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Introduction

Human one-on-one tutoring is the most effective form of instruction. Although the best intelligent
tutoring systems have been shown to be more effective than classroom instruction, they are only
half as effective as human tutors. Much of the success of human tutors seems to hinge on their
ability to engage students in dialog. It is therefore an interesting and promising hypothesis that
intelligent tutoring systems will be more effective if they engage students in dialog or support
effective dialog between learners. This raises a number of broad research questions:

* what is good tutorial dialog?
* why is it effective?
* what kind of architectures can support good tutorial dialog?

The workshop will deal with all issues related to these broad questions, including (but not limited
to) empirical studies of tutorial discourse, the use of natural language understanding and
generation technologies, the representation of pedagogical strategies and knowledge, the use of
dialog and text planning, and studies of the effectiveness of tutorial dialog systems.

Although the field of Al & Education has a long-standing interest in these questions, they
are more in the foreground now than before, due to advances in technologies such as natural
language processing, knowledge representation, virtual reality, and multi-modal interfaces. The
recent AAAI Fall Symposium on the topic of tutorial dialog systems reflects the surge of interest
in both the Al & Education and computational linguistics communities.

Special Focus: Understanding The Trade-Offs Between Architectural Complexity
And Pedagogical Effectiveness

The workshop will focus on understanding the trade-offs between the complexity of a tutorial
dialog system and its pedagogical effectiveness. Tutorial dialog systems tend to be complex.
They contain not just the components found traditionally in intelligent tutoring systems, but many
other components as well, such as a parser, semantic analyzer, dialog planner, text planner,
natural language realization component, and a virtual reality module. In the face of this
complexity, it is good to ask, where is the biggest bang for the buck? What level of architectural
complexity gives the greatest pedagogical pay-off? Is adding complexity always a good thing?
What minimum level of complexity is required? Complexity can be measured, among other ways,
in terms of development effort or the elaborateness of the architecture. Effectiveness on the other
hand can be measured as the range of dialog phenomena that the system supports, the generality
of the approach, the ease of maintenance, or, ultimately, the students’ learning gains.

It may well be that the trade-offs differ depending on the application domain, the overall
pedagogical approach of the system, and the purpose for which it uses natural language
processing. Nonetheless, it is likely that some common trade-offs, and ways of dealing with them,
can be found that hold across domains.
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Abstract

Previous research on building intelligent tutoring systems has not leveraged general mod-
els of collaborative discourse, even though tutoring is an inherently collaborative and often
discourse-based activity. Similarly, previous research on collaborative discourse theory has
rarely addressed tutorial issues, even though teaching and learning are crucial components of
collaboration. We help bridge the gap between these two related research threads by present-
ing a tutorial agent, called Paco, that we built using an application-independent collaboration
manager, called Collagen. Our primary contribution is to show how a variety of tutorial be-
haviors can be expressed as rules for generating candidate discourse acts in the framework of
collaborative discourse theory.

1 Introduction

Our research objective is to develop computer tutors that collaborate with students on tasks in simu-
lated environments. Towards this end, we seek to integrate two separate but related research threads:
intelligent tutoring systems (ITS) and collaborative dialogue systems (CDS). Research on ITS (e.g.,
[1, 21, 23]) focuses on computer tutors that adapt to individual students based on the target knowl-
edge the student is expected to learn and the presumed state of the student’s current knowledge.
Research on CDS (e.g., [8, 13, 22]), with an equally long history, focuses on computational models
of human dialogue for collaborative tasks.

Unfortunately, there has been a surprising lack of cross-fertilization between these two research
areas. Work on tutorial dialogue for intelligent tutoring systems (e.g., [3, 14, 24]) has not leveraged
general models of collaborative dialogue. Similarly, research on collaborative dialogues has focused
on modeling conversations between peers or between an expert and novice, but has rarely addressed
tutorial issues.

To help integrate ITS and CDS, we developed a tutorial agent in Collagen [17], a middleware
system based on a long line of research on collaborative discourse [8, 6, 7, 5, 13]. Collagen main-
tains a model of the discourse state shared by the user (e.g., student) and the computer agent (e.g.,
tutor). The discourse state includes information about the current focus of attention and the col-
laborators’ mutually believed plans. Agents constructed using Collagen use the discourse state to
generate an agenda of candiddiscourse actsincluding both “physical” actions and utterances,
and then choose one to perform or utter.
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Our tutorial agent, Paco (Pedagogical Agent for Collagen), teaches students procedural tasks in
simulated environments, building on ideas from earlier tutoring systems [18, 19]. While Paco can
engage in slightly more sophisticated conversations than previous such tutors, our primary contribu-
tion is to show how a variety of tutorial behaviors can be expressed as rules for generating candidate
discourse acts in Collagen. Translating behaviors developed in ITS into the framework of CDS is
a first step towards building tutoring agents that can leverage advances in collaborative discourse
theory. Also, since Paco is domain-independent, its tutorial actions can be added to the set of can-
didate discourse acts of any agent built with Collagen, allowing such agents to tutor in addition to
their normal role as assistants. Finally, a third goal of this work is to report on Collagen’s value
for building tutorial agents, both in terms of the theory it reflects and the software architecture it
supports.

2 Pedagogical Approach

We designed Paco to support simulation-based training, in which students learn tasks by performing
them in a simulation of the real work environment. (Of course, if the target work environment is
actually a software application, that application can serve as the simulator.) The computer tutor’s
instruction and assistance are situated in the performance of domain tasks in the simulated world.
That is, the tutor chooses a scenario (task to perform starting from a particular simulation state),
works through it with the student, and then repeats until all scenarios have been mastered.

Our pedagogical approach is based on the apprenticeship model of learning [2], which requires
two capabilities. First, the tutor must be able to perform and explain the task. Second, it must
be able to monitor the student as she performs the task, providing assistance when needed as well
as critique or positive feedback when appropriate. As the student gains proficiency, the assistance
provided should decrease. Ideally, students should learn to flexibly apply well-defined procedures
in a variety of situations.

Figure 1 shows an example dialogue with our current implementation of Paco that illustrates
some of the key features we support. Paco is teaching the student how to operate the gas turbine
engines that propel naval ships. Paco has previously worked through a simple scenario in which
the student engaged one of the turbine engines. Now, Paco is going to teach the same procedure
under slightly more complicated conditions: (1) a high vibration alarm has occurred on the gas
turbine generator, shutting the generator down, so the student will have to reset the alarm before
starting the generator; and (2) a second engine is already running, so the student will have to stop it
before starting up the desired engine. The remainder of the paper will use this example dialogue to
illustrate aspects of our design.

If there were no overlap among tasks and scenarios, Paco could be implemented in an obvious
way: the tutor would first demonstrate the entire task, then repeatedly let the student practice the
task, providing assistance where necessary. However, different tasks often share common subtasks
or actions, and different scenarios often require variants of the same task. Therefore, at any moment,
a student’s level of mastery may differ across the different parts of a task. For example, a new
scenario may require branches of a task that the student has not yet seen (e.g., lines 8-12 and 18-35
in the example dialogue) while also requiring steps and subtasks that have been mastered already.

To address this issue, Paco uses a student model to dynamically interleave demonstration and
coached practice, using the approach introduced by Rickel [18]. As the student and Paco progress
through a task, Collagen will repeatedly identify the set of valid next steps in the plan to solve the
current task. Paco consults the student model to see whether the student has sufficient knowledge to
choose the next step. If so, it will expect the student to take the next step, and will provide assistance
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only if the student requests it or makes a mistake. If not, Paco will intervene and teach the student
what to do next (e.g., lines 8-12 and 18-35). Thus, as Paco and the student work through tasks,
initiative will pass back and forth between them based on the student’s prior experience. Whenever
Paco decides that the initiative should shift, it will let the student know through verbal comments
(e.g., “You take it from here”).

Paco represents the procedures it will teach using Collagen’s declarative language for domain-
specific procedural knowledge. This knowledge serves as a model of how domain tasks should be
performed. Each task is associated with one or mecges(i.e., procedures for performing the
task). Each recipe consists of several elements drawn from a relatively standard plan representation.
First, it includes a set of steps, each of which is either a primitive action (e.g., press a button) or a
composite action (i.e., a subtask). Composite actions give tasks a hierarchical structure. Second,
there may be ordering constraints among the steps; these constraints define a partial order over
the steps. Third, a task and its steps can have parameters, and a recipe can specify constraints
(bindings) among the parameters of a task and its steps. Finally, steps can have preconditions (to
allow Collagen to determine whether a step can be performed in the current state) and postconditions
(to determine whether the effects of a step have been achieved).

3 Collagen as a Foundation for Teaching Procedural Tasks

Collagen’s main value for building tutoring systems is that it provides a general model of collab-
orative dialogue based on well-established principles from computational linguistics. The model
includes two main parts: (1) a representation of discourse state and (2) a discourse interpretation
algorithm that uses plan recognition to update the discourse state given the actions and utterances of
the user and agent. Previous tutoring systems for procedural tasks do not include dialogue managers
with the same level of generality.

Based on the work of Grosz and Sidner [6], Collagen partitions the discourse state into three
interrelated components: the linguistic structure, the attentional state, and the intentional structure.
The linguistic structure, implemented asegmented interaction histoig Collagen, groups the
dialogue history into a hierarchy of discourse segments. Each segment is a contiguous sequence
of actions and utterances that contribute to sgugpose(e.g., performing a task or subtask). For
example, Figure 2 shows the segmented interaction history for a portion of the example dialogue.

The attentional state, i.e., what the user and agent are talking about and/or workiogy,on
is represented by a stack of discourse purposes called the focus stack [6]. When a new discourse
segment is begun, its purpose is pushed onto the stack. When a discourse segment is completed
or discontinued, its purpose is popped off the stack. The stack mechanism is crucial for the proper
treatment of interruptions. Additionally, the attentional state maintained by Collagen includes an
extension to the original model of Grosz and Sidner to capture which participant holds the conver-
sational initiative. This allows Paco to decide when to explicitly pass the initiative to the student
(e.g., “You take it from here.”).

An explicit representation of attentional state is important in tutoring systems so that the tutor
does not confuse the student with unexpected shifts in focus. For example, if the student begins
work on a subtask and then asks for help, the tutor's advice should relate to that subtask, even
if other actions outside that subtask could be done next. For tutoring systems that follow a strict
sequence through domain tasks, a focus stack may not be needed. However, to support mixed-
initiative dialogues where the student and tutor have more freedom to choose the execution order
for tasks and initiate topics for discussion, a focus stack helps ensure the coherence of the tutor’s
responses.
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(1) Paco sets the state of the simulator. (28) Paco “Good.”

(2) Paco “I've reset the simulation so that we can try en¢29) Student closes fuel valve two on engine two.
gaging an engine under slightly different condi(30) Paco “Good job."
tions.” )
(31) Paco (Pointing) “The next step is to press the off but-

(3) Paco “Let’s engage engine one.” ton on engine two.”

(4) Student "Ok." . (32) Student presses the off button on engine two.
(5) Paco “You take it from here.” (33) Paco “Great.”

(6) Student “Let's start the generator.” (34) Paco (Pointing) “The indicator light tells us that en-

(7) Paco “Good.” gine two is stopped.”
(8) Paco (Pointing) “Now, notice that the alarm light is(35) Paco “So, we succeeded in stopping engine two.”

on (36) Student “Ok.”
(9) Paco “Before starting a generator, always make sur, « ; "
that the alarm light is off so that you'll know when(%7) Paco "You take it from here.

a new alarm appears.” (38) Student opens fuel valve one on engine one.
(10) Paco (Pointing) “Press the alarm reset button on the39) Paco “Good.”
generator in order to extinguish the alarm.” (40) Student opens the bleed valve on engine one.
(11) Student presses the alarm reset button on the gene{a1) paco “That was a correct action, but | wasn't expect-
tor. ing you to do it now.”
(12) Paco “Good.” (42) Paco “Let's go back to opening the fuel valves on en-
(13) Student “Ok.” gine one.”
(14) Paco “You take it from here.” (43) Student opens fuel valve two on engine one.
(15) Student presses the on button on the generator. ~ (44) Paco “Great.”
(16) Paco “Great.” (45) Student presses the engage button on engine one.
(17) Paco “We succeeded in starting the generator”  (46) Paco “Whoops, you can't do that yet.”
(18) Paco (Pointing) “Now, notice that engine two is run-(47) Student “What next?”
ning.” (48) Paco (Pointing) “Press the on button on engine one.”

(19) Pafkllo “E:]efori starting an enginea always make sur@i9) Student presses the on button on engine one.
that the other engine is stopped. (50) Paco “Good”

o ) ] (51) Student “I think | should set the throttle speed.”
(21) Paco (Pointing) “First, press the disengage button o

engine two in order to disengage the clutch.” &2) Paco “Right”
(22) Student presses the disengage button on engine thE_B) Student "What should the speed be?

(20) Paco “Let’s stop engine two.”

(23) Paco “Right.” (54) Paco “The speed should be stop.”
(24) Paco “The next step of stopping engine two is to clos&®®) Student sets the throttle speed to stop.
the fuel valves on engine two.” (56) Paco “Good.”
(25) Student “Ok.” (57) Student presses the engage button on engine one.
(26) Paco “You take it from here.” (58) Paco “Good job.”
(27) Student closes fuel valve one on engine two. (59) Paco “We succeeded in engaging engine one.”

Figure 1. An example dialogue in which Paco teaches steps in the current task (e.g., lines 21,
31), teaches that subtasks are finished (e.g., lines 17, 35), provides help when requested (e.g., line
48), passes initiative to the student when she should know what to do next (e.g., lines 5, 14, 26),
provides positive feedback (e.qg., lines 7, 16, 23), diagnoses and critiques incorrect actions (e.g., line
46), explains why steps needs to be done (e.g., line 9), discusses postconditions for actions (e.g.,
lines 8, 34), and helps the student stay focused on the current subtask (e.g., line 42).
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Engaging engine one

3 Paco says "Let's engage engine one."

4 Student says "Ok."

5 Paco says "You take it from here."

Done successfully starting the generator.

6 Student says "Let's start the generator.”

7 Paco says "Good."

Done user successfully pressing the alarm reset button on the generator.

8 Paco says "Now, notice that the alarm light is on."

9 Paco says "Before starting a generator, always make
sure that the alarm light is off so that
you'll know when a new alarm appears."”

10 Paco says "Press the alarm reset button on the
generator in order to extinguish the alarm."

11 Student presses the alarm reset button on the generator.

12 Paco says "Good."

13 Student says "Ok."

14 Paco says "You take it from here."

15 Student presses the on button on the generator.

16 Paco says "Great."

17 Paco says "We succeeded in starting the generator.”

Figure 2: The segmented interaction history for a portion of the dialogue in Figure 1.

While the linguistic structure and attentional state closely reflect the actual temporal order of
actions and utterances in the dialogue, the intentional structure represents the decisions that have
been made as a result of those actions and utterances, independent of their order. Collagen represents
the intentional structure gdan trees which are a partial implementation of SharedPlans [7, 5].
Nodes in the tree represent mutually agreed upon intentions (e.g., to perform a task), and the tree
structure represents the subgoal relationships among these intentions. Plan trees also record other
types of decisions, such as whether a recipe has been chosen for a task, whether any of its parameters
have been determined, and who is responsible for performing the task (e.g., student, agent, or both).

The heart of Collagen is the discourse interpretation algorithm, which specifies how to update
the discourse state given a new action or utterance by either the user or agent. Its objective is to de-
termine how the current act contributes to the collaboration. For example, the act could contribute
to the current discourse segment’s purpose (DSP) by directly achieving it (e.g., pressing a button
when that action is the current DSP), proposing how it can be achieved (i.e., suggesting a recipe),
proposing or performing a step in its recipe, or proposing a value for one of its unspecified param-
eters. Collagen extends Lochbaum’s discourse interpretation algorithm [13] with plan recognition,
which can recognize when an act contributes to a DSP through one or more implicit acts [12].

Collagen’s discourse interpretation algorithm proceeds as follows. If the current act contributes
to the current DSP, it is added to the segment and the plan tree is updated accordingly. If not,
Collagen searches up through the plan tree to see if an act contributes to any other action in the
plan; if so, and if the act is a valid next step, it represents a shift in focus. Collagen pops all
purposes off the stack that are not parents of the matched step, then pushes any necessary purposes
on until the act is in focus. Finally, if nothing in the plan tree matches the current act, it is treated as
an interruption and pushed onto the stack without popping anything.

Collagen has recently been extended to perform “near-miss” plan recognition if it cannot find
a correct interpretation of an act. It systematically searches for extensions to the plan tree that
would explain the current act if some constraint were relaxed. For example, it can recognize acts
that would violate an ordering constraint, unnecessarily repeat a step that was already performed,
or perform a step that should be skipped because its effects are already satisfied. Thus, near-miss
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Figure 3: Paco’s Architecture

plan recognition attempts to find plausible interpretations of student errors, providing a domain-
independent capability for student diagnosis. It is also extensible, allowing a domain author to
define new types of errors or even add explicit buggy recipes. Additionally, Collagen is being
extended to use causal information in recipes to repair plans after an incorrect action, or external
event, occurs.

3.1 Architecture

Figure 3 shows how Paco fits into the general Collagen architecture. The three software components
in this architecture are the simulator, Collagen, and the agent (e.g., Paco). Collagen makes very few
assumptions about the simulator. Primarily, it assumes that the user (e.g., student) and agent (e.qg.,
Paco) can both perform domain actions (e.g., open a fuel valve) and can observe the actions taken
by each other. Collagen provides an API for such event messages, so that it will be able to interpret
them. Collagen makes no assumptions about the simulator’s user interface. The simulator can,
however, optionally specify a screen location for domain actions, which allows the agent to use a
pointing hand to draw the user’s attention to an object or indicate that the agent is performing an
action.

Collagen represents utterances using an artificial discourse language derived from earlier work
by Sidner [20]. The language is intended to include the types of utterances that people use when col-
laborating on tasks. Currently, Collagen’s language includes utterance types for agreeing (“yes” and
“OK”) and disagreeing (“no”), proposing a task or action (e.g., “Let’s engage engine one”), indicat-
ing when a task has been accomplished (e.g., “We succeeded in stopping engine two”), abandoning
a task, asking about or proposing the value of a parameter to a task or action, asking or proposing
how a task should be accomplished, and asking what should be done next (“What next?”). Cur-
rent work is extending Collagen’s language to include additional elements from Sidner’s language,
especially to support negotiation about task decisions.

To bypass natural language understanding issues, Collagen provides a window to allow the
user to construct utterances and to display the agent’s utterances. In both windows, it converts its
internal discourse language into English (or other language) strings, using a combination of domain-
independent and (optional) domain-specific text templates. In the user window, users construct
utterances by selecting from a menu of utterances and utterance types, and they can modify any
utterance by selecting any phrase within it (representing a field in the original text template) and
choosing a replacement phrase. Optionally, Collagen can also use speech recognition software to
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allow the user to speak these utterances rather than creating them through the GUI, and it can use
speech synthesis software to allow the agent to speak its utterances.

4 Tutorial Behaviors as Collaborative Discourse Acts

Table 1 is a summary of our progress in integrating ITS and CDS: it lays out in detail how Paco’s
tutorial behaviors are generated from Collagen’s discourse state representation and Paco’s student
model. The first column of the table is a ranked list of the tutorial act types. The second column
describes procedures that generate zero or more instances of each act type from the current discourse
state and student model. When it is Paco’s turn, it constructs a prioritized agenda by evaluating the
procedures for each act type and then selects the highest ranked act in this'agieadaird column

of the table shows the semantics of each act type in Sidner’s [20] artificial discourse language, which
determines how the act will be interpreted by Collagen’s discourse interpretation algorithm. Several

of the act types have subcases, shown in the fourth column, which share the same basic semantics,
but differ in how they are rendered into English (fifth column).

Paco uses several elements of the discourse state to generate its discourse acts including the
focus of attention, the initiative, and plan trees. The focus of attention is used, for example, to avoid
teaching a step unless its purpose is in focus. The focus stack also indicates when the student has
interrupted the current task, which causes Paco to generate a discourse act which would end the
current interruption. In addition to the shared focus maintained by Collagen, Paco also maintains a
private focusbecause it prefers to finish teaching an action before moving on. If the student starts
working on another part of the plan (thus popping the current focus from the shared focus stack)
while there are still legal steps within Paco’s private focus (e.g., line 40 in Figure 1), then Paco
will add a Correct Focus action (e.qg., line 42) to the agenda. Paco might choose to execute a higher-
ranked element on the agenda first (e.g., line 41) but will re-generate the Correct Focus action unless
the student returns to the previous subtask by herself.

The various conditions for generating discourse acts are easy to compute given the data struc-
tures maintained by Collagen. For example, several of the acts operate walithaext actions
which refers to the plan steps that can be executed next based on precondition and ordering con-
straints? Collagen computes this information during discourse interpretation. Additionally, Col-
lagen’s near-miss recognition computes the conditions needed to generate the various subcases of
Negative Feedback (e.g., line 46). Finally, when the student asks for help (e.qg., line 47) this pushes a
discourse purpose of helping the student onto the stack which remains there until the agent provides
the help (e.qg., line 48).

Using the generic capabilities of Collagen to record information about a user, Paco maintains
a simple overlay model [4] that records, for each step in a recipe, whether the student has been
exposed to it. In Table 1, the condition “the student knows stemeans that the student has been
taught this step before. The condition “student knows stegeds to be done” means the student
has been taught all the steps that connetd the root of the current plan. Finally, Paco’s student
model also records which actions the student has been told that she has completed (e.qg., line 17).
The condition “the student knows whenis complete” means that the tutor has told the student
whenw was complete, at least once before.

We use Collagen’s generic representation for recipes to store domain-specific knowledge about
why actions need to be performed. That is, Paco’s domain knowledge includes recipes that achieve
the subgoal of explaining why an action, or more specifically a step of a recipe, should be performed.

1An agent that was more of an assistant might also include acts in Collagen’s default agenda in its ranking.
2paco also uses information about the preferred order of executing actions to determine which actions to teach.
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Tutorial Add instance to Semantics Subcases Example

act type agenda for ... (if any) gloss

Positive the user’'s mostrecent | accept(should(c)) « finished subtask Great job.

feedback || actione if it was, or a wasn'’t proposed by tutoff Nice.

(rank 1) proposed, a valid next « caused unnecessary That was a correct action,
action and has not yet focus shift but | wasn't expecting you
received feedback to do it now.

« finished top-level goal We're done with this scenario|
none of above Good.

Negative || the user's mostrecent | reject(should(c)) « was already done Whoops, you already did that]

feedback || actione if it was, or a’s purpose was already | Whoops, you didn’'t need to

(rank 1) proposed, an invalid achieved do that.
next action and has not « has an unsatisfied Whoops, you can’t do
yet received feedback precondition that yet.

executinga violates Whoops, it's too soon to
an ordering constraint do that.

End each step that is an propose(—should(w) w has known purpose Let’s stop closing the

interrupt- || unstopped interruption fuel valves.

ion on the focus stack w has unknown purpose | Thatis not relevant

(rank 2) to our current task.

Teach each non-primitivev in propose(achieved(w)) We succeeded in closing

complete || the current plars.t. the fuel valves.

(rank 3) w is complete and the
student does not know
whenw is complete

Correct stepw if itis the propose(should(w)) Let's return to

Focus tutor’s private focus opening the fuel valves.

(rank 4) but not the action on
top of the focus stack

Give any valid next plan step | propose( tutor has just Go ahead.

initiative w that the student knows| initiative = user) proposedv

(rank 5) needs to be done, if the tutor has not just You take it from here.
tutor has initiative and proposedv
the student has not
requested help

Explain every plan step that first step of Before starting an engine,

Why is teachable (see Teach | explanation recipe always make sure that the

(rank 6) Step) and is currently other engine is stopped.
unexplained and has an
explanation recipe

Teach every valid next plan propose(should(w)) w is primitive Now, you should press

step stepw that the the on button.

(rank 7) student does not know w IS non-primitive The next step of engaging
and whose parent is the engine is to open
in focus the fuel valves.

Remind every valid next plan propose(should(w)) You need to press

step stepw that the the on button.

(rank 8) student knows and
whose parent is
in focus

Propose || purposew, if the current | propose(should(w)) Let’s try another

new plan is complete, scenario. Let’s engage

scenario || wherew is the engine one.

(rank 8) next task to work on

Shift every plan step that propose(should(w)) Let’s open the fuel valves.

Focus is not currently on

(rank 8) top of the focus stack

and the student knows
has to be done and has
a childc that is a valid
next plan step andis

not known by the studen

Table 1: Tutorial discourse acts
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Typically, these recipes are composed of one or more utterances of text written by a domain expert,
but in principle, explanation recipes can contain any type of primitive or abstract a¢tivhenever

Paco generates a candidate discourse act to teach a step, it also checks to see if an explanation recipe
exists for that step. If so, and if the step has not already been explained, Paco generates a candidate
discourse act of executing the first step of the recipe.

The conditions for generating discourse acts represent necessary, but not sufficient, conditions
for Paco to perform the act. An advantage of making explicit all necessary conditions for a discourse
act is to make it easier to extend Paco with new discourse acts or extend other agents with the ability
to perform Paco’s tutorial actions. However, this approach leaves open the question of how to choose
which act to perform. Paco chooses which act to perform based on the rankings of the discourse
acts, given in the first column of Table 1. For example, Paco prefers to give initiative when the
student knows what to do next rather than teach or remind her what to do next. We hypothesize
that different rankings or other methods for choosing an act from the agenda will produce different
tutoring styles.

5 Discussion

To facilitate comparison between Paco and other tutorial dialogue systems, the following list out-
lines some of the main dimensions along which such systems can be compared, categorizes Paco
along these dimensions, and provides some of the motivations and trade-offs involved in our design
choices:

e Our work focuses on the pragmatics of natural language understanding, i.e., the use of a
discourse interpretation algorithm and a rich representation of discourse state. Our claim is
that tutorial dialogues will be more natural for students if computer tutors follow the principles
of human collaborative dialogues, on which much research in computational linguistics has
focused. We do not yet have strong evidence to substantiate this claim, but investigating that
hypothesis is the primary focus of our work.

e Paco performs relatively sophisticated domain reasoning, based on the application of Colla-
gen’s domain-independent algorithms to a domain-specific task model (recipe library). Speci-
ficially, Collagen decides which domain actions can be done next based on its recipe library,
its knowledge of which actions and utterances have been performed so far, and its knowl-
edge of the current simulation state. Its reasoning does not yet include a full planner, as can
be found in Rickel and Johnson’s Steve tutor [19], but we recognize that such planning ca-
pabilities are important in many domains, and we are currently extending Collagen in that
direction. Collagen’s advantage over Steve is that it requires less domain knowledge (specif-
ically, it does not require causal links among task steps), but this limits its ability to recover
from some student errors (e.g., that would require repeating earlier actions) and to recognize
when some steps can be skipped (e.g., because they only establish preconditions for later
steps whose postconditions are already satisfied).

e Paco currently uses a simple overlay student model. The student model is crucial for Paco’s
approach to interleaving demonstration and coached practice. We do not currently use a
bug library, which would allow Paco to recognize common errors and provide more specific
feedback aimed directly at those errors, but Collagen’s near-miss capability is capable of
exploiting such knowledge if it is provided.

3Collagen’s facilities for executing recipes in a collaborative setting can be used to complete the explanation
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e Text and gesture generation are currently relatively simple in Paco, but this is only a matter of
research focus. Collagen uses text templates for text generation, and it uses a pointing hand to
direct the student’s attention to elements of the simulator. We believe this approach suffices
for simple 2D simulations. However, more sophisticated text generation would certainly
improve Paco, and elsewhere we have elaborated on the costs and benefits of more fully
embodied pedagogical agents [10]. As for graphics, we assume that the simulator will provide
appropriate graphics for the simulated world, and some additional graphics could be useful in
helping students understand the inner workings of equipment they are learning to operate [9],
but this has not been a focus of our work.

e Paco does not include a conventional dialogue planning module, i.e., an explicit search for
a sequence of utterances that will achieve a desired mental state in the student. The agent’s
utterances are selected (using a simple priority scheme) from the candidate discourse acts
that follow naturally from the current discourse state. We are interested in investigating more
sophisticated dialogue planning, but we have no strong evidence yet that it will be required
for teaching procedural tasks. One intermediate position that we are currently exploring is
the use of “tutorial recipes,” which can be viewed as cached dialogue plans. Collagen can use
such recipes to guide its interaction with students using the same mechanisms by which it uses
domain recipes. Also, Collagen’s plan trees can be viewed as plan-like structures that encode
expectations for future utterances and actions that will complete the current task, including
ordering constraints and subgoal relationships among these discourse acts. Thus, while Paco
does not plan its dialogue acts in a traditional sense, its plan trees play a similar role.

e Paco does not allow free-form student utterances, so it does not include any parsing or seman-
tic interpretation of sentences. Instead, the student constructs utterances through a GUI. This
is mainly because we are focusing on the dialogue manager; we are not making any claims
about the utility of natural language understanding for teaching procedural tasks. However,
we do believe that a GUI will be adequate for teaching many procedural tasks, although full
natural language understanding would certainly be better if it could be achieved.

The use of Collagen as a dialogue manager for a tutorial system, as an alternative to building
such a system from scratch, also presents some trade-offs. To connect an application and agent
to Collagen, one must make several commitments. First, one must write a software module that
maps application events into Collagen discourse acts and vice versa. However, a similar module
is required to connect any tutor to an external simulator, and Collagen provides a nice interface
for making such connections. Second, Collagen requires a recipe library that encodes domain task
knowledge, but, again, something similar will be required for any intelligent tutoring system for
procedural tasks. One important commitment is that the domain task knowledge must be expressed
in Collagen’s recipe library representation, as opposed to having the freedom to express it procedu-
rally (e.g., as production rules) or through a custom declarative language. The biggest disadvantage
this poses is that Collagen may not exploit some types of knowledge (e.g., causal links or temporal
constraints) that are important in a domain, or its semantics (e.g., the definition and implications of
ordering constraints) may not be appropriate for some domains. Similarly, one must map all student
and tutor utterances into Collagen’s act types, although this may not be a serious limitation since
Collagen allows new act types to be added. The benefit of providing a recipe library and mapping
to Collagen’s act types is that it maintains the discourse state based on principles from collaborative
discourse theory, and it includes both normal and near-miss plan recognition.

We are interested in several areas of future work. Paco thus far has been primarily a reimple-
mentation (on a new foundation) of fairly standard ITS behaviors. As the next step, we plan to better

10
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leverage Collagen’s rich discourse state representation to implement aspects of tutorial dialogue that
have not been treated in a fully general way in previous ITS work. We are also interested in broad-
ening the types of tutorial discourse acts we consider to include those used in recent analyses of
human tutorial dialogues [11, 15, 16], and we are especially interested in exploring the relationship
of “hinting” strategies to collaborative discourse theory. Some of these issues may require integrat-
ing information in Paco’s student model into Collagen’s discourse interpretation algorithm. Finally,
we would like to experimentally evaluate Paco’s ability to teach procedural tasks.

6 Conclusion

In conclusion, we believe that building Paco has been a demonstration of successful cross-fertilization
between research in intelligent tutoring and collaborative dialogue systems in at least three respects.
First, we showed how a variety of tutorial behaviors can be expressed as rules for generating can-
didate discourse acts in the framework of CDS. This allows us to immediately apply many notions
from CDS in our tutorial agents.

Second, building Paco has given us the opportunity to evaluate the suitability of a particular
piece of CDS technology, namely Collagen, for building ITS systems. Our experience has been
that using Collagen as the starting point for implementing Paco was a great improvement over
programming tutorial agents “from scratch,” as we have done in the past. Also, using Collagen led
us to design Paco as a composition of a generator of candidate discourse acts and a set of preferences
for selecting from these acts. This approach makes it easier to understand, explain, and share tutorial
behaviors.

Third, building a tutorial agent in Collagen has revealed some implicit biases in how Collagen
operates. As a result, we are exploring various generalizations and extensions to Collagen to better
support the full spectrum of collaboration.

References

[1] J. R. Carbonell. Al in CAI: An artificial-intelligence approach to computer-assisted instrudidtE
Transactions on Man-Machine Systerh$(4):190-202, 1970.

[2] A. Coallins, J. S. Brown, and S. E. Newman. Cognitive apprenticeship: Teaching the crafts of reading,
writing, and mathematics. In L. Resnick, editinowing, Learning, and Instruction: Essays in Honor
of Robert GlaserLawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[3] R. K. Freedmaninteraction of Discourse Planning, Instructional Planning and Dialogue Management
in an Interactive Tutoring SysterfPhD thesis, Northwestern University, 1996.

[4] 1. P. Goldstein. Overlays: A theory of modelling for computer-aided instruction. Artificial Intelligence
Laboratory Memo 495, Massachusetts Institute of Technology, Cambridge, MA, 1977.

[5] B. J. Grosz and S. Kraus. Collaborative plans for complex group actiarificial Intelligence
86(2):269-357, 1996.

[6] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of disco@smputational
Linguistics 12(3):175-204, 1986.

[7] B. J. Grosz and C. L. Sidner. Plans for discourse. In P. Cohen, J. Morgan, and M. Pollack, editors,
Intentions in Communicatigrehapter 20, pages 417-444. MIT Press, 1990.

[8] B. J. Grosz [Deutsch]. The structure of task oriented dialog®rtceedings of the IEEE Symposium
on Speech Recognitip®ittsburgh, PA, April 1974. Carnegie-Mellon University. Also available as
Stanford Research Institute Technical Note 90, Menlo Park, CA.

11


Vincent Aleven
11


[9] J. D. Hollan, E. L. Hutchins, and L. Weitzman. Steamer: An interactive inspectable simulation-based

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

training systemAIl Magazing 5(2):15-27, 1984.

W. L. Johnson, J. W. Rickel, and J. C. Lester. Animated pedagogical agents: Face-to-face interaction in
interactive learning environmentternational Journal of Artificial Intelligence in Educatiphl1:47—
78, 2000.

S. Katz, G. O’'Donnell, and H. Kay. An approach to analyzing the role and structure of reflective
dialogue.International Journal of Artificial Intelligence in Educatiph1:320-343, 2000.

N. Lesh, C. Rich, and C. L. Sidner. Using plan recognition in human-computer collaboration. In
Proceedings of the Seventh International Conference on User Modekggs 23-32, Banff, Canada,
1999.

K. E. Lochbaum. A collaborative planning model of intentional struct@emputational Linguistics
24(4):525-572,1998.

N. K. Person, A. C. Graesser, R. J. Kreuz, V. Pomeroy, and the Tutoring Research Group. Simulating
human tutor dialog moves in autotutdmternational Journal of Artificial Intelligence in Educatioh?2,
2001. Forthcoming.

K. Porayska-Pomsta, C. Mellish, and H. Pain. Aspects of speech act categorisation: Towards generating
teachers’ languagénternational Journal of Artificial Intelligence in Educatiphl1:254—272, 2000.

A. Ravenscroft and R. M. Pilkington. Investigation by design: Developing dialogue models to support
reasoning and conceptual chanlygernational Journal of Artificial Intelligence in Educatiphl:273—
298, 2000.

C. Rich and C. L. Sidner. COLLAGEN: A collaboration manager for software interface ages¢s.
Modeling and User-Adapted Interactip®(3-4):315-350, 1998.

J. Rickel. An intelligent tutoring framework for task-oriented domainsPtaceedings of the Inter-
national Conference on Intelligent Tutoring Systempages 109-115, Morgal, Canada, June 1988.
Universigé de Montgal.

J. Rickel and W. L. Johnson. Animated agents for procedural training in virtual reality: Perception,
cognition, and motor controApplied Artificial Intelligence13:343—-382, 1999.

C. L. Sidner. An atrtificial discourse language for collaborative negotiationPréiteedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-98ages 814-819, Menlo Park, CA,
1994. AAAI Press.

D. Sleeman and J. Brown, editoigtelligent Tutoring Systemg#\cademic Press, 1982.

D. R. Traum.A Computational Theory of Grounding in Natural Language ConversatiinD thesis,
Department of Computer Science, University of Rochester, Rochester, NY, 1994.

E. WengerArtificial Intelligence and Tutoring Systemiglorgan Kaufmann, Los Altos, CA, 1987.

B. P. Woolf. Context-Dependent Planning in a Machine Tut&hD thesis, Department of Computer
and Information Science, University of Massachusetts at Amherst, 1984.

12


Vincent Aleven
12


AMANDA - An Intelligent Dialog
Coordination Environment

Jean-Paul Barthés
UTC, France
barthes@utc.fr

Marco A. Eleuterio®
PUC-PR/UTC
mar coa@hds.utc.fr

Flavio Bortolozzi
PUC-PR, Brazil
fborto@ppagia.pucpr .br

Celso A. Kaestner
PUC-PR, Brazil
kaestner @ppaia.pucpr.br

! Sponsored by CNPg, Brazil

Abstract

This paper describes AMANDA? - an intelligent
system intended to coordinate collective dialog
sessions in distance learning environments. The
overal objective of AMANDA is to help tutors
achieve better results from group discussions
and improve knowledge transfer among the
participants. This is done by integrating the
collective didog as a disciplined and well-
coordinated activity in distance learning
situations. For this purpose, the diadlog is
represented as an argumentation tree, a
structured collection of questions, aternatives
and arguments which evolves along sequentia
dialog cycles. The intdligent behavior of the
system is due to its coordination actions taken in
response to reasoning over the didog. We
describe how AMANDA coordinates the dialog
process by generating a sequence of diaog
cycles based on a set of coordination
parameters. In this paper we briefly describe
AMANDA’'s  functiona  modules, interna
structures and coordination agorithms. The
knowledge models that support system
reasoning are described, as well as our practical
experience in domain modeling. We have tested
the system in actua training Stuations, for
which we chose a test course and modeled the
corresponding domain  knowledge.  Although
some modules of the system are ill under
development, specially those related to semantic
reasoning, we discuss the application of
semantic  parameters  and  identify  some
techniques which may improve the coordination
algorithm.

2 AMANDA - Agent de Moddisation et ANayse de Dialogues
Argumentés - is a joint R&D effort between the Pontifica
University of Parana, Brazil (PUC-PR), the Technology
University of Compiegne, France (UTC) and their respective
partners Siemens Telecomunicagles, Brazil and Cegos, France.
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1. Introduction

Collaborative learning is about promoting
knowledge transfer among the apprentices
through a series of learning interactions. We
recal a wel-known knowledge management
theory (Nonaka, 99) in which a knowledge
transfer environment is composed of four
knowledge-transfer ~ spaces, namely  the
socialization space, the dialoguing space, the
systematization space and the internalization
space. In each of these spaces, a specific
implicit« explicit knowledge conversion
occurs. By applying this approach to a
collaborative learning environment, as detailed
in (Eleuterio, 1999a), we categorize AMANDA
as a dialoguing space in which the articulation
of knowledge is the key for knowledge transfer.
In traditional distance learning environments,
this dialoguing space is normally implemented
by discussion forums.

Our experience with discusson forums in
Eureka (Eleuterio, 1999b), a web-based
environment developed in partnership with
Siemens and extensively used in academic and
professional training contexts, shows that
traditional discussons forums often fal to
promote group learning. They either grow two
much to be efficiently followed up by the tutor
or suffer from the lack of participation and
coordination. Similar problems are described in
(Leary, 1998) when identifying common
problems in discusson groups of knowledge
management systems. From our observations,
the two main reasons why discussion forums
often fail are (i) the lack of discipline due to the
poor integration of the discussion process into
the regular activities of the course and (ii) the
lack or articulation and coordination of the
discussion.
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With the purpose of overcoming the identified
problems, we propose a dialog framework that
covers both aspects, i.e. automaticaly
coordinates the didog while engaging the
participants by generating dialog activities.

We identify three main differences between
AMANDA and a traditional discussion forum.
Firstly, the presence of doman models in
AMANDA'’s architecture enables a certain degree
of semantic reasoning over the diaog.
Secondly, its coordination mechanism relieves
the tutor from time-consuming coordination
tasks, such as finding relations between users
inputs, measuring the degree of commitment of
the participants, detecting disagreement topics
and measuring the coverage of discussion
topics. Thirdly, the system manages the dialog
by generating discussion cycles, in which the
participants express their supporting and
opposing ideas in relation to another
participant's input, thus creating a suitable
context for the articulation and confrontation of
ideas and points of view.

The proposed coordination mechanism alows
various degrees of knowledge representation
without impairing dialog control. It means that,
if the system has no knowledge models, it can
coordinate the dialog as wel, gracefully
degraded, by considering only structural
parameters. This is possble due to the
separation between structural and semantic
aspects in the coordination mechanism (see
section 4). This separation alows applying

AMANDA to dtuations where knowledge
modeling is neither feasible, e.g. open domain
discussions, nor desirable, eg. short-term
COUrses.

Merging Two Complementary Approaches

Tutorial dialog has been subject of important
rescarch efforts, such as the ColLLeGE
architecture (Ravenscroft & Pilkington, 2000)
which anayzes didog moves, conceptual
changes and world models as the basis of the
didog process. Such work deeply inspects the
tutor-apprentice interaction, but doesn’'t give
much emphasis on the collective aspect of the
didog. On the other hand, the argumentative
discourse environment (Karacapilidis, 1998)
describes an argumentation framework applied
to multi-agent decison making, which is fully
devoted to formalize argumentative discourses.
Our abjective is to merge both approaches,
which seem to be complementary, in a single
didog coordination system applied to
collaborative distance learning environments.

2. System Overview

AMANDA IS an autonomous domain-
independent intelligent dialog coordination
system applied to collective discussons. By
domain-independent we mean that domain-
dependent behavior is achieved by providing the
corresponding domain knowledge models. By
intelligent coordination system we mean that
AMANDA takes coordination actions by
reasoning over the structure and the semantics

5
DE KB Domain
GENERATOR MODULE models

DiALOG
ELED

Planning

A Tutor interface User interface
Dialog
Tree

~~  ~r

GUI HTML

Figure 1a: System overview
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Session
Schedule

Diaog HTML
Tree worksheets
Figure 1b: Diaog control — smplified
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of the dialog. The autonomous feature of
AMANDA is due to its capability of coordinating
the dialog without direct interference of the
human tutor. Figure 1a shows the main modules
of the system and the paragraphs below describe
the modules, structures and processes that take
part in the dialog coordination.

2.1. Dialog Control Module

This module is AMANDA'’s central coordination
mechanism. Its principle is to organize the
didog in sequential periods caled sessions,
each one representing a time interval in which a
certain number of discussions will be carried on.
During each sesson, the system triggers a
number of dialog cycles in order to update the
dialog tree with input from the participants.

In the setup stage, the Dialog Control module
reads the dialog schedule ©, where all sessions
are described. It then repeatedly generates
diaog cycles by producing worksheets ® until
a satisfactory degree of agreement is achieved.
Each time the system receives input from the
participants @, the Diadog Control module
analyzes and updates the dialog tree ® and
decides upon producing a new cycle or closing
the dialog. The items below detail the structures
handled by the Dialog Control module.

2.1.1. Dialog Planning
The didog planning is represented by the dialog
schedule and the session schedule.

Dialog Schedule

The dialog schedule is the overal planning of
the dialog. It specifies the didlog sessions, the
corresponding start/end dates and the respective
domain of discourse (Figure 2).

Session Schedule

The session schedule, on the other hand, is a
dynamic structure automatically produced and
updated by the system during a given session
(Figure 3). Each entry of the session schedule is
a dialog cycle which specifies a dialog task to
each participant. A dialog task is the set of dl
nodes from the dialog tree (see item 2.1.2)
which are assigned to the same participant a a
certain dialog cycle.

A didog task is represented by a worksheet
assignment of the type (id, list-of-WESs), in
which a list of worksheet elements (we) is
assigned to a particular participant (id).
Worksheet elements map directly to specific
nodes of the dialog tree.

Cycle| SD ED |WS assi gnnent

C1l-x| Sd Ed [((id (we-y-1 ..we-y-n)) ...)
C2-x| Sd Ed [((id (we-y-1 ..we-y-n)) ..)
Cn-x| Sd Ed [((id (we-y-1 ...we-y-n)) ...)

Session| SD ED | DS (domain of discourse)

S-1 Ed (cl ...cm

Sd
S-2 Sd

Ed (cl ...cn)

S-n Sd Ed (cl ...cp)

S-n: the nth session of the dialog
SD: start date; ED: end date

DS: aset of conceptsfrom
the domain ontology

Figure 2: The dialog schedule Session

WS: worksheet, a set of ordered
pairs of the type (id-x we-y)
the ID of the participant
we: worksheet element

C-n-x: thenthdiaog cycle
of session x

SD:  dart date id:

ED: enddate

Figure 3: The session schedule

21.2. Dialog Tree

The dialog tree, shown in Figure 4 is the
structure that represents the dialog. Its internal
nodes can be of five typess DIALOG,
SESSION, DE, ALT and ARG. Its internal
structure was adapted from the argumentation
model (Karacapilidis, 1998). The paragraphs
below describe each type of node and their
corresponding relations to the dialog process.

DIALOG node

The DIALOG node is the uppermost node of the
tree. It contains a reference to a number of
didog sessons. When a dialog is created, this

node is initialized with the information
contained in the dialog schedule (Figure 2.a).
SESSION node

The SESSION node is the uppermost node of a
didog sesson. Didog sessons are intended to
organize the discusson into separate time
periods, each one assigned to a certain domain
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| Session-1 | ........... | Session-n |

[ DE-1 ] DE-n Discussion
;] elements

Alternatives

[ Alt-1 ][ Altn ] (direct answers)

+

| Arg-1 | Arg-n
- ++

Figure 4: The dialog tree

of discourse. The SESSION node contains a
reference to dl discusson eements (DES)
which are scheduled for discussion within this
Session.

DE node

The DE node represents a discussion element,
i.e. a natural language question that will
originate a gspecific discussion. Examples of
DEs are: “which are the elements of a training
budget?’ or “what types of connection elements
exist in a computer network?”.

Argumentation
levels

A DE can be classified as a content-expected
interrogative speech act (Porayska-Pompa,
2000), for which we expect an answer with a
certain “content” as response. According to the
argumentation model of (Karacapilidis, 1998), a
DE node is an issue to be debated.

ALT node

The ALT node is an answer to a question. It is
an alternative response to a certain DE. The
answer contained in an ALT node is the
“content” expected by its corresponding DE
node. In Karacapilidis model, an ALT node is a
position over an issue.

ARG node

The ARG node, or argumentation node,
represents a supporting or opposing reaction
from a given participant over a didog e ement
placed by another participant. An ARG node
can either refer to an ALT node or to another
ARG node.

Argumentation nodes are key elements of the
didog. When anadyzed as a whole, they

16

represent the level of collective agreement over
a given postion. Each ARG node conveys a
supporting or opposing intention, or polarity.
This intention is expressed by four levels: total
agreement (++), partial agreement (+), partial
disagreement (-) and total disagreement (--).

A substantial coordination effort of AMANDA is
concentrated in anayzing the effects of the
ARG nodes over the dialog tree (more details in
item 4).

2.1.3. Dialog Control Interface

The Dialog Control module has a graphica
interface which alows us to view the dialog tree
and perform editing and follow-up functions
over the dialog. This interface, primarily
designed to follow up the dialog, can aso be
used to simulate dialog situations and evaluate
the coordination algorithms.

Figure 5 shows the Diadlog Control interface. It
allows to (i) view the didog tree, (ii) edit its
nodes, (iii) view the interna parameters of the
didog and (iv) smulate a didog by means of
control buttons.

2.2. KB Module

This module is responsible for managing the
knowledge model and providing semantic
parameters to the Dialog Control module. The
central knowledge representation is the domain
ontology, but other structures may be added,
such as the domain task structure. The KB
module evauates the dialog from the semantic
point of view, by caculating a certain number
of parameters, such as the semantic proximity
between two text-based messages, the
conceptual distance between ontology concepts
or the conceptual coverage of a certain dialog
Session.

2.2.1. Domain Modds

AMANDA requires domain models to perform
semantic reasoning over the diadog. In order to
enable different types of domain models to be
“plugged” into the KB module, we decided to
use an ontology-centered approach. This alows
to build various models, such as conceptual
maps and task structures, which refer to the
ontology concepts when applicable.
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1 Dialog File: C:\amanda\domain\stage-rf\instances\cegos-02-04-01\dialogue.dlg

File Tools

Dislog | Participants | Cusstion list | Scheduls |

mechanisms. A formal approach
to this problem is described in
(Guarino, 2000).

[ value

~ Dialog Tree — b
Intemal ID: [DE-1/SESSION-1
Marme
DIALOG o] [Propety [ velus |
£ SESSION1 (active) Ret Session E,) STATIC
> Author Systam CU’”E‘”
Akt (d-11) [0.00] Status Launched Courss
-Alt-2 (1d-10) [0.00] La Connaissance De La Sescions
g’Aqu (e 11) [ Nil) Alternatives  (Alt] /De-T/Session-1 All.. T;‘ﬂ“j
+ Arg-3 (1d-13) [ 0.00] Group Cov B e
2 g1 1103 [ NI ConceptCov 0 i
t sl Ouerall Agr.. 0 Dislogue Ed

2 Arg2 I 113 [ NI
- Alt3 (1d-9) [ 1.00]
tv Arg1 (IFT1) [ Nil]
++ Arg-2 (Jd-1) [ Nil]
- Aled (1d9) [0.00]
t? Argrt 1) [ Nil
+ Arg2 (161 3) [ Mil]
A5 (d-2) [ 0.00]

> Date >> DYNAMIC

Suppert

27/3/z0m

os Current cycle

Entar new value

Current session

dislog changed

Task Structure
Due to the inherent task-oriented

RF nouveau dans saf
(Stace RF 28/01/01)

.EDAETSW nature of the test course, we used
oz a task Sructure as a
et complementary knowledge
" model. It represents  the

e decomposition of atask by means

|- AlL6 1d-7) [ 000]

- A7 (16-12) [0.00]

- Alt8 (1d-14) [0.00]
L% ArgeT (I 13 [ Nil

La connsissance de la tyologie de
Ientreprise dans laquelle il evolus
permet au RF de positiorner e foncion
formation comme soit:ur outil de

[~ Commands

i

Startup dislag |

of two types of links the
sequence link and the type link.

New dialog cycle |

ﬁ:t'?uﬂgfl)[ [Nr‘\ﬂu régulation saciale, une action de
L attn (i motivation -compensation, unvecteur 0 |
L Al-11 -5) [ Nil] = " Fmeens hd| pen session

Sequence  links  decompose  a

Close session |

N Delete Add Appy Caneel |

Update dislag |

complex task in a sequence of

Close dislog |

more detailed sequential

Figure 5: The Dialog Control interface

Domain Ontology

The domain ontology is AMANDA’s central
knowledge representation. Its role is to organize
domain concepts so as to enable reasoning.
Apart the various definitions found in the
knowledge representation literature, it is a
consensus that ontologies are conceptual models
that explicit the nature of the concepts. The
basic type of ontology, the “terminological
ontology”, or “level 1" ontology (Mizoguchi,
2000), contains primarily is-a links. In some
caes, formal definitions are needed to
completely reason over a concept. In such cases,
more powerful ontologies, like interpretable or
executable ontologies, are required.

In our system, since the ontology is used mainly
for terminologica purposes, we adopted a
simple structure which organizes concepts by
means of is-a and part-of links. We decided to
merge isa and part-of links for practica
reasons. We were faced with situations in which
a concept would be better represented by a part-
of decomposition than by a taxonomy relation.
In fact, in certain domains, the use of part-of
links is the only way to construct ontologies, as
in the case of the PLINIUS project (Van der Vet
& Mars, 1998). However, depending on the
rigor demanded by the ontology application,
merging is-a and part-of links may result in
tangled hierarchies and confuse the reasoning
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subtasks, while type links specify
different methods of performing a
certain task. A detaled
description of task structures can be found in
(Chandrasekaran, 1992) and (Decker, 1995).
Figure 6 shows the Task Modd section of the
KB interface.

£ KB- Knowledge Base

File Help

Task Madel | Ontology |

Task structure:

ELABORATE A TRAINING PLAN
-+ Elaborer un plan de formation

Current task: [T-15; Recuell des hesoins & l'aide des en

[value
Recueil des besains & 'aide d..

Propel

5 Recueil > Task Type TYPE
Recugi iens Parent T4
Recueil des besoins & [3ide des questionnair Level 3

|- Relier formation et gestion des compétences * Input Resource NIL

- Décoder les besoins en actions de formation > Output Resource NIL

|- Elaborer le cahier de charges des actions de for > Impl Knowl Fesour... - NIL

|- Définit les prictités de formation Seq Subtasks NIL
Type Subtasks NIL

|- Etablir Ie budget prévisiannel
L Mettre en forme e plan

'+ Piloter Ia conception de 'action de formation

- Définit les objsctifs des modules de formation
5 Concevoir les modules de formation

Concevoir la
EE\aburev e scénatio pédagogique
Définir les modaltés d'évaluation
- Choisir les méthodes pédagogiques
L Elabarer la fiche d'organisation pédagogique  —
e Implémenter |a formation =l

Addtosk |

4

Edit current property:

Fecueil des hesoins & l'aide des entretiens

Pesstvisw Delete tosk GreE| Corfirn_ | Cancel

Figure 6: KB interface — Task Model section

2.3. DE Generator

This module produces natura language
guestions based on the available knowledge
models. Questions are generated by the system
in order to include a given domain topic to the
didog. In practice, this is done to move the
focus of the dialog to a desired sub-domain. The
content of the questions are based on the links
and concepts available in the knowledge
models.
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Suppose an ontology in the “computer network”
domain containing an is-a link from the concept
<connection element> toward the concepts
<hub> and <router>. The semantics of this
relation is. “hubs and routers are types of
connection eements’. For the DE Generator,
this link would produce a sentence of the type
“what differs hubs from routers since
both are connection elements?’. This

system. Once the worksheets are returned, the
Dialog Control module updates the dialog tree.

The HTML module was implemented by a PHP
script running on an HTTP server. The

communication between the HTML module and
the Dialog Control module (see Figure 1.b @) is
done by intermediate files.

sentence conveys a pre-defined intention
to find out the identity criteria, or a
distinguishing property, between two
concepts belonging to the same parent.
We could generdize this principle by
dtating: “if there is a taxonomic
distinction between two concepts, there
must be a set of properties capable to
distinguish them” (Guarino, 2000). For
each type of semantic relation contained
in the knowledge moddls, we can define
a set of generic principles that can be
used for sentence generation.

As in the propositions of (Ravenscroft,

2000), the sentences produced by the

DE Generator carry a specific intention in the
discourse. In our case, they are meant to
investigate the domain along five different axes,
each one assigned to a specific semantic link of
the knowledge model. The ontology contributes
with two axes: (i) the nature of the concepts (is-
a links) and (ii) the dements of a composed
concept (part-of links). The task model
contributes with the remaining three axes: (i)
the use of the concepts by a certain task
(resource link); (ii) the decomposition of a
complex task into sub-tasks (sequence link); and
(iii) different ways of performing a task (type
link). Each of these axes maps to a set of
sentence structures of the type shown in the
example above. The DE Generator can thus be
considered the linguistic level of the knowledge
models.

24. TheHTML Module

This module is responsible for the interface
between AMANDA and the participants of the
diaog. This is done by the dynamic generation
of worksheetsin HTML format (see figure 7).

These worksheets are accessed by the
participants, filled in and sent back to the
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ALLIE, Franck
Le: 3/4/2001
Limite: comme prévu

Fiche Dialogue

Stage: Elaboration d'un plan de formation - partie 1 (cycle 2)

Figure 7: Worksheetsin HTML format

3. TheDialog Process

This item explains how AMANDA starts and
conducts the dialog process, as well as the
related algorithms.

3.1. Dialog Setup

The didog starts with the creation of a session
schedule based on the available dialog schedule
(Figures 2 and 3). Once the didog session is
established, i.e. the SESSION node and the
related DE nodes are created, the system can
trigger the first dialog cycle.

3.2. First Dialog Cycle

The first dialog cycle, identified as the ALT
level in the dialog tree, is intended to distribute
the DEs among the participants. To do so,
AMANDA takes the set of DEs, as well as the set
of participants, and executes the DE-assignment
algorithm.  This agorithm generates DE
assgnments of the type (DE, list-of-ids) and
can be parameterized according to the desired
load of DE/participant and the presence/absence
of the tutor(s) in the discussion (see Figure 8).
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(o] ]
BBl

4 DE assignment

Session ISeslen-T: Elaboration d'un plan de formation - partie 1

DE name | Farticipants

(ID-111D-10 ID-8 1D-6 ID-7 1D-6 1D-5 10-4)

(ID-110-1210-11 ID-10 ID-8 106 ID-7 10-6 1D-5)
(ID-210-131D0-11D-12 ID-171 10-10 1D-9 ID-8 1D-7 1D-6)
(ID-310-1410-2 1D-13 ID-1 1D-12 ID-11 ID-10110-9 ID-8 1D-7)
(ID-41D-3 ID-141D-2 ID-131D-1 ID-12 ID-11 ID-10 ID-9 ID-8)
(ID-51D-4ID-3 ID-141D-2 ID-131D-1 1D-12 ID-11 ID-10 ID-9)
(ID-61D-51D-41D-3 ID-141D-2 ID-131D-1 1D12 1D-11 1D-10)
(ID-71D-6 ID-5 ID-4 ID-3 1D-14 ID-2 ID-131D-1 ID-12 1D-11)
(ID-81D-7 ID-6 ID-5 ID-41D-3 ID-14 1D-2 ID-13 1D-1 ID-12)
(ID-910-8 ID-7 1076 ID-5 1D-4 ID-3 1D-14 D=2 1D-13)
(ID-1010-9 10-8 1D-7 1D-6 10-5 1D-4 1D-3 ID-14)

DE-1 |La connaissance de latypologie de 'entreprise dans laquelle il évolue permet au RF

DEs/participant (%) lTjI Assign | ’WI

DE/participant 8 ¥ Include tutar(s)

| Y

Cancel |

Fiaure 8: The DE-assianment interface

3.3. Argumentation Cycles

As aresult of the first cycle, the system receives
a number of answers to the proposed DEs, or so
cdled alter natives. These  dlternatives,
represented by ALT nodes in the dialog tree,
will be subject of analysis in the argumentation
cycles. From this moment on, AMANDA will
generate a sequence of dialog cycles in order to
expand the tree ether in depth or in breadth,
until a satisfactory degree of agreement is
reached. At this point we distinguish two key
concepts: the dialog level and the dialog cycle.

Dialog level

The didog level is the depth level of the dialog
treg, i.e. the distance from a certain node to the
root. A large number of dialog levels means that
the didog has grown in depth, i.e. an origina
answer of a given DE has been subject of many
subsequent argumentation cycles.

High diadog levels indicate that either the
answer has been repeatedly opposed or
progressively  clarified, depending on the
polarity of the ARG nodes. Certain typica
behaviors in argumentative discourse, such as
belief change, can only be detected with high
dialog levels.

In practice, however, high dialog levels lead to
interpretation difficulties that must be handled
by the interface design. For example, suppose
that a participant receives a discussion element
of argumentation level 3, i.e. an Arg-3 node. It
means that he is supposed to analyze his parent
node (argument Arg-2) that refers to another
argument (Arg-1), which in turns refers to an
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answer (Alt) to a given question (DE). If the
user interface is not carefully designed, it's
likely that we misinterpret the participant’'s
contribution due to the large number of previous
elements. On the other hand, we must present
the whole history of the discussion so that the
user can trace the ideas and place his
contribution. This problem opens a design issue
which must not be overlooked.

Dialog cycle

The diadlog cycle, on the other hand, is a time
period in which the didog tree expands,
possibly in depth but not necessarily. A large
number of dialog cycles means that the didog
has evolved through a large number of
interactions, but not necessarily that it has
grown in depth. This is the distinction between
the dialog level and the dialog cycle.

To exemplify, suppose that a certain answer
(ALT node) exhibits low loca support level
(typicaly negative values) and low participation
level (i.e. few lower level ARG nodes). This is
the case, for example, when an answer is
opposed by some counter-arguments, but has
not been broadly discussed within the group. In
this case, the system may decide to create a
specific dialog cycle to re-launch this answer to
be andyzed by other participants. This new
dialog cycle will only increase the breadth of
the tree, keeping the dialog depth unchanged.

4. Reasoning Over the Dialog

The coordination actions taken by the system
are based on a certain degree of reasoning over
the dialog tree. Two types of reasoning are
proposed: structural and semantic reasoning.

Structural reasoning concerns to the structural
aspect of dialog tree, specially the distribution
of the ARG nodes and their corresponding
polarities. Semantic reasoning, on the other
hand, analyzes the content of the textua
information in order to find semantic relations
among the nodes.

The separation between structural and semantic
reasoning alows AMANDA to coordinate the
didog even in the absence of domain models.
The following paragraphs identify and propose
some of the parameters to be evaluated in each
type of reasoning.
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4.1. Structural reasoning

Structural reasoning analyses the structure of
the dialog tree, mainly the distribution of ARG
nodes and their embedded supporting/opposing
intentions, to decide which nodes will be re-
launched and to which participants they will be
assigned. The main structural parameter is the
support level of a node in respect to its lower
level sub-tree. The items below detal the
implementation of this reasoning.

4.1.1. Evaluatingthe support level

Before initiating a new dialog cycle, AMANDA
evaluates the overal agreement level of each
DE and decides upon creating a new cycle or
closing the discussion tree for the corresponding
DE. This decison takes into consideration the
concepts of local and transmitted support level.

L ocal support level

Each “supportable” node of the dialog tree (i.e.
nodes of the type ALT or ARG) can be assigned
a local support level (LS). This level represents
the degree of consensus of this node regarding
its lower level sub-tree. The support levels are
calculated by traversing the dialog tree from the
leaves to the root and assigning support levelsto
each ALT or ARG node. The local support level
is a real number ranging from —1.0 to +1.0,
respectively meaning total disagreement and
total agreement. This number is the average
level of transmitted support from all its direct
descendant nodes (see Eqg. 1). If the node has no
direct child nodes, i.e. in the case of leaf nodes,
the local support level is assigned the maximum
value of +1.0.

The local support level of a node N, LS(N), is
expressed by Eq. 1 and exemplified in Figure 9.

LS(N) = {

Where:

- TSisthetransmitted support level (Eq. 2),
- child(N) returns the next child of node N

- “n” isthe number of child nodes.

S(TS(child(N)y)n  ifn>0

+1.0 ifn=0

Eq. 1: Thelocal support level (LS)
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™) / TS(N1) = +0.125

@ (0.5x 0.25)

O/V V\TS<N3) =05

Q)

[N1]
TS(N2) = +1.

(++)

[N2] (leaf nodes)

Figure 9 Local and transmitted support levels

Thetransmitted support level

The principle is that each descendant ARG node
transmits to its direct parent a certain level of
support — the transmitted support level. This
level depends on the type of argument (++, +, -

, --) and the local support level of the
transmitting node itself. The nomina leve that
anode of type ++/+/-/-- transmits to its parent is
respectively +1.0/+0.5/-0.5/-1.0.

For example, an ARG++ transmits to its direct
parent a support level of +1.0 multiplied by its
own local support level. Analogously, an ARG-
node transmits to its direct parent a support
level of -0.5 multiplied by its own loca support
level. In other words, the local support level acts
as a “damping” parameter that tends to reduce
the transmitted support leve if the node does
not exhibit total support from its lower levels.
The support level TS(N) transmitted by a node
N to itsdirect parent is expressed by Eq.2.

+1.0° LS(N) if arg-type(N) ="++"
TS(N) = +05" LS(N) if arg-type(N) ="+"

-05" LS(N) if arg-type(N)="-"

-1.0° LS(N) if argtype(N)="--"

Where LS (N) = min(0, LS(N))

Eq. 2: The transmitted support level (TS)

An important assumption of the agorithm is
that nodes with negative LS are disabled to
transmit TS level to their parent by being
excluded from the set of children in LS
caculation. This is done to prevent highly
opposed nodes from influencing their respective
ascendants. In addition, this is necessary to
avoid undesrable dtuations in which the
origina polarity of a node (supporting or
opposing) isinverted by its negative LS.
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The algorithm starts the evaluation by assigning
LS vaues of +1.0 to al leaf nodes and then
“climbs’ up the tree by caculating the
corresponding LS values for all nodes up to the
DE node.

Tests performed in actual dialog situations show
that the support levels obtained by this
algorithm reflect the collective agreement of a
didog contribution within the discussion. They
are used to compute a priority value that defines
which nodes are to be re-launched in the next
dialog cycle.

Figure 10 shows the interface for opening a new
didog cycle. It shows the nodes to be re
launched, their corresponding re-launch score
and support levels and the assignment proposed
by the system.

£ New Cycle

CYCLE 4 Tatal (21 nodes)

word-matching by adding concept-based
matching, as described in (Honkela, 1995).

The second parameter is the conceptual
coverage, which aims to detect missing or
insufficiently covered topics in dialog sessions.
Such topics can be identified by analyzing the
occurrence of certain words of domain in a
given diadog sub-tree. As a response, specific
DEs can be generated with the objective of
bringing such subjects back to the didog (see
section 2.3).

Other text techniques, such as ontology-based
information retrieval, can be applied for finding
related concepts among textua information
(Guarino, 1999).

One of the difficulties to apply semantic
reasoning is the need for comprehensive and
oz well  constructed  knowledge

WEs perlD modds, which are difficult to

Nodes ta be relaunched [ Score| Suppor| Tobe assignedtn

ID

ARG 0.326 -0.260
0.285 0500
0253 0780
0253 0780
0.251 0437
0.250
0235
n.zz?
0.zz?
o.2m
0.z
0170

ID-7 EQUAL)

I0-1 EQUAL) (ID-2 EQUAL)
DE-1/SESSION-1

DE-3/SESSION-1
ALT-1/DE-4/SESSION-1
ARG-2fARG-2fALT-1/DE-2/SESSION-1
ALT-2/DE-4/SESSION-1
ALT-1/DE-1/SESSION-1
ALT-1/DE-3/SESSION-1
ARG-2fALT-1/DE-4/SESSION-1
ARG-1fALT-2/DE-4/SESSION-1

ARG-1 fALT-1/DE-1 /SESSION-1
ARG-2fALT-2/DE-1 /SESSION-1
ARG-3fALT-1/DE-3/SESSION-1

ARG /ARG-T /ALT-1/DE-1/SESSION-T
ARG ARG-Z/ALT-2/DE-1/SESSION-1
ARG-2/ARG-3/ALT-1/DE-3/3ESSION-1

NIL
0562
0625
0625
0.750
0.750
0.750
0.750
0.750
NIL {(I0-6 REPLY)
NIL {{ID-8 REPLY))
NIL ((ID-2 REPLYD

101 REPLYY

0170
0170
0.156
0156
0156

((ID-3 EQUAL) (D-4 EQUAL) (D6 EQUAL) (D-6E
({ ¢ { (DBE
{(ID-1 EQUAL) (ID-2 EQUAL) (ID-3 EQUAL) (ID-4E
((ID-5 EQUAL) (D6 EQUAL) (ID-7 EQUAL) (ID-BE
(

Lve ] achieve even by experienced

knowledge experts. In
addition, lexica diversity may
impose difficulties in relating
similar concepts from different
user inputs. This suggests that
semantic reasoning might give
better results when applied to

ID-1
ID-2
ID-3
ID-4
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ID-6
ID-7
ID-8
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e |

Figure 10: Opening anew dialog cycle

4.2. Semantic Reasoning

Due to the text-based nature of the dialog
contributions and the domain dependency of the
didog, it seems reasonable to apply semantic
matching  techniques to improve the
coordination mechanism. We identify two
semantic parameters with large potential for this
purpose.

The first parameter is the semantic proximity
between textual inputs, such as direct answers
or arguments. This may be useful to discover
hidden relations among users input, specialy in
extensve dialog trees with large amounts of
textual information. The availability of a
domain ontology may extend the traditiona
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Our system was developed
under empirical observations
over distance learning
environments, specially over the poor results
achieved in traditional discussion forums. The
large potential in terms of knowledge transfer of
such environments encouraged us to go beyond
traditional approaches and to design an
environment that takes advantage of the
collective discussions.

The real problem that we aim to solve is that
successful distance discussion sessions require
participants to be highly committed and
represent a very time-consuming effort from the
tutors. As a result, very few discussion forums
end up satisfactorily.
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We created a dialog framework that attempts to
keep up the commitment of the participants by
generating regular dialog activities and relieve
the tutor from the dialog coordination task. This
framework has been applied in actua distance
training situations and has been the test-bed for
various agorithms and coordination strategies.

A modular approach for the coordination
mechanism, which separates structural from
semantic parameters, alows it to be applied to
dtuations where domain models are not
available.

The next steps of this work are to implement the
semantic reasoning over the didog and to
consolidate the results obtained in actual
training situations.
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systems were®igeneration tutors. They presented a
age of text or graphics and depending upon the
tudent’'s answer, put up a different page. Model-

situation intothe language of algebra. We beneve‘tracing ITSs are" generation tutoring systems that

that symbolization is the single most important Skillallow the tutor to follow the line of reasoning of the
students learn in high school algebra. We Preseffident. ITS have had notable success (Koedinger
research on what makes this skill difficult andet. al., 1997) despite the fact that human tutoring

report the discovery of a “hidden” skill in can look very different (Moore, 1996). One way

symbolization. Contrary to past research that ha{ﬁey are different is that there is a better sense of a
emphasized that symbolization is difficult due todialog in human tutoring and maybe this is

both comprehension difficulties and the abs’[ra%portant After analyzing over 100 hours of
ngtgre of vanables,'wg found tha.\t sym.bollz.anon Rintrained tutors in naturalistic tutoring sessions
difficult because it is the articulation in theGraesser et. al. (in press) believe “there is

"fore";’”" Ignguage of.“algebra". ] We also presem",something about interactive discourse that is
Ms. Lindquist, an Intelligent Tutoring System (ITS) responsible for learning gains.”

designed to carry on a tutorial dialog about The members of CIRCLE are working on

symbolization. MsLindquist has a separate tutorialsrd generation tutoring system that are meant to
model encoqling pedagogical contgnt knoyvledge iQngage in a dialog with students, using multiple
the form of different tutorial strategies, which Werestrategies, to allow students to construct their own

partially developed by observing an eXperienceﬁnowledge of the domain. We have built a new
human tutor. We discuss aspects of this humquts’ calledMs. Lindquist, which not only is able to

tutor's method that can be modeled well by Msmodel-trace the student’s actions, but can be more

Llndq'wst. Finally, we present an early fOrm'at'vanuman-like in carrying on a running conversation,
showing that students can learn from the d'alogéomplete with probing questions, positive and
Ms. Lindquist is able to engage student in. Ms

Abstract
Symbolization is the ability to translate a real worl

) . hegative feedback, follow-up questions in
Lindquist has tutored over 600 students almbedded sub-dialogs, and requests for explanation
www.AlgerbaTutor.org. as to why something is correct. In order to build
. Ms. Lindquist we have expanded the model-tracin
Introduction nea pande N
paradigm so that Ms. Lindquist not only has a
The mission of the Center for Interdisciplinarymodel of the student, but also has a model of
Research on Constructive Learning Environmentg;iorial reasoning (e.g. Clancey982). Based on
(CIRCLE) is 1) to study human tutoring and 2) toppservation of an experienced tutor and cognitive

build and test a new generation of tutoring systemgsearch, this tutorial model has multiple tutorial
that encourage students to construct the tar9§ttrategies at its disposal.

knowledge instead of telling it to thenwgnLehn The task domain we are working on is
et. al., 1998). CAI (Computer Aided Instruction)sympolization, which is the task of writing an
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algebraic expression given a real-world problem go 100 miles, how many hours did that take
context, often presented in the form of a word you?
problem. Symbolization is important because if 243. S: Um 5
students can't translate problems into algebra, they244. T: 5. And how did you get that 5? How did
will not be able to apply algebra to solve real world you use the numbers 100 and ...
problems. This domain makes it easy to avoid 245. S: 100 miles divided by miles per hour
some difficult natural language issues because we246. T: So you took the miles and divided it by
can ask students to write algebraic expressions and the [garbled, but possibly “speed”]
those expressions are easy for the computer t®247. S: Miles divided by s plus b equals time
“understand”. We take advantage of this property [writes m/s+b ]
of the domain to avoid any serious natural languag#8. T: Right.
processing; we also use pull-down menus to allovhe tutor in the above dialog, appears to have done
students to construct explanations. Instead, wo things to scaffold this problem. First, the tutor
focus our energies on modeling tutorial reasoninfpcused on the problem of calculating the time
which includes capturing theedagogical content actually on the bikes by decomposing what had
knowledge (Shulman, 1986) of an experienced been a problem with two operators into a problem
human tutor. Pedagogical content knowledge is thttat had only one operator. Presumably this is
knowledge that a good tutor has about how to teadiecause the student indicated he understood that the
a specific skill. A good tutor is not just one whogoal quantity was found by adding for the amount
knows the domain, nor is it simply one who knowof the break (“b”) to the time actually on the bikes.
generally tutoring rules. A good tutor is one who The second scaffolding move the tutor did
also has content specific strategies that can helpwaas to change the problem question from a
student overcome common difficulties. We haveymbolization question to a presumably simpler
set out to observe and model some of thesmmpute question by asking the student to calculate
strategies for our specific domain of symbolizationthe speed using 100 and 20 rather than “m” and “s”.
Lets look at one example of a content-specifidhen in line 244 the tutor asked for thmticulation
pedagogical strategy for symbolization. Thestep of "How did you get that 5?" Finally, the
following was collected and transcribed from a onstudent is prompted for thgeneralization step of
hour long one-on-one tutoring session between amriting the expression using variables.
experienced human tutor and an eighth grade Our experienced tutor often invited the
student working on the “bike-trip” problem, which student to use concreteumbers. We call this
we use as one of several running examples. strategy the concrete articulation strategy
240. Student: [reads probldnCathy took a "m" (Koedinger & Anderson, 1998%). McArthur et. al.
mile bike ride. She rode at a speed of "s{1990) also observed that human tutors often used
miles per hour. She stopped for a "b" houwhat he calledurriculum scripts and micro-plans,
break. Write an expression for how long thevhich often involved a series of questions designed

trip took. to remediate particular difficultiesWe call these
241. S: uhm [ writes "si+b" but should be scriptsknowledge construction dialogs to emphasis
“m/s+b"] the fact that that we are trying to build a tutor that

242. Tutor: How do you calculate the amount oencourages students to build their own knowledge
time it takes you? If you're, if you're, if by less oftentelling them a hint and more often
you're riding at, let's make it simple. If you asking them a question.
are riding at 20 miles per hour, OK, and you The impediments to building a third

generation tutor is not just technical. We think

! Throughout this paper, text in square brackets are
comments, and S and T stand for “student” and “tutorZ
respectfully. 2Then called thénductive support strategy.
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that if you want to build a good ITS for a domainare key knowledge components students must

you need to: acquire to become competent problem solvers.

e Study what makes that domain difficult, A second hypothesis is thgeneralization
including discovering any hidden skills, as wellhypothesis. According to this hypothesis,
as determining what types of errors studentsymbolization is difficult because students must
make. learn how to use variables to generalize arithmetic

» Construct a theory of how students solve thesgrocedures..
problem. (We instantiated that theory in a More recent research by Koedinger and
cognitive model.) Anderson (1998), and which we confirmed

* Observe experienced human tutors to find outHeffernan & Koedinger, 1997 and 1998), showed
what pedagogical content knowledge they havthat students could comprehend many problems
and then build a tutorial model that, with thewell enough to find a numerical answer, but they
help of the theory of domain skills, can capturaevertheless failed to correctly symbolize.

and reproduce some of that knowledge. Although this refutes the comprehension hypothesis
We look at these each of these steps in turn. it does not refute the generalization hypothesis
because the symbolization problems had variables

What Makes Symbolization in them. Therefore, we compared students’ ability
Difficult? to symbolize a problem that contained a variable

o - (with an answer like “800-40m”) to their ability to
Symbolization is a difficult task for students. ForS mbolize a problem with just constants. In the

1 0,
instance, .only 13/? of studen.t 90"60“3’ answere onstants” case the students were asked to write
the following question “Anne is in a rowboat in ain expression for their answer (i.e. “800-40*3")

lake that is 2400 yards wide. She is 800 yards fromstead of finding a numerical solution (like “680").
the dock. She rows b"f‘Ck towa‘rd,s the dock at @ en if we counted as correct the very few students
speed of 40 yards per minute for ‘m’ minutes. HOWyho did not follow the directions and evaluated the

i ol i .
far is Ann from the dolcl.<. To determine Whatanswer, we found that the presence of the variable
makes symbolization difficult we conducted WO the problem did not make problems more

difficulty factors assessments (e.g., Koedinger & difficult. Therefore, the generalization hypothesis
MacLaren, 1997) which are paper and pencil testSas refuted

that we gave to groups of 80+ students (Heffernan So what can explain why symbolization is
& Koedinger, 1997 and 1998). First, we identifiedSO difficult? We propose thearticulation

three hypotheses about what makes Symb(’lizati(?ﬂ/poth%iswhich suggests that there is a “hidden”

difficult. ) . . skill that is not obvious to most teachers and
The first of thesgs the comprehension _researchers. The hidden skill is the ability to
hypothesis. Much of the prior research (e.g., LeW|sprooluce symbolic sentences in the language of

& Mayer, 1987) on word problem solving hasalgebra. It appears that many students are able to

focused on students. comprehension abilities. 'F(ﬁrgure out all the conceptual relations in a problem,
instance, Nathan, Kintsch, & Young (1992) Clalmbut are not able to express those relationships in

that'[the]. symbohzapon [process] IS a h'ghl.yalgebra. If we asked students to translate a story
reading-oriented one in which poor comprehen3|o\r,1vritten in English into Greek we would not be
and an inability to access relevant long terngurprised if many fail because they don’t know

knowledge leads to senous. errors.".. KmtSCh'(lgg%reek. But teachers and researchers often fail to
also states the "the premise of [his work] is the\tealize that algebra too is a language. And a

comprehension failures are central to the diﬁiCUItYanguage that students have had relatively little
of word algebra problends The general conclusion practice in “speaking” By “speaking’ we mean

from the above research is that comprehension ru'BFoducing sentences of symbols, not verbalizing.
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This was demonstrated anecdotally by one of our997 and 1998). We started with a two-operator
students who when asked to symbolize a probleproblem, like

with the answer of “(72-m)/4” responded with “72-
m=n/4=". Many commentators have noted that
students will incorrectly use an equal sign in a way
that makes sense if “=" means “results in.” Sfard
et. al. (1993) gives the following example “3*4=12-
5=7." Another example is the student who when

Composed Ann is in a rowboat in a lake.
She is 800 yards from the dock. She then
rows for "m" minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.
Write an expression for Ann's distance from
the dock.

working on a problem with an answer of “650/(h-and decomposed the problem into two new

2)" answered with

h-2  h)550
This student means to suggest that first she would
subtract 2 from “h.” The arrow seems to indicate
that this new decremented value of h should be
assigned back to the symbol “h”. Then 550 should
be divided (indicated with the grade school way of
expressing division) by this new value of “h.” Both
of these examples indicate students who probably
understand the quantitative structure and the
sequence of operations that should happen, but

separate questions like the following.

Decomposed A) Ann is in a rowboat in a
lake. She is 800 yards from the dock. She
then rows "y" yards back towards the dock.
Write an expression for Ann's distance from
the dock.

B) Ann is in a rowboat in a lake. She then
rows for "m" minutes back towards the dock.
Ann rows at a speed of 40 yards per minute.
Write an expression for the distance Ann has
rowed.

nevertheless, failed to express that structure iihen we compared the ability of a student to
normative algebra. What does such a student neadswer the composed problem with their ability to

to learn? A computer scientist or linguist might sayet both decomposed parts correct. We found that
that the student needs to learn the correct gramnthie composed problems were much harder. Why?
for algebraic expressions. The novice student/e speculated that many students could not

knows how to write one-operator expression likeompose the two decomposed expressions together;

“5+7" using the following simple grammar:
<expression> = <literal> <operator> <literal>
<literal> =1J2|3]4....
<operator> = “+" | " | x| A

just because you know that you need to first add
two quantities together and then multiply them by a
number, doesn’t mean you know how to express
this correctly in the language of algebra.

The

But the competent student knows how to writdollowing is an example of a student who appeared
multiple operator expression indicated by thesto be missing just this skill of composing

grammar rules:
<expression> = <expression> <operator>
<expression>
| “(* <expression> )" | <literal>
Phrased differently, what the student needs to be
told is that “You can always wrap parentheses
around an expression and substitute an expression
anywhere you normally think a number can go.
There are also rules for when you can leave out the
parenthesis but you can always put them in to be
sure that your expression won't be misinterpreted.”
We found experimental evidence that supports

expressions together. This example occurred while
the first author was tutoring a student on the
following “two-jobs” problem:

T: Debbie has two jobs over the summer. At one

job she bags groceries at Giant Eagle and
gets paid 5 dollars an hour. At the other job

she delivers newspapers and gets paid 7
dollars an hour. She works a total of 30

hours a week. She works "g" hours bagging
groceries. Write an expression for the total

amount she earns a week. [the correct
answer is “5g+7(30-9)"]

the articulation hypothesis when we performed the S: A=5*g, B=30-g,C=7*B and D=A+C

following manipulation (Heffernan & Koedinger,
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This student clearly understands the 4 math991) production system, which is a simplification
operations that need to be performed, and the ordefrthe ACT (Anderson, 1993) Theory of Cognition.
in which to perform them. This studentA production system is a group of if-then rules
spontaneously introduced new variables (A, B, Gpperating on a set of what are calladrking
and D) to stand for the intermediate results. Wmemory elements (wmes). We use these rules to
were surprised to find that this student could notnodel the cognitive steps a student could use to
easily put this together and write “5g+7(30-g)”".solve a problem. Our student model has 68
This student appears to be ready for a strategy thatoduction rules. Our production system can solve
will help him on just one skill; combining a problem by being given a set of wme that encodes
expressions by substitution. (We also turn this idethe problem at a high level.
into a tutoring strategy which is presented below in  We model the common errors that students
the section offutorial Srategies.) make with a set of “buggy” productions. From our
To see if substitution really is a hiddendata, we compiled a list of student errors and
component skill in symbolization, we designed thanalyzed what were the common errors. We found
following transfer experiment. Thirty-nine studentsthat the following list of errors was able to account
were given one hour of group instruction orof over75% of the errors that students made. We
algebraic substitution problems like the following: illustrate the errors in the context of the “two-jobs”
Let X= 72-m. Let B= X/4. Write a new problem which has a correct answer of “5g+7(30-
expression for B that combines these twa@)".

steps. 1) Wrong operator (e.g. “5g9-7(30-g)")

The student were guided in practicing this skill. The)
students got better at this skill, but that is not th8)
interesting part. By comparing pre-tests and post)
tests, we found statistically significant increases iB)
the students ability to do symbolization problems,
even though they did not get instruction involving6)
word problems! The students transferred
knowledge of the skill of substitution to the skill of 7)
symbolization revealing a shared skill of being able
to “speak” complicated (more than one-operator)

Wrong order of arguments (e.g. “5g+7(g-30)")
Missing parentheses (e.g. “5g+7*30-g")
Confusing quantities (e.g. “7g+5(30-g)")
Missing a component (e.g. “5g+7g” or
“g+7(30-g)” or “5g+30-g")

Omission: correct for a subgoal. (e.g. “7(30-g)”
or “5g”)

Combinations of errors (e.g. “5g+7*g-30" has
the wrong order for “g-30” and is missing
parenthesis)

sentences in the foreign language of algebra. Thihese “buggy” productions are used to allow us to
is strong supporting evidence for the articulatioomake sense of a student’s input even if she has
hypothesis. made several incorrect steps. We don't want a
This research has put a new focus on theomputer system that can’t understand a student if
production side of the translation process. Thishe gives an answer that has parts that are
work also has ramifications for sequencing in theompletely correct and parts that are wrong. We
algebra curriculum. If learning how to do algebraiavant the system to be able to understand as much
substitution involves a sub-skill of symbolization,as possible of what a student says and be able to
perhaps algebraic substitution should be tauglgive positive feedback even when the overall
much earlier. In many curriculums (e.g. Larsonanswer to a question might be incorrect.
1995) it is not taught until students getsystems of Traditional model-tracing tutors have a bug
equations half-way through the year . message attached to each buggy production that

o generates a message through the use of a template.
Cognitive Student Model We do not do that. We feel such an architecture

Our student model is similar to traditional studeng€onfuses student reasoning with tutorial reasoning.
models. We use the Turtle (Anderson & PelletieVe instead have the student model report its full
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diagnosis (which is represented with a set of wmes) Student Input
to the tutor model that will then decide what to do. <‘ \7

If the student makes several errors, traditional +
model-tracing tutors are sometimes in a quandary ITS
as to what to do. Some ITSs do not deal with
multiple bugs and instead rely on breaking down ] ]
the problem into finer steps. A problem with this | Diagnosis
approach is that you can’t break down a skill like E—
symbolization easily without decreasing the overall Tutorial Model
difficulty. Another solution is to ask the student
what the subgoals should be and then tutor them o

the subgoals individually (Corbett & Anderson, ¢

Student Model

Agenda Oulestions

1995.) However, a problem remains about what the ]
ITS should do if the student makes more than one Pfdagog'ca
trataniac
distinct error in a given input. This is addressed
below. e
] Tutorial
The TutOI‘Ial |\/|Od6| Reacnninn
As mentioned already, we collected and transcribed +
one hour of experienced human tutoring. We Tutor's
wanted to observe what experienced tutoring in this Response

domain looked like. The tutor worked as a full time v

math tutor for over a year before teaching middle
school math for 5 years. She was given a list
symbolization problems and told her goal was ¢
the student to learn how to solve such problems. (2000). First, we deal with how Ms. Lindquist
After transcribing the dialog we have beerdecides what to focus problem attention upon.
able to extract some regularities in terms of th®ealing with the diagnosis: The Focusing Heuristic
tutorial strategies. One caveat: our tutorial model iMs. Lindquist uses a heuristic to decide what to
informed by this observation of human tutoring, bufocus the conversation on. In cases when the
it doesn’t model any one individual or make claimsstudent model’s diagnosis indicates that the student
to being the most effective model. had some correct elements and some incorrect
Now we will look at the components of theelements. For instance, we considered giving the
tutorial model shown in Figure 1. A fundamentafollowing positive feedback on an answer like that
distinction in the intelligent tutoring system (ITS) isin line 242 : “Your answer of ‘s/m+b’ has some
between the student model, which does theorrect elements; it is true that you need to add the
diagnosing, and the tutorial models, which choosefme of the break to the time on the bikes to find the
the pedagogical plan that best responds to thajtal trip time.” This feedback was meant to
particular diagnosis. It is composed of a tutoriatonfirm the “+b” portion of the answer. After
agenda component, as well as tutorial questions thiabking at what our human tutor did we decided not
can be used alone or in combination to make @ give positive feedback unless the student has two
tutorial strategy. The system currently has 4perands correct and the correct operator. We give
tutorial strategies. Through empirical study, wean example of this in the context of the “two-jobs”
plan to learn which strategies are most effectivggroblem.
The tutorial model is implemented with 77 T: [problem with answer of 5g+7*(30-g)]
productions. This approach is similar to Freedman'sS: 5g+7*g

Figure 1: Ms. Lindquist's Architecture
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T: No, but, 5*g does represent the amount Debbi2)
earned bagging groceries. Let me ask you a
simpler question. Can you tell me how mucis)
she made delivering newspapers?

If the student has made more than one error,
the tutor decides to come up with a strategy to ded)
with each error. The errors are considered in the
order they would be encountered in a post-order
traversal of the parse tree of the correct answer (i.e
visited “bottom-up.”) Therefore, the tutor might5)
add multiple questions to the tutorial agenda
depending upon the tutorial strategy selected for
each error. 6)

If a student says something the student
model doesn’'t understand (e.g. says “5/30-5*7/g”
when the answer is “5g+7(30-g)”) we will still want
a robust ITS to be able to pick a reasonable strategy
for a response. This is important because many
times the tutor (humans or computers) will not b&)
able to make sense of the student’s input. Graesser
et. al. (in press) reports in their study of human
tutors that they “found that the human tutors and
learners have a remarkably incomplete
understanding of each other’'s knowledge base a®)
that many of each other’s contributions are not
deeply understood... Most tutors have only an
approximate assessment of the quality of student
contributions.”

Q_compute: Find a numerical answer
(“Compute the distance Anne has rowed?”)
Q_explain: Write a symbolization for a given
arithmetic quantity. This is the articulation
step. (“How did you get the 120?")
Q_generalize: Uses the results of a Q_explain
guestion (“Good, Now write your answer of
800-40*3 using the variables given in the
problem (i.e. put in ‘m’)")

Q_represents_what: Translate from algebra to
English(“In English, whatdoes 40m
represent?” (e.g. “the distance rowed so far"))
Q_explain_verbal: Explain in English how a
guantity could be computed from other
guantities. (We have two forms: The reflective
form is “Explain how you got 40*m” and the
problem solving form is “Explain how you
would find the distance rowed?")

Q_decomp: Symbolize a one operator answetr,
using a variable introduced to stand for a sub-
guantity. (“Use A to represent the 40m for the
distance rowed. Write an expression for the
distance left towards the dock that uses A.”)
Q_substitute: Perform an algebraic substitution
(“Correct, that the distance left is given by 800-
A. Now, substitute “40m” in place of A, to get
a symbolization for the distance left.”)

We want our ITS to be able toYou will notice that questions 1, 3, 4, and 8 all ask

operate under these same difficult conditions anfbr a quantity to symbolize. Their main difference
still be robust enough to say something reasonablelies in when those questions are used, and how the
tutor responds to the student’s attempt. Questions 5
and 6 ask the student to answer in English rather
Ms. Lindquist has a data structure we called thﬁ]an algebra. To avoid natural language the student
agenda, that stores the ideas she wants to talk ab?smprompted to use pull down menus to complete
next. This agenda ordinarily operates like a pusﬂ]is sentence “The distance rowed is equal_to <noun
down stack, but we give an example of when thBhrase> eperator <noun phrase” The noun

stack order is violated below in the section on thﬁhrase menu contains a list of the quantity names
Concrete Articulation Strategy. for that problem. The operator menu contains

“added to”, “subtracted from”, “multiplied by” and

Tutorial Agenda

Tutorial Questions
The tutorial model can ask the following kinds of divided by.”

tutorial questions illustrated with an example of Below we will see how these questions
how the question can be phrased: can be combined into strategies.

1) Q_symb : Symbolize a given quantity (“Write Tutorial Strategies

an expression for the distance Anne ha§Ve will now look at three different tutorial

o ) . .
rowed?”) strategies that Ms Lindquist uses; "Concrete
Articulation", "Introduced Variable", and finally
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"Explain in English First" (There is a fourth At S2, the student answers the compute
strategy that we don't have space to illustrate. Thiguestion correctly, and the tutor decides to continue
strategy is that if a students makes an error the tutewith its plan. It has to be sensitive to what the
tells the student the answer and then asks tlstudent typed. If the student typed 100/20 instead
student questions to see if the student understanos5, then both the compute and explain questions
the answer.) The first strategy we will look at iswould be removed from the agenda and the tutor

Concrete Articulation strategy. would skip to the generalize step. An example of
this sort of flexibility is demonstrated in T5. T4
Concrete Articulation Strategy was a question to articulate the time actually on

The concrete articulation strategy usually uses thrégkes. The tutor was hoping the student would type
questions of type Q_compute, Q_explain anm/s” but instead the student answered “b+m/s.”
Q_generalize. Here is an example of the dialo@nly a pedantic tutor wouldn’t accept that answer
generated by Ms. Lindquist which we believeas it indicates an understanding that subsumes the
parallels the experienced human tutor closely. understanding required for the sub-goal. This is
T1: [Doing the “bike-trip” problem] Please write where the tutorial agenda behaves differently than a
an expression for the total time the trip tookstack because Ms. Lindquist pops both of the
[Q_symb] guestions off the agenda.
S1: s/m+b To show you an example of how the previous
T2: No. Let me ask you an easier questiorsituation could have come out differently, lets look
Please compute the time actually on bikes it the following dialog
the speed was 20 miles per hour, and theT1: Hello. [Doing the “bike-trip” problem]

distance ridden was 100 miles? Please write an expression for the total time
[Q_compute] the trip took. [Q_symb]
S2:5 S1: help!
T3: Correct. What math did you do to get that T2: Let me ask you an easier question. Please
five? [Q_explain] compute the time actually on bikes if instead
S3:100/20 the speed was 20 miles per hour, the time of
T4: Correct. Now write your answer of 100/20 the break was 2 hours, and the distance
using the variables given in the problem (i.e. ridden was 100 miles? [Q_compute]
putin ‘m’ and ‘'s’)? [Q_generalize] S2:7
S4: b+m/s T3: Correct. What math did you do to get that 72
T5: Correct. [Q_explain 7]

We will walk through what Ms. Lindquist did here. S3: 245

First, the student model diagnosed S1 (“s/m+b”) asT4: Okay, but how did you get the 5? [Q_explain
having the quantity “s/m” with reversed arguments 5]

(bug type #2.) The diagnosis also said that theS4: 100/20

student understood that the total trip time was theT5: Correct Now lets try this again, what math
time of the break (“b”) plus the time actually on the did you do to get the 7? [Q_explain 7]

bikes. This diagnosis was passed to the tutorialS5: 2+100/20

model that could have selected among competingT6:Correct. Now write your answer of ‘2+100/20’
strategies. In this case the tutorial model decided to using the variables given in the problem (i.e.

conduct a concrete articulation knowledge put in ‘m’, ‘b’ and ‘s")? [Q_generalize]
construction dialog. Therefore, the tutor model S6: b+m/s

generated questions for thecompute, T7: Correct.

explain/articulation and generalization steps. The This example is interesting in the way Ms.
tutor put these three questions on the agenda. Lindquist responds at T4. The system has bug rules
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to apply to questions other than symbolization T4:Correct. Calculate Mary's age. Use A instead
guestions. In this case, the student model reported of j-3 for Tom's age. [Q_decomp]

that the student’'s answer of “2+5” is a partially S4:p-a

complete articulation but that the student didn't T5:Correct. You are correct that p-A is Mary's

spell out where the “5” came from. So the tutorial age. Now, can you state this in terms of the
model is able to “dig-down” into the student's numbers given in the problem.
reasoning with an embedded sub-dialog. This [Q_substitute]
involved adding the additional question of S5:p-(j-3)
explaining how the student got the “5”. T6:Correct.

We note that this strategy is not one inspired by
Introduced Variable Strategy looking at human tutors but by our cognitive

A second example of a tutorial strategy is what wanalysis that informed us that a crucial difficulty
call the Introduced Variable strategy, which was occurs when a student has to treat an expression
alluded to above when we looked at the studeriie., "j-3") like a number, so this strategy breaks
who answered the “two-jobs” problem withthat hard step into two steps (i.e., T4 and T5).
“A=5*g, B=30-g, C=7*B and D=A+C". Below we
present an real example of Ms. Lindquist tutoringExplain in English" Strategy
an ninth grader with this strategy. This strategylathematical communication is increasingly seen
uses bothQ_decompand Q_substitute questions.as a goal for students, and in particular translating
Question Q_decomspets the stage for this strategybetween an algebraic representation, an English
and is used to break down the originally composederbal representation, and a concrete representation
problem into separate decomposed one-operatof numerical instances (Schoenfeld et. al., 1992,
problems (as shown below in T2 and T3)Koedinger & Nathan) Other researchers are also
introducing new variables when appropriate (as imterested in wanting an ITS to elicit explanations
T3.) The real meat of this strategy is shown at linffom students (e.g. Conati et. al., 1997.) We noticed
4, where the tutor introduces the variable "A" tan the dialog we collected from an experienced
stand for a sub-quantity. Question Q_substitute isuman tutor that she would often ask the student to
used to scaffold the substitution step as shown iexplain how to compute a quantity in English and
T5. afterward, ask the student to say it in symbols.
T1: Hello. Jane is "|" years old. Peg is "p" yeargHeffernan, 2001). Therefore, we have
old. Mary is Peg's age minus Tom's ageimplemented similar questions in the form of
Tom is 3 years younger than Jane. Peg i@ represents_what and Q_explain_verbal as
"x" years older that Mark. Write an shown below.

expression for Mary's age. [Q_symb] T1: Hello. [Doing the “bike-trip” problem]
S1:(p-3)-(3-))+(p+x) [correct answer is “p-(j- Please write an expression for the total time
3)] the trip took. [Q_symb]

T2:Hmm. No. Let me ask you and easier S1. m/s
guestion. Use j and 3 to calculate Tom's age. T2: What does “m/s” represent (e.g. the speed on

[Q_decomp] the bike?)[Q_represents_what]

S2:34 S2: the total time of the trip

T3:Hmm. No. Try again please. What is Tom's T3: No, “m/s” represents the actual time on the
age? Hint: pick one of these: |-3, 3-j, j+3, bikes. Can you explain how you would find
j*3, j/3, or 3/j. [This is a rephrasing as the total time of the trip using the time on
explained in the hint section below] the bikes? [Q_explain_verbal]

S3:j-3 S3: The total time of the trip is equal td'[thenu]

"the amount of time for the break" "2
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menu] "plus” [¥ menu] "the actual time on according to their pretests. Students proceeded
the bikes". [Composed using three pullthough the curriculum consisting of 68 problems.

down menus.] Students in the experimental condition received a
T4: Good, now say what the total trip time is inpartially random combination of the different
symbols [Q_symb] strategies Ms. Lindquist is capable of.
S4: b+m/s
T5: Correct Results

This strategy is based on the hypothesis tha—the students in the control condition, as expected,

students will learn more if they are asked to explaiFPOk half the amount of time, since they did not
in English how to compute a quantity engage in dialogs with Ms. Lindquist. Students
performed better on a pretest after having just

Hints received instruction from Ms. Lindquist. We

Giving the students a hint is the simplest tutoriaP€'formed a ANOVA that showed only a

strategy we have and is a common way that marginally statically significant effect
traditional model-tracing tutors gives help. EactF(1,37)=2.6,p=.12) but with a respectable effect

question has aint chain which is simply a list of SiZ€ Of .7 standard deviations.

rephrasings of the question. The rephrasings gBt

Iscussion
prqgresswely more explicit, eventually, possiblyy o, that we have established that this dialogs
telling the student exactly what to’do

appear to lead to better learning, our next
experiment will control for "time on task" in order

Formative Evaluation o o :
to determine if the additional time required to have
We have performed a early formative analysis of gjalog is worth it.

Ms. Lindquist, by comparing her to a traditional The following example from this

computer-aided instruction(CAl) control Conditionexperiment nicely illustrates some of the aspects of
that simply told students the answer (if they got thgg Lindquist, including embedded dialogs

problem wrong). This study answers the ques'[io(’starting on lines 4 and 10), as well as the
of whether the dialogs Ms. Lindquist has withempedded feedback shown at the beginning of line

students lead to increased student learning, bgt The number of seconds it takes the student to
ignores the question of whether it is worth thgespond is in square brackets.

additional time. That is because we controlled foi) Problem: Jane is "j" years old. Peg is "p" years

the number of problems, and not the amount of |q. Mary is Peg's age minus Tom's age. Tom

time. Students in the condition that received Ms. g 3 years younger than Jane. Peg is "x" years

Lindquist were expected to take more time. older than Mark. Write an expression for
Mary's age

) Tutor: Hello. Please write an expression for

Mary's age.

Student [143]:Student hit the help button

[should be p-(j-3)]

Tutor: Let me try to give you some help. We

will come back to Mary's age. Let me try to

break this down for you. Please compute

® The question of how explicit to make the “bottom-out’, ~ Mary's age if Jane's age was "20" years, and

or last hint (i.e. “Do you tell the student the answer?”) is  "Peg's age" was "40" years?

not a question that we, or this architecture, makes ) Student: [169]23[correct]

commitment about. Some of our hint chains end witlg) Tytor: Correct. Using only 40, 20, and 3 write

multiple choice questions while others tell the student an expression for Mary's age.

exactly what to type.

Procedure

The procedure and the results are more fuII;%
explicated in Heffernan's dissertation (2001). In
summary, 20 high school students participated in
the study. They were given pretests and posttests
on symbolization. They were blocked into groups
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7) Student [126](20-3)-40[ should be 40-(20-3)] strategic (i.e. has multi-step plans) and tactical (i.e.

8) Tutor: No. Your answer of "(20-3)-40" equalsreasons to produce output at the single question
"-23", but you wanted to write an expressiorlevel.) She also intelligently handles multiple
that equaled "23". Using only 40, 20, and 3rrors and reasons about the order in which to deal
write an expression for Mary's age. Hint: Usawith them and then constructs a plan to deal with

40 for Peg's age and 20-3 for Tom's age. each of them. Ms. Lindquist is a modest step on the

9) Student [47](40-20)+3[ should be 40-(20-3)] path to making a more dynamic tutor.

10) Tutor: Hmm. No. Let me ask you a different We have released Ms. Lindquist onto the
guestion. Using only 20, and 3 write anweb at www.AlgebraTutor.org, and have had over
expression for Tom's age. 600 students who have been tutored by Ms.

11) Student [15]20-3[correct] Lindquist, the results of which are now in

12) Tutor: Correct. Now, lets try this questionpreparation. In addition she has won various
again: Using only 40, 20, and 3 write anindustry awards from teacher related web sites such
expression for Mary's age. Hint: Use 40 foras USAToday Education and the National Council

Peg's age and 20-3 for Tom's age. of Teachers of Mathematics. Ms. Lindquist is a
13) Student [138]40-(20-3)[ correct] system that combines the student modeling of
14) Tutor: Correct. Now, say that again but thigraditional model-tracing tutors with a model of

time use the variables from the problem. tutorial dialog based on an experienced human
15) Student [25]p-(j-3) [correct] tutor. Early analysis reveals Ms. Lindquist can be
16) Tutor. Correct effective, but more analysis is needed to determine

Notice that this example shows a student how couldhere the biggest "bang for the buck" is to be
compute an instance (line 5), but had troubléund.

articulating how to write the complete expression

(lines 7, and 9), which is consistent with what ou‘Acknowledgements

cognitive analysis predicted about the relativel)]—hiS research was supported by NSF grant n.umber
difficulty of these tasks. Also consistent is the fac(t:’720359 to CIRCLE and the Spencer Foundation.

that using a variable, per se, does not appear ﬁ f
- . . ren
have been difficult (line 15). This students eterences
performance is consistent with our theory tha{xnderson, J. R. (1993)Rules of the Mind. Hillsdale, NJ:

articulation, and not comprehension of word _ F/Paum. _
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Abstract

We propose a decision-theoretic architecture for selecting tutorial discourse ac-
tions. DT Tutor, an action selection engine which embodies our approach, uses a
dynamic decision network to consider the tutor’s objectives and uncertain beliefs
in adapting to the changing tutorial state. It predicts the effects of the tutor’s dis-
course actions on the tutorial state, including the student’s internal state, and then
selects the action with maximum expected utility. We illustrate our approach
with prototype applications for diverse target domains: calculus problem-solving
and elementary reading. Formative off-line evaluations assess DT Tutor’s ability
to select optimal actions quickly enough to keep a student engaged.

1 Introduction

A tutoring system achieves many of its objectives through discourse actions intended to influence
the student’s internal state. For instance, a tutor might tell the student a fact with the intended ef-
fect of increasing the student’s knowledge and thereby enabling her to perform a problem-solving
step. The tutor might also be concerned with the student’s goals, focus of attention, and affective
or emotional state, among other internal attributes. However, a tutor is inevitably uncertain about
the student’s internal state, as it is unobservable. Compounding the uncertainty, the student’s state
changes throughout the course of a tutoring session—after all, that is the purpose of tutoring. To
glean uncertain information about the student, a tutor must make inferences based on observable
actions and guided by the tutor’s beliefs about the situation. The tutor is also likely to be con-
cerned with observable attributes of the tutoring situation, or tutorial state, including the discourse
between tutor and student and their progress at completing tutorial tasks (e.g., solving problems).

The tutor’s actions depend not only on the tutorial state, but also on the tutor’s objectives. Tuto-
rial objectives often include increasing the student’s knowledge within a target domain, helping
the student solve problems or complete other tasks, and bolstering the student’s affective state
(Lepper et al., 1993). Tutors also generally want to be cooperative discourse partners by coher-
ently addressing topics that are relevant to the student’s focus of attention. Objectives and priori-
ties may vary by tutor and even for an individual tutor over time. Furthermore, tutors must often
strike a “delicate balance” among multiple competing objectives (Merrill et al., 1992, p. 280).

To model the tutor’s uncertainty about the student’s internal state, probabilistic reasoning is be-
coming increasingly common. However, almost all probabilistic tutoring systems still model the
tutor’s objectives implicitly at best, and use heuristics to select tutorial actions. DT Tutor uses a
decision-theoretic approach to select tutorial actions, taking into account both the tutor’s uncer-
tain beliefs and multiple objectives regarding the changing tutorial state. This paper describes DT
Tutor’s approach along with prototype applications for diverse domains, calculus problem-
solving and elementary reading.

35


Vincent Aleven
35


2.1 Belief and Decision Networks

2 General Approach Slice 0 Slice 1 Slice 2
DT Tutor represents the tutor’s uncertain

AT Act (s Act @
beliefs in terms of probability using E

Bayesian belief networks. A belief net- Stateo State: Statez
work is a directed acyclic graph with ' '
chance nodes representing beliefs about
attributes and arcs between nodes repre-
senting conditional dependence relationships among the beliefs. Beliefs are specified in terms of
probability distributions. DT Tutor’s chance nodes represent the tutor’s beliefs about the tutorial
state. For each node with incoming arcs, a conditional probability table specifies the probability
distribution for that node conditioned on the possible states of its parents. For nodes without in-
coming arcs, prior probability distributions are specified.

Figure 1. Tutor Action Cycle Network, overview

At any particular time, each node within a belief network represents an attribute whose value is
fixed. For an attribute whose value may change over time (such as a tutorial state attribute), sepa-
rate nodes can be used to represent each successive value. Dynamic belief networks do just that.
For each time in which the values of attributes may change, a dynamic belief network creates a
new slice. Each slice is of a set of chance nodes representing attributes at a specific point in time.
For tutoring, slices can be chosen to represent the tutorial state after a tutor or student action,
when attribute values are likely to change. Nodes may be connected to nodes within the same or
earlier slices to represent the fact that an attribute's value may depend on (1) concurrent values of
other attributes and (2) earlier values of the same and other attributes.

Decision theory extends probability theory to provide a normative theory of how a rational deci-
sion-maker should behave. Quantitative utility values are used to express preferences among pos-
sible outcomes of actions. To decide among alternative actions, the expected utility of each alter-
native is calculated by taking the sum of the utilities of all possible outcomes weighted by the
probabilities of those outcomes occurring. Decision theory holds that a rational agent should
choose the alternative with maximum expected utility. A belief network can be extended into a
decision network (equivalently, an influence diagram) by adding decision and utility nodes along
with appropriate arcs. For DT Tutor, decision nodes represent tutorial action alternatives, and util-
ity nodes represent the tutor’s preferences among the possible outcomes.

A dynamic decision network (DDN) is like a dynamic belief network except that it has decision
and utility nodes in addition to chance nodes. DDNs model decisions for situations in which deci-
sions, attributes or preferences can change over time. The evolution of a DDN can be computed
while keeping in memory at most two slices at a time (Huang et al., 1994).

2.2 General Architecture

DT Tutor’s action selection engine uses a DDN formed from dynamically created tutor action
cycle networks (TACNs). A TACN consists of three slices, as illustrated in Figure 1. The tutorial
state (State,) within each slice is actually a sub-network representing the tutor’s beliefs about the
tutorial state at a particular point in time (slice)!. The T Act; decision node represents the tutorial
action decision, the S Act, chance node represents the student turn following the tutor’s action,
and the Util, utility node represents the utility of the resulting tutorial state.

Each TACN is used for a single cycle of tutorial action, where a cycle consists of deciding a tuto-

! For sub-network and node names, a numeric subscript refers to the slice number. A subscript of
s refers to any appropriate slice.
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rial action and carrying it out, observing the subsequent student turn, and updating the tutorial
state based on the tutor and student actions. During the first phase (deciding upon a tutorial ac-
tion), slice O represents the tutor’s current beliefs about the tutorial state. Slice 1 represents the
tutor’s possible actions and predictions about their effects on the tutorial state. Slice 2 represents a
prediction about the student’s next turn and its effect on the tutorial state. The DDN update algo-
rithm calculates which tutorial action has maximum expected utility.

In the next phase of the cycle, the tutor executes that action and waits for the student response.
The tutor then updates the network based on the observed student action(s).

At this point, the posterior probabilities in State, represent the tutor’s current beliefs. It is now
time to select another tutor action, so another TACN is created and the DDN is rolled forward:
Posterior probabilities from State, of the old TACN are copied as prior probabilities to State, of
the new TACN, where they represent the tutor’s current beliefs. The old TACN is discarded. The
tutor is now ready to begin the next cycle by deciding which action to take next.

With this architecture, the tutor not only reacts to past student actions, but also anticipates future
student actions and their ramifications. Thus, for instance, it can act to prevent errors and im-
passes before they occur, just as human tutors often do (Lepper et al., 1993).

In principle, the tutor can look ahead any number of slices without waiting to observe student ac-
tions. The tutor simply predicts probability distributions for the next student turn and the resulting
State,, rolls the DDN forward, predicts the tutor’s next action and the following student turn, and
so on. Thus, the tutor can select an optimal sequence of tutorial actions for any fixed amount of
look ahead. However, a large amount of look ahead is computationally expensive with decreasing
predictive accuracy.

3 Application Domains

3.1 Calculus Problem-Solving

CTDT (Calculus Tutor, Decision-Theoretic) is a prototype action selection engine for calculus
related rates problems (Murray & VanLehn, 2000). Singley (1990) developed a tutoring system
for this domain with an interface designed to make student problem-solving actions observable,
including goal-setting actions that are normally invisible. CTDT presumes an extension to Sing-
ley’s interface to make all problem-solving actions observable. This makes it easier to select tuto-
rial actions for two reasons. First, as each problem-solving action is executed through the inter-
face, CTDT has the opportunity to intervene. (However, CTDT can select a null action on its turn
and thus allow the student to execute multiple actions without tutorial intervention). This means
that CTDT can select a response for only a single student action per turn, rather than deciding
which of multiple student actions to respond to. Moreover, it is easier to predict a single student
action per turn than to predict a combination of multiple actions.

Second, when CTDT can observe all of the student’s prior actions, it knows exactly what portion
of the problem solution space the student had already completed and thus what steps the student
is likely to attempt next. Calculus related rates problems, like problems in many other domains,
have a prerequisite structure that induces a partial order in which problem steps may be com-
pleted — for instance, the chain rule (e.g., dx/dy * dy/dz = dx/dz) cannot be applied until the com-
ponent equations are in the required form. The student is unlikely to be able to successfully com-
plete problem steps for which prerequisites have not been completed, and is therefore less likely
to attempt them. The student is also unlikely to repeat problem-solving steps that have already
been completed successfully. This means that the student is most likely to attempt problem steps
that (1) have not already been completed, and (2) have no uncompleted prerequisite steps. We
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call these ready steps. Thus, by observing which steps the student has already completed, CTDT
can easily determine the set of ready steps that the student is most likely to attempt next.

Even so, predicting the next student action is still not trivial, since there may be more than one
way to solve a calculus related rates problem (i.e., more than one solution path), and there may be
multiple orders in which the steps of a solution path can be executed.

3.2 Project LISTEN’s Reading Tutor

RTDT (Reading Tutor, Decision-Theoretic) is a prototype action selection engine for Project
LISTEN’s Reading Tutor, which uses mixed-initiative spoken dialogue to provide reading help
for children as they read aloud (Mostow & Aist, 1999). The Reading Tutor has helped to improve
the reading of real students in real classrooms (Mostow & Aist, in press). It displays one sentence
at a time for the student to read, and a simple animated persona that appears to actively watch and
patiently listen. As the student reads, the Reading Tutor uses automated speech recognition to
detect when the student may need help, which it provides using both speech and graphical display
actions. Thus, the Reading Tutor already has an extensively developed interface. This is in con-
trast to CTDT, for which we assumed an interface built to our specifications. Inter-operability
with existing tutoring systems is a key to extending the applicability of DT Tutor’s approach.

RTDT models some of the Reading Tutor’s key tutorial action decisions in just enough depth to
determine the feasibility of applying DT Tutor to this domain. We targeted two types of unsolic-
ited help: (1) preemptive help before the student attempts a sentence, and (2) corrective feedback
after the student has stopped reading (whether or not the student has completed the sentence). The
Reading Tutor provides preemptive help when it believes that the student is likely to misread a
word, and corrective feedback when it detects words read incorrectly, skipped words and disflu-
ent reading. To avoid disrupting the flow of reading, the Reading Tutor ignores errors on a list of
36 common function words (e.g., @, the) that are unlikely to affect comprehension. For the Read-
ing Tutor’s corpus of readings, approximately two-thirds of the words in a sentence are non-
function words, or content words.

Tutoring reading differs enough from coaching calculus problem-solving to pose challenges for
adapting DT Tutor’s approach. First, student turns may consist of multiple reading actions, where
each action is an attempt to read a word. Therefore, in contrast to CTDT, RTDT must predict and
respond to multiple student actions per turn. Student turns may indeed include multiple actions in
many target domains, so meeting this challenge is important for extending DT Tutor’s generality.

Second, beginning readers often make repeated attempts at words or phrases and sometimes omit
words, with the effect of jumping around within a sentence. Even when jumping around, a student
may be able to read each individual word. Thus, the order in which beginning readers attempt
words is not always sequential, and has very little prerequisite structure. This means that the set
of actions that the student is likely to attempt next is less constrained than with CTDT, posing a
challenge for predicting the student’s next turn. A similar challenge must be faced for tutoring in
any target domain with weak structure for the order in which actions may be completed.

4 Tutor Action Cycle Networks in More Detail

4.1 TACN Components

Figure 2 provides a closer look at the major TACN components and their interrelationships. The
State, representation in each slice actually consists of several sub-networks. These include the
Knowledge,, Focus,, and Affect, sub-networks which compose the student model, and the Task
Progress,; and Discourse State; sub-networks. Arcs between corresponding sub-networks in dif-

38


Vincent Aleven
38


Slice0 | Slice 1 | Slice 2
TSI \ I /’— ------- S\ I FTTTTETEES \
Student ! Student Student |
Modelo | | | Model: ! | Model; |
= | i
T

Knowledge+

Focus4

Affects

Ay prpng iy mpifymn mpn PR

____________________________

Task
Progresso
Discourse

Stateo

Task
Progress1

Discourse
Statez

Discourse
States

Student
Actionz

I Tutor Action,

I
I
|
Figure 2. TACN architecture in more detail

ferent time slices represent the stability of attributes over time. For instance, the student’s knowl-
edge in slice 1, Knowledge,, is likely to be about the same as the student’s knowledge in slice 0,
Knowledge,, except as influenced by the tutor’s action, Tutor Action;.

The architecture shown in Figure 2 is generic. Depending on the needs of the application, fewer
or more components may be required. For instance, the initial implementation of the RTDT
prototype lacks a model of the student’s affective state because we focused on modeling other
tutorial state attributes, such as multiple student actions per turn. Therefore, its TACNs do not
include the Affect, sub-networks. However, RTDT also has Tutor Efficacy, sub-networks to model
the efficacy of the various tutorial help alternatives. The Tutor Efficacy, sub-networks dynami-
cally tune RTDT’s model of the effects of the tutor’s actions on the student’s knowledge, helping
RTDT to avoid repeating ineffective tutorial actions and reducing the need for accurate condi-
tional probabilities regarding the influence of Tutor Action; on Knowledge,.

Selected components are described below along with illustrations from CTDT and RTDT.

4.1.1 Tutor Action; Nodes

The purpose of the TACN is to compute the optimal alternative for Tutor Action;, which may
consist of one or more decision nodes. For CTDT, Tutor Action; consists of two decision nodes,
one to specify the fopic of the tutor action and one to specify the action #ype. The action topic is
the problem-related focus of the action, such as a problem step or related rule in the target do-
main. The type is the manner in which the topic is addressed, including prompt, hint, teach, posi-
tive or negative feedback, do (tell the student how to do a step) and null (no tutor action).

For RTDT, Tutor Action; is currently a single decision node with values null (no tutor action),
move_on (move on to the next sentence), read move on (read the sentence to the student and
then move on), hint_sentence (e.g., read the current sentence to the student), and sint word i for
each content word i in the current n-content-word sentence, i = {1, 2, ..., n}. The hint_sentence
and hint word_i alternatives specify the fopic but not the type of the tutorial action — e.g., they
don’t specify whether the Reading Tutor should hint about a particular word by saying the word
itself or by giving a rthyming hint. Deciding among action type alternatives would require infor-
mation than was not available for the prototype implementation. For instance, information about
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the student’s knowledge of the letter-sound mappings pertinent to a particular word would help
RTDT determine the likelihood that a rhyming hint would supply the required knowledge.

CTDT considers tutoring only on ready problem steps and related rules, plus the step that the stu-
dent has just completed (e.g., to give positive or negative feedback). RTDT considers every action
alternative for preemptive help, including hinting on each content word. However, for fast re-
sponse time on corrective feedback, RTDT does not consider hinting on words that the student
has already read correctly, because such hints are less likely to be pedagogically productive.

4.1.2 Student Model Knowledge, Sub-Network

The Knowledge, sub-network represents the tutor’s beliefs about the student’s knowledge related
to the target domain. Each Knowledge, node has possible values known and unknown. For CTDT,
the student’s knowledge related to each problem is represented in a belief (sub-)network whose
structure is obtained directly from a problem solution graph. See Figure 3 for an example. The
top two rows of nodes in the figure represent rules licensing each problem step. The remaining
nodes represent problem steps, from the givens (the goal Find dx/dz for z=c and the facts x=a)",
y=eZ and z=c) through each goal-setting and fact-finding step in all solution paths (this example
has only one solution path) until the answer is found (dx/dz=bay”"fec’"). Arcs represent depend-
ence between nodes. For instance, knowledge of a step depends on knowledge of both its prereq-
uisite steps and the rule required to derive it.

For RTDT, Knowledge, includes nodes to represent the student’s knowledge of how to read each
content word and the sentence. For each content word i, a Know Word i node represents the stu-
dent’s knowledge of how to read the word. A Know Sentence, node represents the student’s
knowledge of how to read the sentence as a whole.

In slice 1, each Knowledge; node is influenced by the tutor’s action. For instance, a tutorial hint
about a particular problem step or word increases the probability that the node corresponding to
the knowledge element is known. After the student turn has been observed, Knowledge,; is up-
dated diagnostically to reflect its causal role in the success of the student’s action(s).

Knowledge, is not directly influenced by the student’s turn because student actions generally do
not influence student knowledge without feedback (e.g., by the tutor). Instead, Knowledge, is in-
fluenced by Knowledge,;, which is diagnostically influenced by the student’s turn.

4.1.3 Student Model Focus, Sub-Network

The Focus, sub-network represents the student’s focus of attention within the current tutorial task.
For CTDT, the focus may be any problem step, so Focus, has the same problem solution graph
structure as Knowledge,. Ready steps are most likely to be in focus. Nodes representing these
steps have some distribution over the values ready and in_focus, where in_focus means that the
step is in the student’s focus of attention. Consistent with a human depth-first problem-solving
bias (Newell & Simon, 1972), any such steps that are in the student’s current solution path are
most likely to be in_focus. Focus aging is also modeled: the probability that an uncompleted step
is in_focus attenuates with each passing time slice as other problem steps come into focus.

For RTDT, Focus, models the likelihood of each content word being the first word in the stu-
dent’s focus of attention. Focus Word i nodes for each content word 7 in the current sentence
have possible values in_focus and out_of focus, where in_focus means that the word is the first
content word in the student’s focus of attention.

In slice 1, each Focus; node is influenced by the tutor’s action. For instance, if the tutor hints
about a problem step or word, the corresponding node is likely to be in_focus. For RTDT, a tutor
hint about the sentence as a whole increases the probability that the student will attempt to read
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Figure 3. Problem solution graph for CTDT

the entire sentence (starting with the first word), increasing the probability that Focus Word 1, is
in_focus. In slice 2, the student action influences the tutor’s beliefs about the student’s focus of
attention (in Focus,). For instance, if the student experiences an impasse on a problem step or a
word, the corresponding node is more likely to be in_ focus.

4.1.4 Student Action, Nodes

These nodes represent one or more actions taken on the student’s turn. For CTDT, a single stu-
dent action is assumed. This action is represented by two nodes, one for the action fopic and an-
other for the action #ype. The action topic may be any problem step and the action #ype may be
correct, error, impasse, or null (no student action).

For RTDT, the student turn may include multiple reading actions, where each action is an attempt
to read a word. Student action Word i, nodes represent the student’s reading of each content
word i as not_read, error, or correct. This representation models student turns ranging from no
productive attempt (all words not read — e.g., a silent impasse), to all words read correctly (all
words correct), to any combination of words not read, read in error, and read correctly. In addi-
tion, a student action Sentence; node models the student’s reading of the sentence as a whole as
either fluent or disfluent.

Both CTDT and RTDT probabilistically predict the next student action. For CTDT, Focus; influ-
ences the student action fopic. Given the action fopic, whether the action fype will be correct, er-
ror or impasse depends on the student’s knowledge. Therefore, both the student action fopic and
Knowledge, influence the student action #ype.

For RTDT, influences on each Word i, node from the corresponding Focus Word i; node prob-
abilistically predict which word the student will attempt first. For any word that the student at-
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tempts, an influence from the corresponding Know Word i; node predicts whether the reading
will be in error or correct. We assume that if a student reads one word correctly, she is most
likely to attempt the next word, and so on, until she gets stuck or makes an error. Therefore, arcs
from each node Word i, to node Word i+1,,i = {1, 2, ..., n-1}, model the influence of reading
word i correctly on the likelihood that the student will attempt word i+1. For a fluent reading of
the sentence, each word must be correct without pauses in between — i.e., the student must be
able to read each word and the sentence as a whole. The Sentence; node is therefore influenced by
each Word i, node and by the Know Sentence,;node.

4.1.5 Discourse State, Sub-Network

For CTDT, a Coherence node represents the coherence of the tutor’s action in response to the
previous student action as either coherent or incoherent. For instance, negative feedback in re-
sponse to a correct student action is incoherent. A Relevance node, with values high and low,
models how well the tutor cooperates with the student’s focus of attention by assessing the extent
to which the same problem steps are in_focus before and after the tutor’s action: Problem steps
that are in the student’s focus of attention are likely to be in_focus in Focus,. A tutorial action
which addresses a problem step or related rule that is in the student’s focus of attention will fur-
ther increase the probability that the problem step is in_focus in Focus,. Therefore, if the same
problem steps are most likely in_focus in Focusy and Focus;, Relevance is most likely high.

For RTDT, Discourse State, is simply the number of discourse turns, counted as a measure of
success at avoiding spending too much time on a sentence.

4.1.6 Utility, Nodes

Utility, consists of several utility nodes in a structured utility model representing tutor preferences
regarding tutorial state outcomes. Total utility is a weighted sum of the utilities for each tutorial
state component (e.g., student knowledge, focus, and affect; task progress; discourse state). The
utility value for each component may in turn be a weighted sum of the utilities for each sub-
component. For instance, Knowledge, rules that are important to the curriculum may be weighted
more heavily than certain problem steps.

The tutor’s behavior can easily be modified by changing the utilities or their weights. For in-
stance, it may be that the best way for the tutor to improve the student’s domain knowledge is to
focus on the student’s knowledge at the expense of helping the student make progress on tutorial
tasks (e.g., solving problems). The tutor will do this automatically if a high weight is assigned to
the utility of student knowledge and a low weight is assigned to the utility of task progress.

4.2 Implementation

With input from a problem solution graph (CTDT) or text (RTDT), DT Tutor creates a TACN
with default values for prior and conditional probabilities and utilities. Default values are speci-
fied by parameter for easy modification. An optional file specifies any prior probability or utility
values that differ from the defaults. After creating the initial TACN, DT Tutor recommends tuto-
rial actions, accepts inputs representing tutor and student actions, updates the network, and adds
new TACNSs to the DDN as appropriate.

We automated construction of the large number of conditional probability table entries using a
much smaller number of rules and parameters. For instance, for RTDT, the rule for the probabil-
ity that a student will remember in slice 2 a word that she knew in slice 1 is:

P(Know Word i=known | Know Word i; = known) = 1.0 — word-forget-probability
word-forget-probability is a parameter that specifies the probability that the student will forget a
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known word between slices.

Both of DT Tutor’s applications are prototypes for testing the viability and generality of the ap-
proach. CTDT does not yet have an interface, and RTDT has not been integrated with the Read-
ing Tutor. Therefore, we used simulated student input for formative evaluations.

5 Formative Evaluation

Our goal was to determine whether DT Tutor’s prototype applications can select optimal actions
quickly enough to keep a student engaged.

5.1 Response Time

One of the major challenges facing probabilistic systems for real-world domains is tractability.
We performed response time testing on a 667-MHz Pentium III PC with 128-MB of RAM. Using
Cooper’s (1988) algorithm for decision network inference using belief network algorithms, we
tested with three algorithms: an exact clustering algorithm (Huang & Darwiche, 1996) and two
approximate, sampling algorithms, likelihood sampling (Shachter & Peot, 1989) and heuristic
importance (Shachter & Peot, 1989), with 1,000 samples each. Response times reported are the
mean over 10 trials. The times for the approximate algorithms were extremely close, with neither
holding an advantage in all cases, so they are reported as one below.

For CTDT, only the approximate algorithms had reasonable response times for both problems
tested: 1.5 seconds for a 5-step problem and 2.1 seconds for an 11-step problem.

For the Reading Tutor’s corpus of readings, sentence length ranges from approximately 5 to 20
words as reading level progresses from kindergarten through fifth grade, with approximately two-
thirds content words, so we tested response times for preemptive help on sentences with 2 to 14
content words. Our response time goal was 0.5 seconds or less. For all three algorithms, response
times for sentences with up to 7 content words were less than 0.5 seconds, ranging from 0.04 sec-
onds for 2 content words to .49 seconds for 7 content words. Response times for the exact algo-
rithm blew up starting at 10 content words with a time of 12.48 seconds. Response times for the
approximate algorithms remained promising (as explained below) for up to 12 content words,
ranging from .59 seconds for 8 content words to 3.14 seconds for 12 content words. However,
response times for even the approximate algorithms blew up at 13 content words with times of
23-26 seconds. Therefore, response time for preemptive help was satisfactory for students at
lower reading levels, did not meet the goal for longer sentences (starting at 8 content words), and
was entirely unsatisfactory even with the approximate algorithms for the longest sentences (13-14
content words). Response time would tend to increase if the number of tutor action types is in-
creased (see section 4.1.1), although the amount of increase would be at most linear in the propor-
tion of additional action alternatives considered.

For decision-making purposes, it is sufficient to correctly rank the optimal alternative. When only
the rank of the optimal alternative was considered, the approximate algorithms were correct on
every trial. While this result cannot be guaranteed, it may make little practical difference if the
alternative selected has an expected utility that is close to the maximum value. Moreover, many
sampling algorithms have an anytime property that allows an approximate result to be obtained at
any point in the computation (Cousins et al., 1993), so accuracy can continue to improve until a
response is needed. For RTDT, response times for corrective feedback should generally be faster
because RTDT does not consider helping with words that have already been read correctly. In any
case, faster response times can be expected as computer hardware and probabilistic reasoning
algorithms continue to improve. Therefore, the response times reported above for the approximate
algorithms show promise that DT Tutor applications for real-world domains will be able to re-
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spond accurately enough within satisfactory response time. To handle the more challenging cases
(such as the longest sentences faced by RTDT) in the near-term, application-specific adjustments
may be required — e.g., abstraction in the knowledge representation within TACN components.

5.2 Action Selections

DT Tutor’s decision-theoretic representation guarantees that its decisions will be optimal given
the belief structure and objectives that it embodies. Nevertheless, the first step in evaluating a tu-
toring system is to see if it behaves in a manner that is consistent with strong intuitions about the
pedagogical value of tutorial actions in specific situations. Such a sanity check cannot of course
be a complete test. The space of network structures and probability and utility values, in combina-
tion with all possible student actions, is infinite, so the most we can do is sample from this space.
However, if DT Tutor can handle many situations in which our intuitions are strong, we are more
apt to have faith in its advice in situations where intuitions are less clear, and this is a prerequisite
for testing with human subjects. Therefore, we tested DT Tutor’s behavior in clear-cut situations.

First, we used default parameters to initialize TACNs with intuitively plausible probability and
utility values. Next, we simulated student action inputs while perturbing probability and utility
values to probe dimensions of the situation space. For instance, to test whether CTDT and RTDT
would give preemptive help when warranted, we simply perturbed the prior probabilities for stu-
dent knowledge of one or more domain elements (e.g., problem steps or words) to be most likely
unknown and then verified that the application would suggest appropriate preemptive help.

The tests showed that DT Tutor is capable of selecting tutorial actions that correspond in interest-
ing ways to the behavior of human tutors. Notable action selection characteristics include the fol-
lowing:

e Preemptively intervenes to prevent student errors and impasses, as human tutors often do
(Lepper et al., 1993).

e Does not provide help when the student does not appear to need it. Human tutors often foster
their students’ independence by letting them work autonomously (Lepper et al., 1993).

e Adapts tutorial topics as the student moves around the task space and predicts the influence of
the tutor’s actions on the student’s focus of attention.

e With equal utilities for knowledge of rules and steps, CTDT tends to address the student’s
knowledge of rules rather than problem-specific steps (because rule knowledge helps the stu-
dent complete steps on her own). Effective human tutoring is correlated with teaching gener-
alizations that go beyond the immediate problem-solving context (VanLehn et al., in press).

e CTDT tempers its actions based on consideration of the student’s affective state (e.g., avoiding
negative feedback). Human tutors consider the student’s affect as well (Lepper et al., 1993).

e RTDT avoids repeating ineffective tutorial actions.

6 Related Work

Very few tutoring systems have used decision theory. Reye (1995) proposed a decision-theoretic
approach for tutoring systems, mentioning an implementation in progress for tutoring SQL. Reye
(1996) also proposed modeling the student’s knowledge using a dynamic belief network. CAPIT
(Mayo & Mitrovic, 2001, to appear), a decision-theoretic tutor for capitalization and punctuation,
bases its decisions on a single objective and ignores the student’s internal state in order to focus
on observable variables. DT Tutor is a domain-independent architecture which considers multiple
objectives, including objectives related to a rich model of the student’s internal state.

Tutoring is a type of practical, mixed-initiative interaction. Within this broader domain, systems
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by Horvitz and colleagues (e.g., Horvitz et al., 1998; Horvitz & Pack, 1999) also model the state
of the interaction, including the user’s state, with connected sets of Bayesian models, and employ
decision theory for optimal action selection. Some of these systems (e.g., Horvitz & Paek, 1999)
use value-of-information to guide user queries and observation selection, which DT Tutor does
not (yet) do. To model temporal evolution, a number of probabilistic approaches have been tried,
including dynamic and single-stage network representations (e.g., Horvitz et al., 1998). DT Tutor
appears to be alone among systems for mixed-initiative interaction in (1) using a dynamic deci-
sion network to consider uncertainty, objectives, and the changing state within a unified para-
digm, and (2) explicitly predicting the student’s next action and its effect on the interaction.

7 Future Work and Discussion

We are currently selecting the domain for the first full-fledged implementation of DT Tutor’s ac-
tion selection engine in a complete tutoring system, either by combining it with an existing tutor-
ing system (such as the Reading Tutor) or by building our own user interface. We are also inves-
tigating applications that are more explicitly dialogue-oriented. Whichever domain we select, our
next major milestone will be testing the effectiveness of DT Tutor’s approach with students.

Efficiently obtaining more accurate probability and utility values is a priority. However, precise
numbers may not always be necessary. For instance, diagnosis (say, of the student’s knowledge)
in Bayesian systems is often surprisingly insensitive to imprecision in specification of probabili-
ties (Henrion et al., 1996). For a decision system, it is sufficient to correctly rank the optimal de-
cision alternative. Moreover, if the actual expected utilities of two or more alternatives are very
close, it may make little practical difference which one is selected.

This work has shown that a decision-theoretic approach can be used to select tutorial discourse
actions that are optimal, given the tutor’s beliefs and objectives. DT Tutor’s architecture balances
tradeoffs among multiple competing objectives and handles uncertainty about the changing tuto-
rial state in a theoretically rigorous manner. Discourse actions are selected both for their direct
effects on the tutorial state, including the student’s internal state, and their indirect effects on the
subsequent student turn and the resulting tutorial state. The tutorial state representation may in-
clude any number of attributes at various levels of detail, including the discourse state, task pro-
gress, and the student’s knowledge, focus of attention, and affective state. A rich model of the
tutorial state helps DT Tutor to select actions that correspond in interesting ways to the behavior
of human tutors. Response time remains a challenge, but testing with approximate algorithms
shows promise that applications for diverse real-world domains will be able to respond with satis-
factory accuracy and speed.

As an action-selection engine, DT Tutor plays at most the role of a high-level discourse planner,
leaving the specifics of dialogue understanding and generation (parsing, semantic interpretation,
surface realization, etc.) to other components of the tutoring application. It performs near-term
discourse planning by anticipating the effects of its actions on the student’s internal state, the stu-
dent’s subsequent discourse turn, and the resulting tutorial state. To predict how its actions will
influence the tutorial state, including the student’s internal state, DT Tutor’s architecture includes
strong domain reasoning and student modeling.
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AutoTutor: An Intelligent Tutor and Conversational Tutoring Scaffold

Arthur C. Graesser’, Xiangen Hu', Suresh Susarla’, Derek Harter!, Natalie Person?, Max
L ouwer se', Brent Olde', and the Tutoring Resear ch Group®
'University of Memphis
Rhodes College

The Tutoring Research Group (TRG) at the University of Memphis has developed a computer
tutor (cdled AutoTutor) that simulates the discourse patterns and pedagogical strategies of a
typicd human tutor (Graesser, P. Wiemer-Hastings, K. Wiemer-Hastings, Kreuz, & TRG, 1999).
The dialog medchanisms of AutoTutor were designed to incorporate conversation patterns that
exist in neturalistic tutoring sessons (Graeser, Person & Magliano, 1995), as well as omeided
strategies for promoting leaning gains. AutoTutor was originally designed to help college
students learn introductory computer literacy, such as the fundamentals of hardware, operating
systems, and the Internet. Evaluations of AutoTutor have shown that the tutoring system
improves learning and memory of the lessons by .5 to .6 standard deviation units compared to
rereading a chapter (Graesser, Person, Harter, & TRG, in press.

Instead of merely being an information delivery system, AutoTutor is a mllaborative scafold
that asdsts the student in adively constructing knowledge by holding a conversation in natural
language. A dialog manager coordinates the mnversation that occurs between a leaner and a
pedagogcd agent, whereas lesson content and world knowledge ae represented in a aurriculum
script and latent semantic analysis (Landauer, Foltz, & Laham, 1998). LSA and surfacelanguage
cues guide the evaluation of the quality of student input (Wiemer-Hastingset al., 1999). There is
an animated conversational agent with fadal expressons, synthesized speed), and some
rudimentary gestures. The modules of AutoTutor are uniformly wedk rather than strong when
considering parsing, semantic interpretation, dialog planning, domain reasoning, student
modeling, and discourse production; the wedkness of these modules arguably refleds the
cgoability of human tutors. We are airrently developing a hybrid version o AutoTutor that
incorporates both weak and strong computational modules.

As an example of a wesk module, a dialog advancer network (DAN) manages the exchange by
specifying appropriate discourse markers (e.g., Moving on, Okay), dialog move ategories, and
frozen expresgons within the tutor’s turn. The @ntent of seleded dialog move caegory is
generated by a separate mechanism, so there is a natural segregation of dialog functions from
substantive content. There ae the following diff erent categories of dialog moves that AutoTutor
generates: main question, short feadbad (i.e., positive, neutral, negative), pumps (uh huh, tell me
more), prompts (The primary memories of the CPU are ROM and ), prompt response (and
RAM), hints, assertions, corredions, and summaries. The DAN is formally an augmented state
transition network because the seledion d a dialog move category on tutor turn N+1 is €nsitive
to alarge spaceof parameters computed from the dialog history. The DAN in AutoTutor-1 does
a fairly impressve job in managing the mnversation, based on our performance data (Person,
Graeszr, Pomeroy, Kreuz, & TRG, in presg, even though it does not incorporate sophisticaed
dialog planning capabil ities.

AutoTutor was designed to be reusable for other knowledge domains that do nd require
mathematicd predsion and formal spedfication. In order to test the portability of the AutoTutor
architedure, we developed a version for the domain of conceptual physics. Together with
computer literacy, conceptual physics is one of the fields in which extra tutoring sesgons are
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needed. The target population for the tutor was undergraduate students taking elementary courses
in conceptual physics.

In the transition of AutoTutor from computer literacy to physics only three modules needed to be
changed for the new subject matter: (1) a glossary of terms and definitions for physics, (2) an
LSA space for conceptual physics, (3) a curriculum script with deep reasoning questions and
asociated answers for physics. The three modules can loosely be dfiliated with metacognition,
comprehension, and production. Changing the glossary required approximately 15 man hours.
This processis relatively easy: definitions from text books need to be included in order to give
AutoTutor the posshility of accurately answer metacognitive questions (“What does X mean?”).
The majority of AutoTutor’'s comprehension mechanisms use LSA, so setting his long-term
memory representation is an important process The LSA space nedls to be trained with an
adequate crpus of texts applicable to the knowledge domain, such as text books, chapters, and
technical articles. After the @rpus is prepared in an eledronic form, we dedare the parameters
of LSA, such as the number of dimensions and size of document units. The training of the LSA
space takes lessthan an hour (Cleaning up the @rpus (removing code, pictures, etc.), however,
could be time @nsuming, in our case gproximately 10 haurs). Most of the work, however, lies
in the aurriculum script. Since AutoTutor’s architedure only allows one particular format, the
curriculum script neals to be caefully changed. Questions need to be defined, ideal answers
need to be formulated, hints, prompts and pumps need to be included. AutoTutor’s applicaionto
computer literacy had three topics, each consisting of 12 deep-reasoning questions. Changing the
curriculum script to conceptual physics required approximately 20 hours for 3
guestions/problems. However, an authoring tood makes this process less time-consuming than
most intelligent tutoring systems because the format of the entries are descriptions in English
rather than structured code (e.g., Lisp, Prolog). Several leson danners can simultaneously work
on the transition and co not require sophisticated programming expertise.

Where will the pumpkin land Explain.?

Ehe pmpkin iII Iand behind th' runer.

Figure 1. Screen shot of AutoTutor interface
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TUTOR Okay, let's begin.H ello,I "mMrco. I"moneof theco nputer
tutors devel opedbyt he Tutorin gResearch Group,a tt he
UniversityofM emphis.l try tohelp studentsl| earnab out
Physic s,b y havingac onversationwit ht hemL et sg et
straig htt o thede nonstration. Supposear unner isr unningin
astraightli neatc onstantsp eed,an dt he runnert hrowsa
punpki ns trai ght up.Wherewil It he punpki nl and?E xpl ai n.

STUDENT The pu nmpki n I ands behi nd the runner.

TUTOR Anythinge | se?

STUDENT 1d on’tk now.

TUTOR Okay. Wiatist he horizontal velocityo f thep umgkin?

STUDENT Thep umgki nh asaco nstant horiz ontal velocity.

TUTOR so?Th ehoriz ontalv elocityoft hepunpkini st hes ameast he?

STUDENT Coul d your epeat that?

TUTOR Once again, thehorizontalv elocity oft hep unpkini s thes ane
ast he?

STUDENT  runner.

TUTOR Thesa neas theru nner. Okay. Al so, themanand thepu npkin
have thes amehori zontal velocity.Whatca nwesa ya boutt he
hori zontalve locit yo fth ep unpkinift herei snof orceacting
ont hep unpkini n thehorizontald irection?

STUDENT itsco nstant.

Note that this transcript only presents a small part of the rich information (pauses, intonation, gestures) that
AutoT utor providesin the interaction with a student.

Table 1. Sample of a student interaction transcript
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Abstract is, or is there a point in which the dialogue strate-

gies and the original tutoring strategy are at odds
Natural Language Generation (NLG) capabilities to V.Vith. each Other? Second, we are interested in
ITSs. Our ghoi%e has been t(() app)|y siiomple nLg  finding out what is the “added value” of an NL in-
techniques to improve the feedback provided by an ~ terface to an ITS. One way to do so is to com-
existing ITS, specifically, one built within the DIAG pare a system that does not use NL techniques to
framework (Towne 1997). We evaluated the original ~ a version of the same system that uses NL. We are
version of the system and the enhanced one with a aware of only one other experiment in this direc-
between subjects experiment. On the whole, the en-  tion (Traftonet al. 1997), in which subjects gave
hanced system is better than the original one, other jnpuyt to a cartographic system using either NL only,
than in helping subjects remember the actions they  gjrect manipulation only, or a combination of the
:.00‘:' g,t\‘lr[g”ttwﬁrk'”d”‘gef et’.‘lf'o.'ttr']”g trr&orle_soph;s- two. Subjects were given instructions such as “go
ICate ecnniques but stll without aelving Into . . F—
full fledged text pla?ming. We are also condugting a to |nt_ersect|on X", time on task and score on map
constrained data collection, in which students and drawing after the session were recorded. In the
tutors interact via the ITS. NL only condition, subjects performed the poorest
on the map drawing task. However, it is not clear
. which conclusions should be drawn from this work,
Introduction given that the system they describe does not seem
Today, many projects aim at providing ITSs with a to qualify as a real ITS. In general, the evaluation
full-fledged dialogue interface, e.g. see the work of NL interfaces to ITSs is an area that needs in-
at the CIRCLE center (http://www.pitt.edu/"circle/), vestigation. ITSs are often evaluated in terms of
or (Humeet al. 1996; Moore, Lemaire, & Rosen- pre/post-test score, however task performance mea-
bloom 1996; Ros, Di Eugenio, & Moore 1999; sures may be appropriate as well. To our knowledge,
Freedman 1999; Graessairal. 2000). On the con-  the only ITSs with an NL interface which has been
trary, our approach to adding NLG capabilities to an formally evaluated is CIRCSIM (Everet al. 1993;
Intelligent Tutoring System falls on the weak side of Kim, Glass, & Evens 2000), but the results of the
the divide: we are concentrating on simple sentencesvaluation are not available yet.
planning with no or minimal amounts of text plan- ~ we will first discuss DIAG, the ITS authoring
ning. Our choice is partly a development strategy, shell we are using. We will then discuss the work
because we set out to rapidly improve the languageve have completed; this comprises the aggregation
feedback provided by an existing ITS shell, partly a rules we implemented within EXEMPLARS and the
desire to evaluate how effective the system can beormal evaluation we conducted. We will then dis-
with a relatively small effort. A similar approach —  cuss some current work on generating more coher-
using simple generation techniques for surface re-ent feedback by exploiting more sophisticated NLG
alization in tutoring dialogues — is taken in YAG techniques, and the data collection we have started,
(McRoy, Channarukul, & Ali 2000). Our results so0 to study how tutors verbalize the information that
far suggest that simple NLG can help, but the gainsthe ITS wants to communicate.
are small enough to suggest that moving to some-

In this paper, we report on our approach to adding

what more sophisticated techniques should be ben- DIAG
eficial, even if we still don’t intend to develop a full
fledged NLG interface. DIAG (Towne 1997) is a shell to build ITSs that

We take this approach for two reasons. First, weteach students to troubleshoot complex artifacts and
want to understand what can be accomplished bysystems, such home heating and circuitry. DIAG in
interfacing an NL generator to an ITS taken as aturn builds on the VIVIDS authoring environment
blackbox: can the ITS tutoring strategy be left as (Munro 1994). VIVIDS based tutors deliver instruc-
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tion and practice in the context of graphical simula- information regarding the indicator named “Visual
tions. Authors build interactive graphical models of Combustion Check”.
complex systems, and build lessons based on these We set out to improve on DIAG's feedback mech-
graphical models. anism by applying aggregation rules. For example,
A typical session with a DIAG application a long list of parts can be broken down by classify-
presents the student with a series of troubleshooting each of these parts in to one of several smaller
ing problems of increasing difficulty. DIAG’s tutor- lists and then presenting the student with this set of
ing strategy steers the student towards performingists. The bottom part of Figure 2 shows our aggre-
the tests that have the greatest potential for reducgation rules at work. The revised output groups the
ing uncertainty (Towne 1997). Most of the times, a parts under discussion by the system modules that
test consists of the visual observation ofiadica- contain them (Oil Burner and Furnace System), and
tor. DIAG keeps track of the tests the student per- by the likelihood that a certain RU causes the ob-
forms, and the inferences that could be made fromserved symptoms. Notice how tkgnitor Assembly
the symptoms shown. The student interacts with theis singled out in the revised answer. Among all men-
application by testing indicators and trying to infer tioned units, it is the only one that cannot cause the
which faulty part (RU) may cause the detected ab-symptom. This fact is lost in the original answer.
normal states. RU stands fagplaceable unitbe- As our sentence planner, we chose EXEMPLARS
cause the only course of action open to the studenfWhite & Caldwell 1998) over better known sys-
to fix the problem is to replace faulty components tems such as FUF (Elhadad 1993) and Penman
in the graphical simulation. Figure 1 shows one (Bateman 1994) because of the complexity and
of the graphical views in a DIAG application that learning curve of the latter two. Efficiency and rapid
teaches how to troubleshoot a home heating systenprototyping are among the reasons we chose EX-
The subsystem being displayed is the furnace sysEMPLARS.
tem. Some of its components are indicators (e.g., EXEMPLARS is an object-oriented, rule based
the gauges labeled Burner Motor RPM and Watergenerator. The rules (calleekemplary are simi-
Temperature). Others are either replaceable unitslar to schema-like text planning rules because they
or other complex modules that contain indicators are meant to capture an exemplary way of achiev-
and replaceable units, e.g. the Oil Burner. Complexing a communicative goal in a given communicative
components are in turn zoomable. context, as determined by the system designer. EX-
At any point, the student can consult the built-in EMPLARS is a hybrid system that mixes template-
tutor in one of several ways. For example, if the stu- style and more sophisticated types of text planning.
dent suspects an RU to be faulty, s/lhe can ask the tuThe text planner selects rules by traversing the ex-
tor to specify the likelihood that this partis the cause emplar specialization hierarchy. The applicability
of the fault. The tutor will also indicate the state of conditions associated with each exemplar are suc-
any indicators that the student has explored and trycessively evaluated in order to find the most specific
to imply a correlation, positive or negative, between exemplar for the current context.
the states of the indicators to the RU in question. By In the enhanced version of the systeBIAG-
utilizing the tutor’s feedback, the student can deduceNLP), DIAG passes the information to be communi-
relationships among the system parts and continucated to EXEMPLARS (the two systems communi-
ally refine his/her solution. cate via a text file). EXEMPLARS performs essen-
tially three tasks:

Language Generation in DIAG 1. it determines the specific exemplars needed;

After deciding which content to communicate, the 2 it adds the chosen exemplars to the sentence plan-
original DIAG systemDIAG-orig) uses very simple ner as a goal;

templates to assemble the text to present to the Stl,é- . . . D
dent. The result is that the feedback that DIAG pro->- It linéarizes and lexicalizes the feedback in its fi-
vides is repetitive, both as a sequence of replies to Nl form, writing it to an external file which is
requests for feedback, and within each verbal feed- Passed backto DIAG for display in the appropri-
back. In many cases, the feedback presents a sin- 1€ Window.

gle long list of many parts. This problem is com-  In DIAG-NLP, we concentrated on rules for ag-
pounded by the fact that most DIAG applications in- gregation, some of which also affect format and lay-
volve complex systems with many parts. Although out. Our choices were suggested by the need to re-
there are different levels of description in the systemlate the language feedback to the hierarchical struc-
model, and hierarchies of objects, the verbal feed-ture of the physical system. We have two main kinds
back is almost always in terms of individual indi- of rules, description rules and aggregation rules.
cators or units. The top part of Figure 2 shows the Description rules are used when the full descrip-
reply originally provided by DIAG to a request of tion of a part is required, such as whether the part is
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Figure 1: A screen from a DIAG application on home heating

in a normal state, its current reading, and, if abnor- The most frequent application of the aggregation
mal, what the normal state should be (see the firstrules is to group parts according to the system mod-
sentence in the bottom part of Figure 2). ule they belong to, and within each module, to group

The aggregation rules are used to group large listaeplaceable units by how likely it is they may cause
of parts into smaller lists. They allow composite ag- the observed symptom, as shown in Figure 2.
gregation, so that nested lists are created. Among In this version oDIAG-NLP, morphology, lexical
our aggregation exemplars are: realization and referring expression generation were
¢ AggByContainereach part within this DIAG ap- all treated ad hoc, i.e., they were directly encoded in

plication is contained within a larger block, called the appropriate exemplars.

a system module. ThaggByContainerule ac-

cepts a list of parts, classifies each part by its con- Experiments
taining module, and then creates a set of lists by
module; Intuitively, the contrast between the feedback pro-

duced byDIAG-orig and by DIAG-NLP (top and
' g ' .. bottom in Figure 2) suggests that even simple ag-
!Sngn;cotthrtre]-hkehhood of being at fault for a specific gregation rules dramatically improve the language
ymptom, ) o ) feedback. To provide a real assessment of this claim,
e AggByStateit groups indicators by their normal we conducted an empirical evaluation designed as
/ abnormal state. a between-subject study. Both groups interact with
A final exemplar, invoked by the other aggrega- the same DIAG application that teaches them to
tion rules, deals with formatting, namely, creating troubleshoot a home-heating system. One group in-

vertical lists, spacing, etc. teracts withDIAG-orig and the other wittDIAG-

e AggByFufer it groups replaceable units accord-
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Lrnace

The Yisual cormbustion check is igniting which is abnormal in this
startup mode (normmal is combusting).
Cil Mozzle always

produces this abnormality when it fails.
Oil Supply Walke aleways

produces this abnormality when it fails.
Cil purrg aleays

produces this abnormrality when it fails.
il Filtzr always

produces this abnormality when it fails.
Systern Control Module sormetimes

produces this abnormality when it fails.
lgnitor asserily never

produces this abnormrality when it fails.
Burner Motar always

produces this abnormrality when it fails.
and, mayte others affect this test.

The Yisual combustion check indicator is igniting which is abnormal in stanup rmode.
Morma | in this mode is combusting.

Within the Qil Burner
These replaceakle units always produce this abnormal indication when they fil:
il Mozzle;
Cil Supply Yalee,
Cil purrg;
il Filter;
Burner Motor.
The lgnitor assembly replaceable unit never produces this abnormal indication when it fils.

Within the Furnace System
The Systern Control Module replaceable unit sormetinmes produ ces this abnormal indication when it fails.

Also, other pars may effect this indicator,

Figure 2: Original (top) and revised (bottom) answers provided by DIAG to the €amsult Indicatoquery
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NLP. [ [ DIAG-orig | DIAG-NLP ||

Seventeen subjects were tested in each grougd] Time 29.8' 28.0°
Our subject pool comprised 13 undergraduates, 18 Feedback Time 6.9 5.4
graduates, and 3 research staff, all affiliated with|| Consultations 30.4 242
our university. Participation in the experiment was || Indicator consultations 11.4 5.9
restricted to science or engineering majors. Each| RU consultations 19.2 18.1
subject first reads some short material about homei_Parts replaced 3.85 3.33
heating that we developed. Afterwards, each subAL_ESSay score 81/100 83/100

ject goes through the first problem as a trial run.
Each subject then continues through the curriculum Table 1: Performance measures
on his/her own. The curriculum consists of three
problems of increasing difficulty. Subjects are en-

couraged to interact with DIAG as much as possi- ] [| DIAG-orig | DIAG-NLP ]
ble. At the end of the experiment, each subject iS[[ Indicator Precision 33 17
administered a questionnaire. Indicator Recall .33 27
Indicator F-measure 44 .29
Metrics. A detailed log is collected while the sub- EB E;eccgﬁlon ;g 'gg
ject solves problems. It includes how many prob- || o) F-measure 72 63

lems the subject solved, and, for each problem: total
time, and time spent reading feedback; how many
and which indicators and RUs the subject consults
DIAG about; how many, and which RUs the subject
replaces.

Table 2: Precision / recall

] . ) o . ity. For example, the lower number of indicator con-
Questionnaire. The questionnaire is divided into  gyjtations iNDIAG-NLPis evidence in favor of the
three parts. The first part tests the subject’s un-effectiveness of the aggregated feedback: because
derstanding of the domain. Because the questionghe feedback highlights what is important (such as
asked are fairly open ended, this part was scored agat the Ignitor Assembly can never cause the Vi-
if grading an essay. _ sual Combustion check to ignite, see Figure 2), sub-
_ The second part concerns the subjects’ recollecjects can focus their troubleshooting without asking
tion of their actions, specifically, of the indicators zg many questions of the system. We would argue
they consulted the system on and of the RUs theythat an ITS whose NL feedback leads the student
replaced. By taking the log of the subject’s actions more effectively towards the solution of a problem is
as the target, we can compute the usual measures ¢f petter ITS. This holds for usability as well (the four
precision and recall. We compute precision as themeasures in Table 3): presumably, in a real setting,
percentage of correct answers out of the total num-stydents should be more willing to sit down with a
ber of answers the subject gave; whereas recall is th%ystem that they perceive as more friendly and us-

percentage of correct answers they gave with respeciple than a system that engenders similar learning
to the log of their actions. We also compute the F- gains, but is harder to use.

2
measure S AULE that smooths precision and re-

,32P+R 1
call off, with g = 1.

The third part of the questionnaire asks the sub-
ject to rate the system'’s feedback along four dimen-

sions on a scale from 1 to 5 (see Table 3).

The measures in Table 2 measure something in
between learning and performance. One could ar-
gue that remembering what you did correlates with
learning — e.g., if you remember that to solve a cer-
tain problem you checked whether the furnace was
combusting (the “Visual Combustion Check” in Fig-
Comments on collected measures.As the re- ure 2) and that gave you crucial information, you
viewers of this paper pointed out, almost all the may be able to apply similar knowledge in simi-
measures we collected, and whose significance idar problems. However, it is unlikely that detailed
analyzed below, pertain to task performance or usemjuantitative measures such as those we collected in
satisfaction, rather than to learning per se — only this experiment are telling in this regard; and in fact,
Essay scorelirectly addresses learning. We agree we would be happy to eliminate them, as they ac-
that learning measures should be the ultimate test ofually show an advantage f@1AG-orig. However,
the success of the NL interface to the ITS. Howeverwe collected them because they are relevant to the
we would argue that performance measures are immore general question of the added value of NL in-
portant too: they provide indirect evidence of the ef- terfaces to applications, which we are also interested
fectiveness of the system, including issues of usabil-in.
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[ [ DIAG-orig | DIAG-NLP || | [ DIAG-orig | DIAG-NLP ||

Usefulness 4.35 4.47 Total Time VA
Helped stay on right track 4.35 4.35 Indicator consultations Vv
Not misleading 4.00 4.12 RU consultations Vv
Conciseness 3.47 3.76 Parts replaced Vv
Average score 4.04 4.18 Essay score Vv

Usefulness Vv
Table 3: Subjective rating of DIAG’s feedback Helped stay on right track v

Not misleading V4

Conciseness Vv

Results. Every student solved all the problems, Table 4: Successes fBAG-orig andDIAG-NLP

but differences emerge with respect to other mea-

sures. Tables 1, 2, 3 show the results for the cumu-

lative measures across the three problems (measurésmay not be an independent meastiiae prob-
on individual problems show the same trends). ability of 7 successes out of 8 is p = 0.03b{

On the whole, Tables 1 and 3 show a cumulative 3 (6,8, 0.5)). Finally, if instead of using the four
effect in favor ofDIAG-NLP, whereas Table 2 does subjective measures we use their Zaverage (which
not. Focusing first on Tables 1 and 3, differences Onco_ngtlct)ultgs a ds_LchcesT f@I’A{G'tNLP).’ t‘é".e |°b§a'n
individual measures are not statistically significant; P = ©-910, and it we eliminate ime in this 1ast case,

the measure that individually comes closest to statis-V€ Obtaki)f.‘ P t:h0.031. To conclude,g? \_/vhat%ver W?}' .
tical significance isndicator consultationswhich W& COMBINE these measures, we obtain evidence tha

exhibits a non-significant trend in the predicted di- the better scoreBIAG-NLP obtains, albeit individ-
rection (Mann-Whitney test, U=98, p=0.11). We ually not statistically significant, cumulatively show

have discussed individual measures at length in (Dithzall_t'DlAG-NLPourt]performstIAG-origd Table 2
Eugenio & Trolio 2000); here, we provide a differ- owever, we have not discussed Table 2 yet.

o ; This table shows that subjects DIAG-orig re-
ent statistical analysis to assess whethecthmaula- :
tive effect of these measures shows thadG-NLP ~ member what they did better than thoseDAG-
performs better thaBIAG-orig. NLP. The measures concerning indicators achieve

) ) or show trends towards statistical significance: indi-
We consider only independent measures (for ex-cator precision and indicator F-measure are signif-
ample, the total number of consultations in Table 1jcant (t-test, respectively 2.19, p = 0.04 and 2.51,
is clearly not independent from indicator and RU's , = 0.02), and indicator recall is marginally signif-
consultations, given it is the sum of these two mea-jcant (Mann-Whitney, U = 93.5, p = 0.08). All in
sures). For each measure, we decide whether itg)|, this is a puzzling result, especially because sub-
value indicates a “success” f@AG-NLP. We are  jects inDIAG-orig consult the system on indicators
not looking at the magnitude of the difference be- 3imost twice as many times as the subjecBIAG-
tween the two values of the measure, but simply NP, thus we would expect them to have more prob-
at the fact that the values differ. Every measure|ems remembering what they did. Perhaps this re-
in Table 1 is inDIAG-NLP favor, and so is every gyt can be related to (Kintsch 1998), that shows that
measure apart fromhelped stay on right trackn  high-quality text does not necessarily lead to better
Table 3 (we consider a tie as a successDAG-  performance.
orig). We then ask, what is the probability that the * Fijnajly, the reader may wonder what happens to
msuccesses fdPIAG-NLPout of thenindependent  he cumulative effect that shovBIAG-NLP better
measures are simply due to chance? We can answghan DIAG-orig if we take into account the mea-
via B(m — 1,n,0.5), the binomial cumulative dis- gy res in Table 2 as well. By adding to Table 4 two
tribution function throughn — 1 for sample sizer g ccesses fobIAG-orig,® we compute the proba-

and probability of success p = 0.5: it gives us the pjity of obtaining 8 suceesses out of 11 measures
probability that ofn random trials, the numberof -~

successes will fall between 0 and— 1, inclusive. '0One could argue the time went down because of the
Thus,1 — B(m — 1,n,0.5) gives us the probability = smaller number of consultations.
thatm or more successes outofare due to chance. 2A reviewer pointed out that including all four mea-

A | ider Table 4. | hich sures gives much more weight to the subjective measures
S an exampie, consider 1able 4, In WNICh We 5, e.g. to the singlessay scoréarning measure.

combine the independent measures from Tables 1 3Given their definitions, precision and recall cannot
and 3 and note whether they represent a succesge considered as really independent measures, and cer-
for DIAG-orig or DIAG-NLP. The probability of  tainly the F-measure that combines them is not indepen-
8 successes out of 9 measures is p = 0.0206-(  dent from either of them. So we synthesize Table 2 as two
B(7,9,0.5)). If we leaveTotal Timeout because successes fdPIAG-orig, one for indicators, one for RU's.
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by chance. We obtain p = 0.113, which shows a nonstructure of the system and causal relationships in
significant trend in the predicted direction. How- VIVIDS-based tutors. These types of knowledge
ever, recall that we are being conservative: for ex-are often only indirectly present: they are reflected
ample, we countebelp stay on right trackn favor  in how changes to graphical objects affect other ob-
of DIAG-origeven if itis atie; if we countitin favor jects, but this is not sufficient to generate language.

of DIAG-NLP, p goes down to 0.033. When they are present, they are expressed in a very
non-symbolic way. In a sense we need to extract
Current and future work some of this knowledge from the existing tutor and

. . epresent it in a usable form for the NL genera-
The results of the study we just discussed make u : .
confidentthat it is not necessary to add a full fledged{.Or — this was done IrDIAG-NLP by represent-

o ing the required knowledge via Java classes, as EX-
NL generator to an existing ITS or to change the ITS EMPLARS is written in Java (SNePS is written in

original tutoring strategies to obtain reasonable re- ISP P .
. , communication between the different systems
sults. Better language can be added at a relatlvel)%é achieved via a Java API).

low cost (the implementation took one graduate stu- )
dent six months), and it can be effective. The need to replicate some of the knowledge
As a consequence, we are now pursuing two linesPresent in DIAG may be seen as inconsistent with
of research. The first is to add some more sophisti-OUr earlier claim that we treat the ITS as a black-
cated NL techniques without plunging into full text POX. Actually, we intended that claim to apply only
planning, because we want to see how far the weaK? the tutoring strategies the ITS embodies, notto its
approach can go. Second, we are conducting a conynderlying knowledge. However, it is certainly true
strained data collection to help us discover somethat a full fledged blackbox approach cannot work
empirical foundations on which to base the realiza-if the ITS is built without taking into account the
tion of the facts the ITS intends to communicate. ~ Knowledge needed for communication. For exam-
We now discuss both efforts in more detail. ple, the CIRCSIM tutor embodies domain knowl-
edge at three different levels, because it was found
Focusing and rhetorical relations that all three levels are necessary for communica-

h K ¢ . h tion (Khuwajaet al. 1992), even if only one level is
In the work done so far, we imposed coherence ongjirecily relevant to the material to be mastered.

the tutor turn by means of aggregation rules. How- .
ever, the turn could be made more coherent by in- SNEPS make it easy to represent and reason about
entire propositions, not just about objects. For ex-

troducing appropriate referential expressions (gen- o X .
erated ad hoc so far), and a few domain or rhetorica@TPI€; it is straightforward to represent the various
relations among the facts to be expressed. For examindividual propositions that underlie Ex. 1 above,
ple, the fact that the ignitor assembly never caused the causal relations between the failure of the
the abnormal indication in Figure 2 as opposed tomdlwdual parts and the abnormal state of the visual

the other parts within the oil burner always causing ?gézztr)}l;tsr:ggocnqsggf rg/llgtr'?)(rjmvbeeri\:\t/éz I?',[?]%?agycéomrelg'
it, could be given more prominence if the relevant ! W piex

propositions were linked by@ontrastrelatiorf ren- propositions (A) and (B). Finally, because proposi-

dered via an appropriate cue phrase, suduagA) tions are full fledged entities in the representation,

and (B) are used later to refer to the appropriate part!€Y ¢@h become part of the discourse model, and be
of the explanation): referred to with appropriate referential expressions.

In this version of the generator, we implemented the
(1) The visual combustion check indicator is ignit- GNOME algorithm to generate referential expres-
ing which is abnormal in startup mode. Normal sions (Kibble & Power 2000).

in this mode is combusting. This revised version of the generator renders the
(A) Within the oil burner, the oil nozzle, oil supply same facts underlying Figure 2 as shown in Figure 3.
valve, oil pump, oil filter and burner motor al- The deicticThisis generated by the GNOME algo-
ways produce this abnormal indication when they rithm and is used to refer to the proposition repre-
fail. (B) But the ignitor assembly never does. senting the abnormal state of the visual combustion
; heck indicator; this cuts down on some of the repet-
In ongoing work, we have coupled EXEMPLARS cl '
to a knowledge base built via the SNePS represen1t|\_/enesds[())If’;ge'\flﬁgdb?clizgenergteiby meeth
tation system (Shapiro & Rapaport 1992). SNeps2Md an ~o-NLF, Cl. Figure 2. However, the
is a semantic network formalism where each node"définite articles in Figure 3 are incorrect (the al-
represents a proposition. In general, it is very dif- gorithm we implemented does not take into account

: - the visual context, or the fact that there is only one
ficult to access the knowledge about the phySIcalpart with that description). The contrastive particle

“We are using relations from Rhetorical Structure The- butis not included because we have not yet imple-
ory (Mann & Thompson 1988). mented exemplars to generate cue phrases; however,
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A visual combustion check indicator is igniting in startup mode.
The visual combustion check indicator igniting in startup mode is abnormal.

Within the furnace system,

This is sometimes caused when a system control module replaceable unit is inop-

erative.
Within the oil burner,

This is never caused when an ignitor assembly replaceable unit is inoperative.
This is sometimes caused when a burner motor, oil filter, oil supply valve, or

oil nozzle is inoperative.

Figure 3: Adding a bit more of sophistication to the generator

as soon as we do so, it will be straightforward to2.
generate it, as the appropriate rhetorical relation is

included in the SNePS representation of the mes-

sage to be conveyed.

First observations of human consulting

The aggregation rules we implemented in EXEM-
PLARS appear to be plausible, but they have no em
pirical foundation. To understand how a human tu-
tor may verbalize a collection of facts, we are col-
lecting tutoring dialogues between a student inter-
acting with the same DIAG application we have pre-
viously discussed and a human tutor. In this experi-
ment the tutor and the student are in different rooms
sharing images of the same DIAG tutoring screen. ¢
When the student exercises the consult function the
tutor sees the information that DIAG would use in
generating its advice — exactly the same informa-
tion that DIAG gives to EXEMPLARS irDIAG-
NLP. The tutor then types a response that substi-
tutes for DIAG’s response. Although we cannot e
constrain the tutor to provide feedback that includes
all and only the facts that DIAG would have com-
municated at that specific moment, we can still see
the effects of how the tutor uses the information pro- |
vided by DIAG. As of this writing, we have prelim-
inary observations of several human tutors, consist-
ing of about 200 human responses to DIAG consult
requests, in over 20 sessions.

The two most striking patterns we observe in the
human-generated advice are 1) they often eschew
syntactic aggregation of part lists and instead de-
scribe or name functional aggregations of parts, ande
2) they give advice on the problem-solving process,
either directly or indirectly. In the following exam-
ples, the pairs of utterances show two tutors inde-
pendently describing the same assemblages of parts
and giving similar problem-solving advice:

1. Referring to oil nozzle, supply valve, pump,
filter, etc:

Referring to all the burner parts:

a) “What are the parts that control the combus-
tion?” [Tutor 1]

b) “...consider the units that are involved with
heating the water” [Tutor 2]

The assemblages we see in the human discourse

are not necessarily represented in the training docu-
‘mentation or the functional diagrams on the DIAG
screen; it appears the tutors are constructing them.
In general the assemblages seem to be fixed col-
lections. But the tutor sometimes constructs an im-
promptu subset according to the discourse context,
as in “the valve is open, so you have to check the
'point below the filter,” which appears to be a refer-
nce to the parts in the fuel line “below” the filter.

The problem-solving advice generally con-

forms to the patterns of “point-to” and “convey-
information” hints observed by (Hunet al. 1996).

Some of the other phenomena we have observed:

In contrast with DIAG, tutors less often mention
parts thatannotbe causing the problem (e.g., the
ignitor assembly in Figure 2), except when the
student consults precisely on those parts.

Tutors frequently introduce devices for inter-turn
coherence. For example, two adjacent turns were
introduced by “not a good choice” and “better
choice,” respectively. Another turn was intro-
duced by “the question is now,” indicating the rea-
soning was in some way following from the pre-
vious turn.

The human tutors occasionally justify a state-
ment, frequently by appealing to causal reason-
ing. For example, one tutor wrote “The oil fil-
ter is normally clean. A dirty and clogged oil fil-
ter blocks the flow of oind should be replaced”
(emphasis added). By contrast, DIAG merely
states whether a broken oil filter can cause the
problem, without interpolated explanation.

As our experiments with human tutors continue,

a) “...check the other items on the fuel line”
[Tutor 1]
b) “...follow the path of the oil flow” [Tutor 2]

we should be able to produce a more complete cat-
alog of language and discourse phenomena. Of
particular interest, given our emphasis on aggrega-
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tion, is the parts assemblages the tutors use, espeKibble, R., and Power, R. 2000. Nominal gener-

cially how they are described and when they are in-
voked, and how to organize the knowledge the sys-
tem needs in order to replicate human tutors.
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Abstract: We are engaged in a research project to create a tutorial dialogue system that helps
students learn through self-explanation. Our current prototype is able to analyze students’
general explanations of their problem-solving steps, stated in their own words, recognize the
types of omissions that we often see in these explanations, and provide feedback. Our approach
to architectural tradeoffs is to equip the system with a sophisticated NLU component but to keep
dialogue management simple. The system has a knowledge-based NLU component, which
performed with 81% accuracy in a preliminary evaluation study. The system’s approach to
dialogue management can be characterised as “classify and react”. In each dialogue cycle, the
system classifies the student input with respect to a hierarchy of explanation categories that
represent common ways of stating complete or incomplete explanations of geometry rules. The
system then provides feedback based on that classification. We consider what extensions are
necessary or desirable in order to make the dialogues more robust.

INTRODUCTION

Self-explanation is an effective metacognitive strategy. Explaining examples or problem-solving
steps helps students learn with greater understanding (Chi, et al., 1989; 1994; Berardi-Coletta, et
al., 1985; Gagne & Smith, 1962). Yet few students are good self-explainers, even when prompted
(Renkl, et al., 1998). So how can we leverage self-explanation to improve learning in actual
classrooms? The Al & Education literature provides evidence that self-explanation can be
supported effectively by 2"-generation tutors (Aleven et al 1999; Conati & VanLehn, 2000).
However, these systems did not interact in natural language. It is plausible that students will learn
even better when they explain in their own words. Natural language allows for flexible expression
of partial knowledge: Students can show what they know and the tutor can help them to construct
more complete knowledge. Also, articulation forces attention to relevant features. Finally,
combining visual and verbal learning modes may create “dual codes” in memory which may
facilitate recall (Paivio, 1986). However, it appears that these potential advantages will not be
fully obtained without tutoring or giving feedback to students. When students worked with a tutor
version that prompted them to explain their steps in their own words, but did not check
explanations, they often ignored these prompts and provided almost no good explanations
(Aleven & Koedinger, 2000b).

We are preparing to test the hypothesis that students learn better when they explain in their
own words and receive feedback on their explanations. To this end we are developing a tutorial
dialogue system, the Geometry Explanation Tutor, that assists students as they generate general
explanations of their problem-solving steps in their own words. The system engages students in a
restricted form of dialogue to help them improve explanations that are not sufficiently precise.
We have a working prototype and are starting a phase of pilot testing. The Geometry Explanation
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Figure 1: The Geometry Explanation Tutor

Tutor is built on top of an existing 2nd-generation system for geometry problem solving, the
PACT Geometry Tutor (Aleven et al., 1999), which is currently in use in about five schools in the
Pittsburgh area and elsewhere.

In designing the architecture of the system, we are faced with a number of choices. Thus we
find ourselves asking the question, as phrased in the call for papers, “Where is the biggest bang
for the buck?” A significant architectural decision has been to equip the system with a fairly
sophisticated NLU component (Popescu & Koedinger, 2000). A detailed understanding of the
explanations is needed if the system is to provide detailed feedback. A second decision has been
to keep the system’s dialogue planning and management component as simple as possible, but in
Einstein’s words, no simpler than that. We follow the approach taken by Heffernan and
Koedinger (2000) in developing Ms. Lindquist, an algebra symbolization tutor, and focus on
identifying the pedagogical content knowledge needed to help students produce accurate and
complete explanations. By pedagogical content knowledge they mean domain-specific strategies
that experienced human tutors use to help students deal with common difficulties and to scaffold
students’ problem-solving efforts. Pedagogical content knowledge also includes knowledge about
students, their typical errors and typical, often rugged, pathways to learning success.

We foresee that a tutor that helps students to generate accurate geometry explanations needs
to have knowledge about (1) how to provide good and detailed comments that help students to
improve explanations that are incomplete and (2) how to lead students to good explanations if
they have difficulty getting started. So far, we have focused on the first need. The analysis of
several small corpora of student explanations indicated that students explanations of geometry
tend to be incomplete more often than wrong. The system therefore has a hierarchy of explanation
categories that represent common ways of stating full and partial explanations of geometry rules.
It decides what feedback to give to student explanations primarily by classifying them into this
hierarchy. While it is not difficult to see the limitations of the current system, it is not easy to
predict what improvements will give the greatest bang for the buck. Thus, in extending the
system, we plan to be guided by results of frequent preliminary evaluation and pilot studies,
adding more sophisticated mechanisms or strategies only when the data suggest that they will
improve students’ learning.

In this paper, we describe the current architecture of the Geometry Explanation Tutor and
illustrate its current capabilities by means of dialogue examples. We present results from a
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Figure 2: Architecture of the Geometry Explanation Tutor

preliminary evaluation of the accuracy of the system’s NLU component. Finally, we discuss what
limitations need to be addressed most urgently: What pedagogical content knowledge we will
need to add and how far we will have to push the system’s dialogue management architecture.

THE GEOMETRY EXPLANATION TUTOR

The Geometry Explanation Tutor covers one of the six units that make up the curriculum of the
original PACT Geometry Tutor, namely, the unit that deals with the geometric properties of
angles. The Geometry Explanation Tutor provides problem-solving support, just like other
Cognitive Tutors (Koedinger, et al., 1997). It monitors students as they work through problems
and provides assistance in the form of feedback and context-sensitive hints. Unlike other
Cognitive Tutors, the Geometry Explanation Tutor requires that students explain their steps and
engages students in a restricted form of dialogue in order to help students state geometry rules
accurately (Popescu & Koedinger, 2000; Aleven, et al., in press). The system has been pilot-
tested with 20 of our colleagues and staff and with two high-school students.

System Architecture

The Geometry Explanation Tutor is based on the standard Cognitive Tutor architecture (Anderson
et al., 1995), augmented with a NLU component (see Figure 2). In each dialogue cycle, the NLU
component creates a semantic representation of the student’s explanation and classifies that
representation with respect to the system’s hierarchy of explanation categories. The Cognitive
Tutor module then checks whether the student’s explanation focuses on the right geometry rule
and decides how to react (i.e., what feedback to give to the student).

An important knowledge source is the hierarchy of explanation categories, which constitutes
the system’s pedagogical content knowledge. The explanation categories in this hierarchy
represent ways of stating each geometry rule correctly, as well as frequently occurring ways of
stating rules incorrectly. An excerpt of this hierarchy is shown in Figure 3. Each node represents a
class of explanations that have the same meaning, but may have vastly different surface forms. A
canonical example of a sentence that falls in each category is shown in each node. Explanation
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Figure 3: Excerpts from the explanation hierarchy, represented in the system’s knowledge base

categories at the bottom of the hierarchy represent correct and complete ways of stating the
isosceles triangle rule. Explanations categories higher up in the hierarchy represent progressively
more incomplete ways of stating this rule. The hierarchy also includes information about how to
respond to student explanations. Attached to each category is a feedback message that is
appropriate when an explanation by the student is classified under that category. We have
identified about 140 explanation categories, related to the 25 geometry rules that make up the
tutor’s Angles unit. A key point is that these categories were driven from observations of real
student data, contained in several corpora of student explanations. Thus, this rich network
captures categories that occur frequently as learners progress towards success.

The hierarchy is implemented as a Loom knowledge base (MacGregor, 1991). This
knowledge base also contains an ontology of the domain, which consists of geometry objects
such as angles and lines, as well as relations such as congruency, adjacency, etc. The ontology
covers the material of the Angles unit of the tutor curriculum. Currently, the knowledge base
contains definitions for about 310 concepts and 90 relations.

The NLU component parses student input using a unification-based approach. We employ
the LCFLEX parser, an active chart parser (Rose & Lavie, 1999), in combination with a feature
structure unifier. We have developed a grammar of about 200 rules. The parser and unifier build a
feature structure encoding the syntax of the sentence. They also direct Loom to build a semantic
representation. In the process, the Loom classifier tests the coherence of the semantic
representation with respect to semantic constraints expressed in the system’s domain ontology.
When a coherent semantic representation has been constructed, Loom classifies it with respect to
the explanation categories.

The Cognitive Tutor module decides how to respond to the student. First, the tutor
determines which geometry rule the student should be explaining. This rule must be one that
justifies the current problem-solving step. The tutor determines the set of applicable geometry
rules by running its cognitive model of geometry problem solving. This model captures the
typical and desired knowledge of geometry students, represented in the form of production rules.
The tutor then selects an appropriate feedback message as follows. If the student explanation is a
complete statement of a relevant geometry rule, the tutor accepts the explanation. If the
explanation is only a partial statement, the tutor selects an appropriate feedback message.
Usually, this will be the feedback message associated with the category under which the
explanation was classified. If the explanation is only the name of a geometry rule, the tutor asks
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Table 1: Example dialogue with the Geometry Explanation Tutor. Shown on the left are a student’s
successive attempts at explaining the given geometry rule (underlining shows what was added since the
previous attempt) and the tutor’s responses. Shown on the right is the explanation category under which
the tutor classified the student’s explanation.

1. S:congruent NIL

2. T: The Geometry Tutor is not able to understand your explanation. Sorry! Please add
to your explanation or type something different. Please state a GENERAL geometry
rule. Do not mention the names of the angles in the problem.

3. S: the base angles are congruent CONGRUENT-BASE-
. . ANGLES
4. T: You are getting there, but you need to be more precise. Are base angles always
congruent?
5. S:the base angles are congruent here CONGRUENT-BASE-
. . ANGLES
6. T: You are getting there, but you need to be more precise. Are base angles always
congruent?
7. S:Base angles in a triangle are congruent CONGRUENT-BASE-

. . ANGLES-OF-TRIANGLE
8. T:Well... Almost! Are the base angles in EVERY triangle congruent?
9. S:The base angles in an isosceles triangle are congruent CONGRUENT-BASE-
ANGLES-OF-
ISOSCELES-TRIANGLE

10. T:[ACCEPTED as correct explanation. Students get non-verbal positive feedback.]

the student to state the rule. Finally, if the explanation focuses on the wrong geometry rule, the
tutor will inform the student of this fact.

We have begun to experiment with the integration of a statistical Naive Bayes text classifier
(Mitchell, 1997, Ch. 6). When the knowledge-based NLU component fails to produce an analysis,
the statistical classifier is used to determine whether the student’s explanation is in the ballpark
(i.e., focuses on the correct geometry rule). If so, the tutor will print a feedback message saying
that the student appears to be on the right track. This helps in dealing with unexpected input, as is
illustrated below. We are looking for further ways to leverage the statistical text classifier.

EXAMPLE DIALOGUES WITH THE GEOMETRY EXPLANATION TUTOR

The Geometry Explanation Tutor’s capabilities are illustrated in two dialogues shown in Tables 1
and 2. These dialogues are adapted from protocols collected during a session in which about 20 of
our colleagues and staff worked with the system. In order to make the dialogs reflect the system’s
current capabilities, we have replaced the system’s responses with responses generated by the
current system version. The downside is that the dialogues are not 100% realistic.

In the first example, the tutor helps a student in explaining the isosceles triangle theorem,
which says (stated somewhat informally) that the base angles in an isosceles triangle are
congruent. Starting with a minimum effort explanation (step 1) and testing the tutor’s sense of
humor along the way (steps 3-5), the student incrementally refines an explanation until the
explanation is accepted by the tutor (step 10). The tutor produces appropriate responses using its
pedagogical content knowledge, captured in the explanation hierarchy. For example, category
CONGRUENT-BASE-ANGLES-OF-ISOSCELES-TRIANGLE represents correct and complete
statements of the isosceles triangle rule (see Figure 3, bottom left). Student explanations in this
category get the thumbs up from the tutor, provided of course that the isosceles triangle rule
justifies the problem-solving step being explained (see step 9 and 10). On the other hand,
category CONGRUENT-BASE-ANGLES-OF-TRIANGLE represents statements such as “the
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Table 2: Example Dialogue with the Geometry Explanation Tutor

1. S: 180 is what you get when you add the interior angles EQUAL-180
2. T:Can you be more specific? What is 1807 And what tells you that this is so?
3. S:interior NIL
4. T: It appears that you are getting at the right rule, the triangle sum rule. But the tutor
has difficulty understanding your explanation. Please make small changes .
5. S:triangle sum REFERENT
6. T: It looks like you have the right idea. Can you state this geometry rule more
completely?
7.  S:triangle sum is 180 SUM-OF-TRIANGLE-
8. T: Very close. The sum of what exactly is equal to 180? Not of the triangle itself but of 180
its... ?
9.  S:add the interior angles is 180 INTERIOR-ANGLES-
10.  T: Thatis good, but you need to be more specific. Which interior angles do you mean? 180
11.  S: interior angles add up to 180 INTERIOR-ANGLES-
12. T: Very good. The sum of interior angles of WHAT is 180 degrees? SUM-180
13.  S: interior angles of the triangle add up to 180 ANGLES-SUM-OF-
TRIANGLE-180

14.  T:[ACCEPTED as correct explanation. Students get non-verbal positive feedback.]

base angles of a triangle are congruent,” which are incomplete (Figure 3, left, one level from
bottom). In response to statements in this category, the tutor generates a feedback message that
suggests that the statement is an overgeneralization, provided again that the rule that needs to be
explained is the isosceles triangle rule (steps 7 and 8). The feedback message is the one
associated to the given category. Generally, the dialogue is smooth. Of course one prefers to
avoid tutor responses like “the tutor does not understand,” as shown in step 2 or instances where
the tutor repeats itself in subsequent dialogue turns, (steps 4 and 6). Under the given
circumstances however these responses were quite appropriate.

In the second dialogue (shown in Table 2), the student starts off rather well. The student’s
first explanation attempt could have been completed simply by adding “of a triangle” at the end,
so that the sentence reads “180 is what you get when you add the interior angles of a triangle.”
Unfortunately, the tutor feedback does not make this clear. After a minimalist strategy in step 3,
the student quickly gets on track again and gradually improves the explanation until it is complete
in step 13. With the exception of the first tutor message, the tutor’s feedback seems appropriate
and helpful. The reason that the tutor did not produce a more helpful message in step 2 is that the
NLU component currently does not handle the construction “is what you get when you add ...”

The example illustrates that the statistical text classifier sometimes enables the tutor to
produce a more helpful feedback message than it could if it only had the knowledge-based NLU
component. In step 3, the student’s answer “interior” is not classified under any explanation
category by the knowledge-based NLU component. The statistical classifier however returns
TRIANGLE-SUM as the most likely category. This enables the tutor to acknowledge (in step 4)
that the student is on the right track (“it appears that you are getting at the right rule, the triangle
sum rule”). Without the statistical classifier, the tutor could only have said, “the tutor does not
understand your explanation.”
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Table 3: Classification accuracy of the knowledge-based NLU component

Classification result N %
Classified correctly

Explanation was actually complete 194 29.9

Explanation was actually incomplete 227 35.0

Explanation was actually a reference 102 15.7
Classified under overly general category

Explanation was actually complete 60 9.3

Explanation was actually incomplete 38 59
Classified incorrectly 3 0.5
Not classified 24 3.7
Total 648 100

Further, the example dialogue illustrates that the tutor accepts some common forms of
abbreviations that students make. Students very often say “the angles are 180" when they mean
strictly speaking that the measures of the angles are 180. This is a form of metonymy, the
phenomenon of referring to a concept by means of a related concept [Jurafsky & Martin, 2000]. A
prime example is “New York called” where it was the guy or girl from that city who called. The
tutor accepts common forms of metonymy without complaint. For example, the tutor responds to
the sentence “interior angles add up to 180" (step 11) as if the student said “the measures of
interior angles add up to 180”. Similarly, the sentence “a linear pair is 1807 is treated as if the
student had said “the measures of the angles in a linear pair are 180 (double metonymy).

However, the tutor is not so accommodating that it accepts all abbreviations or elliptical
expressions. Nor should it be. A tutor whose goal it is to help students learn to “speak
mathematics” should be helpful but should also insist on a certain level of precision in language.
For example, the tutor does not interpret “triangle sum is 180" (step 7) as meaning “the sum of
the measures of the angles of a triangle is 180 degrees,” even though one might argue that this is
what was meant. The tutor does not assume that the sum was implied.

The challenge in dealing with metonymy is to construct a semantic representation that
observes semantic constraints even though the input sentence does not. Some forms of metonymy
are dealt with in our system by having the NLU component recover the missing structure
(Popescu & Koedinger, 2000). The semantic representations that are constructed in this way are
the same as those that would have been built if the same sentence had occurred without
abbreviations. The abbreviations that the tutor needs to know about are handled differently. The
semantic representation that is constructed reflects the abbreviation, so that the tutor can take
notice. For example, for the sentence “a triangle sums to 180” the NLU component builds a
semantic representation that does not include angles. This gives the tutor the option of insisting
on a more complete explanation (step 8). Exactly on what level of precision the system should
insist is not easy to determine. The choice should ultimately be driven by what is best for student
learning.

PRELIMINARY EVALUATION OF THE NLU COMPONENT

We conducted a preliminary evaluation of the classification accuracy of the knowledge-based
NLU component. As test data we used a corpus of 648 explanations collected during a session in
which about 20 of our colleagues and staff worked on the system. The explanations were labeled
by hand by two authors of the paper, who assigned each explanation to the most specific category
in the explanation hierarchy to which it belongs. New categories were invented as needed. A total
of 138 categories were used, 92 of which were represented in the data set. The system’s
knowledge base was then extended to include definitions for many of the new categories. The
system was then run to classify the 648 explanations.
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Table 4: Example Dialogue with the Geometry Explanation Tutor

9.  S:that two angles in a isosceles triangle are equal CONGRUENT-
ANGLES-OF-

10. T: Correct, except for one thing: are all three angles in an isosceles triangle ISOSCELES-TRIANGLE

congruent?

11.  S: that two congruant angles in a isosceles triangle are equal CONGRUENT-
ANGLES-OF-

12.  T: Correct, except for one thing: are all three angles in an isosceles triangle ISOSCELES-TRIANGLE

congruent?
15.  S: that two congruant base angles are equal CONGRUENT-BASE-
. . ANGLES
16. T: You are getting there, but you need to be more precise. Are base angles always
congruent?
19. S:base angles in a_isosceles triangle are equal CONGRUENT-BASE-
ANGLES-OF-

20. T:[ACCEPTED as correct explanation. Students get non-verbal positive feedback.] ISOSCELES-TRIANGLE

As shown in Table 3, the system classified 81% of the explanations correctly. Of the
correctly classified explanations, 80% (421 out of 523) fall under categories of full or partial
explanations. The rest were references, meaning that the student stated only the name of a
geometry rule. The system classified a further 15% of the explanations under categories that were
too general, although not strictly wrong. The remaining 4% of explanations were either not
classified at all or under categories that were unrelated to the correct category. Interestingly, when
the system classified an explanation as being complete, it was correct 100% of the time.

An accuracy score of 81% is very encouraging, especially given the fact that we are dealing
with a very fine-grained classification task, where small differences between categories are the
rule rather than the exception. There are two caveats. First, the accuracy results were obtained
with a data set that was used during the development of the system. Second, this data set was
obtained with subjects who are more advanced than those in the target population (high-school
students). More work is needed before we expect to see the same accuracy score with new data
and students from the target population. Nonetheless, the results provide a preliminary indication
that knowledge-based NLU is an appropriate choice for analysing geometry explanations.

LIMITATIONS OF CLASSIFY AND REACT

Currently, the system’s response in each dialogue turn is based only on the classification of the
student’s last explanation attempt. No further context is taken into account. This way, the tutor
can respond to the types of omissions we often see in students’ explanations and can sometimes
produce a sense of coherent dialogue, as illustrated in the examples. However, one does not have
to look far to see the limitations of the approach. For example, the system has no memory of what
went on before in the dialogue. It is therefore not able to detect situations where students stagnate
or regress and will not respond adequately. Also, the tutor is not able to engage in multi-turn
strategies or to lead students through a directed line of reasoning, as human tutors often do. But
which of these limitations is most worth addressing? Which will have the greatest impact on
learning? In the next section, we illustrate two multi-turn tutorial strategies for the current domain
and discuss how we plan to explore their utility. In the current section, we illustrate a form of
stagnation and discuss how the tutor can be made to respond in a more helpful manner.

In contrast to the previous examples, the current dialogue example (see Table 4) involves a
student of the same age as students in the target population (10" graders), although the student
was definitely better than average. Further, the responses shown are the actual system responses.
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We skip the first part of the dialogue and omit two steps from the dialogue that contained spelling
errors—at the time, the tutor did not have spelling correction, but currently it does. In step 9, the
student is very close to the correct explanation (“two angles in an isosceles triangle congruent”).
The explanation is missing only the term “base angles”. The tutor’s response in step 10, “Are all
three angles in an isosceles triangle congruent?” was designed to hint at that fact but is not quite
appropriate. The message writer had not anticipated that the student might use the word “two” in
his explanation. This can be fixed simply by crafting a better message.

Next, the student adds the word “congruant” [sic] to the explanation (step 11). This is not an
improvement over the previous explanation attempt (step 9). One might say it is worse, because
the purported explanation is now a tautology. This may well be a sign that the student does not
fully understand what he typed. The tutor however is oblivious to the problem and simply repeats
the feedback message that it gave before, in spite of the fact that this message did not help (step
13). This is unsatisfactory. A likely cause of the problem is that the student does not know the
concept of base angles or at least does not think of using the term in this context'. The tutor
should realize that and provide more helpful feedback. For example, the second time around, the
tutor should have said: “WHICH angles in an isosceles triangle are congruent? What is the right
term to use here?” If that message again does not help, then the tutor should cut to the chase and
simply tell the student to use the term “base angles” and explain what the term means.

This problem needs to be addressed. In the current example, the students quickly gets back
on track, but this will not happen as easily with all students. The tutor needs to be able to help
students over the hump if they get stuck. In order to be able to detect this kind of stagnation, the
tutor needs to keep a history list of the categories under which the student’s explanation attempts
were classified. Further, it needs to have multiple, increasingly specific messages associated with
each explanation category. As a further way to help avoid stagnation, the system needs to provide
helpful hints when the student clicks the “Help” button. These messages need to be sensitive to
the current state of the student’s explanation and need to be coordinated with the feedback
messages, so that help and feedback can be interleaved in any order. Quite possibly, this can be
achieved simply by using the same sequences of messages for help and feedback. We will have to
make sure that students do not abuse the feedback messages and help messages to let the tutor
provide the explanation without making a real effort to come up with an explanation themselves.
(We have observed similar minimum effort tactics in the patterns of students hint use, see Aleven
& Koedinger, 2000a.) One way to discourage such tactics is not to make the tutor too
forthcoming with information, even if this may conflict with other maxims of good tutoring.

TUTORIAL STRATEGIES TO HELP STUDENTS EXPLAIN

A category of pedagogical content knowledge that is currently not addressed in the tutor is
strategies that can be used to lead students to explanations, if they are struggling to produce an
explanation. We look at two examples of such strategies.

Using a “procedural replay” as a bridge

We have observed that students often provide a “procedural replay” when asked to provide an
explanation of a geometry problem-solving step. That is, they merely restate the arithmetic that
was used to come up with a numeric answer. Such an “explanation” of course does little to justify
why that was the correct thing to do. However, the prevalence of procedural replays suggest that
one way to help students who are struggling to provide an explanation is (a) to ask how they came

' One might argue that the student’s response in step 11 indicates that he does not know the meaning of the
term “congruent”, an important term in geometry. However, the use of the term congruent might reflect a
superficial repair strategy, a shot in the dark. The student does not know how to improve the explanation in
step 9. The tutor has just introduced the term “congruent” (step 10), so why not use that term?
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up with their numeric answer (thus inviting them to provide a procedural replay) and then (b) to
ask how they knew that this procedure was the right thing to do. This strategy thus grounds the
explanation task in an activity that the student has just completed successfully. This strategy is
not unlike the “concrete instance” strategy in Ms. Lindquist (Heffernan & Koedinger, 2000). The
strategy is illustrated in the following hypothetical dialogue about the triangle sum theorem.

Tutor: How did you find your answer?

Student: subtracted 76 and 61 from 180.

Tutor: So you subtracted two other angles from 180. Which angles?

Student: XZY and YXZ

Tutor: OK, And why did you use the 1807 How did you know that this was the right number
to use?

Student: Because of the triangle.

Tutor: OK. So there is a triangle and there is the 180. Can you state a general rule about
triangles?

Student: The triangle totals 180.

Tutor: ...

One of us tried out this tutorial strategy on a few occasions while assisting students during a
classroom study with a tutor version that did not provide feedback (Aleven & Koedinger, 2000b).
The strategy seemed natural and effective at least for some of the geometry rules. We note that
this strategy goes well beyond what the Geometry Explanation Tutor currently can do. First, the
dialogue shown above does not conform to the assumption made in the current system that each
utterance by the student is an attempt at providing a complete explanation. Further, the dialogue
shown above seems to require some form of dialogue planning. Before we add such facilities to
the system, we need to know more about how effective this tutorial strategy (and others that
human tutors may use) will be in improving students’ learning. A Wizard of Oz kind study, in
which a human tutor communicates with the student through the computer interface (simulating
the smarts of a computer tutor) would be appropriate to explore that question further.

Counterexamples

A second tutorial strategy that is likely to be useful involves the use of counterexamples when
students state overgeneralizations. Consider the angle addition theorem, which says: “The
measure of an angle formed by two adjacent angles is equal to the sum of the measures of those
two angles.” This rule appears to be one of the more difficult rules to explain. Let us assume that
the student needs to explain the angle addition rule and starts out with the kind of intuitive,
informal explanation that students tend to provide with some frequency (shown below). How to
get the student to state this geometry rule more formally? The judicious use of counterexamples
may be a lot better than just asking “can you state your explanation in more mathematical terms?”

Student: the big angle is equal to the sum of the two small ones.

Tutor: OK - true in this diagram. Now let us look for a general rule. Did you mean that
whenever you have a big angle and two small ones, the big one is the sum of the two small
ones?

Student: Yeah, like it is in the problem here.

Tutor: Let me change this problem diagram a little bit [in a drawing of the diagram, moves
the two adjacent angles apart and draws a third angle]. Here we have a big angle and two
small ones. According to your theory, the big angle is the sum of the two small ones. Correct?
Student: no the two small ones need to be next to each other

Tutor: OK, they need to be adjacent. So you are saying that whenever you have two adjacent
angles and a third angle, the third angle is equal to the sum of the other two?

Student: Yes.
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Tutor: Well, let me change this diagram one more time. [Moves the two angles so that they
are adjacent again but keeps a third angle.]

It seems very worthwhile to have the tutor show counterexamples, as this would expose
students to a venerable and ubiquitous strategy of mathematical reasoning. On the other hand, it is
not clear that this kind of extended dialogue should be carried out in the context of problem-
solving exercises. This might distract too much from solving the geometry problem at hand. It
may be better to have students engage in activities that focus explicitly on creating and stating
definitions based on examples and non-examples of the term to be defined. The (very influential)
curricular guidelines of the National Council of Teachers of Mathematics include this kind of
mathematical argumentation as an important objective (NCTM, 1989).

The current system is not capable of generating the dialogue shown above, for much the
same reasons that it cannot generate the “procedural replay as bridge” dialogue. This is not to say
that the current system could not present counterexamples. Certainly, its feedback messages could
be modified to do just that. However, within the classify-and-react framework, it may be quite
difficult to recover when the student does not understand the counterexample. Also, it may be
difficult to stick to the strategy when a first counterexample gets the student to go only halfway
(as illustrated in the dialogue shown above). At this point it is not quite clear how important it is
to have such capabilities. This question is best explored by means of a Wizard of Oz study.

CONCLUSION

We are involved in a project to develop a tutorial dialogue system that helps students learn
through self-explanation. The main purpose is to help students learn geometry problem-solving
skills with greater understanding. A secondary purpose is to get students to learn to “speak
mathematics”, that is, to help students to learn basic math communication skills. With respect to
the field of cognitive science, our goal is to test the hypothesis that self-explanation has a greater
impact on learning if students explain in their own words, rather than through a structured
computer interface, such as a menu.

Our development strategy is to equip the system with a sophisticated NLU component and to
keep the dialogue management component simple. Thus, our efforts so far have focused on
developing an NLU component that provides detailed analysis of students’ explanations. A
preliminary evaluation study showed that this component accurately classifies 81 % of student
explanations and somewhat reasonable classifications on all but 4% of student explanations.
Work on the NLU component continues in order to improve its performance.

Currently, the system’s pedagogical content knowledge consists of a hierarchy of
explanation categories, which represent common ways of providing complete or partially
complete statements of geometry rules. The system uses this knowledge in each dialogue turn to
classify the student’s explanation and to select appropriate feedback messages. This approach
enables the tutor to respond to the types of omissions we often see in students’ explanations and
produce reasonably effective dialogue. However, some extensions are needed in order to make
the dialogue more robust. The tutor must be able it to detect situations where a student stagnates
and is not able to improve her explanation even after receiving tutor feedback. The tutor must be
able to help students over the hump in such situations. To do so, the system needs to have a
dialogue history and multiple levels of feedback messages associated with each explanation
category. It will also be necessary to coordinate the hint messages and the feedback messages.

At this point, it is not quite clear that the tutor needs to engage in multi-turn tutorial
strategies such as “use procedural replay as bridge” and “counterexamples”. To investigate the
importance of such strategies, we will follow the 3™-generation methodology exemplified by
many other projects, namely, to study expert human tutors and perform Wizard of Oz studies.
More importantly, we will build alternative versions of the tutor and experimentally test whether
our changes lead to greater student learning.
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AutoTutor is an intelligent tutoring system that interacts with students in the way
that human tutors do: with natural language dialog (Graesser, Wiemer-Hastings, Wiemer-
Hastings, Kreuz, & the TRG, 1999). It presents questions and responses with a talking head
which uses speech production and gesture to give graded feedback. It understands student
replies using surface clues and latent semantic analysis (LSA) (Landauer & Dumais, 1997).
It directs a student through a tutoring session using responses from its curriculum script
which represents its knowledge of the domain (Wiemer-Hastings, Graesser, Harter, & the
Tutoring Research Group, 1998).

AutoTutor has been shown to be effective in aiding student learning. Compared to
control subjects who simply reread a chapter, students who used AutoTutor had improved
learning and memory of the lessons by .5 to .6 standard deviations (Graesser, Person, Harter,
& the TRG, 2001).

The AutoTutor system has limitations however. Despite the fact that the questions in
AutoTutor’s curriculum script are meant to be “deep reasoning” questions, its approach to
the dialog is very shallow. There are two main reasons. First, AutoTutor’s language analysis
mechanism is limited. LSA tells AutoTutor how similar a particular student answer is to
some desired good answer. But if the student answer is not so close, the system does not
know where it is lacking. More detailed analysis of the student answer could change the
types of responses AutoTutor makes. Instead of just moving on to the next point when the
current one was matched sufficiently, an improved understanding mechanism would support
more intelligent generation of follow-up questions.

The second limitation to the depth of AutoTutor’s conversations is its subject matter.
Computer Literacy attempts only to familiarize students with the basic concepts of com-
puters, and does not get into any deep issues. Thus, many of AutoTutor’s questions have
a short-answer feel; the ideal answers can be summed up in one or two words. A more
complicated domain would allow much more interesting discussions.

For these reasons, we are developing RMT, the Research Methods Tutor. RMT is aimed
at undergraduate psychology or cognitive science students who are studying research meth-
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ods. RMT takes a case-based approach. It presents a research question to the student, and
asks the student how to go about evaluating it. This domain supports in-depth discussions
of the student’s approach to addressing the research question. It also allows the system to
develop the student’s analogical reasoning. RMT brings in related research paradigms to
help the student infer both similarities and differences with their approach.

RMT also makes use of the Structured LSA (SLSA) language analysis system (Wiemer-
Hastings, 2000). This system uses part-of-speech tagging, anaphora resolution, and shallow
parsing to break apart input sentences into their subject, verb, and object segments and
to replace pronouns with their antecedents. This technique provides a better match to
human similarity judgments than standard LSA does (Wiemer-Hastings & Zipitria, 2001).
Additionally, this allows the tutoring system to know what part of the student’s answer
matched an expected good answer, and what part did not match. This will allow RMT
have a more effective dialog with the student by finding the “nugget of truth” in the answer,
and leading the student to the complete correct answer.
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