feedback messages. This approach
enables the tutor to respond to the types of omissions we often see in students’ explanations and
produce reasonably effective dialogue. However, some extensions are needed in order to make
the dialogue more robust. The tutor must be able it to detect situations where a student stagnates
and is not able to improve her explanation even after receiving tutor feedback. The tutor must be
able to help students over the hump in such situations. To do so, the system needs to have a
dialogue history and multiple levels of feedback messages associated with each explanation
category. It will also be necessary to coordinate the hint messages and the feedback messages.

At this point, it is not quite clear that the tutor needs to engage in multi-turn tutorial
strategies such as “use procedural replay as bridge” and “counterexamples”. To investigate the
importance of such strategies, we will follow the 3rd-generation methodology exemplified by
many other projects, namely, to study expert human tutors and perform Wizard of Oz studies.
More importantly, we will build alternative versions of the tutor and experimentally test whether
our changes lead to greater student learning.

Vincent Aleven
69

Acknowledgements

This research is sponsored by an NSF grant to the Center for Interdisciplinary Research on
Constructive Learning (CIRCLE), a joint research center located at the University of Pittsburgh
and Carnegie Mellon University.

REFERENCES

Aleven V., Popescu, O. & Koedinger, K. R. (to appear). Towards tutorial dialog to support self-
explanation: Adding natural language understanding to a cognitive tutor. To appear in AI-ED 2001.

Aleven, V. & Koedinger, K. R. (2000a). Limitations of Student Control: Do Student Know when they need
help? In G. Gauthier, C. Frasson, and K. VanLehn (Eds.), Proceedings ITS 2000 (pp. 292-303).
Berlin: Springer Verlag.

Aleven, V. & Koedinger , K. R. (2000b). The Need for Tutorial Dialog to Support Self-Explanation. In C.
P. Rose & R. Freedman (Eds.), Building Dialogue Systems for Tutorial Applications, Papers of the
2000 AAAI Fall Symposium (pp. 65-73). Menlo Park, CA: AAAI Press.

Aleven, V., K. R. Koedinger, and K. Cross. Tutoring Answer Explanation Fosters Learning with
Understanding. In Proceedings of AIED-99, edited by S. P. Lajoie and M. Vivet, 199-206.
Amsterdam: IOS Press, 1999

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned.
The Journal of the Learning Sciences, 4, 167-207.

Berardi-Coletta, B., Buyer, L. S., Dominowsky, R. L., & Rellinger, E. R. (1995). Metacognition and
Problem-Solving: A Process-Oriented Approach. Journal of Experimental Psychology: Learning
Memory, and Cognition, 21 (1) 205-223.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How
students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

Chi, M. T. H., N. de Leeuw, M. Chiu, and C. Lavancher (1994). Eliciting self-explanations improves
understanding. Cognitive Science, 18, 439-477.

Conati C. & VanLehn K. (2000). Toward Computer-Based Support of Meta-Cognitive Skills: a
Computational Framework to Coach Self-Explanation. International Journal of Artificial
Intelligence in Education, 11.

Gagné, R. M., & Smith, E. C. (1962). A Study of the Effects of Verbalization on Problem Solving. Journal
of Experimental Psychology, 63(1), 12-18.

Heffernan, N. T. & Koedinger, K. R. (2000). Intelligent Tutoring Systems are Missing the Tutor: Building
a More Strategic Dialog-Based Tutor. In C. P. Rose & R. Freedman (Eds.), Building Dialogue
Systems for Tutorial Applications, Papers of the 2000 AAAI Fall Symposium (pp. 14-19). Menlo Park,
CA: AAAI Press.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to
school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

MacGregor, R, (1991). The Evolving Technology of Classification-Based Knowledge Representation
Systems. In J. Sowa (ed.), Principles of Semantic Networks: Explorations in the Representation of
Knowledg. San Mateo, CA: Morgan Kaufmann.

Mitchell, T, 1997. Machine Learning. McGraw-Hill.
NCTM, 1989. Curriculum and Evaluation Standards for School Mathematics. National Council of Teachers

of Mathematics. Reston, VA: The Council. See also http://standards-e.nctm.org/index.htm.
Paivio, A. (1986). Mental representations: A dual coding approach. New York: Oxford University Press.
Popescu, O. & Koedinger , K. R. (2000). Towards Understanding Geometry Explanations. In C. P. Rose &

R. Freedman (Eds.), Building Dialogue Systems for Tutorial Applications, Papers of the 2000 AAAI
Fall Symposium (pp. 80-86). Menlo Park, CA: AAAI Press.

Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from Worked-Out Examples: the Effects of
Example Variability and Elicited Self-Explanations. Contemporary Educational Psychology, 23, 90-
108.

Rose, C. P. & Lavie, A. (1999). LCFlex: An Efficient Robust Left-Corner Parser. User’s Guide, Carnegie
Mellon University.

Vincent Aleven
70

Introducing RMT: A dialog-based tutor for research methods

Peter Wiemer-Hastings and Kalloipi-Irini Malatesta
University of Edinburgh

Send correspondence to:

Peter Wiemer-Hastings
Division of Informatics
2 Buccleuch Place
The University of Edinburgh
Edinburgh EH8 9LW
Scotland

peterwh@cogsci.ed.ac.uk

AutoTutor is an intelligent tutoring system that interacts with students in the way
that human tutors do: with natural language dialog (Graesser, Wiemer-Hastings, Wiemer-
Hastings, Kreuz, & the TRG, 1999). It presents questions and responses with a talking head
which uses speech production and gesture to give graded feedback. It understands student
replies using surface clues and latent semantic analysis (LSA) (Landauer & Dumais, 1997).
It directs a student through a tutoring session using responses from its curriculum script
which represents its knowledge of the domain (Wiemer-Hastings, Graesser, Harter, & the
Tutoring Research Group, 1998).

AutoTutor has been shown to be effective in aiding student learning. Compared to
control subjects who simply reread a chapter, students who used AutoTutor had improved
learning and memory of the lessons by .5 to .6 standard deviations (Graesser, Person, Harter,
& the TRG, 2001).

The AutoTutor system has limitations however. Despite the fact that the questions in
AutoTutor’s curriculum script are meant to be “deep reasoning” questions, its approach to
the dialog is very shallow. There are two main reasons. First, AutoTutor’s language analysis
mechanism is limited. LSA tells AutoTutor how similar a particular student answer is to
some desired good answer. But if the student answer is not so close, the system does not
know where it is lacking. More detailed analysis of the student answer could change the
types of responses AutoTutor makes. Instead of just moving on to the next point when the
current one was matched sufficiently, an improved understanding mechanism would support
more intelligent generation of follow-up questions.

The second limitation to the depth of AutoTutor’s conversations is its subject matter.
Computer Literacy attempts only to familiarize students with the basic concepts of com-
puters, and does not get into any deep issues. Thus, many of AutoTutor’s questions have
a short-answer feel; the ideal answers can be summed up in one or two words. A more
complicated domain would allow much more interesting discussions.

For these reasons, we are developing RMT, the Research Methods Tutor. RMT is aimed
at undergraduate psychology or cognitive science students who are studying research meth-

1

Vincent Aleven
71

ods. RMT takes a case-based approach. It presents a research question to the student, and
asks the student how to go about evaluating it. This domain supports in-depth discussions
of the student’s approach to addressing the research question. It also allows the system to
develop the student’s analogical reasoning. RMT brings in related research paradigms to
help the student infer both similarities and differences with their approach.

RMT also makes use of the Structured LSA (SLSA) language analysis system (Wiemer-
Hastings, 2000). This system uses part-of-speech tagging, anaphora resolution, and shallow
parsing to break apart input sentences into their subject, verb, and object segments and
to replace pronouns with their antecedents. This technique provides a better match to
human similarity judgments than standard LSA does (Wiemer-Hastings & Zipitria, 2001).
Additionally, this allows the tutoring system to know what part of the student’s answer
matched an expected good answer, and what part did not match. This will allow RMT
have a more effective dialog with the student by finding the “nugget of truth” in the answer,
and leading the student to the complete correct answer.

References

Graesser, A., Person, N., Harter, D., & the TRG (2001). Teaching tactics and dialog in
AutoTutor. International Journal of Artificial Intelligence in Education. In press.

Graesser, A., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., & the TRG (1999).
AutoTutor: A simulation of a human tutor. Journal of Cognitive Systems Research,
1, 35–51.

Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psycholog-
ical Review, 104, 211–240.

Wiemer-Hastings, P. (2000). Adding syntactic information to LSA. In Proceedings of the
22nd Annual Conference of the Cognitive Science Society, pp. 989–993 Mahwah, NJ.
Erlbaum.

Wiemer-Hastings, P., Graesser, A., Harter, D., & the Tutoring Research Group (1998). The
foundations and architecture of AutoTutor. In Goettl, B., Halff, H., Redfield, C., &
Shute, V. (Eds.), Intelligent Tutoring Systems, Proceedings of the 4th International
Conference, pp. 334–343 Berlin. Springer.

Wiemer-Hastings, P., & Zipitria, I. (2001). Rules for Syntax, Vectors for Semantics. In
Proceedings of the 23rd Annual Conference of the Cognitive Science Society Mahwah,
NJ. Erlbaum. In press.

2

Vincent Aleven
72

	Table of Contents
	Introduction
	Rickel
	Eleuterio
	Heffernan
	Murray
	Graesser
	DiEugenio
	Aleven
	Wiemer-Hastings

