
Thesis Proposal

Reasoning about garbage collection in linear logic

Aleksey Kliger

April 24, 2008

Abstract

In a certified code system, a code producer wishes to convince a
code consumer that her program is safe to execute. To that end, the
producer provides to the consumer a certificate — a machine-checkable
proof — of safety of her program in some formal language. The code
consumer no longer has to trust the code producer, instead, the con-
sumer only needs to trust the implementer of the certificate checker
and the runtime facilities. Typically, a certified code system does not
provide a way for the code producer to manually allocate and deal-
locate memory. Instead, a garbage collector is provided as part of
the trusted computing base, without proof. Recently, formal proofs of
correctness for the Cheney copying collector have been tackled in sep-
aration and linear logic. Expanding on this work, I propose to reason
about garbage collection in a dependent, higher order, linear logic with
few unusual connectives and in the setting of a machine model that is
closer to real machine code and to produce machine-verifiable proofs of
safety for garbage collector implementations. As a concrete example, I
propose to prove the safety of an implementation of reference counting
garbage collection.

Contents

1 Introduction 2

2 Reasoning about machine code in linear logic 5
2.1 Machine model . 5
2.2 Code sequences . 10
2.3 Partial correctness specifications for code 12
2.4 Stacks and calling convention 16
2.5 Object language and memory graph 21

1

3 Linear Separation Logic 25
3.1 Syntax . 25
3.2 Unusual types . 26
3.3 Semantics . 28
3.4 Operational Semantics and Safety 31

3.4.1 LSL Machine Model 31
3.4.2 Good states and witnesses 33

4 An Object Language 35
4.1 Syntax . 36
4.2 Semantics . 37

4.2.1 Static Semantics . 37
4.2.2 Operational Semantics 42

4.3 Safety . 42

5 Conclusion 43
5.1 Related work . 43
5.2 Dissertation goals . 45

A LSL Typing rules 47

B RCTAL Operational Semantics 51

1 Introduction

In a certified code system, a code producer wishes to convince a code con-
sumer that her program is safe to execute. To that end, the producer
provides to the consumer a certificate — a machine-checkable proof — of
safety of her program in some formal language. Examples of certified code
systems are Touchstone[Nec97, NL98], TAL[MWCG98], FPCC[AF00], and
TALT[Cra03]. The ConCert project[CCD+02] uses proof-carrying code to
distribute work units to users willing to donate their idle processor time.

In each certified code system, the code consumer no longer has to trust
the code producer. Instead, the consumer only needs to trust the imple-
menter of the certificate checker and the runtime facilities. One shortcoming
of some systems is that the consumer has to trust that the formal system
underlying the proofs generated by the code producer are sound. The FPCC
and TALT systems try to overcome this problem by expressing the soundness
of the policy itself in the well-studied formal system Twelf[PS99].

2

However even with FPCC and TALT, the trusted computing base must
still include certain runtime facilities provided to the code producer’s pro-
gram. For example, calls OS kernel facilities (such as I/O) are asserted to be
safe without verifying their implementation. Other runtime facilities may
be difficult to implement within the type discipline imposed on the code
producer.

Of the latter sort of trusted runtime facility, the most notable is the
garbage collector. Typically a certified code system does not provide a way
for the code producer to manually allocate and deallocate memory. Instead
a garbage collector is treated as a black box (that is, it’s safety is asserted
in the proof system), and all memory management happens outside of the
code consumer’s control.

There are several shortcomings to this situation. First, a garbage col-
lector is a large and sophisticated piece of code that interfaces with every
program that runs on a certified code system. Bugs in a garbage collector
may be difficult to spot and may undermine the safety of the whole system.
If the purpose of certified code is to assure the code consumer that a program
is safe to execute, it would make sense to provide such verification especially
for the complex parts of a program. Second is the issue of flexibility. Pro-
grams have varying memory allocation needs, and it would make sense to
offer programmers the opportunity to tailor memory management to their
own situation. With a garbage collector as part of the trusted computing
base, no such customization is possible. So there are reasons to move the
collector out of the trusted computing base. Nonetheless, there are reasons
why this is not easily done.

Automatic memory management is implemented as part of the trusted
computing base because certified code systems are usually based on some
variant of intuitionistic logic — a logic of truth, with underlying judgment
A true. The truth judgment admits the principles of weakening and con-
traction: hypotheses A true may be used either not at all or multiple times
in the course of a proof, and there is a general expectation that once some
proposition is true, it does not “go away.” This is precisely the cause of
difficulties for reasoning about memory management: a hypothesis that a
certain memory location contains a particular value is invalidated when the
memory cell is deallocated.

What is needed is a logic without contraction and weakening; one whose
judgments are more ephemeral than truth. Linear logic[Gir87, CCP03] is
precisely such a logic. Its principal judgment is one of resources A res and
their creation and consumption. Unlike truth, a resource must be used
exactly once in the course of a proof: it cannot in general be discarded

3

or duplicated. As a result, the consumption of resources may be used to
model state. If every byte of memory is a resource at mn (meaning that
at address m is the value n), then writing a new value n′ to that same
address would consume the old resource and produce a new resource at mn′.
When a garbage collector deallocates memory, it consumes the resources
corresponding to the freed memory, making them unavailable to user code
for further access.

Garbage collection specifications, algorithms and implementations
I propose to use linear logic to reason about a garbage collector implemen-
tation. To be precise about what I set out to do, it is useful to distinguish
between three levels of abstraction for specifying memory management be-
havior: GC specifications, GC algorithms and GC implementations.

A high-level operational semantics of a programming language models
the heap as a partial map from some set of locations to heap values. Op-
erations such as allocation, memory reads and memory writes are spec-
ified in terms of this partial map in the small-step operational seman-
tics of the programming language. Garbage in the heap can be specified
abstractly[MFH95] as those locations that cannot influence the final result
of a program. A garbage collection specification is an operational step that
removes some of the garbage from the heap.

The abstract specification of a garbage collection is highly non-determi-
nistic step of the operational semantics. It does not nail down details such
as when garbage collection happens, or in what order garbage is collected. It
is a tool for showing that a program with some of the garbage removed from
the heap produces the same final result as one where there is no garbage
collection at all. A GC algorithm describes a particular strategy for selecting
garbage to collect. It picks out a particular subset of the possible executions
of of the operational semantics of a language.

Finally a garbage collector implementation gives concrete code that im-
plements the GC algorithm. An object language is compiled to machine in-
structions, and the small-step operational semantics of the high level object
language correspond to several low-level instruction steps of the compiled
code. The GC algorithm’s steps, in particular, are compiled to calls into a
concrete implementation of a garbage collector.

In support of my thesis, I propose to provide a machine-verifiable proof of
safety for a particular implementation of a reference counting GC algorithm.
The key theorem is to show that after a sequence of low-level instructions
that correspond to a single high-level operation of the object language finish

4

executing, we can relate the concrete machine model to a state of the high-
level operational semantics, even if the low-level implementation called the
garbage collector. That is, I will show that the low-level implementation is
safe with respect to the high-level semantics.

2 Reasoning about machine code in linear logic

In this section, I will introduce LSL informally, by showing how to specify
various aspects of machine code: memory and registers, the decoding of
instructions, and the specification of the execution behavior of the machine.
Then I will present notation for partial correctness specifications for code
sequences as a slightly higher-level abstraction over individual instructions.
Finally, I will present call stacks and a C-like calling convention. I defer a
formal presentation of LSL until Section 3 (and in particular, the connection
between the logic and the operational semantics of the underlying machine
model until Section 3.4), and a discussion of my object language, RCTAL,
until Section 4.

2.1 Machine model

The machine model for LSL is a byte-addressed architecture with some fixed
number of word-sized1 general purpose registers, and a program counter
register that points at an address in memory where the next instruction
resides. At each step, the machine decodes some number of bytes starting at
the program counter into an instruction, and then executes that instruction.
The machine becomes stuck if the program counter points to some bytes
that do not correspond to an instruction (that is, the decoding function is
partial), or if the machine tries to read from or write to the byte at address
zero.

Region resources Conceptually, we have the basic resource,

mat : nat→ nat→ type
def= at memrgn

A resource of type matmn says that memory address m holds the value
n. It turns out however, that it is often useful to prove propositions that hold
true about the contents of some piece of memory and about the contents of
a register. As a result, we use regions to parametrize a more basic atomic
resource at rmn, which says that address m of region r holds the byte n.

1For concreteness we take wordSize = 4, but this is somewhat arbitrary.

5

In the case of memory, there is a single region. And each register is in itself
a region:

reg
def= nat

rgn
def= reg⊕ 1

regrgn r
def= inl r

memrgn
def= inr ?

Instruction encoding resources Next, we have a proposition that says
that memory bytes m through n− 1 hold instruction i:

codeatmn i = Σa:array. !(encodesmia)
⊗ (m+ (alen a) =nat n)
⊗ placeArray a

An array is a list of pairs of natural numbers (i.e., an address and a
byte value), and encodes is an unspecified disjoint sum that gives associates
particular arrays with some instructions. For example, on the x86, one clause
might be:

(a =array [〈m, 0x80〉])⊗ (i =instr mov (rdest r1), (rco r1))

which says that if the array a is a singleton list of the address m and the
byte 0x80, then it encodes a mov instruction. The only thing we assume
about encodes is that it requires the array a to be contiguous starting at
address m. Although it is reasonable to also require it to be injective from
instructions to bytes, this fact is actually not used anywhere. The resource
placeArray is defined inductively as a multiplicative conjunction of mat
resources, one for each byte of the array.

Operands and Destinations The arguments to an instruction are some
number of operands, and at most one destination. Operands are the inputs
and the destination is an output. The resources corresponding to operands
must be present for the instruction to make sense, but they are not con-
sumed, only consulted to get the values of the operands. The resources for
the destination are consumed and then new resources are produced with an
updated value.

6

The operands are either immediate values, the contents of a register, or
the contents of some memory offset from a base address that is itself some
operand:

opnd
def= µα:type.nat⊕ reg⊕ α⊗ nat

imcon
def= roll (inl n)

rco r
def= roll (inr (inl r))

mco o n
def= roll (inr (inr (o⊗ n)))

The destinations are either a register, or a memory address specified as
an offset from an operand:

dest
def= reg⊕ opnd⊗ nat

rdest r
def= inl r

mdest o n
def= inr (o⊗ n)

The resources of an operand o that has value n are described by an
inductively defined type family. For an immediate operand, there are no
resources. For a register operand, the resources specify that the register
contains the corresponding value. For a memory operand, the resources are
specified inductively as those sufficient to establish that the base operand
contains some address and those that specify the memory contents at the
corresponding offset.

specImcon′ n
def= n′ =nat n

specRco r n
def= rwat r n

specMco o n′ nα
def= Σbase:nat.α o base⊗ mwat (base+nat n

′)n

specOpnd o n
def= µα:opnd→ nat→ type.

(Σn′:nat.o =opnd imcon
′ ⊗ specImcon′ n)

⊕(Σr:reg.o =opnd rco r ⊗ specRco r n)
⊕(Σo′:opnd.Σn′:nat.o =opnd mco o

′ n′ ⊗ specMco o′ n′ nα)

Destinations are specified in continuation passing style: the specification
consumes the resources corresponding to the old contents of the destination
and introduces new resources into the continuation.

7

specRdest r old new κ = rwat r old⊗ (rwat r new (κ)
specMdest′ a old new κ = mwat a old⊗ (mwat anew (κ)
specMdest o n old new κ = Σbase:nat.(specOpnd o base⊗>)

& specMdest′ (base+ n) old new κ

specDest d old new κ = (Σr:reg.d =dest rdest r

⊗specRdest r old new κ)

⊕ (Σo:opnd.Σn:nat.d =dest mdest o n

⊗specMdest o n old new κ)

Of course in a typical instruction set, not every operation can take any
combination of operands and destinations: some instruction sets only allow
only one operand or destination to refer to memory; most modern architec-
tures do not allow double memory references in a single operand. So the
framework here is more general and does not rule out such instructions. We
delegate responsibility to the codeat family for such architectures to rule
out any inhabitants with such exotic operands.

Executable instructions To show that an address m has an executable
instruction, we have a new atomic proposition, executablem. There are two
constants of this type, one for instructions where control flow simply con-
tinues to the next instruction, and one where control flow is unconditionally
transferred elsewhere:

execStepmn i : (codeat imn⊗>)
& specStep i (Σk:nat.◦kexecutable n)
(executablem.

execNoStepmn i : (codeat imn⊗>) & specNoStep i

(executablem.

Each of these constants are functions in continuation passing style with
result executablem, that consumes the resources for the precondition of the
instruction i and introduces into the continuation the new resources avail-
able after the instruction executes. In the case of ordinary control flow, the
continuation result must be an executablen, if control flow is transferred else-
where to address j then the continuation has the appropriate executable j.
The specStep and specNoStep families specify the resources consumed by
each instruction and introduced into the continuation.

8

For example, an instruction mov d, o has the following specification:

specMov i κ
def=Σd:dest.Σo:opnd.

(i =instr mov d, o)
⊗Σws:nat. (specOpnd ows ⊗>)

& Σwd:nat.specDest dwdws κ

specStep i κ
def= · · · ⊕ specMov i κ⊕ · · ·

This specification illustrates the use of additive conjunction and the ad-
ditive unit (>) to check that some resource is available, without consuming
it. In general a proposition of the form (A ⊗ >) & (B ⊗ (C (κ)) speci-
fies: that resources A are available without consuming them; that resources
B are to be consumed; and that new resources C are introduced into the
continuation. An alternative would be to specify A ⊗ B ⊗ (A (C (κ),
but note that the latter specification has the disadvantage that A and B
cannot refer to the same exact resources. For the mov operation, that would
disallow moves from a register back to itself. (A less contrived situation
would be an instruction like add (rdest r1), (rco r1), (rco r1) that uses the
add instruction to double the value in a register.)

For a jump instruction, rather than continuing execution at the next
instruction, the specification expects that the target of the jump is itself
executable:

specJmp i = Σo:opnd.(i =instr jmp o)
⊗ Σn:nat.(specOpnd o n⊗>)

& (Σk:nat.◦kexecutablen)

Well-founded recursion and the monadic type One point worth not-
ing is that the continuation does not have the expected type executable n,
but rather, the more complex ◦kexecutable n. The type ◦MA is an indexed
family of monadic types. It is used to support reasoning about looping (and
recursive) programs without having to introduce unbounded recursion into
the proofs (indeed, a general recursion construct fix f.M would allow every
type to be inhabited, making LSL unsound). Instead a restricted fixpoint
construct introduces hypotheses ◦kA that are weaker than the conclusion
A we’re trying to form and execStep and execNoStep consume these weaker
resources.

Intuitively, we want at least one instruction to be executed before we
appeal to the fixpoint hypothesis. Furthermore, we use an index k on the

9

monad ◦kA to ensure that we cannot inhabit every monadic type without
taking a step (it is the case for monads that ◦ ◦ A (◦A, however for our
monad, the weaker ◦k◦lA (◦k+lA holds). Our monadic type is closely
related to the B type constructor of [AMRV07] and © of [HHWC07], but
rather than appealing to a semantic model to ensure that proofs are well-
founded, we instead use a syntactic restriction by introducing an index.

As a piece of syntactic sugar, we have the abbreviation:

?A def= Σn:nat.◦nA

At this point, we have described all of the “core” LSL features. The LSL
safety theorem (Theorem 3.1) allows us to be sure that if various resources
allow us to construct a proof of executablen then a corresponding machine
execution will not “go wrong.”

However, constructing proofs directly with the definitions given thus far
is fairly tedious and is at too low a level of abstraction. In the remainder of
this section we develop a collection of definitions to correct this shortcoming.
Some of the choices we make in the sequel will restrict the kinds of programs
we can reason about (for example we will rule out self-modifying code), but
by dealing with more typical programs, we will be able to prove stronger
theorems which will in turn reduce the amount of proof to be carried out
within LSL to reason about our garbage collector.

2.2 Code sequences

There are several disadvantages to reasoning about instructions with just the
executable proposition: every proof interleaves showing that the resources for
the next instruction are available (codeat i pc pc′) with the proof about its
behavior; the proofs have to deal with concrete code locations, rather than
some more abstract notion of code label as in a typical assembly language;
for each instruction the pre- and post- conditions are at the level of resources
for individual machine words, rather than some higher-level data structures.

cs ∈ Code Seqs ::= · | c; cs
c ∈ Code ::= i | l: | l.c | cs

Figure 1: Syntax for LSL Code Sequences

To address all these concerns, we build an additional abstraction on
top of instructions. Code sequences cs abstract syntax is summarized in

10

Figure 1. Code sequences consist of zero or more pieces of code, which may
be individual instructions i; or labels l: that give a name to a particular
location within a code sequence. Labels are introduced by the l.c construct,
and are bound within c, and are typically used as immediate operands imco l.
Finally, code may itself be a code sequence. In LSL code is defined using
LSL variables of type nat, and lambda-abstraction for label abstraction:

code
def= µα:type.instr⊕ nat⊕ (nat→ α)⊕ listα

cInstr i
def= roll (inl i)

cHere l
def= roll (inr (inl l))

cAbs lc
def= roll (inr (inr (inl lc)))

cSeq cs
def= roll (inr (inr (inr cs)))

The machine language of LSL has only a few primitive instructions in
order to keep the meta-theory small, but by making notational definition
with code sequences, we can reimplement many useful operations as macros.
The ability to do control transfers by using locally abstracted address labels
is particularly useful in this regard.

Resolving code to instructions The process of compiling sequences of
code to instructions is called resolution. A code sequence cs resolves to an
array a at locations between pc and pc′ if a consists of all the bytes for
every piece of code in cs appended together. An instruction i at address
pc resolves to an array a precisely if encodes pc i a. A label abstraction l.c
resolves to an array a at address pc if there is some choice of address x such
that the code c resolves to array a at address pc with x in for all uses of l in
c. And finally a label l : resolves to the empty array at location pc precisely
if the choice of x for l was pc. That is, when resolving a label abstraction,
we guess what address the label refers to, and when we actually come across
that label in the body of the abstraction, we check that the guess was right.

The process of resolving a code sequence ultimately rules out certain
undesirable situations such as using the same label to name two different
locations in a single abstraction l.cs (in that case, there would be no way
to resolve one of the labels since they would be at unequal addresses and so
there would be no single choice of x for l).

If a code sequence cs resolves to an array a we require that the array
be placed in memory as a precondition for the whole code sequence. A

11

consequence of this is that we rule out self-modifying code, although we do
not have any such code in our garbage collector.

resolve
def= µα:code→ array→ nat→ nat→ type.

λc:code.λa:array.λpc:nat.λpc′:nat.

· · · ⊕ resolveAbs c a pc pc′ α

⊕ resolveHere c a pc pc′ ⊕ · · ·

resolveAbs c a pc pc′ α
def= Σc′:nat→ code.(c =code cAbs c

′)
⊗Σl:nat.α (c′ l) a pc pc′

resolveHere c a pc pc′
def= Σl:nat.(c =code cHere l)

⊗(a =array anil)
⊗(l =nat pc)⊗ (pc =nat pc

′)

2.3 Partial correctness specifications for code

In reasoning about sequences of code, we would like to be able to specify
their pre- and post-conditions at a higher level of abstraction than individ-
ual machine words. To that end, we employ Hoare quads — partial correct-
ness specifications similar to Hoare triples[Hoa69] — but with an additional
fourth component.

The specification {α}c{β} says that if the precondition α holds, and the
(resolved) code c is in memory between addresses pc and pc′, then after the
code executes, and control flow reaches address pc′, then we can assume that
the post condition β will hold when trying to show that pc′ is executable.

Hoare triples have an entailment property, and Hoare triples in separa-
tion logic have a frame rule to pass unused resources from between the pre-
and post-conditions. It is these two properties that ultimately make Hoare
triples useful for us: we can specify code behavior in terms of high-level
data structures which can be whittled away by entailment and the frame
rule to just those pieces of the data structure that are ultimately accessed
by a piece of code. So Hoare triples provide a convenient notation for stating
theorems, but ultimately they give us no additional expressive power.

Since we’re in a linear setting, we must also account for the disposition
of the resources in case that control flow does not reach the next instruction
at pc′ after a piece of code. For example if the code c includes a conditional
branch to some other address pc′′, then the post-condition β will not nec-
essarily hold, and indeed to prove that c is safe, it does not suffice to to

12

show that execution continues from pc′ in that case. To account for this
possibility, we add a fourth component — zero or more escape conditions γ
— {α}cγ{β}. An escape condition consumes the resources ρ that correspond
the array a to which the code c resolves2:

{α}cγ{β}
def= Πpc:nat.Πpc′:nat.Πa:array.∀ρ:type.

resolve c pc pc′ a

→ (ρ (placeArray a⊗>)
→ (α⊗ ρ ((β ⊗ ρ (?executable pc′) & (ρ (γ)

(executable pc)

Essentially, Hoare quads are in continuation passing style: the post-
condition is the type of the result that the default continuation expects
and the escape conditions are alternate continuations available for a piece of
code. The additive conjunction connective of linear logic allows us to specify
that exactly one of the possible continuations will be used.

For an instruction such as mov, the escape condition is simply > since
there is no non-local control transfer, so there is no need to consume the
resources in an alternate manner, and > is the unit for additive conjunction:3

{(specOpnd o x⊗>) & Σy:nat.specDest d y xα}mov d, o>{α}
On the other hand, an unconditional jump has an escape condition that

requires that we can show that the precondition implies that the destination
of the jump is executable:4

{(specOpnd o l ⊗>) &α}jmp r(α(?executable l)
{0}

Finally, a conditional jump may either continue normally if t is zero, or
transfer control to a different address l otherwise:

{ (specOpnd ot t⊗>) & (specOpnd ol l ⊗>)
& (t =nat 0 (α) & (0 < t (β)

}
jnz ot, ol

(β(?executable l)
{α}

2We chose to reason indirectly via ρ rather than dealing concretely with placeArray a,
so that we can reason compositionally about multiple pieces of code that implicitly pass
around the whole set of resources ρ.

3Each Hoare quad that we present in this section is a proposition; the proof terms for
each of them exist (in machine-checkable LSL), but are omitted from this document.

4The strongest post-condition is falsehood; since there is no way to transfer control to
the point after the jump instruction, in any such state we can conclude anything we want.

13

A sequential composition of two pieces of code has pre- and post-con-
ditions that compose as for Hoare triples. The escape conditions combine
together with additive conjunction — we lose information in the conclusion
about which piece of code can escape to which alternate continuation, only
knowing that their composition can escape to one of the combination of
alternatives:

{α}c1
δ1
{β}

→{β}c2
δ2
{γ}

→{α}c1; c2
δ1 & δ2
{γ}

Hoare quads have the usual entailment behavior in their pre- and post-
conditions. Since a piece of code decides which escape conditions to make
use of, offering it more choices which it does not use is always possible.
Therefore to weaken a Hoare quad, we strengthen the escape condition:

{α}cδ{β}
→(α′ (α)→ (β (β′)→ (δ′ (δ)

→{α′}cδ′{β′}

In addition, Hoare quads have a frame rule[Rey02] that allows for local
reasoning: it suffices to only reason with the resources directly affected by
a piece of code without the resources that pass unchanged:

{α}cδ{β}
→{α⊗ ρ}c(ρ(δ)

{β⊗ρ}

A final example illustrates the interaction between the fixpoint construct
and Hoare quads. In a loop, the loop invariant is the precondition: it entails
that the label at the loop entry is executable. Code within the loop gains
an additional escape condition back to the loop entry point which can only
be used if the precondition is re-established. (Compare the escape condition
below with the escape condition for a jump instruction):

{α}c(α(?executable l) & γ
{β}

→{α}l: cγ{β}

14

The proof term for the preceding proposition uses the fixpoint con-
struct to form an unrestricted hypothesis ◦1{α}c

γ
{β}. That entails (α (

◦2executable pc), which may be consumed in the course of showing the safety
of a jump back to the loop entry point.

Backward reasoning Although there may generally be several equiva-
lent5 Hoare quads for each instruction, of particular interest are ones where
the postcondition and escape conditions are universally quantified type vari-
ables. Suppose we wish to show:

{P}c1; c2
Es
{Q}

if we have

∀β.∀γ.{P1(β, γ)}c1
γ
{β}

and

∀β.∀γ.{P2(β, γ)}c2
γ
{β}

We can reason backwards as follows:

1. Instantiate the second Hoare quad with Q and Es:
{P2(Q,Es)}c2

Es
{Q}

2. Instantiate the first Hoare quad with P2(Q,Es) and Es:
{P1(P2(Q,Es), Es)}c1

Es
{P2(Q,Es)}

3. Use the rule for sequence composition:
{P1(P2(Q,Es), Es)}c1; c2

Es&Es
{Q}

4. Use the entailment rule to conclude {P}c1; c2
Es
{Q} given proofs of P (

P1(P2(Q,Es), Es), Q (Q and Es (Es&Es

In fact, these steps can be carried out completely automatically leaving
us with one non-trivial proof left provided that we have backward reasoning
Hoare quads for every piece of code. As it happens, such Hoare quads
are available for all non-looping code, and as a result a proof assistant can
be used for reasoning about straight-line and forward-jumping code with
minimal user intervention culminating in a single non-trivial subgoal as in
the previous example.

5in the sense that they entail each other

15

2.4 Stacks and calling convention

From the point of view of LSL, a stack and the closely related notion of
a procedure calling convention is just a particular convention in the use of
memory resources and (a dedicated) stack register.

Stack layout A particular register is singled out as stackReg and the
value in it, sp, is the stack pointer. A value is a stack pointer if it is a
multiple of wordWidth and it points within the stack: a contiguous set
of memory resources (between addresses, stackMin and stackMax). The
stack is divided into the unused stack space (between stackMin and sp −
wordWidth) and the used stack (between sp and stackMax).

stackPointer sp
def= pointer sp⊗ (stackMin ≤ sp)⊗ (sp ≤ stackMax)

Stack frames, pushes and pops Common programming practice is to
only access a local part of the used stack, the current stack frame. With
linear logic, we can restrict ourselves to reasoning about only well-behaved
stack operations (in the sense of respecting the current stack frame) by only
providing the linear resources for this prefix:

unusedStack spmin sp a
def= Σl:list nat.!(encodesWords spmin a l)

⊗(spmin+ (alen a) =nat sp)

usedStack l a sp spmax
def= !(encodesWords sp a l)
⊗ (sp+ (alen a) =nat spmax)
⊗ (spmax ≤ stackMax)

A pop instruction, simply increments the stack pointer by wordWidth.
As a precondition P , however, we require that there be at least one element
x on the current stack frame. In the post-condition, the resources are re-
associated, and the location of x goes from the used stack space to the
unused:

pop
def= add stackReg, stackReg, wordWidth

16

The Hoare quad is {P}pop>Q where

P = !(stackPointer sp)⊗ !(unusedStack stackMin sp un)
⊗ !(usedStack (x::xs) frame sp frameTop)
⊗ rwat stackReg sp⊗ placeArrayun⊗ placeArray frame

and

Q = Σsp′:nat.!(stackPointer sp′)⊗ (sp′ =nat wordWidth+ sp)
⊗ rwat stackReg sp′

⊗ (Σun′:array.!(unusedStack stackMin sp′ un′)
⊗ placeArrayun′)

⊗Σframe′:array.!(usedStackxs frame′ sp′ frameTop)
⊗ placeArray frame′

To pop an element from the stack, we need to show as a post-condition
that the new stack pointer address sp′ will be valid. Since the precondition
specifies that there was at least one element on the stack frame, we can
deduce that sp′ is still bounded by stackMax. On the other hand, when
doing a push operation, it is not clear that there is an unused stack slot
available. Consequently, the code for a push must do a runtime check to
ensure that sp does not equal stackMin (if it does, we halt the program6):

push o
def= l . add stackReg, stackReg, negStackMin

jnz stackReg, (imco l)
halt

l:add stackReg, stackReg, (stackMin− wordWidth)
mov (mdest (rco stackReg) 0), o

The Hoare quad is {P (α)}push o>{α} where:

6A more realistic machine model would account for interaction with an operating sys-
tem, in which case writes to certain memory pages may induce an OS trap. Most operating
systems unmap the page immediately below the the bottom of the stack, so a runtime
check would not be needed, since the postcondition for a memory write would allow us to
deduce that the stack pointer had been within bounds.

17

P (κ) = !(stackPointer sp)⊗ !(usedStackxs frame sp stackMax)
⊗ !(unusedStack stackMin sp un)
⊗ ((specOpnd o x⊗>)

& (rwat stackReg sp⊗ placeArrayun⊗ placeArray frame

⊗(Πsp′:nat.Πun′:array.Πframe′:array.
(sp =nat wordWidth+ sp′)
→ stackPointer sp′ → unusedStack stackMin sp′ un′

→ usedStack (x :: xs) frame′ sp′ stackMax

→ rwat stackReg sp′

⊗ placeArray frame′ ⊗ placeArrayun′

(κ)))

Loads We can access an element of the current stack frame using an in-
direct move with a positive wordWidth-multiple. For example if the stack
frame contains x0::x1::xs, we can load x1 with the instruction:

mov d, (mco (rco stackReg) (wordWidth ∗ 1))

Although the general Hoare quad for moves from memory can be ap-
plied equally well to the stack, a more specific rule simplifies reasoning by
allowing us to reuse proofs for breaking apart the placeArray resource into
its constituent resources:

P (κ) = (Σsp:nat.Σframe:array.!(usedStackxs frame sp spmax)
⊗!(elemNthxs k x)
⊗placeArray frame⊗ rwat stackReg sp

⊗>)

& (Σy:nat.specDest d y xκ)

in the Hoare quad

{P (α)}mov d, (mco (rco stackReg) (wordWidth ∗ k))>{α}

18

Stack frame layouts and calling conventions Procedure calling con-
ventions further subdivide the current stack frame into components such as
the procedure arguments, a return address, and zero or more local variables.
Operationally, a procedure call pushes the return address and transfers con-
trol to the caller. Logically, a procedure call is also responsible for shifting
from the caller’s view of the current stack frame, to the callee’s view of their
own new stack frame: some of the caller’s pushed locals become the argu-
ments of the callee. Correspondingly, a return instruction pops the return
address from the stack and transfers control back to the caller and logically
it shifts the view back to the caller.

We say that a stack frame is valid if it is laid out according to our calling
convention and includes only the current function’s local view of the stack
(i.e., the largest used stack address is at the last function argument):

validFrame sp locals ra args unused frame
def=

unusedStack stackMin sp unused

⊗ usedStack (locals ++ [ra] ++ args) frame
sp (wordWidth ∗ (1 + |args|) + sp)

A return instruction simply pops an address from the top of the stack
and jumps to it. The escape condition accounts for the callee’s view of the
stack after the return address is popped off:

normalFuncEscapeCondβ args sp ra
def=

Πunused:array.Πframe:array.
unusedStack sp unused

→ usedStack args frame sp (wordWidth ∗ |args|+ sp)
→ β args⊗ rwat stackReg sp

⊗ placeArrayunused⊗ placeArray frame

(?executable ra

Here β::(list nat) → type is the function exit invariant and args were
the arguments with which the function was called. Note that the local stack
maximum is wordWidth ∗ |args|+ sp, so the callee’s local view of the stack
only includes a short prefix portion of the caller’s stack frame (namely the
callee’s arguments).

A return instruction has the Hoare quad:

19

{P (β)}retnormalFuncEscapeCondβ args sp ra{0}

where

P (σ) = !(validFrame (wordWidth+ sp) [] ra args unused frame)
⊗ σ args⊗ rwat stackReg (wordWidth+ sp)
⊗ placeArrayunused⊗ placeArray frame

The entry point to a function must similarly provide a valid stack frame,
an an additional entry point invariant (that perhaps mentions the function
arguments). So if a function f that takes arguments args has entry point
invariant α args and an exit invariant β args and is implemented by code
c, we are obligated to prove the Hoare quad:

{P (α)}cnormalFuncEscapeCondβ args sp ra{0}

The post-condition 0 indicates that functions must exit via a return
instruction, rather than by falling through at the bottom.

To call a function, the callee must push the address immediately after
the call instruction onto the stack, and then jump to the function’s entry
point:

call o
def= l.push (imco l)

jmp o

l:

Given

P σ sp args locals oldRAoldArgs =
Σun:array.Σframe:array.

!(validFrame sp (args ++ locals) oldRAoldArgs un frame)
⊗ rwat stackReg sp⊗ placeArray frame

⊗ placeArrayun

⊗ σ args

20

the precondition is

Qoαβ sp args locals oldRAoldArgs =
Σfa:nat.(specOpnd o fa⊗>)

& (funSpec faαβ ⊗ P α sp args locals oldRAoldArgs)

for a specification

{Qoαβ sp args locals oldRAoldArgs}call o>{P β sp args locals oldRAoldArgs}

Where funSpec faαβ is a specification for some function at address fa
that has a precondition αargs and post-condition β args (compare with the
definition of Hoare quads, p. 13):

funSpec faαβ
def= Σc:code.

Πargs:list nat.Πsp:nat.Πra:nat.Πa:array.∀ρ:type.

(Σpc′:nat.resolve c fa pc′ a)
→ (ρ (placeArray a⊗>)
→ validFrame sp [] ra unused frame
→ αargs⊗ rwat stackReg sp

⊗ placeArrayunused⊗ placeArray frame

⊗ ρ
((ρ (normalFuncEscapeCondβ args sp ra)
(?executable fa

2.5 Object language and memory graph

With a mechanism for specifying functions, higher levels of abstraction are
possible. We can, for example, build a library for manipulating queues of
elements.

Such a library can, in turn, be used to implement a reference counting
garbage collector.

For simplicity, we assume that all objects allocated by the reference
counting allocator are of uniform size and layout: pairs of elements each of
which can be either a non-pointer integer, or a pointer to another element.
Each live element keeps a reference count of the number of other elements
in the graph that point at it.

21

We chose to implement a lazy reclamation strategy: when the reference
count of an element becomes zero, rather than immediately reclaiming it,
we place it on a queue of other such elements. They each have the property
that they have zero references to them, but may themselves contribute to the
reference counts of live objects. We collect all such objects in a reclamation
queue.

When user code calls the allocator to create a new object, we do one
step of reclamation by removing an element from the reclamation queue
and decrementing the reference counts of the objects that it points to, pos-
sibly placing them at the tail of the reclamation queue. Then we place the
dequeued element onto a queue of freed objects.

This method of lazy reclamation has the advantage of using a bounded
amount of time for each garbage collection operation while incurring a neg-
ligible additional space cost between reclamations[Boe04].

The interaction between the object language and the garbage collector
is specified at three levels: the object language’s type system, an abstract
intuitionistic specification in terms of graph elements and queues, and a
concrete linear specification in terms of bytes residing at particular memory
addresses.

For each operation in the object language, we have an LSL definition
that gives its behavior in terms of the abstract memory graph. (This is
essentially an LSL encoding of the object language operational semantics
specialized to our chosen GC implementation.) Additionally, we have the
concrete implementation of the object language operation as a piece of LSL
code.

For example, for the allocate instruction consx y1 y2 the operational
semantics may be7:

a 6∈ dom(H)

(H,R; consx y1 y2)→ (H{a 7→ 〈R(y1), R(y2)〉1}, R{x 7→ a1})

with typing rule:

Γ ` x : ns Γ ` yi : nat

Γ ` consx y1, y2 ⇒ Γ{x : nat×1 nat}

Abstractly, the state consists only of the memory graph H and a root
set R. And the operational semantics does not explain how we’re to come
up with the fresh address a.

7this is the operational semantics for an allocation operation where y1 and y2 contain
non-pointer values

22

The judgment Γ ` ι ⇒ Γ′ means that in a state where the rootset has
type Γ and we execute instruction ι, the resulting state has a rootset with
type Γ′. As usual, preservation and progress lemmas ensure that the abstract
operational semantics do not go wrong.

For each rule of the operational semantics of the object language, we
have an LSL encoding of a specification for the behavior of our particular
allocator. For example, the cons operation above is specified by:

specConsQF H Rxy1 y2Q
′ F2H2R

′ def=
ΣF1:queue.ΣH1:graph.
specReclaimQF H Q′ F1H1

⊗ Σv1:gvalue.Σv2:gvalue.
rootLookupRy1 v1

⊗ rootLookupRy2 v2

⊗ ΣF2:queue.Σa:address.specDequeueF1 aF2

⊗ graphInsertH1 a v1 v2H2

⊗ rootUpdateRxaR′

At the concrete level, the instruction is implemented by:

implConsx y1 y2
def= call (imco alloc)

mov (rootDestx), (rco retvalReg)
mov (firstSlotDest (rco retvalReg)), (rootOpnd y1)
mov (secondSlotDest (rco retvalReg)), (rootOpnd y2)

where alloc is implemented as

implAlloc
def= alloc:call (imco reclaim)

push (imco freelist)
call (imco dequeueOrHalt)
pop

ret

Where the call to the alloc function operates on resources that corre-
spond to an abstract graph H but also the free queue F and the reclaimation
queue Q.

23

To ensure that the concrete implementation is correct, we first relate the
object language typing rules to the abstract state by reflecting the judgment
` (H,R) : Γ — that shows the root set and memory graph are consistent
with rootset type Γ — into LSL as consistH RΓ. Additionally, the state
(F,Q,H,R) must be closed and consistent in the sense that all graph ele-
ments have the correct reference counts.

We are required to prove

{P (H,R,Γ, x, y1, y2)κ}implConsx y1 y2
>
{κ}

where the precondition is

P (H,R,Γ, x, y1, y2)κ = consistH RΓ
⊗ ΣQ:queue.ΣF :queue.closedQF H R

⊗ placeStateQF H

⊗ placeRootsR

⊗ (ΠQ′, F ′, H ′, R′,Γ′.
specConsQF H Rxy1 y2Q

′ F ′H ′R′

→ consistH ′R′ Γ′

→ closedQ′ F ′H ′R′

→ placeStateQF H

(placeRootsR′

(κ)

The abstract graph behavior of cons is specified with unrestricted hy-
potheses, and the concrete behavior operates on the linear resources that
correspond to the abstract state via placeState and placeRoots. The
connection to linear resources allows us to reason locally about the behav-
ior of helper functions that implement cons and alloc. For example, we
can prove that an implementation of dequeueOrHalt obeys its specification
once and for all for any queue. Additionally, linearity lets us reason simply
about freshness: in the specification for cons we dequeue an address a from
the free queue and we may immediately insert it into the graph H, fulfilling
implicitly the side condition a 6∈ dom(H) of the object language evaluation
rule for cons, on p. 22.

And similarly for all the remaining operations in the object language.

24

3 Linear Separation Logic

3.1 Syntax

K ∈ Kinds ::= type |Πx:A.K
A ∈ Type Families ::= α | ∀α:K.A

| a |A M | λx:A1.A2

| 1 |A1 ⊗A2 |A1 (A2

| > |A1 &A2

| 0 |A1 ⊕A2

| !A |Πx:A1.A2 | Σx:A1.A2

| µα:A1→type.A2

| islA1⊕A2 M
| ◦MA
| nat

M ∈ Terms ::= x | u | c
| Λα.M |M [A]
| ? | let ? = M1 in M2

| M1 ⊗M2 | let u1 ⊗ u2 = M1 in M2

| λ̂u.M |M1ˆM2

| 〈〉 | 〈M1,M2〉 | π1,2M
| any M | inl M | inr M
| case M1 of inl u⇒M2 | inr u⇒M3

| !M | let !x = M1 in M2

| λx.M |M1 M2

| pack 〈M1,M2〉 | let pack 〈x, u〉 = M1 in M2

| roll M | prµα:A1→type.A2

α.A3
(α, f, x;u.M)

| isli M | isle M
| fix x:A.M | circ E
| n | prnatA M1 (x, f.M2)
| M :A | cut u = M1 in M2 | cut! x = M1 in M2

E ∈ Expressions ::= tm M | let(M1,M2,M3) ◦u = M4 in E
| let u1 ⊗ u2 = M in E
| let !x = M in E

Γ ∈ Contexts ::= · | Γ, x:A | Γ, α:K
∆ ∈ Linear Ctxs ::= · |∆, û:A

Figure 2: Linear Separation Logic (Syntax)

25

The syntax of LSL is summarized in Figure 2.
LSL types — classified by kinds K — include type variables, and poly-

morphic types, term-indexed type family abstraction and application, mul-
tiplicative and additive linear logical connectives, dependent products and
sums, certain inductive types, the type of natural numbers, and two types:
islA1⊕A2 M and ◦MA discussed below.

The terms of LSL include intuitionistic and linear variables, introduction
and elimination forms for all the types, as well as a term annotated with a
type (necessary for bidirectional type checking), as well as a term cut u =
M in N binding u to the value of M in N (in the bidirectional setting, this
is not just an abbreviation for (λ̂u.N):(A (B)̂ M because in the latter M
is checked against type A but in the former it synthesizes a type).

3.2 Unusual types

The two types islA1⊕A2 M and ◦MA are specific to LSL. The former is used
to reason about disjoint sum index objects, while the latter is used to reason
about well-founded recursion.

Reasoning about disjoint sums The proposition islA1⊕A2 M says that
M has type A1⊕A2, and moreover that it is a left injection inl M ′ for some
M ′. This proposition is used to derive contradictions in the case that in fact
M is a right injection inr M ′′.

The introduction form isli M ′ has type islA1⊕A2 (inl M ′) provided that
M ′ has type A1.

The elimination form isle M has type 0, provided that M is actually a
right injection inr M ′.

For example, we can prove the proposition (inl ?) =1⊕1 (inr ?) (0 by:

λe.isle (e [x.isl1⊕1 x]̂ (isli ?))

Here e is a proof of the equality (inl ?) =1⊕1 (inr ?), which is defined
as the Leibnitz equality, ∀φ:(1⊕ 1)→ type.φ (inl ?) (φ (inr ?), which we
apply to the type family λx:1⊕ 1.isl1⊕1 x, to get a function that converts
isl1⊕1 (inl ?) to isl1⊕1 (inr ?). The latter two types are precisely what is
needed by the intro and elim forms for isl .

Reasoning about well-founded recursion When reasoning about loop-
ing code, we have to assume that the code is executable under a certain
precondition, in order to show that same fact.

26

To accommodate such reasoning, but still retain a sound logic, we allow
showing A not under the same assumption, but under a weaker assumption
◦A. Proofs of such weaker assumptions are then consumed by the atomic
proofs for executable instructions. Conceptually, if we can show A while
assuming that A will be true at some point in the future after at least one
machine instruction executes, then we can show A.

We could then have the typing rules8:

Γ, x:◦A `M : A
Γ ` fixpt x.M : A

(wrong)

and

Γ ` E ÷A
Γ ` circ E : ◦A (wrong)

Where the expressions E are either tm M which just returns the term
M , or the monad elimination form let◦y = M in E. The fix point construct
then stands for M [N/x] where N is circ(let ◦ z = (fixpt x.M) in tmz).

The key metatheoretical property that we need is that closed terms of
type ◦A are all of the form circ (tm M). That is, we can extract a proof of
A from any such closed proof.

Unfortunately, the monad law ◦ ◦ A (◦A means that we can, in fact
inhabit any ◦A with a closed term using the fix point construct:

fixpt x.circ(let ◦ y = x in let ◦ z = y in tmz)

As a result, in metatheoretic reasoning, we cannot extract a proof of A
from an arbitrary closed proof of ◦A. Doing so we could be stuck forever
unrolling the above fixpoint term.

The solution we adopt is to index our monad with a natural number index
and a non-standard elimination form that allows us to eliminate monads of
smaller index. We no longer have the law ◦ ◦ A (◦A, but rather the
weaker ◦m◦nA (◦(m+n)A. Metatheoretically, we can show that closed
terms of ◦0A are of the form circ(tm M), while expressions of higher index
must be composed of sub-expressions where the index strictly decreases.

Finally, the fixpoint construct introduces new hypotheses of type ◦1A.
We change the specifications for instructions to consume proofs of

Σk:nat.◦kexecutable pc

8These rules are reminiscent of the rules for the B modality of [AMRV07] and the ©
modality of [HHWC07]

27

whose closed terms are meta-theoretically known to be pairs pack
〈
k,N

〉
where N has type ◦kexecutable pc. Since the monad-elimination form re-
quires subterms to have strictly lower index, the problematic term from
above is now no longer well-typed, and we can decompose closed proofs of
◦kA into proofs of A in finitely many steps.

3.3 Semantics

To type check LSL we use a bidirectional system for terms and expressions.
The principal judgments are: ` M ⇐ A to check a term M against a type
A where both are inputs, and ` M ⇒ A to infer the type A of M , with
M as input and A as output. The other judgments are summarized in
Table 1. The rules are presented in a form that lends itself to a typechecker
implementation immediately. The full set of rules is in Appendix A, while
we highlight some of the rules below.

Judgment Meaning
` Γ ctx Γ is a well-formed context

Γ ` K kind K is a well-formed kind
Γ ` A : K A is a well-formed type family,

and synthesizes kind K
` α.Aocc± Type variable α occurs

only positively (resp., negatively) in A

Γ ` ∆ lctx ∆ is a well-formed linear context
Γ; ∆ `M ⇒ A M is well-formed and synthesizes type A

Γ; ∆ `M wh⇒ A M is well formed
and synthesizes weak head-normal type A

Γ; ∆ `M ⇐ A M is well-formed and checks against type A

Γ; ∆ `M wh⇐ A M is well-formed and checks
against weak head-normal type A

Γ; ∆ ` E ÷M A E is a well-typed expression that
checks against the type ◦MA

Table 1: Typing Judgments

Inductive type formation In LSL, inductive types µα:A→ type.B are
formed at kind A → type. The type A is an index parameter. This allows
for inductive definition of types that describe properties of the index object.

28

Judgment Meaning
Γ ` K1 = K2 Kind equivalence
Γ ` A1 = A2 Type equivalence

Γ,∆ `M1 = M2 Term equivalence

Table 2: Equality Judgments

For example:

dividesn
def= µα:nat→ type.

λm:nat.(m =nat 0)⊕ (Σm′:nat.m =nat (n+m′)⊗ α m′)

The type divides 3x is inhabited by terms witnessing that x is a mul-
tiple of 3.

We restrict the inductive type formation to exactly one index object of
type A. If the index is not useful, the unit type 1 can be used as the index.
If two index objects are needed, they can be passed via a single composite
index object of type Σx:A1A2 where A2 may depend on A1.

Another restriction is that the types actually have to be inductive, that
is the type variable α must not appear on the left of any function types.
This is checked by the judgment ` α.A occ+.

The complete formation rule for inductive types is:
Γ ` A1 : type Γ, α:A1 → type ` A2 : A1 → type ` α.A2 occ+

Γ ` µα:A1 → type.A2 : A1 → type
Fµ

Inductive type introduction and elimination Members of inductive
types are introduced by the term roll M . Because of the indexed inductive
types, the term is checked against the type (µα:B → type.C) M ′ where M ′

is the index object.

Γ; ∆ `M ⇐ (C[A/α]) M ′

Γ; ∆ ` roll M
wh⇐ A M ′

µI
where A = µα:B → type.C

Ignoring the index object M ′, this is just the usual checking rule for
inductive types, where the term M is checked against an unrolling of the
inductive type with the whole type substituting for α in its body.

The elimination form for inductive types is the primitive recursion oper-
ator pr

(µα:B→type.C)
α.D (α, f, x;u.M). This term ultimately stands for a function

that takes in terms of type A x and returns terms of type D[A/α] x where
A is the inductive type µα:B → type.C. The term M is the body of this

29

function, and f stands for the function itself, x is the index object. The
variable u will have the term N substituted for it when the inductive func-
tion is applied to some roll N of the type A x. That is, u putatively has the
type C[A/α] x.

Of course nothing so far prevents the body M of the inductive function
from uselessly rolling u back up and calling f and looping forever. So in
order to keep LSL sound, we borrow the technique of [CW99] and restrict
M to only calling f on sub-terms of u. We do so by checking the body M
in a context where we do not substitute A back in for α in the type of u,
but by keeping it abstract. The complete elimination rule is:

D1 D2 D3

Γ, α:B→ type,

f :Πy:B.α y (D y,

x:B;
∆, û:C x `M ⇐ D x

Γ; · ` prAα.D(α, f, x;u.M)⇒ Πx:B.A x (D[A/α] x
µE

where the subderivations are:

D1:: Γ ` µα:B → type.C : B → type D2:: ` α.D occ+
D3:: Γ, α:B → type ` D : B → type

Fixpoint induction One subtlety of the fixed point term fixf :A.M is that
the hypothesis f is unrestricted, not linear: in the course of reasoning about
a looping piece of code, the hypothesis may be used multiple times or not
at all. But if f is to be unrestricted, since it stands for the whole fixpoint
term, the whole term must make sense without using any resources.

Γ ` A : type Γ, x:◦1A; · `M ⇐ A

Γ; · ` fix x:A.M ⇒ A
fix

Suppose we wish to show executablem when we have the resource
codeat (jmp (imcom))m (m + 2) (recall that this is an abbreviation for
at memrgnmI1 ⊗ at memrgn (m + 1) I2 where I1, I2 are the bytes that make
up this particular jump instruction). We wish to use well-founded recursion,
but we cannot do so at the executable type with the resources in the context.
Instead we must abstract away the resources and apply the fixpoint at the
type codeat (jmp (imcom)m (m+ 2)) (executablem.

Expression checking The expression checking judgment Γ; ∆ ` E ÷N C
checks that the expression E has type C and its index is N . That is, circ E
has type ◦NC.

30

For expressions tm M that just return M , the index N must be exactly
0:

N →wh 0 Γ; ∆ `M ⇐ C

Γ; ∆ ` tm M ÷N C
⇐e

To typecheck the monad elimination expression let ◦u = M in E, we
need to establish that M has some monadic type ◦N1A and then check that
E has type C under the additional hypothesis that u has type A with some
index N2. But in addition we have to check that the indices N1 and N2

are both smaller than N . The index N1 can be discovered from the type of
M , however the index N2, as well as the proofs that N1 < N and N2 < N
cannot be inferred. Therefore, the entire elimination expression carries them
as subscripts let(N2,M1,M2) ◦u = M in E:

Γ; · ` N2 ⇐ nat

Γ; · `M1 ⇐ (N2 < N)
Γ; ∆1 `M

wh⇒ ◦N1A

Γ; · `M2 ⇐ (N1 < N) Γ; ∆2, û:A ` E ÷N1 C

Γ; ∆1,∆2 ` let(N2,M1,M2) ◦u = M in E ÷N C
◦E

3.4 Operational Semantics and Safety

We next wish to establish the soundness of LSL with respect to a particular
machine model. Intuitively we want to correlate proofs of executablepc with
a guarantee that a certain operational semantics for the machine model does
not get stuck.

3.4.1 LSL Machine Model

The LSL machine has a byte-addressed memory and a fixed number of
general-purpose registers, in addition to a program counter register. At
each step, the machine decodes an instruction at the address in the program
counter (or gets stuck if no decoding is possible) and takes a step correspond-
ing to that instruction. The machine model is summarized in Figure 3 and
the operational semantics for each decoded instruction are given in Table 3.

The operational semantics makes use of the following auxiliary judg-
ments:

(H,R, o) ⇓ n

(H,R, imco(n)) ⇓ n (H,R, rco(r)) ⇓ R[r]
(H,R, o) ⇓ n

(H,R,mco(o,m)) ⇓ H[n+m]

31

o ∈ Operands ::= imco(n) | rco(r) | mco(o, n)
d ∈ Destinations ::= rdest(n) | mdest(o, n)
i ∈ Instructions ::= mov d, o | add d, o1, o2 | jnz o1, o2 | jmp o | halt
H ∈ Heap ::= 〈b1, . . . , b2wordWidth−1〉
R ∈ Registers ::= 〈n1, . . . , nk〉
pc ∈ Prog. Counter ::= n
S ∈ States ::= (H,R, pc)

Figure 3: The LSL machine, syntax

if decode(H, pc) = (i, pc′) then (H,R, pc)→ S′

and i = where S′ =
mov d, o (H ′, R′, pc′) where (H,R, o) ⇓ n,

(H,R)[d← n] = (H ′, R′)
add d, o1, o2 (H ′, R′, pc′) where (H,R, oi) ⇓ ni,

(H,R)[d← (n1+n2)] = (H ′, R′)
jnz o1, o2 (H,R, pc′′) where (H,R, o1) ⇓ n,

(H,R, o2) ⇓ a, pc′′ =

{
pc′ ifn = 0
a otherwise

jmp o (H,R, pc′′) where (H,R, o) ⇓ pc′′

Table 3: The LSL machine operational semantics

32

(H,R)[d← n] = (H ′, R′)

(H,R)[rdest(r)← n] = (H,R[r ← n])

(H,R, o) ⇓ n′

(H,R)[mdest(o,m)← n] = (H[n′+m← m], R)

Where the operation + is addition modulo 2wordWidth.
We also assume that there is a (partial) function decode(H, pc) = (i, pc′)

that decodes the bytes in the heapH between pc and pc′−1 to the instruction
i.

A machine state (H,R, pc) is terminal if decode(H, pc) = (halt, pc′).

3.4.2 Good states and witnesses

We wish to use LSL to provide evidence that a good machine state does
not get stuck. A state is good if it provides linear resources that allow us
to show that the current program counter is pc and that at pc there is an
instruction that we can execute:

good : type

pc : nat→ type

goodi : Πpc:nat.pc pc⊗ executable pc (good

A new judgment ` S wb Ω means that the machine state S is witnessed
by a set or resources Ω. The elements of Ω are witnesses wA. We also extend
the typing rules with witness sets: Γ; ∆ `Ω M : A, and a new typing rule
for witnesses:

Γ; · `{wA} wA : A

Witness sets behave similar to the linear context ∆ — they are split by
multiplicative connectives and are not subject to weakening or contraction.

` S wb Ω
ΩH = {wat memrgn i bi

|1 ≤ i ≤ 2wordWidth − 1}

ΩR =
⋃

1≤i≤k

{wat (regrgn i) j nij
|0 ≤ j < wordWidth}

` (〈b1, . . . , b2wordW idth−1〉, 〈n1, . . . , nk〉, pc) wb (ΩH ∪ ΩR ∪ {wpc pc})

Theorem 3.1 (Safety). If ` S wb Ω and Ω′ ⊆ Ω and ·; · `Ω′ M : good and
if S →∗ S′, then either S′ is terminal or it can take a step.

33

Proof sketch The proof is by induction on the number of evaluation steps,
using progress and preservation lemmas.

An additional lemma (a corollary of cut-elimination for LSL) shows
that in an empty context (but with a witness set Ω), certain types (e.g.,
atMM ′M ′′M ′′′) are only inhabited by witnesses. Once that is established,
the proofs of both progress and preservation proceed by induction on the typ-
ing derivation that shows that good is inhabited, with inversion on ` S wb Ω
to establish the preconditions for the operational semantics.

34

4 An Object Language

In this section, I present RCTAL: the reference counting typed assembly
language. The operational semantics of RCTAL manipulates heap values
that are tagged with a reference count. The garbage collector for RCTAL
removes heap values with a reference count of zero from the heap. The
static semantics ensures that well-typed RCTAL programs do not go wrong
by dereferencing dangling pointers.

RCTAL distinguishes between word values which may be either flat nat-
ural numbers or boxed pointers to heap values (which for simplicity are
always pairs of word values). RCTAL is a RISC-like language — explicit
load and store instructions are used to move word values from the first or
second component of a heap value into the register file. This is a design
choice due to reference counting: if the values being loaded or stored are
pointers, the pointed-at object’s reference count must be updated to reflect
the new reference count.

In order to keep the amount of reference count manipulation down, we
allow registers to conceptually point multiple times at a heap value. If a
register has type τ1×n τ2, we say that the register has static reference count
n, and guarantee that the dynamic reference count is at least n. When a
boxed value is copied from one register to another, the static reference count
is split between the two copies, and the dynamic reference count need not
be updated at all.

Since we do not track pointer aliasing statically, it would be incorrect
to use a similar technique for pointers from within the heap itself. If we
had two registers r1 and r2 each with type τ1 × (τ2 × τ3), and we updated
the second component of the heap value that r1 points to, we have no way
of knowing if the second component of r2 is also updated (if the registers
aliased one another) or not. As a result, if there were a static reference
count on τ2 × τ3, it would be possible to violate type safety. Consider, r2
with a reference count of 2 for its second component, and r1 aliased r2. If we
overwrote the second component of r1 with a pointer to a freshly allocated
cons cell with a dynamic reference count of 1, the static reference count via
the second component of r2 would be greater than the dynamic reference
count. If the dynamic reference count ever went to zero, the cons cell would
be garbage collected, and the second component of r2 would be a dangling
pointer.

Therefore, at the time of the load, we must increment the dynamic ref-
erence count of the loaded pointer. Dually, if we overwrite a component

35

of a heap value that happens to be a pointer, we must first decrement the
reference count of the heap value that it used to point to.

We maintain the invariant that as long as the sum of the static reference
counts for each address is positive, the corresponding heap value is not
garbage and has a dynamic reference count that is at least as large as the
sum. Of course the dynamic reference count may be larger if other values
in the heap point to that heap value.

Conceptually, the static reference count exists only during typechecking,
and RCTAL could be compiled to a lower-level language that erases the
dynamic reference counts. Indeed, this is just what is done when we encode
RCTAL in LSL. The linear resources corresponding to the RCTAL register
file only record the actual values in each register, and not the static reference
counts.

The operational semantics that we give in this section underspecify RC-
TAL in the sense that, for example, the allocation instruction only has the
side condition that the newly allocated cons cell be fresh, and does not spec-
ify how we’re to come up with such a value. The encoding of RCTAL in
LSL implements the allocation instruction concretely via a lazy-reclamation
dual-queue reference counting collector, thus removing the ambiguity.

4.1 Syntax

RCTAL has a kind system that classifies its types into those that may be
stored in registers tr or in memory tm. Each type has a most specific kind
that determines if the values of the type are flat (tflat) or boxed. Boxed types
with a static reference count are classified by tboxω while those without are
classified by tbox1. A subkinding judgment (discussed below) divides the
more specific kinds into register and memory kinds.

The types of values of RCTAL may be the nonsense type (inhabited by
unspecified values), natural numbers, or pair types τ1 ×n τ2, where n is a
static reference count, or 1 if the pair has kind tbox1, and τ1 and τ2 are each
types of memory kind.

RCTAL has k registers, classified by a register file type Γ of k components
each of which is a type of register kind.

RCTAL instruction take zero or more operands which may be either nat-
ural number literals or registers, they may also have a destination register.

RCTAL program states S are triples of a heap H, a register file R and
a sequence I of instructions ι. The heap maps addresses a to heap values
h, while the register file is a k-tuple of register values rv for some fixed k.
Heap values are pairs of word-values w tagged with the dynamic reference

36

count c. Register values are either integer literals, addresses a tagged with
a static reference count, or the nonsense value ns. Word values are either
integer literals, or addresses (without a reference count tag). Instructions
are discussed with their typing rules, below.

κ ∈ Kinds ::= tm | tr | tflat | tbox1 | tboxω
τ ∈ Types ::= ns | nat | τ1 ×n τ2

Γ ∈ Register File Types ::= {τ1, . . . , τk}
Ψ ∈ Heap Types ::= {a1 : τ1, . . . , aj : τj}

o ∈ Operands ::= n | ri
ι ∈ Instructions ::= mov rd, o

| movc rd, o
| ld{1,2} rd, rs
| st{1,2} rd, o
| add rd, rs1, rs2

| cons rd, o1, o2

| inc ri
| dec ri
| jnz ri, `

I ∈ Instr. Seqs. ::= halt | ι; I
w ∈ Word Values ::= n | a
h ∈ Cons Cells ::= 〈w1, w2〉c
H ∈ Heaps ::= {a1 7→ h1, . . . , aj 7→ hj}
rv ∈ Register Values ::= n | ac | ns
R ∈ Register Files ::= {rv1, . . . , rvk}
S ∈ States ::= (H,R, I)

Figure 4: Reference Counting TAL (Syntax)

4.2 Semantics

4.2.1 Static Semantics

The static semantics of RCTAL are given by several judgments that are
summarized in Table 4.

Subkinding κ1 ≤ κ2

The subkinding judgment primarily classifies the kinds of flat and boxed

37

Judgment Meaning
κ1 ≤ κ2 Kind κ1 is a subkind of κ2

` τ : κ Type τ has kind κ
` Γ rft Register file type Γ is well-formed

Γ ` o : τ Operand o has type τ
Γ ` ι⇒ Γ′ Insruction ι is well typed

in rft Γ and produces a new rft Γ′

Γ ` I Instruction sequence I is well-typed
` Ψ Heap type Ψ is well-formed

Ψ ` w : τ Heap word w has type τ
` h : τ Cons-cell h has type τ
` H : Ψ Heap H has heap type Ψ

Ψ ` rv : τ Register value rv has type τ
Ψ ` R : Γ Register file type R has type Γ
` S State S is well-typed

Table 4: Reference Counting TAL typing judgments

types into those that may be stored in registers and those that may be
stored in memory. Flat types may belong in either. Boxed types with a
static reference count (classified by tboxω) get stored in registers, and those
without in memory.

κ ≤ κ tboxω ≤ tr tflat ≤ tr tbox1 ≤ tm tflat ≤ tm

Type formation ` τ : κ
The rules for the type formation judgment are fairly standard. A kind

subsumption theorem is admissible.
There are two rules for forming product types τ1 ×n τ2. In both, the

component types τ1,2 must have memory kind since cons cell belong in the
heap. If n is 1, then the whole product type can be given kind tbox1, that
is, the cons cell does not have a static reference count. For any positive n,
the type may be given kind tboxω, that is, the cons cell does have a static
reference count.

tflat ≤ κ
` ns : κ

tflat ≤ κ
` int : κ

` τ1 : tm ` τ2 : tm tbox1 ≤ κ
` τ1 ×1 τ2 : κ

` τ1 : tm ` τ2 : tm tboxω ≤ κ 1 ≤ n
` τ1 ×n τ2 : κ

38

Register File Type formation ` Γ rft

All registers must have register kind.

` τi : tr (for 1 ≤ i ≤ k)
` {τ1, . . . , τk} rft

Henceforth we assume that all register file types are well-formed on the
left of the turnstile, and preserve that property throughout the judgment.

Operand typing Γ ` o : τ

The operand typing rules are unsurprising.

Γ ` n : int

1 ≤ i ≤ k
{r1:τ1, . . . , rk:τk} ` ri : τi

Instruction typing Γ ` ι⇒ Γ′

In the instruction typing judgment, Γ′ is an output. We take care to
ensure that it is well formed.

Γ ` o : int (rd:τ) ∈ Γ ` τ : tflat

Γ ` mov rd, o⇒ Γ{rd:int}

An unannotated move instruction is used for operands that are integers.
In this, and all remaining rules, we check that the destination register holds
a value that is flat. If it were a pointer, the pointed-at object would lose a
reference when the move instruction overwrote it.

(rs:τ1 ×a τ2) ∈ Γ (rd:τ) ∈ Γ ` τ : tflat a = b+ c 1 ≤ b 1 ≤ c
Γ ` movc rd, rs⇒ Γ{rd:τ1 ×b τ2}{rs:τ1 ×c τ2}

If the object being moved is a pointer, we split its static reference count
between the source operand (necessarily a register) and the destination reg-
ister. Operationally, the dynamic reference count is not changed, since the
total number of references remains the same.

(rs:τ1 ×a τ2) ∈ Γ (rd:τ) ∈ Γ ` τ : tflat

Γ ` ldi rd, rs⇒ Γ{rd:τi}

The typing rule for a load instruction is unsurprising. Operationally, if
the loaded value is a pointer, the pointed-at object will have its reference
count incremented.

(rs:σ1 ×a+2 σ2) ∈ Γ (rd:τ1 ×b τ2) ∈ Γ
Γ ` sti rd, rs ⇒ Γ{rs:σ1 ×a+1 σ2} where τi = σ1 ×1 σ2

39

(rs:int) ∈ Γ (rd:τ1 ×a τ2) ∈ Γ
Γ ` sti rd, rs⇒ Γ where τi = int

There are two typing rules for store instructions. If the value being
stored is a pointer, then we must decrement its static reference count by
one (and leave its dynamic reference count unchanged). Operationally, the
value being overwritten must have its reference count decremented.

(ri:τ1 ×a+2 τ2) ∈ Γ
Γ ` dec ri⇒ Γ{ri:τ1 ×a+1 τ2}

(ri:τ1 ×1 τ2) ∈ Γ
Γ ` dec ri⇒ Γ{ri:ns}

The decrement instruction is used to decrease the static and dynamic
reference count of a heap value. There are two rules, depending on whether
decrementing the static reference count would become zero or not after the
decrement. If the static reference count was at least two, then we simply
decrement the counts by one. If the static reference count was exactly one,
then we make the heap value inaccessible by changing the type of the register
to the nonsense type. Note that operationally only this second case needs
to invoke the garbage collector. If the register had the last pointer to the
cons cell, the dynamic reference count may have been one, and we could
deallocate the cons cell.

Γ ` o1 : int Γ ` o2 : int (rd:τ) ∈ Γ ` τ : tflat

Γ ` add rd, o1, o2 ⇒ Γ{rd:int}
(ri:τ1 ×a τ2) ∈ Γ

Γ ` inc ri⇒ Γ{ri:τ1 ×a+1 τ2}
(ri:int) ∈ Γ ` : Γ→ 0

Γ ` jnz ri, `⇒ Γ

These rules are unsurprising.

(rd:τ) ∈ Γ ` τ : tflat Γ ` o1 : τ1 Γ ` o2 : τ2
Γ ` cons rd, o1, o2 ⇒ (dec(o1, τ1, dec(Γ, o2, τ2))){rd:tomem(τ1)×1 tomem(τ2)}

where dec(o, τ,Γ) and tomem(τ) are defined by:

dec(o, τ,Γ) =

{
Γ{ri : τ1 ×1+c τ2} if τ = τ1 ×2+c τ2 and o = ri

Γ otherwise

tomem(τ) =

{
τ1 ×1 τ2 if τ = τ1 ×c τ2

τ otherwise

If the head or tail of a new cons cell are pointers, the cons cell that
they point at gets an additional reference. So to keep the dynamic reference
count unchanged, we decrease the static reference count of the corresponding
operand by one.

40

Instruction Sequence Typing Γ ` I

Γ ` halt
Γ ` ι⇒ Γ′ Γ′ ` I

Γ ` ι; I

We thread the register file type through the instruction sequence.

The preceeding judgments suffice for typechecking an RCTAL program.
The remaining judgments are needed to prove type safety for RCTAL.

Heap Type Formation ` Ψ
` τi : tm (for 1 ≤ i ≤ j)
` {a1:τ1, . . . , aj :τj}

Heap types are well-formed if every address has a type of memory kind.

Heap Word Typing Ψ ` w : τ

Ψ ` n : int Ψ ` a : Ψ(a) Ψ ` ns : ns

Unsurprising.

Cons cell typing Ψ ` h : τ
Ψ ` wi : τi (for i ∈ {1, 2}) c ≥ 1

Ψ ` 〈w1, w2〉c : τ1 ×1 τ2

The type of a cons cell does not mention its dynamic reference count c.

Heap Typing ` H : Ψ
Ψ ` H(ai) : τi (for 1 ≤ i ≤ j)

` H : Ψ where Ψ = {a1:τ1, . . . , aj :τj}

We typecheck a heap by checking that every address in the heap type has
a value in the heap, and that that value is well-typed under the assumption
that all the other addresses in the heap type are well-typed. This rule
allows for cycles in the heap, and for there to be additional (possibly not
well-formed) values in the heap that are not mentioned by Ψ.

41

Register Value Typing Ψ ` rv : τ

Ψ ` n : int

Ψ(a) = τ1 ×1 τ2
Ψ ` ac : τ1 ×c τ2 ` ns : ns

Register values that are pointers have an associated static reference count
c that appears in its type.

Register File Typing Ψ ` R : Γ

Ψ ` rvi : τi (for 1 ≤ i ≤ k)
Ψ ` {rv1, . . . , rvk} : {τ1, . . . , τk}

State Typing ` S
` Ψ ` H : Ψ ` Γ rft Ψ ` R : Γ Γ ` I

` (H,R, I)

4.2.2 Operational Semantics

The RCTAL operational semantics are given by the judgment S → S′,
specified in Appendix B.

4.3 Safety

We prove the usual preservation and progress theorems for RCTAL. One
caveat is that preservation is only true for states S which respect a closure
condition that for each address: the sum of the static reference counts to
that address plus the number of references from the heap, must equal the
dynamic reference count.

Closed(H,R, I) ⇐⇒ ∀(a 7→ 〈−,−〉c) ∈ H.
SCnt(a,R) +HCnt(a,H) = c

42

where

SCnt(a, {rv1, . . . , rvk}) =
k∑
i=1

RV Cnt(a, rvi)

HCnt(a,H) =
∑

a′∈dom(H)

HV Cnt(a,H(a′))

RV Cnt(a, rv) =

{
c if rv = ac

0 otherwise

HV Cnt(a, 〈w1, w2〉c) = WCnt(a,w1) +WCnt(a,w2)

WCnt(a,w) =

{
1 if w = a

0 otherwise

Theorem 4.1 (Preservation). If Closed(S) and ` S and S → S′ then ` S′
and Closed(S′).

Theorem 4.2 (Progress). If ` S then either S = (H,R, halt) or there exists
an S′ such that S → S′.

5 Conclusion

I’ve shown that LSL is an expressive linear logic suitable for reasoning about
many aspects of machine code. I’ve also presented a reference-counted object
language. It is a goal of my dissertation to implement a reference counting
garbage collector along with a proof of its safety in LSL. Below I summarize
some closely related work and give a summary of work I’ve already completed
in support of my thesis.

5.1 Related work

Formal reasoning about garbage collection has been explored via several
different avenues. Concise specifications of GCs as steps in the operational
semantics of a programming language have been explored in [MH97]. With
GC as an explicit step in the operational semantics, it can then be shown
that GC does not change the results of a program. But the specification
of a GC algorithm may be far removed from the low level implementation
details of GC on a real machine. Consequently, we are concerned with
relation the abstract specification of GC with its concrete realization on a
particular architecture. The proof that we wish to carry out within LSL

43

is concerned precisely with the details that prior work sought to abstract
away: value layout in memory, concrete representation of addresses, tagging
bits, intermediate GC data structures, etc.

Such prior work has been carried out in the context of separation logic
for a copying collector in [BTSR04]. Indeed much of our presentation of
Hoare quads builds on the local reasoning ideas in that work. However
rather than using linear logic as simply the logic of assertions for partial
correctness specifications, LSL actually encodes Hoare quads as notational
definitions. That means that we justify Hoare quads by exhibiting proofs
of them as propositions within LSL, rather than appealing to the semantics
of the logic. Further we intend to carry out our GC proof in a machine
checkable manner.

A copying collector is implemented by [HHWC07] in their typed assem-
bly language. In many ways the difference between their system and ours is
similar to the difference between TAL and TALT: certain aspects of a ma-
chine such as the encoding of procedures on the heap are explicitly encoded
in our system and are primitive notions in theirs. Furthermore, the two sys-
tems diverge in the fragments of linear logic that they utilize. Other tech-
nical differences include the presence of inductive types in our system and
monad-moderated general recursive types in theirs. It is not clear whether
the advantages of expressiveness of general recursive types are mitigated by
having to thread reasoning through the monadic type when dealing with
inductively defined structures.

Our choice of working with a reference counting collector, rather than
a copying collector as in much of the existing work was initially motivated
by pragmatic concerns: algorithms for reference counting collection are ap-
parently simpler to implement. However there is reason to believe that the
proof of correctness would actually be more involved. Part of the reason
is that the reference counting invariant is in some sense stronger than the
invariant for a copying collector: whereas in a copying collector every live
object has at least one reference to it from the rootset or another live object,
in a reference counting collector it must be the case that every object has a
reference count that is exactly equal to the total number of references to it
from another live object or from the rootset. So reasoning about reference
counting may in fact be a more involved workout for a formal logic than a
copying collector. Moreover, we’re not aware of any other formal proofs to
address this class of collectors.

44

5.2 Dissertation goals

My thesis is that LSL is suitable for formal reasoning about machine code
implementations of garbage collectors. To that end, I propose to prove the
safety of a reference counting garbage collector in LSL. To accomplish that
task, I will produce the following artifacts:

1. A (paper) proof of soundness for LSL

2. A Twelf type checker for LSL terms

3. A proof assistant for developing proofs in LSL

4. A machine-checkable proof of correctness for a reference counting gar-
bage collector

The proof assistant is needed because safety of machine code in LSL de-
pends on a lot of defined notions such as arrays of bytes, lists of instructions,
etc. All these data structures will likely require a large library of theorems.
As a result, developing formal proofs entirely by hand is infeasible.

Dissertation timeline An approximate timeline of the immediate disser-
tation goals is presented below.

Task Time Completed
LSL metatheory 6 weeks 25%
RCTAL metatheory 2 weeks 50%
LSL checker implementation 1 month 90%
LSL proof assistant implementation 3 months 99%
RCTAL implementation proof in LSL 21 months 99%
Dissertation writing 2 months 1%

References

[AF00] Andrew W. Appel and Amy P. Felty. A semantic model of types
and machine instructions for proof-carrying code. In Twenty-
Seventh ACM Symposium on Principles of Programming Lan-
guages, pages 243–253, Boston, January 2000. 1

[AMRV07] Andrew W. Appel, Paul-André Melliès, Christopher D.
Richards, and Jérôme Vouillon. A very modal model of a mod-
ern, major, general type system. In Thirty-Fourth ACM Sympo-
sium on Principles of Programming Languages, pages 109–122,
Nice, France, January 2007. 2.1, 8

45

[Boe04] Hans-J. Boehm. The space cost of lazy reference counting. In
Thirty-First ACM Symposium on Principles of Programming
Languages, pages 210–219, Venice, Italy, January 2004. 2.5

[BTSR04] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local
reasoning about a copying garbage collector. In Thirty-First
ACM Symposium on Principles of Programming Languages,
pages 220–231, Venice, Italy, January 2004. 5.1

[CCD+02] Bor-Yuh Evan Chang, Karl Crary, Margaret DeLap, Robert
Harper, Jason Liszka, Tom Murphy VII, and Frank Pfenning.
Trustless grid computing in ConCert. In Third International
Workshop on Grid Computing, volume 2536 of Lecture Notes
in Computer Science, pages 112–125, Baltimore, Maryland,
November 2002. 1

[CCP03] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfen-
ning. A judgmental analysis of linear logic. Technical Report
CMU-CS-03-131R, Carnegie Mellon University, School of Com-
puter Science, December 2003. 1

[Cra03] Karl Crary. Toward a foundational typed assembly language.
In Thirtieth ACM Symposium on Principles of Programming
Languages, pages 198–212, New Orleans, Louisiana, January
2003. 1

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In
1999 ACM International Conference on Functional Program-
ming, pages 233–248, Paris, September 1999. 3.3

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987. 1

[HHWC07] Chris Hawblitzel, Heng Huang, Lea Wittie, and Juan Chen.
A garbage-collecting typed assembly language. In 2007 ACM
Workshop on Types in Language Design and Implementation,
pages 41–52, Nice, France, January 2007. 2.1, 8, 5.1

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969. 2.3

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Ab-
stract models of memory management. In Conference on

46

Functional Programming Languages and Computer Architec-
ture, pages 66–77, La Jolla, California, June 1995. 1

[MH97] Greg Morrisett and Robert Harper. Semantics of memory man-
agement for polymorphic languages. In A. D. Gordon and A. M.
Pitts, editors, Higher Order Operational Techniques in Seman-
tics. Cambridge University Press, 1997. 5.1

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. In Twenty-Fifth
ACM Symposium on Principles of Programming Languages,
pages 85–97, San Diego, January 1998. Extended version pub-
lished as Cornell University technical report TR97-1651. 1

[Nec97] George Necula. Proof-carrying code. In Twenty-Fourth ACM
Symposium on Principles of Programming Languages, pages
106–119, Paris, January 1997. 1

[NL98] George Necula and Peter Lee. The design and implementa-
tion of a certifying compiler. In 1998 SIGPLAN Conference
on Programming Language Design and Implementation, pages
333–344, Montreal, June 1998. 1

[PS99] Frank Pfenning and Carsten Schürmann. System description:
Twelf — a meta-logic framework for deductive systems. In
Sixteenth International Conference on Automated Deduction,
volume 1632 of Lecture Notes in Computer Science, pages 202–
206, Trento, Italy, July 1999. Springer-Verlag. 1

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Seventeenth IEEE Symposium on Logic in
Computer Science, pages 55–74, Copenhagen, Denmark, July
2002. 2.3

A LSL Typing rules

The complete LSL typing rules appear here. Selected rules are discussed in
Section 3.3

47

Context formation ` Γ ctx

` · ctx
CtxNil

` Γ lctx Γ ` A : type

` Γ, x:A ctx
CtxBind

` Γ ctx Γ ` K kind
` Γ, α:K ctx

CtxTBind

In all subsequent judgments we assume all contexts Γ are well-formed
and maintain that invariant when we add hypotheses.

Kind formation Γ ` K kind

Γ ` type kind
KFtype

Γ ` A : type Γ, x:A ` K kind

Γ ` Πx:A.K kind
KFΠ

Type family formation Γ ` A : K
α:K ∈ Γ
Γ ` α : K Fvar

Γ ` K kind Γ, α:K ` A : type

Γ ` ∀α:K.A : type
F∀

Γ ` A : Πx:A′.K Γ; · `M ⇐ A′

Γ ` A M : K[M/x] Fapp
Γ ` A1 : type Γ, x:A1 ` A2 : K

Γ ` λx:A1.A2 : Πx:A1.K
Fλ

Γ ` nat : type
Fnat Γ ` 1 : type

F1
Γ ` A1 : type Γ ` A2 : type

Γ ` A1 ⊗A2 : type
F⊗

The rules F(,F & ,F⊕ are the same as F⊗. The rules F>,F0 are the same
as F1.

Γ ` A : type

Γ ` !A : type
F!

Γ ` A1 : type Γ, x:A1 ` A2 : type

Γ ` Πx:A1.A2 : type
FΠ

The rule FΣ is the same as FΠ.

Γ ` A1 : type Γ, α:A1 → type ` A2 : A1 → type ` α.A2 occ+
Γ ` µα:A1 → type.A2 : A1 → type

Fµ

Γ ` A1 ⊕A2 : type Γ; · `M wh⇐ A1 ⊕A2

Γ ` islA1⊕A2 M : type
Fisl

Γ; · `M wh⇐ nat Γ ` A : type

Γ ` ◦MA : type
F◦

Type variable occurrence ` α.A occ±
In the rules for this judgment, ± in the premises stands consistently for

either + or −, whichever appears in the conclusion; ∓ stands consistently
for the opposite polarity of the one in the conclusion.

` α.α occ+ OccVar ` α.1 occ± Occ1
` α.A1 occ± ` α.A2 occ±

` α.A1 ⊗A2 occ± Occ⊗
` α.A1 occ∓ ` α.A2 occ±
` α.A1 (A2 occ± Occ(

` α.A occ±
` α.!A occ± Occ!

48

Note that there is no variable rule for negative occurrences, and that the
polarity changes in the domain of (. The rules Occ>,Occ0 are the same
as Occ1.The rules Occ & ,Occ⊕,OccΣ are the same as Occ⊗. The rule
OccΠ is the same as Occ (. The rule Occ◦ is the same as Occ!.

Linear context formation Γ ` ∆ lctx

Γ ` · lctx
LctxNil

Γ ` ∆ lctx Γ ` A : type

Γ ` ∆, û:A lctx
LctxBind

In the judgments that follow, we assume that linear contexts are well-
formed and check any additional hypotheses when we add them.

Term checking Γ; ∆ `M ⇐ A

A →wh A′ Γ; ∆ `M wh⇐ A′

Γ; ∆ `M ⇐ A
wh⇐⇐

Γ; ∆ `M wh⇐ A

Γ; · ` ? wh⇐ 1
1I

Γ; ∆1 `M1
wh⇒ 1 Γ; ∆2 `M2

wh⇐ A2

Γ; ∆1,∆2 ` let ? = M1 in M2
wh⇐ A2

1E

Γ; ∆ `M1 ⇐ A1 Γ; ∆ `M2 ⇐ A2

Γ; ∆1,∆2 `M1 ⊗M2
wh⇐ A1 ⊗A2

⊗I

Γ; ∆1 `M1
wh⇒ A1 ⊗A2 Γ; ∆2, u1̂:A1, u2̂:A2 `M2

wh⇐ C

Γ; ∆1,∆2 ` let u1 ⊗ u2 = M1 in M2
wh⇐ C

⊗E

Γ, α:K; ∆ `M ⇐ A

Γ; ∆ ` Λα.M wh⇐ ∀α:K.A
∀I

Γ; ∆, û:A1 `M ⇐ A2

Γ; ∆ ` λ̂u.M wh⇐ A1 (A2

(I

Γ, x:A1; ∆ `M ⇐ A2

Γ; ∆ ` λx.M wh⇐ Πx:A1.A2

ΠI

Γ; ∆ ` 〈〉 wh⇐ >
>I

Γ; ∆ `M1 ⇐ A1 Γ; ∆ `M2 ⇐ A2

Γ; ∆ ` 〈M1,M2〉
wh⇐ A1 &A2

&I

Γ; ∆ `M wh⇒ 0

Γ; ∆ ` any M
wh⇐ A

0E
Γ; ∆ `M ⇐ A1

Γ; ∆ ` inl M
wh⇐ A1 ⊕A2

⊕I1

Γ; ∆ `M ⇐ A2

Γ; ∆ ` inr M
wh⇐ A1 ⊕A2

⊕I2

Γ; ∆1 `M
wh⇒ A1 ⊕A2 Γ; ∆2, û:Ai `Mi

wh⇐ C

Γ; ∆1,∆2 ` case M of inl u⇒M1 | inr u⇒M2
wh⇐ C

⊕E

Γ; · `M ⇐ A

Γ; · ` !M wh⇐ !A
!I

Γ; ∆1 `M1
wh⇒ !A Γ, x:A; ∆2 `M2

wh⇐ C

Γ; ∆1,∆2 ` let !x = M1 in M2
wh⇐ C

!E

49

Γ; · `M1 ⇐ A1 Γ; ∆ `M2 ⇐ A2[M1/x]

Γ; ∆ ` pack 〈M1,M2〉
wh⇐ Σx:A1.A2

ΣI

Γ; ∆1 `M1
wh⇒ Σx:A1.A2 Γ, x:A1; ∆2, û:A2 `M2

wh⇐ C

Γ; ∆1,∆2 ` let pack 〈x, u〉 = M1 in M2
wh⇐ C

ΣE

Γ; ∆ `M ⇐ (A2[A/α]) M ′

Γ; ∆ ` roll M
wh⇐ A M ′

µI
where A = µα:A1 → type.A2

Γ; ∆ `M ⇐ A1 Γ,∆ ` inl M = M ′

Γ; ∆ ` isli M
wh⇐ islA1⊕A2 M

′
islI

Γ; ∆ ` E ÷M A

Γ; ∆ ` circ E
wh⇐ ◦MA

◦I

Γ; ∆ ` n wh⇐ nat
natI

Γ; ∆1 `M1 ⇒ A Γ; ∆2, û:A `M2
wh⇐ C

Γ; ∆1,∆2 ` cut u = M1 in M2
wh⇐ C

cut

Γ; · `M1 ⇒ A Γ, x:A; ∆ `M2
wh⇐ C

Γ; ∆ ` cut! x = M1 in M2
wh⇐ C

cut!

Γ; ∆ `M wh⇒ A′ Γ,∆ ` A′ = A

Γ; ∆ `M wh⇐ A

wh⇒wh⇐

Term inference Γ; ∆ `M wh⇒ A

`M ⇒ A′ A′ →wh A

Γ; ∆ `M wh⇒ A
⇒wh⇒

Γ; ∆ `M ⇒ A

x:A ∈ Γ
Γ; · ` x⇒ A

var
Γ;u:A ` u⇒ A

lvar

Γ; ∆1 `M1
wh⇒ A1 (A2 Γ; ∆2 `M2 ⇐ A1

Γ; ∆1,∆2 `M1ˆM2 ⇒ A2
(E

Γ; ∆ `M1
wh⇒ Πx:A1.A2 Γ; · `M2 ⇐ A1

Γ; ∆ `M1 M2 ⇒ A2[M2/x] ΠE
Γ; ∆ `M wh⇒ A1 &A2

Γ; ∆ ` πiM ⇒ Ai
& Ei

Γ; ∆ `M wh⇒ ∀α:K.A2 Γ ` A1 : K ′ Γ ` K = K ′

Γ; ∆ `M [A1]⇒ A2[A1/α] ∀E

Γ; ∆ `M wh⇒ islA M
′ M ′ →wh inr M ′′

Γ; ∆ ` isle M ⇒ 0 islE

In the following rule, let A = µα:B → type.C and
Γ′ = Γ, α:B → type, f :Πx:B.α x (D x

Γ ` A : B → type

` α.D occ+
Γ, α:B → type ` D : B → type Γ′, x:B; ∆, û:C x `M ⇐ D x

Γ; · ` prAα.D(α, f, x;u.M)⇒ Πx:B.C x (D[A/α] x
µE

50

Γ ` A : type Γ; · `Mz ⇐ A Γ, x:nat, f :A; · `Ms ⇐ A

Γ; · ` prnatA Mz (x, f.Ms) ⇒ nat→ A
natE

Γ ` A : type Γ, x:◦1A; · `M ⇐ A

Γ; · ` fix x:A.M ⇒ A
fix

Γ ` A : type Γ; ∆ `M ⇐ A

Γ; ∆ `M :A⇒ A
ann

Expression checking Γ; ∆ `M ÷M ′ A

M ′ →wh 0 Γ; ∆ `M ⇐ A

Γ; ∆ ` tm M ÷M ′ A
⇐e

Γ; ∆1 `M
wh⇒ ◦N1A

Γ; · `M1 ⇐ (N1 < N)
Γ; · ` N2 ⇐ nat

Γ; · `M2 ⇐ (N2 < N) Γ; ∆2, û:A ` E ÷N2 C

Γ; ∆1,∆2 ` let(N2,M1,M2) ◦u = M in E ÷N C
◦E

Γ; ∆1 `M
wh⇒ !A Γ, x:A; ∆2 ` E ÷M ′ C

Γ; ∆1,∆2 ` let !x = M in E ÷M ′ C
!Ee

Γ; ∆1 `M
wh⇒ A1 ⊗A2 Γ; ∆2, u1:A1, u2:A2 ` E ÷M ′ C

Γ; ∆1,∆2 ` let u1 ⊗ u2 = M in E ÷M ′ C
⊗Ee

And analogous ΣEe and ⊕Ee.

B RCTAL Operational Semantics

If R = {rv1, . . . , rvk} then

R[ri] = rvi

R[ri← rv′] = {rv1, . . . , rvi−1, rv
′, rvi+1, . . . , rvk}

We extend R[ri] to operands o as:

R[o] =

{
R[ri] if o = ri,

n if o = n.

To convert word-values to register values, we define:

torv(w) =

{
a1 if w = a,

n if w = n.

Conversely,

fromrv(rv) =

{
a if rv = ac,

n if rv = n.

For an address a, if H(a) = 〈w1, w2〉c then

inc(a,H) = H{a 7→ 〈w1, w2〉c+1}

51

Furthermore, we extend inc to word-values as:

inc(w,H) =

{
inc(a,H) if w = a,

H if w = n.

Define updatei(h,w′) by

updatei(〈w1, w2〉c , w′) =

{
〈w′, w2〉c if i = 1,
〈w1, w

′〉c if i = 2.

If (a 7→ hv) ∈ H, write H\a for the heap without that address and heap value.
If H(a) = 〈w1, w2〉1+c then dec(a,H) = H{a 7→ 〈w1, w2〉c}. Also extend to

other memory words by:

dec(w,H) =

{
dec(a′, H) if w = a′,

H otherwise.

Additionally, for register values rv, define the unary operation dec(rv) by:

dec(rv) =

{
a1+c if rv = a2+c

n if rv = n

With these definitions, the operational semantics of RCTAL are given by the
following judgment.

S → S′

(H,R,mov rd, o; I) → (H,R[rd← R[o]], I)

R[rs] = ab c+ d = b

(H,R,movc rd, rs; I) → (H,R[rs← ac][rd← ad], I)

R[rs] = a H(a) = 〈w1, w2〉c

(H,R, ldird, rs; I) → (inc(wi, H), R[rd← torv(wi)], I)

R[rs] = n R[rd] = a

(H,R, stird, rs; I) → (H{a 7→ updatei(H(a), n)}, R, I)

R[rs] = a2+c R[rd] = a′ H(a′) = 〈w1, w2〉−

(H,R, stird, rs; I) → ((dec(wi, H)){a′ 7→ updatei(H(a′), a)}, R[rs← a1+c], I)

(H,R, add rd, rs1, rs2; I) → (H,R[rd← R[rs1] +R[rs2]], I)

a 6∈ dom(H)
(H,R, cons rd, o1, o2; I) → (H ′, R′, I)

where H ′ = H{a 7→ 〈fromrv(R[o1]), fromrv(R[o2])〉1},
and R′ = R[rd← a1][o1 ← dec(o1)][o2 ← dec(o2)].

52

R[ri] = ac

(H,R, inc ri; I) → (inc(a,H), R[ri← ac+1], I)

R[ri] = ac+1

(H,R, dec ri; I) → (dec(a,H), R[ri← ac], I)

R[ri] = a1

(H,R, dec ri; I) → (dec(a,H), R[ri← ns], I)

R[ri] = 0
(H,R, jnz ri, `; I) → (H,R, I)

R[ri] = n+ 1 (`) = I ′

(H,R, jnz ri, `; I) → (H,R, I ′)

The garbage collection specification is:
H(a) = 〈w1, w2〉0

(H,R, I) →GC (dec(w2, dec(w1, H\a)), R, I)

53

	Introduction
	Reasoning about machine code in linear logic
	Machine model
	Code sequences
	Partial correctness specifications for code
	Stacks and calling convention
	Object language and memory graph

	Linear Separation Logic
	Syntax
	Unusual types
	Semantics
	Operational Semantics and Safety
	LSL Machine Model
	Good states and witnesses

	An Object Language
	Syntax
	Semantics
	Static Semantics
	Operational Semantics

	Safety

	Conclusion
	Related work
	Dissertation goals

	LSL Typing rules
	RCTAL Operational Semantics

