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Abstract Categories and Subject Descriptors  D.3.3 [Programming

An object diagram makes explicit the object structures that Languagep Classes and Objects

are only implicit in a class diagram. An object diagram may General Terms Experimentation, Languages, Theory
be missing and must extracted from the code. Alternatively, _
an existing diagram may be inconsistent with the code, and 1. Introduction

must be analyzed for conformance with the implementation. pyring software evolution, the most reliable and accurate d
One can generalize thglobal object diagram of a system  scription of a software system is its source code. In aduitio
into a runtime architecture which abstracts objects intaco high-level architectural diagrams of the system’s organiz
ponents, represents how those components interact, and cafion can be useful. For instance, a diagram can help locate
decompose a component into a nested sub-architecture.  the components that must be modified, or indicate the mag-
A static object diagram represents all objects and inter- pityde of the impact of a change based on the dependencies
object relations possibly created, and is recovered bicstat  among entities. Often, such a diagram is missing, hence the
analysis of a program. Existing analyses extract statieabj  need to extract one from the code. Alternatively, the diagra
diagrams that are non-hierarchical, do not scale, and do notmay exist but may be inconsistent with the code, hence the
provide meaningful architectural abstraction. Indeedhar  peed to analyze its conformance with the implementation.
tectural hierarchy is not readily observable in arbitraoge. Reverse engineering or architectural extraction can ex-
Previous approaches used breaking language extensions t@act various complementary high-level views. For example
specify hierarchy and instances in cpde, or used dynamic class diagranis an important and widely used description
analyses to extract dynamic object diagrams that show ob-qf ap object-oriented system that shows the stedide ar-
jects and relations for a few program runs. _ chitecturein terms of classes and inheritance relationships.
_ Typecheckable ownership domain annotations use exist-Today, many tools can recover class diagrams from code.
ing language support for annotations and specify in code  another important view is aobject diagramor object
object encapsulation, logical containment and architettu  graph where nodes represent objects, i.e., instances of the
tiers. These annotations enable a points-to static asalysi  c|asses in a class diagram, and edges correspond to relation
extract a sound global object graph that provides architec- petween objects. An object diagram makes explicit the struc
tural abstraction by ownership hierarchy and by types, @her e of the objects instantiated by the program and thea rel
architecturally significant objects appear near the tomef t  tions, facts that are only implicit in a class diagram. While i
hierarchy and data structures are further down. _ the class diagram a single node represents a class and sum-
Another analysis can abstract an object graph into a built marizes the properties of all of its instances, an object di-
runtime architecture. Then, a third analysis can compare 4qram represents different instances as distinct nodés, wi
the built architecture to a target, analyze and measure thei iheir own properties [36]. For example, Gamma et al. used a
structural conformance, establish traceability betweéen t  ¢|ass diagram and an object diagram to explain each standard
two and identify interesting differences. design pattern [14]. Recent empirical evidence confirms the
importance of “how objects connect to each other at runtime
o » . , when | want to understand code that is unknown: an object
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classroom use is granted without fee provided that copies are not made owutkstrib d|agram IS more mterestlng than a class d|agram: as It ex-
for profit or commercial advantage and that copies bear this notice and the futitati presses more how [the system] functions” [21]_
on the first page. To copy otherwise, to republish, to post on servers or ttritedes . . . . .
to lists, requires prior specific permission and/or a fee. A static ObJECt dlagram;hows all pOSS|b|e ObJeCtS and
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Copyright © 2009 ACM 978-1-60558-734-9/09/10. .. $10.00 recovered by static anaIySiS over the COdedyhamiC ob-

Reprinted from OOPSLA 2009, , October 25-29, 2009, Orlando, Florida, pSAL— . X . ) X
20. ject diagramshows the objects and the relationships that are



Component e ==y A AN TS .
\

Object /

relation

Object

Figure 1. Aphyds object graph by WMBLE [17]. To read Figure 2. Architectural abstraction.
the labels, zoom in by 1000%.

Then, a static analysis extracts from the annotated pro-
created during a specific system execution, and is recoveredgram aglobal object graph that uses object hierarchy to con-
using a dynamic analysis [36]. Static and dynamic object vey architectural abstraction. Moreover, the extractegdaib
diagrams provide complementary information. A static ob- graph issoundin two respects. First, each runtime object
ject diagram lacks precision on the actual multiplicityleét ~ hag exactly one representative in the object graph. Second,
objects that the program may create, or the actual relationsthe object graph has edges that correspond to all possible
between objects. In contrast, a dynamic object diagram, e.9 runtime points-to relations between those objects.

[13], can show the exact number of instances and the actual Qne can generalize the global object diagram of a sys-
relations in a given program run. But a dynamic object dia- tem into aruntime architecturavhich abstracts one or more
gram may not reflect important objects or relations that show objects into conceptualomponentsrepresents how those
up only in other executions. For example, using a design di- components interact asnnectorsand decomposes a com-
agram, a security review could enumerate all possible com- ponent into a nested sub-architecture [11] (Fig. 2).
munication between trusted and untrusted parts of a system. This paper proposes thec8oLialtechnique to stati-
But if the diagram under study omits communication thatis cally extract a hierarchical runtime architecture fromeatbj
presentin the implementation, the analysis may be incbrrec oriented code, using annotations, and to analyze the confor

Scaling a flat object graph to an entire system, even amance of an existing architecture with the code.
relatively small one, produces an unreadable diagram. For \when the diagram isnissing SCHOLIA canextractan
example, Fig. 1 is for Aphyds, an 8,000-line system. Such a gpject graph that captures all potential executions of a pro
diagram mixes low-level objects such&isi cingTree with gram. An object graph often contains implementation de-
architecturally-relevant objects from the applicatiomuon tails, so £HOLIA canabstractit into a runtime architecture.
such asilobalRouter, and a developer has no easy way to  Alternatively, an existing diagram may be inconsistent
distinguish them. with the code. 8HOLIA then follows theextract-abstract-

To mitigate a diagram’s complexity, hierarchy is often check strategy [28], to compare ananhalyzethe confor-
used to allow both high-level and detailed understandigg, b mance between an extracted architecture and the intended
expanding or collapsing selected elements [35]. architecture. Theommunication integrityproperty defines

Hierarchy was effective in dynamic object diagrams [16]. SchoLia’s notion of conformance agach component in
However, all previous static analyses extract flat stajedb  the implementation may only communicate directly with the
diagrams [17, 29, 20]. Imposing hierarchy on a static ob- components to which it is connected in the architecfagj.
ject diagram is harder because architectural hierarchgtis n To our knowledge, SBHOLIA is the first approach to an-
readily observable in arbitrary code. Some language-basedg|yze, at compile-time, communication integrity between
solutions, e.g., ArchJava [8], specify architecturalafehy  code in a widely-used object-oriented language and a rich,
and instances directly in code. But ArchJava’s breaking ex- hierarchical description of the intended runtime architez
tensions restrict how a program uses objects and requiresscroLia weaves several technical pieces together into an
re-engineering an existing Java system to ArchJava [8, 5].  gverall conformance approach.

The proposed approach achieves hierarchy in a static ob- | Section 2, we discuss the differences between the code
ject diagram by having a developer pick a top-level object and the runtime architecture. In Section 3, we summarize
as a starting point, then use local modular ownership anno-the earlier ownership type system [7]. In Section 4, we dis-
tations in the code [7] to impose a conceptual hierarchy on cyss the object graph extraction algorithm. In prior work
objects. Thus, architecturally significant objects appesr  [4], we described an algorithm textract hierarchical ob-

the top of the hierarchy and data structures further down. ject graphs from source code with ownership annotations,
Similarly to ArchJava, the source code encodes the archi-

tectural intent, bUff inStead of radically extending Jai_m, U lschoua stands for fatic conformance chcking of dject-based
approach uses existing language support for annotations.  structuralviews of achitecture. Scholia are annotations in a manuscript.
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An object graph, however, is often not isomorphic to
a target architecture. The primary contribution of this pa- I
per is an integrateaxtract-abstract-checlapproach that Figure 3. Code architecture dfircuit, Node andNet.
abstractsan object graph to a standard Component-and-
Connector (C&C) runtime architecture, thanalyzescom-
munication integrity against a target architecture. In-Sec typeT, which we then refer to either as “objesj” or as
tion 5, we discuss how&HOLIA abstracts an object graph. “T object”, meaning for brevity, “an instance of tiielass”.
In Section 6, we map an abstracted object graph into a stan- An object can have public domain to define a concep-
dard component-and-connector architecture. tual group of contained objects. For instance, inside abjec
Also, SCHOLIA leverages our prior structural comparison circ, a public domairDB contains objechet. This makes
algorithm [6] for the architectural comparisons in Secffon  net part of circ. Part of means conceptual or logical con-
SCHOLIA computes conformance metrics to help managers tainment, indicated by a thin border. Namely, nested object
track architectural conformance over time, and derivastra  are still accessible to the outside. For instance, an otijatt
ability information that allows the architect to effectiye can reference the objeetirc can also reference the inner
trace architectural violations to code. In Section 8, wdleva  objectnet inside theDB domain.
ate SHoOLIA and demonstrate that it can be applied to exist-  Each object can have domains. In tusizt has apri-
ing systems while changing only annotations in the code, vate domairOWNED and objectterms inside OWNED. A pri-
that SSHoLIA can find interesting architectural violations vate domain defines strict instaneacapsulatioror object
that can be traced to code, and thaH®L1A computes sen-  ownership. In other words,erms cannot be leaked to, nor
sible conformance metrics in practice. We conclude with a accessed from, outside thet object. A thick border indi-
discussion (Section 9) and related work in Section 10. cates strict encapsulation.
Unlike the class diagram which shows dfe-tor class
the object diagram shows distin¢ééctor objects. In turn,
2 Code vs. Runtime Architecture those_ tonec_tor objects refer to _the samesrm obj_ect in
DB. Finally, hierarchy allows varying the abstraction level,
As a running example, we use Aphyds, a system of 8,000 by collapsing or expanding the sub-structure of objects suc
source lines of Java code. A partial class diagram for Aphyds node andnet. In Fig. 4(b), the (+) symbol on an object
shows oneVector class andNode and Net classesthat indicates that it has a collapsed sub-structure.
have a dependency drector (Fig. 3). The class diagram In addition, several object references that a program de-
suggests thatBode object and alet object might share the  clares may alias, i.e., refer to the same object at runtime. A
samevVector object, but an object diagram may show thisis object graph such as Fig. 4(a) must conservatively show as
not the case (Fig. 4(a)). one two objects that may alias due to subtyping, a fact that
In a hierarchical object diagram, an object can contain may be implicit when looking at the code. Otherwise, an ar-
other objects. As a result, one can collapse several nodeshitecture would be deceptive if it mapped potentially the
into one. This is a classic approach to shrink a graph. How- same runtime object into two architectural components. For
ever, SHOLIA collapses object nodes based on contain- example, clasStack is a subtype offector. If there were
ment, ownership and type structures, not according to wherea stack object in theOWNED domain insideVet, the Stack
objects are declared in the program, a naming convention orand thevector objects would be displayed as one.
a graph clustering algorithm, as we discuss below.
Instead of objects being directly inside other objects, we .
use an extra level of hierarchy and group related objectss' Annotations
inside adomain A domain is similar to an architectural A static object diagram is extracted by a static analysis ove
runtimetier, aconceptual partitioning of functionalitjl 1]. the code. To achieve hierarchy in the object diagracH&
The visualization uses box nesting to indicate contain- LIA relies onlocal, modular (one class at a time) annota-
ment (Fig. 4(a)). E.g.DB is inside circ. Dashed-border tions in the code that clarify the design intent. The type-
white-filled boxes represent domains. Sold-filled boxes rep checkable annotations specify object encapsulationcédbgi
resent objects. Solid edges represent field references. Arcontainment and architectural tiers, which are not explici
object labeledbbj: T indicates an object referene®j of constructs in a general purpose programming language.
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Figure 4. Runtime architecture dfircuit, Node andNet.

class Circuit {
public domain DB; // Public domain
domain OWNED; // Private domain
DB Node node;
DB Net net;
DB Terminal terminal;
OWNED Map<String,DB Node> nodes;
}
class Node<OWNER> { // Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class Net<OWNER> {// Implicit parameter
domain OWNED; // Private domain
OWNED Vector<OWNER Terminal> terms;
}
class ViewerUI<M> { // Domain parameter
M Circuit circuit;
}
class Main { // Root class
domain MODEL, UI; // Top—level domains
MODEL Circuit circuit;
UI ViewerUI<MODEL> viewerUI;
}

Figure 5. Refined annotations.

The annotations assign each object to a siogtaership

© ® N o U A W N B

@DomainParams ({"M"}) // Domain parameter
class ViewerUI {
@Domain("M") Circuit circuit;
}
@Domains ({"MODEL","UI"}) // Actual domains
class Main {
©Domain("MODEL") Circuit circuit;
©Domain ("UIKMODEL>") ViewerUI viewerUI;
}

Figure 6. Using the concrete Java 1.5 annotations.

and explicit policies that govern how it can reference otgjec

in other domains [7]. Fig. 5 shows the annotations that a de-
veloper might add to some Aphyds classes. Our tools use
existing language support for annotations [2], which tends
to be verbose (Fig. 6), but this paper uses a more readable
syntax similar to the formal system (Fig. 9). A developer in-
dicates the domain of an object by annotating each reference
to that object in the program (lines 4-6). A developer typi-
cally chooses domain names to convey architectural intent.
By convention, capital letters for domain names help distin
guish them from other program identifiers.

Each class can declare one or mpteblic or private do-
mains to hold its internal objects (lines 2—3), thus support
ing hierarchy. Although a domain is declared at the level of
a class in a program, each instance of that class has its own
runtime domain. Thus, the domains within an object express
a substructure within the object, one that consists of other
domains and objects that represent its parts. In particatar
annotation can refer to the public domaih of an object
obj, as if it were a field, using theb;.D syntax. Whenever
our analysis distinguishes two objeetfsj; andobj,, it also
distinguishes the domains that these objects contain im tur
such asbj;.D andobjs.D.

An instance of th&iewerUI class accesses other objects
in the MODEL domain, by declaring a formalomain param-
eterM on thevViewerUI class (line 17), andindingthat pa-
rameter to domaif0DEL (line 23). A typechecker validates
the annotations and identifies where the annotations are in-
consistent with each other or with the code. For instance, a
public method cannot return an alias to an object inside a
private domain. Thus, instance encapsulation is strohger t
making a field beprivate to restrict its module visibility.

4. Architectural Extraction

A Runtime Object Graph (ROGjepresents the runtime
structure of an object-oriented program. Nodes correspond
to runtime objects. Edges correspond to relations between
objects such apoints-tofield reference relations. The goal
of the static analysis is to extract from an annotated pragra

domainthat does not change at runtime. An ownership do- a sound hierarchical approximation of any Runtime Object
main is a conceptual group of objects with an explicit name Graph, the Ownership Object Graph (OOG).
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Circuit c¢ = new Circuit();

’O()Mect(c, Circuit<null>) [(00)

analyze(c, [1)

class Circuit {
’()Donmin(c.DB, CircuitnDB)‘(Dl)
public domain DB;
’ODomain(c.DWNED, Circuit::OWNED) ‘(DQ)
domain OWNED;
’OObject(c.DB.nd, Node<c.DB>) ‘(01)

’OEdge(c, c.DB.nd) |(E1)
Node<DB> nd = new Node<DB>();
’analyze(c.DB.nd, [Node::0WNER +— c.DB])‘

| OObject (c.DB.net, Net<c.DB>) |(02)

’analyze(c.DB.net, Net::OWNER +— c.DB)‘

’()Edge(c, c.DB.net)‘(E2)
Net<DB> net = new Net<DB>();
OObject(c.DB.term, Terminal<c.DB>)‘(D3)

analyze(c.DB.term, Terminal::OWNER +— c.DB)‘

Terminal<DB> term = new Terminal<DB>();
’()Edge(c, c.DB.term) |(E3)

}

|this — c.DB.nd, [OWNER — c.DB] |

class Node<OWNER> {
| ODomain (c.DB.nd . OWNED, Node::OWNED) |(D3)
domain OWNED;
’O()Mect(c.DB.nd.DWNED.terms,Vector<c.DB.nd.OWNED>)‘(05)
OWNED Vector<OWNER Terminal> terms = new Vector<...>();
’analyze(c.DB.nd.DWNED.terms, Vector::ELTS +— c.DB)‘

’OEdge(c.DB.nd, c.DB.nd.OWNED. terms) ‘(ES)
}
’this +— c.DB.nd.OWNED.terms, [ELTS — c.DB]‘

class Vector<ELTS T> { |T — Terminal

llookup OObject(c.DB.term, Terminal<c.DB>)‘

’C)Edge(c.DB.nd.DWNED.terms, c.DB.term)‘(EG)

ELTS T obj;
}

Figure 7. Abstract interpretation of théircuit class.
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’this — c.DB.net, [OWNER — c.DB] \

class Net<OWNER> {
| ODomain (c.DB.net .OWNED, Net::OWNED) |(D4)
domain OWNED;
’OObject(c. DB .net .OWNED.terms,Vector<c.DB.net.OWNED>) ‘(06)
OWNED Vector<OWNER Terminal> terms = new Vector<...>();
%nalyze(c.DB.net.OWNED.terms, Vector::ELTS — c.DB)

’OEdge(c.DB.net, c.DB.net.OWNED. terms) ‘(E?)
}
’this - c.DB.net.OWNED.terms, [ELTS — c.DB] ‘

class Vector<ELTS T> { |T +— Terminal

’C)Edge(c.DB.net.DWNED.terms, c.DB.term)‘(EB)

ELTS T obj;
}

Figure 8. Abstract interpretation of theéircuit class.

runtime objects with one canonical object in a domain, e.g.,
oneNode object in theDB domain

Object aliasing. The object graph maintains an aliasing
invariant, i.e., no one runtime object appears as two differ
canonical objects in the graph. The ownership domains type
system give some precision about aliasing, without requir-
ing an alias analysis. The type system guarantees that two
objects in different domains cannot alias. But two objects
in the same domain may alias. So, the analysis merges two
objects declareth the same domaiwith the same types.

4.1 Example

The analysis takes as input a user-selected root type, in
this caseCircuit (Fig. 7). First, the analysis creates an
OObject (OO0) for an object allocation of the root type. Then,

it analyzes the classircuit, after binding the receiver
thistoc.

InsideCircuit, the analysis creates &Domain for the
domainDB (D1) and another foOWNED declared in class
Circuit (D2). In turn, for the object allocations inside
Circuit, it createsOObjectsnd (O1),net (O2) andterm
(03) inside DB, and anOObject nodes inside OWNED
(O4). Then, the analysis ad@dges from OO0 to O1 (E1),
00 to 02 (E2) and OO0 to O3 (E3).

The analysis then processes clisge by binding the re-
ceiver toc .DB.nd. InNode, the analysis creates &Domain
for OWNED (D3), and anOObject for terms (O5). In addi-

At a high level, the analysis distinguishes between ob- tion, the analysis adds @Edge (E5) from O1 to O5.

jects in different domains, and abstracts objects to pdirs o

Next, the analysis processesrms by binding the re-

domains and types. The analysis also substitutes formal do-ceiver to c¢.DB.0OWNED.terms, and interpreting the vir-
main parameters with actual domains. Finally, the analysis tual field declaratiorobj inside Vector. After substitut-

adds edges between objects.

ing formals to actuals, the analysis finds @lDbjects in

Object merging. Different executions may generate a the ODomain c.DB, the types of which are subtypes of

different number of objects, for instance Béde objects.

Terminal. For instance, the analysis finds B®bject O3.

But a static object graph must represent all possible execu-So, it creates a@Edge (E6) from theOObject correspond-
tions. To address this, an object graph summarizes multipleing to theterms (O5), to thatOObject (O3). Similarly, the



that is part of the runtime objeét S|/, i] denotes the value

cdef = class C<@,[3> extends C'<a> in theith field of S[¢]. The store typ&: gives a type to each
{dom T f md } location inS, one that is consistent with the classes and ac-
dom = [public] domain d; tual ownership domain parametersSndom() returns the
md = Trm(T T) Tinis { returneg; }

mathematical domain of a mappingig() its range.

fL — §||Unew C<p>() | e.f | em(e) | L] toe Data Types.In Fig. 10, anOGraph G is the tripletG =
p = a| nd | shared (PtQ,PtD,_P_tE). PtO is a set ofOObjects. PtD maps
T = C<p> a pair consisting of a®Object O and a local domain or a

v,f € locations domain parametet in the abstract syntax, i.§Q, d), to an
S u= L C<p>(D) ODomain D. Effectively, PtD maintains a mapping from
Y o= AT formal domain parameters to actual domaiR$F is a set
r == zT of OEdges.

The analysis distinguishes between different instances of
the same class that are in different domains, even if created
at the sameaew expression. In addition, the analysis treats an
instance of clas§' with actual parametefsdifferently from

Figure 9. Simplified FDJ abstract syntax [7].

G € OGraph ::= (Objs = PtO,Doms= PtD, Edgs= PtE) another instance that has actual parametérgience, the
= (PtO, PtD, PtE) datatype of arOObject usesC'< D> instead of just a type
D € ODomain = ( Id = D4, Domain = C::d ) and an _ovyning)l_Domain. As in FDJ, anOObject’s owning
— (D, Cd) ODomain |s_the.f|rst elemenD; of D. _
e o A domaind is declared at the level of a clags in a
O € OObject := (Id = Oiq, Type = C<D>) program, but each instance of clagsgets its own run-
= (0i4,C<D>) time domain/.d. Whenever the analysis distinguishes two
E € OEdge ::= ( From = Oy, Field = f, To = Ous: ) runtime objects’ and v, it also distinguishes the domains
that these objects contain in turn, such/asand/’.d. Be-
= (Osre, f, Oust ) cause each runtime domairl has anODomain representa-
PtO == 0 | PtOU{O} Objectmap tive, a domain declaratiod in the code can create multiple
PtD == ( | PtDU{(O,d) — D} Domain map ODomains D;.
PiE=— 0 | PLEU{E} Edgemap To d_eal with recursive types, as we discuss later, an
_ . ) ODomain can have multiple parer®Objects, rather than
YT:= 0| Yu{C<D>} Visited objects a single one, so a@Domain does not have an ownir@Ob-
H:= {~— O  Runtime object map ject in its representation.
K == (.d+— D Runtime domain map EachOEdge E is a directed edge from a souro®bject

to a targeOObject, and indicates the field named

Abstract Interpretation. The analysis is an abstract in-
terpretation of the program that maps concrete domain and
field declarations in the program to abstract values in an
OGraph, namelyOObjects, ODomains, andOEdges.

We use a constraint-based specification (Fig. 11) instead

analysis processest andterms insideNet (Fig. 8). Note  of transfer functions, which makes it easier to prove sound-
how the “domain sensitivity” of the analysis allows it to ness. The judgement form is as follows:

map the same virtual field declaration (lines 35, 50) to two
differentOEdges in theOGraph, E6 and E8, respectively.

Dgharea ::= ( Ds, ::shared) Shared domain
Ouwortd ::= { Oworid, Object<>) RooOt context

Figure 10. Data type declarations for tl@Graph.

.Y, PtO, PtD, PtE o, i €

T" is the typing context (Fig. 9)Y is needed for handling
recursion (Fig. 10), as we discuss later. Theubscript on
Syntax. We formalize the analysis following ownership do- the turnstile captures the context-sensitivitlyis part of the

mains and Featherweight Domain Java (FDJ) [7]. We simpli- instrumentation that maps locations@®bjects (Fig. 10).

fied the FDJ abstract syntax (Fig. 9) to exclude generic types We omit H for most of the rules that do not need it.

4.2 Formalization

casts, etc. In FDJ, a typ@<d> consists of the class of an The interpretation starts with a prografconsisting of a
object and actual ownership domain parameters. An over-class table”"I" and a root expressian which gets analyzed
bar represents a sequence. The first actual dondgiis the in the context of0.,,14. We require arOObject, Oyorid,

owner Aux-Owner[7]). In FDJ, locations represent object which has a singl®©Domain, Dy 4r-cq, Which corresponds
identity. A storeS maps a locatiod to its contents, the type  to the global domairshared. For clarity, we quality a do-
of the object, and the values stored in its fiel8l] denotes main d by the class that declares it, é5:d. We qualify
the store entry fo¥. Each/.d refers to a domain named shared as::shared.



Vi € 1..|p|

O¢c = <O¢d, C<D> > {Oc} C PtO

D = PtD[(0, p.)]

params(C) =@
{(Oc,ai) = DZ} - PtD

PtO, PtD, PLE o ptdomains(C'<p>,O¢)
PtO, PtD, PtE bo ptfields(C<p>, Oc)

Vm. mbody(m,C<p>) =

(T : T, ER)

C<D>¢g7Y = {z:T, this : C<p>}, Y U{C<D>}, PtO, PtD, PtE Fo_, er

I, T, PtO, PtD, PtE o new C<p>()e

V(domain d;) € domains(C<p>)

Dj = (Dia;, dj )

[PT-NEW]

{(Oc,dj) — DJ} g PtD

E — [PT-DoM|
PtO, PtD, PtE to ptdomains(C<p>,Oc¢)
V(T fr) € fields(C<p>) owner(Ty) = pj, Dy, = PtD[(O, py)]
YOi PtO, PtD, PtE o ptlookup(Dy,Ty) = O Oc, fx, O C PtE
k o ptlookup(Dy, Ty,) x {(Oc, fr, Or)} PT-FIELDS]

PtO, PtD, PtE bo ptfields(C<p>,0c¢)

Or=(0i4,0<D>)ePtO Di=D T =C'<p>
Viel.[p| D= PtD[(O,p))] D,=D;

C<:

PtO, PtD, PtE Fo ptlookup(D,T") = O

[PT-LOOKUF|

[PT-VAR]
I, Y, PtO, PtD,PtE o

I,Y, PtO, PtD, PtE b0 eo

[PT-Loc]

T, Y, PtO, PtD, PtE Fo ¢

T, T, PtO, PtD, PtE o eo

T, Y, PtO, PtD, PtE o eo.fx

[PT-READ]

I,Y,PtO, PtD,PtEto e

T, Y, PtO, PtD, PtE o eo.m(e)

Oc = HI[l]

I, Y, PtO, PtD, PtE o e

[PT-INVK]

Y, PtO,PtD,PtE o, m {>e

Ve € dom(S), S[f] = C<p>
Vm. mbody(m,C<p>) = (7 : T, er)

H[{]=0 =
{z: T, this : C<p>},0, PtO, PtD, PtE o, 1 er

[PT-CONTEXT]

(0iq,C<D>) € PtO

PtO, PtD, PtE For,p 2

[PT-SIGMA]

Figure 11. Constraint-based specification of the object graph extnaetnalysis.

In PT-NEW, the analysis interpretss@w object allocation
in the context of arDObject O as follows. First, P-NEw
checks thaftO has arOObject O for the newly allocated
object. SincePtD maintains the binding from each formal
domain parameter to son@Domain, PT-NEwW ensures that
the representatives of the actual domaginbound to the
parameters of clags are inPtD.

PT-NEW then uses the auxiliary judgement-Bom to
ensure thatPtD has anODomain corresponding to each
domain that the clas€’ locally declares. In ®Dowm, the
domains auxiliary judgement from FDJ returns the owner-
ship domains that a class declares, after substitutingabrm
domain parameters with actual domaitdsmains also in-
cludes inherited domains, including the private domains. |
FDJ, private domains are misnamed, and really hayara
tectedsemantics [7, Ruldux-DomaingFig. 14)].

PT-NEw then relies on the auxiliary judgementr-P
FIELDS to ensure thaPtE' has anOEdge from O¢ to each

target type, using RLOOKUP. In PT-FIELDS, the fields
auxiliary judgement from FDJ returns the fields that a type
declares, after substituting formal domain parameterh wit
actual domains, and includes inherited fields.

Finally, Pr-NEw obtains each expressio#l in each
methodm in C, and processes in the context of thedOb-
ject O¢. Before P-NEw checks these expressions recur-
sively, it adds the current combination of a type and actual
domain parameters 6. If PT-NEw discovers by looking at
T that it previously analyzed that same combination, it does
not recurse into the sam@Object, thus avoiding infinite
recursion.

Although the case for new expressions is the most inter-
esting, the analysis requires rules for all the expressipas
to make the induction work. The rules forf/AR, PT-LOC,
PT-READ, and Pr-INVK are self explanatory.

PT-CONTEXT analyzes method calls in progreés e,
where/ is the receiver, by moving into the context of the

object in the target domain that is type compatible with the receiver objecO.. Finally, the induction requires an aug-



mented store typing rule,TPSIGMA, to ensure that method
bodies have been analyzed for all objects in the store.
Recursion. The analysis must handle recursive types,
which can lead a®Graph to grow arbitrarily deep. To en-
sure termination, th®Graph is finite, and can contain cy-
cles. The analysis creates a cycle in tb6raph when it
reaches a “similar” context. We chose to unify domains. For
instance, in Fig. 12, th@WNED domain insidenwQT is the
same as th@WwNED domain insideaQT. Because the same
ODomain can now appear as the child of tM@bjects, an
ODomain cannot have an ownin@Object. The visualiza-
tion, however, expands th@Graph to a limited depth—the
user sees the graph above the thick dashed line Fig. 12. ===

| Domain |

4.3 Soundness L ==

The soundness proof relies on an instrumentation of the FDIMain main = new Main();
runtime semantics, an approximation relation, and stahdar [oObject (main, Main<null>) ‘
Progress and Preservation theorems. We summarize belov
the key results. In addition to the FDJ sta¥e the instru-

analyze(main, []) ‘

mentation maintains the mapé and K (Fig. 10).
The instrumented evaluation has the judgement form: class Main {
e;S; H; K ~¢ €3 8'; H'; K' whereG = (PtO, PtD, PtE) domain D;
is the statically computed object graph. ] ODomain(main.D, Main::D) \

This instrumentation is safe since discarding it produces ’OObject(main,D.aQT, QT<main.D>) \
exactly the previous semantics. In IREW (Fig. 13), the
actual domaing; passed to the clasS' being allocated
are runtime domains, whicR” maps to stati©Domains in

QT<D> aQT = new QT<D>();

’ analyze(main.D.aQT, [QT::M — main.D]) ‘

PtD. We useH to lookup theDObject Oy, for each valuey,, IOEdge(main, main.D.aQT) \
passed to initialize the'” field of the object being allocated,  }
and ensure that th@Edge is in PtE. ’this — main.D.aQT, [M — main.D] ‘
We define the approximation relatienas follows: class QI<M> {
VY FS, (S H K)~ (PtO,PtD, PtE) domain D;
it Ve € dom(S), S[f] = C<Td> | ODomain (main.D.aQT.D, QT:D) |
implies ’OObject(main.D.aQT.D.anT, QT<main.D.aQT.D>) ‘
H[f] = Oc = (0.4, C<D>) € PtO QT<M> nwQT = new QT<M>O);
andW}.dj cvd K[é;'.dj] —D, = <Did_7»,dj> € rng(PtD) ’analyze(maln.D.aQT.D.anT, [QT::M — main.D]) ‘
andvd, € domains(C<m>) ’OEdge(main.D.aQT, main.D.aQT.D.nwQT) ‘
K[t.di] = D; = (Dig,, di ) € rng(PtD) ¥
and{(Oc, d;) — Di} € PtD ’thls +— main.D.aQT.D.nwQT, [M — main.D] ‘
) __ , , class QT<M> {
andfields(X[¢)) = T f andVk, V¢ S[0,k] = = domain D.

E, = <H[€}vfka[€/}> € PtE ’ODomain(main.D.aQT.D, QT::D)

’OObject(main.D.aQT.D.anT, QT<main.D.aQT.D>) ‘

Theorem: Object Graph Soundness. QT<M> nwQT = new QT<M>();

VG = (PtO, PtD,PtE) - P = (CT,e)  CT,e well-typed ’OEdge(main.D.aQT.D-nWQ, main.D.aQT.D.nwQT) ‘

Ve; 0;0;0 ~¢ e; S Hy K )

v S Figure 12. Example with recursive types.

PtO, PtD, PtE Ferpg ©

(S, H, K) ~ (PtO, PtD, PtE) produced from the same prograR) there exists a map/

that maps each locatiohin the store to a uniqu@Object,
The theorem states that, given any Runtime Object Graphand a mapK that maps each runtime domain in the store
(ROG) represented by a well-typed stéfeand anOGraph to a uniqueODomain, and this mapping is consistent with



IR-NEW

L & dom(S) 8" = S[t — C<p>(D)]
Oc = (04, C<D>) Oc¢ € PtO H' = H[{ — Oc]

Vd; € domains(C<p>)
D; = PtD[(O¢,d;)] K'= K[.d; — Dj]
V(Tk fk) S fields(C<;5>) O = H[’Uk:]
EL = <Oc,f}€7ok> E. € PtE
new C<p>()70; S; H; K ~¢ £; S H'; K’

Figure 13. Instrumented runtime semantics.

(a) Showing objects,b,c. (b) Eliding objectb.

Figure 14. Example of assummary edge

which is to distinguish between internal and public stat. R
call how in ownership domains, the owner of an object is

a domain instead of another object, unlike other ownership
type systems [10]. Indeed, both public and private domains
respect to the ownership relation. In addition, Edges produce hierarchy in an object graph. But we often elide pri-
in the OGraph SOUndly abstract all field pOintS'tO relations vate domainS, end up with a Sing|e pub“c domainin a given
between any two ObjeCtS in an ROG. More details and the Object, then Sk|p that domain. Some type Systems embody
proof are in [1, Chap. 3]. this idea and hard-code in each class, one private and one
public boundarydomain [31].
5. Architectural Abstraction 3. Skip objects beyond a certain depth.The analy-

An extracted object graph provides architectural abstact SIS converts an OOG object hierarchy up to a user-selected
by ownership hierarchy and by types. But an object graph erth, typically the depth of the hierarchical decompositi

may not be isomorphic to an architect's intended architec- I the designed view. Reducing the size of the built archi-
ture, and may require further abstraction. tecture in this manner speeds up the comparison, but does

1. Elide and summarize private domains Object graphs not affect conformance, because lifted edges accountéor th

tend to expose the implementation of data structures [29, &lided substructures.
. 252]. In SHoLIA, when internal state is placed in pri- . .
Sate d]omains, the OOG abstraction step czm Ieverage the”: Architectural Description
semantic distinction between private and public domains.  SCHOLIA can represent the information that it reverse engi-
For instance, the Aphyds designed architecture (Fig. 20) neers from the code using different graphical (or non graph-
shows acircuit object, as well asode andnet objects in- ical) notations. Documenting an architecture in an archite
sidecircuit. In the Aphyds object graph, the private domain ture description language (ADL) enables performing vagiou
OWNED on Circuit storesMaps of Node and Net objects architectural-level analyses.
(Fig. 15), and these objects are not architecturally signifi We use the Acme general purpose ADL [15], partly be-
cant. So the analysis, based on user input, can elide privatecause of its available tool support. Acme represents archi-
domains and the objects they contain. To preserve sound-tectural structure as a hierarchical graph with types and at
ness, however, the analysis may adonmaryedges to ac-  tributes on nodes and edges and has no execution semantics.
count for communication through elided objects. For exam-  Most ADLs also support the following elements [25]. A
ple, if there is an edge from objecigo b andb to ¢, eliding Component is a unit of computation and state. Port is
b produces asummary edgbetweern andc (Fig. 14). a point of interaction on &omponent. A Connector rep-
2. Skip single domains.In an OOG, each object is in  resents an interaction betwe€omponents. A System is
a domain, so a systematic conversion would create eacha configuration ofComponents andConnectors. A Com-
Component in aGroup. Architects typically define tiersonly ~ ponent can optionally be decomposed into a nested sub-
at the top level, and those map to the top-level domains. architecture. AProperty is a name and value pair associated
For example, requiring the Aphyds designed architecture with an element. AGroup is a named set of elements, such
to have a singl®B tier insidecircuit would be counterin- as a tier.
tuitive. Unless the developer requests otherwise, theezenv To improve the precision of the structural comparison, the
sion does not create a single tier insidésanponent. Unlike base architectural model has types and properties [BprA
eliding private domains, skipping single domains stillates that provides services has typeovideT, and aPort that
the substructure for those unmapped domains. For examplepses services has typgeT. The structural comparison uses
after eliding the private domai@WNED insideCircuit, the the type information, when available, to avoid matching a
conversion skips the single public domdB and creates  ProvideT Port to aUseT Port, for example.
node andnet and the connections between them, directly in- Components and Sub-ComponentsSCHOLIA assumes
sidecircuit (Fig. 23). that an OOG has a single root. So the root object maps to a
Even though domains play a central role in the annota- System. The top-level domains declared by the class of the
tions, they often disappear after they serve their purpose,root object map to the top-level tiers in ti¥gstem. Each
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object in the OOG maps to @omponent. The OOG hier-
archy creates architectural decomposition. If an OOG dbjec
declares domains and descendent objects, the corresgondin
Component has a sub-architecture.

Ports. References between objects creBtets as fol-
lows. If objectA has a field reference of typeto object
B, the correspondinGomponent A has aPort of typeUseT
and nameB. The Component corresponding t@ has aPort
of type ProvideT and namé&. And aConnector connects4
to B. By default, the analysis does not represent the uninter-
esting self-edges in an OOG.

Edge Lifting. The representation of an OOG as a C&C
view also lifts edges. Consider an OOG with an edge
from other to inner inside outer’s public domainCBS
(Fig. 16(c)). A C&C view lifts that edge to componentiter,
shows a connector frorather to outer, and a connection
from outer to inner (Fig. 17).

Domains and Tiers.An ownership domaia in the OOG
maps to aGroup g. If an objecto in a domaind, the corre-
spondingComponent is in Group g. To be structurally com-
parable, both the built and the designed architectures fol-
low similar topological constraints. For instance, in Agme
a Component can be included in more than oeoup. But
in ownership domains, each object is in exactly one domain
and that domain never changes. So a predicate enforces that
a Component or Connector is in exactly oneGroup. More-
over, if Connector ¢ connects twdComponents that are in
the saméGroup g, ¢ must be also iry.

7. Architectural Conformance

SCHOLIA can just extract the up-to-date built runtime archi-
tecture from the code and document it an in ADL. If a doc-
umented target architecture existg§HLIA can analyze its
conformance with the code.

A designed architecture is often more abstract than the
built architecture, but it must still represent all comnuaai
tion that could exist in the implementation. A conformance
analysis can enforce the communication integrity prireipl
and ensure that the designed architecture is a conservative
abstraction of all the objects in the implemented system and
the relations between those objects at runtime. A statik ana
ysis can of course suffer from false positives, and indicate
potential object relations that can never exist at runtigng.
here, the goal is to have no false negatives in the designed
architecture, and show the worst case of possible communi-
cation between objects at runtime.
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7.1 Analyzing and Displaying Conformance

In the terminology of Murphy et al. [28], the conformance ;

analysis identifies:
* Convergence:a node or an edge that in boththe built P il
and the designed architectures;
* Divergence:a node or an edge that is in the built archi-
tecture, bunot in the designedrchitecture; (a) As-designed view. (b) As-built view.
* Absence:a node or an edge that is in the designed archi-
tecture, bunot in the builtarchitecture.
The analysis producesanformance vievas a copy of the
designed architecture. The conformance view shows conver- @ o S
gences and absences graphically, and represents divesyenc i o
by showing additional connectors that are present in the im-
plementation but are missing from the designed architectur
The analysis also sets various properties on the conforenanc
view elements. Some of these properties decorate the graph-
ical representation of an element. For instance, all elésnen  Figure 18. Displaying aconvergence and adivergence.
have afinding property, set t@onvergent (shown asf), di-
vergent (shown ast) or absent (shown as).

As a positive side effect of the conformance analysis, -
ScHoLIA also establishes traceability between an intended

; A : _ e
architecture and the underlying source files, for the benefit f ne

of other code quality tools. The various steps thread thioug

#

-

(c) Conformance view.

the traceability information as follows. The abstractidao (a) As-designed view. (b) As-built view.
OOG into a C&C view copies the traceability of each OOG

element into theraceability property of the corresponding e -

C&C element, as a set of flename and line number pairs. P C:

Similarly, the conformance view derives its traceability i
formation from the built C&C view. A tool can use this in-
formation in the conformance view to trace to the pertinent Figure 19. Showing adivergence as asummary connector
lines of code, and save a developer the effort of having to
potentially review the entire code base to investigate a sus
pected architectural violation. Of course, the conforneanc
analysis sets the traceability on ordynvergent anddiver-

gent elements, and not axbsent ones.

The components an architect includes in the designed
view may be more relevant than those she omits. And she
often chooses names to convey her architectural intent. So,
when analyzing conformance C80LIA considers the de-
signed view to be more authoritative than the built one, an
works as follows:

1. Match components, but use the names from the de-
signed view.Elements in the designed and the built views

may not have exactly matching names. The structural com- UseT types. But this does not fit with showing divergences

parison, however, can detect renames. Unlike view synchro—and absences. Instead, we adopt unidirectional portstfiee

nization, the conformance analysis does not propagate the " f P P |

built names to the designed view. type can bePrc_nvudeT or UseT, and never both. Sp the anal-
For Aphyds, the analysis correctly matches built compo- ysis shows alivergent connector, as well aBrovideT and

nentsviewerUT andFloorP1anyT to designed component UseT Ports, for_the gommunlcanon in the opposite direction.
. . 3. Summarize divergent componentslf there are com-
viewerUl andfloorplanUl, respectively, but does not rename

. ponents in the built architecture that are not in the designe
them (Fig. 18). architecture, the analysis works differently from view syn
2. Highlight differing connections. The analysis shows '

e . . chronization. Adding these components directly to the de-
differing connections as divergences or absences. In Aphyd signed architecture would clutter it with implementatia d
the built view has only a connector betwelborPlanUI 9 P

tails. Instead, the analysis accounts for communication in

(c) Conformance view.

and ViewerUI, and the latter match the designed compo-
nentsfloorplanUl andviewerUl. So the analysis showsda
vergent connector fromfloorplanUl to viewerUl (Fig. 18).
This requires the following stylized use of ports, which may
also make ports easier to understand [8].

An AcmePort has no built-in directionality. Its type spec-
ifies whether it provides serviceBrovideT) or uses services
d (UseT). In some cases, the designed view may have a con-
nector between two components, but the connection in the
built view may be in the reverse direction. The conformance
analysis could make th&onnector bi-directional, by assign-
ing to the connection’s endpoints both tReovideT and
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the built architecture that is not in the designed architext 7.2 Measuring Conformance
and may addummaryconnectors to abstract these divergent g-.,5,1a counts convergent edge€H), divergent edges

components z_ind gnforce communication integrity. (DE), absent edgesAE), and summary edgeSE). In ad-

In the built view, Node connects toTerminal and dition, ScHoLIA counts convergent node§N), divergent
Terminal to Net (Fig. 19(b)). The designed view hasde nodes DN), and absent node#\K). In SCHOLIA, a high
and net, but has no component that matchbsrninal AN or DN often indicate that the designed view is missing
(Fig. 19(a)). The analysis matchesde to Node, and net components compared to the built view, or uses a different
to Net, respectively. It then shows divergent connector system decomposition (Table 1).

from node to net, since the designed view does not already ~ gcpo1 1A combines edge divergences and edge absences
have one (Fig. 19(c)). If the designed view does have suchjni, one number. In terms of face validity, this metric is sim
a connector, the analysis marks it @svergent. Since a |4y 1 agraph edit distancevhich models inconsistencies by
summary connector can be eithivergent or convergent, transforming one graph into another [12]. Typical edit eper
the analysis sets a propeiummary On & CONNECOr SeP-  4tions include the deletion, insertion and relabeling afe®
arately from itsfinding. A decorator overlays té symbol and edges. Each edit operation is assigned an application-
on a connector wheilsSummary is set totrue. , dependent cost.GHOLIA assigns renames a zero cost and
Viewed differently, the analysis represents using a sum- o s insertions (divergences) and deletions (absences)
mary connector any objects in the built view that do not have The Core Conformance Metric (CCM) counts divergent
counterparts in the designed view. This allows a designed edges DE) and absent edgesAE) that would make the
view to have a coarser granularity of components, and ab- yesigned architecture account for all communication in the
stract multiple interacting objects with a connector. kedle implementation. To get a percentage, we divide by the total
the JavaDoc for Aphyds states thaetminal is aconnec-  ymper of edges and subtract from 100%. Of course, fewer
tion between alode and alet”. absences and divergences are better and mean the system

To help a developer update an incomplete designed ar-jg ¢joser to the target architecture. So, a higher CCM value
chitecture, the analysis can optionally show in the confor- ;. qi~atas higher structural conformance.

mance view thelivergent components, but without showing
any connections to these components. A developer can add
some of thelivergent components to the designed view and com 1 PAE+DE
re-run the conformance analysis. CE + AE + DE
4. Analyze matching substructures recursively.De-
signed architectures are often hierarchical, but do nat typ
cally have deep hierarchies. An OOG provides architectural
abstraction primarily through ownership hierarchy. When an
OOG is abstracted into a C&C view — whether restricting
the depth of the hierarchy or not, more components in the
built C&C view will have substructures than their designed
counterparts. To avoid generating many false positives, th
analysis ignores the substructures that are in the built vie
but not in the designed one. Skipping unmatched substruc-
tures does not compromise soundness, because both an OO
(Figs. 16(b), 16(d)) and a built C&C view (Fig. 17) lift edges
to represent any communication through their substrusture
For instanceyiewerUl in the designed view does not
define a substructure. So the analysis matchieser to
ViewerUI in the built view, and ignores the substructure
of the latter. But the designedrcuit has substructure and

matches the builtircuit. In that case, the analysis recur- due to expressiveness challenges in the type system, which

ﬂ\;?jl¥hnggée:bgfa::ijgstsr;JeCturrgthEIlJ;ezndrﬁ/;gijlotrﬁains we discuss elsewhere [2]. We believe however these warn-
P P 'ings do not contribute to missed architectural violations.

the conformance analysis would have processed the corre-
spondingOWNED tier in the built C&C view, and generated .
several undesired divergences, since both dom@imNgD 8. Evaluation

andDB are inCircuit's substructure, and its designed coun- Our evaluation demonstrates teasibilityof SCHoLIA and
terpart also has substructure. that hierarchical object graphs provide architecturatralos

tion, something that had been missing in previous statit ana
yses of the runtime structure. In future work, we plan to-eval

ScHoLIA qualifies the conformance metrics by measur-
ing the percentage of the program that lacks annotations.
For simplicity, SSHOLIA uses a derived measutrd/ARN,
namely the number of annotation warnings that the annota-
tion typechecker generates. Except for some defaultsy ever
field, variable declaration, or method return, that is arrefe
ence to an object and has a missing or incorrect annotation,
generates a warning (we mostly avoid multiple warnings due
to one missing annotation). To get a percentage, the metric

ARN% normalizesWARN by the number of declared ob-
Ject references in the program. Th'8ARN% is an indica-
tor of how many annotations are missing to make an OOG
soundly represent the built architecture. A loWw&ARN%
is better. For a program without annotatioM#ARN% will
be high. As valid annotations are added, or warnings are ad-
dressedWWARN% decreases.

For Aphyds WARN% is 5%. The remaining warnings are
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uate HOLIA’s usefulnessi.e., if it can provide actual as-
sistance to a developer in fulfilling a code modification task
based on an object diagram, as well asukability or ease

of learning and applying the approach.

Research questionThe evaluation aimed to answer the re-
search questionCan SCHOLIA identify interesting struc-
tural differences between built and designed architecime
real systems® finding is interesting if it identifies undocu-
mented information, contradicts available documentation
highlights a potential design or implementation defect. We
refine the research question into the following hypotheses:

* A developer can control the annotations to extract a
built architecture that expresses his architectural irtand
conveys architectural abstractiomhe measurable criteria
are to minimize annotation warnings, reduce the number of
top-level objects compared to a flat object graph, and not
display low-level objects.

* The conformance analysis can match the built and
the designed architectures, display a readable conforraanc
view, enable tracing a finding to the code, and compute sen-
sible conformance metric3he measurable criteria are to
minimize false positives and to be able to trace to the right
code locations.

Methodology. A developer documents the designed archi-

tecture in an ADL. She then adds annotations to the code,

invokes a typechecker and addresses annotation warnings.
Just as there are multiple architectural views of a system,

Tools. To support the methodology,CHOLIA uses several
Eclipse plugins to relate C&C views, OOGs and source files:
* AcmeStudio is an Acme modeling environment [15], to
document the designed architecture and display the con-
formance view. AcmeStudio is an Eclipse perspective,
so a developer can trace seamlessly from a conformance

view to the Java code in Eclipse;

ArchDomJ typechecks the annotations added to the code
as Java 1.5 annotations and displays warnings in the
Eclipse problem window. A developer can go from a
warning to the offending line of code;

ArchRecJ extracts an OOG from annotated code;
ArchCog abstracts an OOG into a C&C view (Section 5).
A developer can elide private domains or restrict the
projection depth;

ArchConf analyzes conformance between two C&C
views, generates eonformance vievand computes the
metrics (Section 7). ArchConf allows a developer to con-
firm the results of the structural comparison, or to manu-
ally force or prevent matches and rerun the comparison;
CodeTracelJ loads the traceability of an element in the
conformance view, opens the corresponding source files
and highlights the appropriate lines;

ArchMod modifies the original designed architecture, by
taking adivergent element from the conformance view
and adding it to the designed view, or deletingafgent
element from the designed view.

Aphyds case studyWe now describe analyzing the confor-

there is no single right way to annotate a program. Good mance of the Aphyds system using the above methodology
annotations minimize the number of top-level objects, by and tools. The experimenter (one of us, hereafter “we”) de-
pushing low-level objects underneath more architectywall veloped several of the tools, but none of the subject sys-
relevant ones. For a meaningful comparison, the designedtems. The process was iterative as a whole, and involved
and the built architectures must have similar tiers, sinfiia both macro- and micro-iterations. A macro-iteration cetssi
erarchical decomposition, and similar components and tier of documenting the designed architecture, adding the anno-
at each hierarchy level. tations, extracting an OOG, abstracting it into a built C&C
Using a tool, she extracts a hierarchical object graph, andview, and analyzing its conformance. A micro-iteration can
refines the annotations until the number of top-level olsject consist of iterating the annotations and the OOG extraction
is roughly comparable to that in the designed architecture. before converting the OOG into a C&C view, until the OOG
She then invokes a tool to abstract the extracted objechgrap has a reasonable abstraction level, e.g., by abstractiag aw
into a built architecture. She then uses another tool to com-low-level objects such agectors from the top-level do-
pare the built and the designed architectures. She typicall mains. Retrospectively, we present our evaluation as two
only confirms the results of the comparison. But if the com- macro-iterations, and show the evolution of the conforreanc
parison mismatches some elements, she can manually forcenetrics across the two macro-iterations (Table 1).
or prevent matches between those elements, and rerun the Designed architecture.We formalized the Aphyds de-
comparison. Finally, she examines the results of the cenfor signed architecture based on the informal diagram (Fig. 20)
mance analysis, studies unexpected findings and traces sudhut iterated it a few times while formalizing it. When con-
picious ones to the code. necting two components in a group, we initially forgot to put
The developer can iteratively: (a) refine the annotations; the connector into that group, which resulted in the confor-
(b) manually guide the comparison if it fails to perform the mance analysis badly matching those connectors.

proper match; (c) correct the code, if she decides that the de
signed architecture is correct, and the implementation vio
lates the architecture; or (d) update the designed art¢hitec

if she considers that the implementation highlights anrerro
or omission in the target architecture.
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In an early iteration, we set the analysis to add dihe
vergent components to the conformance view, and noticed a
partitionUl component. For consistency, sinieorPlanUl
and placeRouteUl interact with floorplanner and placeR-
outer, respectively, we added to the designed architecture
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Figure 20. Aphyds designed architecture, redrawn from the
original developer's diagram. User interface components
such asviewerUl are in the upper half. &ircuit and com-
putational components are the lower half. Here, edges+epre
sent points-to relations.
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apartitionUl that interacts witlpartitioner, even though the
informal drawing omittedpartitionUl.

[teration 1. We initially organized the Aphyds objects into — , - -
two top-level domaingJT andMODEL. UT holds aviewerur ~ Figure 21. Aphyds OOG using private domains and many
object and several subsidiary user interface objetIBEL peer objects, €.gllode, Net, Terminal andCircuit.
holds aCircuit object and computational objects that act
on it, such a¥loorplanner. We also defined several pri-
vate domains to hold objects encapsulated by their parent,c1ass circuit<0WNER> { // Implicit parameter
such asfap objects inside &ircuit object, asthe (+) sigh .  domain OWNED; // Private domain
indicates in Fig. 21. These annotations produce a hierarchi 0OWNER Node node; // Make peer to self
cal OOG that has many objects in the top-level domains. +  OWNER Net net;

Conformance metrics. The conformance analysis does ~ OWNER Terminal terminal;
not produce good conformance metrics (Table 1). For exam- // The outer OWNED annotation is for the Map object
ple, Node andNet are peers ofircuit instead of being ’ 1 Thg inner OWNER annoFatlon is for th‘e map elements
in its substructure (Fig. 22). So the conformance analy$is /I String objects .have manifest ownership

S . 9 OWNED Map<String, OWNER Node> nodes;

marks asbsent thenode andnet components insidercuit, }
hence the.2 ”Pde absences. . 1/ Everything else is exactly the same as Fig. 5

The built view has many more components in the top-
level tiers than the designed view, which explains the high Figure 22. Initial annotations.
node divergence. Moreover, the conformance analysis gener
ates many summary connectors to account for possible tran-
sitive communication, which leads to a high number of edge Placer, and many others. This turns the conformance view

FloorplanUi(+)

divergences and an unreadable conformance view. into an unreadable fully-connected graph. The low CCM
For exampleDisplayer communicates witferminal, and the many summary edges (SE) — 97 in total, may not
and Terminal with Placer. In reality, Terminal is part mean that the designed view is only 21% accurate, but that

of Circuit, and Circuit already communicates with the built architecture is not yet meaningfully comparalble t
Placer. Ideally, the analysis should just mark as conver- the designed one.

gences the connection betweBfisplayer andCircuit, In SCHOLIA, a developer controls the architectural ab-
and the one betweehircuit andPlacer. Since the anal-  straction using annotations. So in the second iteratiomgwe
ysis lacks information about logical containment, it shows fined the annotations to get a better match, without changing
instead a divergent summary connector frbigplayer to the code. The reader can visually compare the annotations
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Figure 23. Aphyds conformance results.

in Fig. 22 which we used in Iteration 1, to those in Fig. 5,
which we adopted in Iteration 2.

Iteration 2. Using the designed architecture as a guide
(Fig. 20), we defined several public domains to logically
contain objects that should not be in the top-level domains.
For exampleyiewer has aDISPLAY public domain to hold
aDisplayer object.Displayer is notin the developer’s di-
agram (Fig. 20), but is not encapsulated eitbegplayer

is only logically contained insidéiewerUI, and many other

UI objects such aBloorPlanUI reference it directly.

Other public domains abstract low-level objects into more
architecturally relevant ones. For examplercuit holds
objects such asode andNet inside itsDB public domain, to
reflect the designed architecture (Fig. 20).

In most cases, defining public domains required mostly

Table 1. Aphyds conformance metrics.

Iteration | CN | DN | AN | CE | DE | AE | SE | CCM
1 11| 11| 2 | 23189 | 0 | 97| 21%
2 13| 1 0 |16| 11| 1 2 | 5%

are in fact lifted edges. This example justifies the différen
kinds of edge summarization, such as edge lifting in a C&C
view, then adding summary connectors in the C&C view.

Overall findings. As one would expect from an informal
diagram, the designed architecture (Fig. 20) is only about
60% accurate, based on the CCM metric. Indeethj&_1A
identified a divergent componepértitionUl, several diver-
gences betweeriewerUl and othetU| components, between
Ul andMODEL components, and betwe&ODEL compo-
nents. Many connections which the developer thought to be
uni-directional were bi-directional in reality.

One divergence that crosses tiers, frphacer in MODEL
to placeRouteUl in UI, was a red flag (this is the connec-
tor we manually set to be darker in color in Fig. 23). A
multi-threaded application must respect certain fram&wor
specific conventions to call back from a worker thread ex-
ecuting a long-running operation into the user interface
thread. We used CodeTraceJ to trace this divergence to a
PlaceRouteUI field inside clas®lacer, and checked that
the Aphyds code handled this callback correctly.

Tool performance. The tools are sufficiently interactive
to allow iteration. On an Intel ® Core™ 2 Quad Processor
(2.4 GHz) with 4GB of RAM running Windows XP, the
OOG extraction takes around 10 seconds, and the structural
comparison takes between 57 seconds (Iteration 1) and 33
seconds (lteration 2).

9. Discussion

Internal threatsto validity may indicate that factors other
than the technique determined the resuisternal threats
limit the extent to which the results can be generalized.

Internal validity. One threat to internal validity is that, even

local and incremental changes to the annotations. With thethough we did not author Aphyds, we previously studied itin

refined annotations, many objects that were in NDBEL
top-level domain, such a®de, Net andTerminal, moved
into public domains of other objects, such @srcuit

(Fig. 15). As a result, both the extracted OOG and the ab-

various ways [6, 8]. We believe the results of this case study
are due to using &H0LIA and not to any previous knowl-

edge of the code. The code base is non-trivial enough for
anyone to memorize. Moreover, we previously represented

stracted built view now have a system decomposition that is the desired architecture differently [6, Fig. 19]: we did no

closer to the desired architecture (Fig. 20).
Conformance metrics. Iteration 2 matched the compo-

consider tiers, had onedel component wittplanner, par-
titioner and others as sub-components, and ignanedit’s

nents better, with 0 node absences and 1 node divergencesubstructure. Although the experimenter also designed sev

which corresponds t@erminal. The analysis now marks
asconvergent, bothnode andnet insidecircuit, as well as

the connectors between them (Fig. 23). In the built system,

node andnet do not communicate directly, but only do so
throughTerminal. So the twoconvergent connectors in-
sidecircuit have the summary decorati#n As an aside, the
edges fronlode t0 Terminal and fromNet to Terminal
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eral of the tools, a typechecker kept him honest. He could
not insert an arbitrary annotation without getting a wagnin
or otherwise manipulate the extracted architectures.
Another threat is that an electrical engineering professor
not a professional architect, drew the Aphyds intended ar-
chitecture. However, we only mined the diagram for the ar-
chitecturally significant objects and tiers it shows, and fo



the hierarchical system decomposition it usescfesuit, all a designed runtime architecture to a built code architectur
general concepts in modeling architectures [11]. or vice versa. All previoustatic conformance approaches,
Another confound is whether the built and the designed e.g., [28], address thmde architectureThe closest to atat-
architectures represent the same information. For instanc ically extractedruntime architecturdor an object-oriented
when we redrew the original developer’s diagram (Fig. 20), system would be an object graph extracted by a static anal-
we reversed the direction of some arrows [8, p.192] and ysis, whether it uses annotations [20] or not [17, 29]. All
excluded data flow edges. For a meaningful conformance previous graphs — with the exception of our own previous
analysis, the designed and the built architectures mu& hav work [4] — are flat, and would not convey enough architec-

the same kind of connectors, here, points-to relations. tural abstraction to enable conformance analysis. Of epurs
CanScHoOLIA identify at least as many violations as the we could compare &OLIA's results to those obtained by
state-of-the-art in the statienforcement of runtimarchi- a dynamicanalysis [34, 33]. But a dynamic analysis cannot

tectures?The state-of-the-art would be library-based [24] claim to represent all possible executions.
or language-based [8, 32] solutions. For instance, the C2 Could a conformance analysis of the code architecture
ADL mandates a specific architectural framework [24], but detect all the violations in a runtime architect@é&or ex-
requires developers to follow strict guidelines to avoitlan ample,could Reflexion Models (RM) [28] find all the vio-
ducing architectural violations. There are no tools to &hec lations thatScHoLIA found?In fact, we modeled SHO-
that an implementation obeys those rules (N. Medvidovic, LIA closely after RM, which is a standard bearer in analyz-
personal communication, 2008). Language-based solutionsing the conformance of code architectures. In RM, a third-
first exemplified by ArchJava, radically extend the language party tool extracts aource modefrom the implementation.
to incorporate architectural components and ports, and en-A developer posits an as-designeidh-level modeblnd a
force communication integrity using a type system [8, 32]. mapbetween the source and high-level models. RM pushes
Aldrich et al. previously studied Aphyds and identi- each interaction described in the source model through the
fied similar architectural violations, but only after thesxrr  map to infer edges between high-level model entities. RM
engineered it to ArchJava [8]. ArchJava specifies in code then compares the inferred edges with the edges stated in
architectural hierarchy and instances. In ArchJava, an ob-the high-level model.
ject is architecturally significant if its declared type is a There are similarities betweenc8oLIA and RM. For
component class. However, in ArchJava, a method can example,WARN is similar to how RM tracks unmapped
neither take as an argument, nor return a reference toentries in the source model. A major difference is that RM
an instance of aomponent class. Because real object- is designed for the code architecture. There are also devera
oriented code passes around object references liberallyminor differences. For example, RM has no divergent or
using ArchJava in an existing Java code base is harderabsent nodes. In RM, if the map generates a node that is
than simply converting each Javaass into an ArchJava  not the designed view, RM automatically adds that node to
component class [5]. Adopting ArchJava often requires the designed view. In other words, RM has no divergent or
a non-trivial re-engineering that changes how objects are absent nodes, nor does it compute summary edges. To our
passed around. When using ArchJava, one may define adknowledge, other static conformance checking technigties o
ditional component classes to capture the intended sys- the code architecture are not more expressive than RM.
tem decomposition. For Aphyds, Aldrich et al. specified In Aphyds, many important classes are instantiated once,

20 ArchJavacomponent classes and over 8@orts, re- so for those classes, the object graph is somewhat similar
engineered the program to obey ArchJava’s restrictions, an to a class diagram with associations. Of course, there are
inadvertently injected defects [8]. still non-trivial differences related to the different ias-

SCHOLIA achieves hierarchy using annotations and with- tiations of the various container classes suchvastor.
out additional classes. INCHOLIA, all objects are instances Out of curiosity, we ran jRM [18] on Aphyds. jRM sup-
of regular Java classes, and there are no restrictions @n pas ports neither tiers nor hierarchical target architectusesve
ing object references. The more architectural objects areused a simplified high-level model without tiers and ignored
higher in the ownership hierarchy. In particular, logicahe Circuit’s substructure. Indeed, RM found the divergence
tainment can impose an arbitrary hierarchy on an object from placer to placeRouteUl, because it corresponds to a di-
graph, and allows S&HOLIA to support arbitrary object-  rect field reference declared in cle&&sacer. However, RM
oriented code better. Of course, specifying strict encapsu showedabsencebetweenviewerUl andfloorPlanUl instead
lation to avoid the representation exposure may require aof the correct divergences and convergences (See RM'’s out-
change to the code, e.g., to return a copy of an internal list put for Aphyds in [1, Chap. 7]).
instead of an alias [7]. During our Aphyds evaluation, we In the OOG, aviewerUI object does not directly point
only added annotations. to a FloorPlanUI object. Instead, &iewerUI points to

Could any other stati@pproach find the violations that aDisplayer, andDisplayer references &loorPlanUI.
ScHoLIA found?Itis a genuine threat to validity to compare Moreover,Displayer is in a public domain offiewerUI.
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When ViewerUI's substructure is elided, the OOEts
that relation toviewerUI, and shows difted edgefrom
ViewerUI to FloorPlanUI, shown as a dotted edge in the
OOG (Figs. 21, 15).

Similarly, RM would not correctly handleircuit’s sub-
structure, such as the communication betweede and
net. Unlike RM, ScHoOLIA distinguishes thevector of
Terminals insideNet from the one insid&ode, and this
distinction produces the communication betw#etie, Net
andTerminal. Then, SHOLIA represents the communica-
tion betweemode andnet through edge lifting and summary
connectors. Thus, in general, a tool for the code architectu
cannot handle the runtime architecture.

DoesScHOLIA generate many false positivesalse pos-
itives are possible in general, butSoLIA attempts to re-

ScHOLIA cannot express very fine-grained object structures.
Similarly, as with most static object diagramsg¢t8LIA
does not provide any precision regarding multiplicities.
Would an outside developer understand tBeHOLIA
technique?Until there are better tools for adding annota-
tions, our approach does not have the characteristic of Re-
flexion Models that third-party users can easily run on large
code bases [28]. As a result, a study with an outside de-
veloper would be difficult given the nature of the approach.
We did, however, conduct a field study and confirmed that,
indeed, an outside professional programmer understood ab-
straction by ownership hierarchy and by types [3].
Admittedly, the need to iteratively improve the annota-
tions, fine-tune how an OOG is abstracted into a C&C view,
and follow all the steps in the tool chain may be a chal-

duce them. For example, the edges in an OOG are morelenge to the average developer. However, this situatioatis n
precise than super-imposing associations from a class dia-unique to £HOLIA. For example, previous work on code ar-
gram. Also, £HoLIA analyzes only matching substructures, chitectures using semi-automated clustering algorithiss,
and not the entire object hierarchy. There are several esurc quired that developers spend significant effort fine-turiireg
of false positives in BHOLIA. The OOG extraction uses a clustering parameters to derive a good match [9]. tmH&-
whole-program and not a reachability analysis that exaude LIA, a developer uses annotations to control the abstraction
infeasible paths. Also, the conformance analysis may addand does not rely on a tool's hard-coded heuristics.
summary edges that are false positives, as in the first itera- Is ScHoLIA more lightweightthan other static con-
tion which had 97 summary edges. But if the built and the formance approachesPor example,js adding ownership
designed architectures have a similar hierarchical decom-annotations to an existing system less invasive than re-
position and a similar number of components at each hi- engineering it to ArchJava to expose its architectu@ar
erarchy level, the analysis adds fewer summary edges. In-preliminary evidence showed that to be the case [5]. The
deed, the second iteration had only 2 summary edges, andannotations, unlike ArchJava, do not change the system’s
neither one was a false positive. In our Aphyds evaluation, runtime semantics, and support common object-oriented id-
we used CodeTraceld to trace each finding to the code, andoms, such as passing references to objects. For example,
confirmed that it does not correspond to an obvious false an ArchJavaomponent class cannot haveublic fields.
positive. Aphyds was written by a professor for one of his When using ownership annotations, such legal Java fields
classes. So this may explain the absence of infeasible.pathscan be placed in public domains. Aldrich et al. added own-
ership types to the model part of Aphyds (3.5 KLOC) in 4

External validity. Can ScHOLIA find architectural viola- hours, a quarter of the time they spent re-engineering that

tions in other systems¥es. We have applied GHOLIA to same part to ArchJava [8].

two other systems. Due to space limits, we highlighted here  To more reliably estimate the annotation effort, we con-
the Aphyds evaluation. The others are available in the first ducted a week long on-site field study. The first author spent
author’s dissertation [1, Chap. 7]. JHotDraw (15 KLOC) is 35 hours adding annotations and extracting OOGs from the
designed by experts in object-oriented analysis and design 30-KLOC LbGrid module WWVARN s still high). Based on
HillClimber (15 KLOC) is designed by undergraduates, and our previous experience with ArchJava [5], we could not
was previously re-engineered to ArchJava to specify its ar- have re-engineered LbGrid to ArchJava in the same few days
chitecture [5]. We also added annotations to, and extractedthat it took us to add the annotations, even after accounting
OOGs from LbGrid, a 30-KLOC module that is part of a for possible tool and language familiarity. Thus, adding an
250-KLOC commercial system [3]. The architects did not notations to an existing system seems more lightweight than
provide us, however, with a designed runtime architecture, re-engineering it to use an extended language like ArchJava
so we could not analyze it. Would ScHoLIA work with an ownership type system
In all the architectures we analyzedcioLIA found other than ownership domainsh principle, SHOLIA
many omitted components or connections. For example, thecould use a type system that assumes a siogigextper
JHotDraw architecture omitted components that were addedobject [10] There is, however, a crucial expressiveness ad
later to support undoing commands. vantage in ownership domains that can reduce the number of
Can ScHoLIA analyze architectures that specify fine- opjects in the top-level domains. In awner-as-dominator
grained object structures or multiplicitiesn OOG and type system, any access to a child object must go through

its abstracted C&C view provide architectural abstraction jts owning object [10]. In contrast, ownership domains sup-
by merging equivalent instances in a domain or tier. So
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port pushing almost any object underneath any other object  Structural comparison. If the views are very different,
in the ownership hierarchy. A child object may or may not an automated structural comparison may fail to match the
be encapsulated by its parent object: a child object can stil built and the designed views. In that case, the comparison
be referenced from outside its owner if it is part of a public will not be useful since all components will be absences.
domain of its parent, or if a domain parameter is linked to a One can then manually match some view elements at the
private domain [7]. 8HOLIA can readily use an ownership cost of additional effort. Finally, the algorithm is quatica
type system such as Simple Loose Ownership Domains [31],in the view sizes. So, while it scales to up to a few thousand
which enforces doundary-as-dominatqoroperty. nodes [6], very large architectures may be intractable.

For arbitrary object-oriented implementation code, it is
easier to use logical containment with public domainsgath  10. Related Work

than the strict encapsulation of private domains — and both ;4 synchronization. Our conformance analysis special-
can reduce the number of objects in the top-level domains. ;.5 our view synchronization work [6]. The key changes

Why structural comparison? SCHOLIA compares the de- include: (a) processing the view differences more selelstiv
signed and the built architectures using a structural com- (S€ction 7), such as skipping unmatched hierarchical de-
parison that works with hierarchical views, does not as- COMPpositions, instead of making the two views identicg); (b
sume unique identifiers, detects renames and allows forc-COMPuting summary connectors; and (c) including tiers in
ing or preventing matches between selected view elements € hierarchical data used by the structural comparisen, i.

These assumptions closely match the problem of analyz-&Component or aConnector is a child of its owningGroup.
ing conformance after the factc80LIA does not assume We observed empirically that this extra level of hierarchy

that the architectural components have unique identifiers, mProves the precision of the structural comparison, ard en
which would simplify the graph comparison considerably a_lbles |t_t0 distinguish better the connectors within a given
[12]. Using structural comparison enablest®Lia to de-  tier (which would belong to the sant@oup) from the ones
tect renames between the built and the designed architec{hat cross tiers (which would not be insidé&eoup).
tures, which can partly occur due to the OOG extraction. ~ Code architecture. Several approaches analyze the confor-

The OOG extraction nondeterministically selects a label mance of code architectures, e.g., [28]. Generally, an ap-
for a given objecb based on the name or the type of one of proach designed for the code architectures, e.g., [28], can
the references in the program that points.tdhus, detecting  not handle correctly the runtime architecture. However; se
renames ensures a developer can still rename fields or locakral techniques we used, namely hierarchy, lifted edges and
variables or types without impacting conformance. Avajdin -~ summary edges, have previously been applied to code ar-
the rename problem would require additional annotations to chitectures. We showed how the above techniques translate
specify in code the displayed labels. naturally to runtime architectures.

Hierarchy. Reflexion Models (RM) uses non-hierarchical
high-level models and maps. Koschke et al. extended RM
with hierarchical models [19]. In &HoLIA, all the repre-

Assumptions. ScHoLIA makes the following assumptions:
* Sources available:The program’s whole source code
and portions of external libraries that are in use have anno- g, taiions are hierarchical.

tations that typeche_ck;. _ Lifted edges.Approaches that handle code architectures
Single entry point: The program operates by creating 154 |ift edges [19, 37], for example, from a function call

a main object. The class of that object declares domains, butto a module. We use edge lifting in several places: an 0OG
has no domain parameters; lifts object relations from child objects to their parergad a

) Summanzed e_xternal entities: Reflection, dynam|_c C&C view also lifts edges from inner components (Fig. 17).
code loading or native calls may introduce unknown objects Summary edgesOmmering et al. create a second mod-

and edges into the system. Such external entities can be;je ey that displays the transitive closure of a relation i
summarized using “virtual field” annotations [2]. one module view [37]. Our summary edges (Fig. 14) or sum-

Limitations. SCHOLIA has the following limitations: mary connectors (Fig. 19) show transitive communication.
Annotations. The manual annotation effort is a poten- Dynamic analyses. Several approaches uses dynamic analy-

tial obstacle for practical adoption, but ownership annota sis to extract the built architecture [33, 13] or monitor €on

tions are amenable to automated ownership inference, whichformance [22, 34]. For example,I8COTECT [33] recov-

could alleviate this problem, at least partially [23]. Wjife- ers from a running system a built C&C view that has ar-
cise and scalable ownership inferenceH®LIA can scale chitectural types. In place of annotations,SDOTECT re-
to large systems. quires rules that map entries in a runtime trace to architec-

Architectural extraction. SCHOLIA applies to applica-  tural events, e.g., a method invocation leads to the creafio
tions that run in a single virtual machine, so it handles nei- a port. In DSCOTECT, it may be possible to reuse a mapping
ther heterogeneous nor distributed systems, nor does it ad-across several similar systems, which is not the case with ou
dress dynamic architectural reconfiguration. annotations. Becausel S oTECTIs a dynamic analysis, the
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results reflect only the particular inputs and exercised use

cases. Also, 5COTECT generates non-hierarchical C&C

Although points-to analysis is often used for compiler
optimization, its value for program understanding has been

views that show one component for each instance created atecognized [36]. In the same vein agLIA, Milanova

runtime. Finally, DscoTECT only extracts built views and
does not analyze conformance.

[26] uses the results of a points-to analysis to construct an
Object Relation Diagram, which is a class diagram where

Several dynamic analyses infer hierarchical object graphsthe type of the pointed-to object is potentially more precis
without using annotations, e.g. [16], but their results de- than the declared type. To our knowledgeH®LIA is the
scribe only the structure for those program runs. They also first approach to abstract the output of a static points-to
adopt restrictive notions of ownership which cannot expres analysis into a hierarchical runtime architecture represe
many design idioms. The expressiveness in ownership do-as a standard Component-and-Connector (C&C) view, then
main avoids a built architecture with many components in using that to analyze conformance of runtime architectures
the top-level tiers. Our evaluation showed how crucial that ~ Shape analysisShape analysis, e.g., [30] produces very
can be for a meaningful conformance analysis. precise shape graphs consisting of nodes to representfa set o
objects, and edges to represent points-to relations. Hayev
a shape graph is non-hierarchical: all the nodes are at the
same level, and objects are not collapsed underneath other
objects. This works well in an intra-procedural case to show
that a method preserves the list-ness of a data structure it
takes as a parameter. Moreover, a heavyweight shape analy-
Static analysis. Lam and Rinard proposed a type system and sjs may also achieve more precision tharH®LIA in many
a static analysis (LR) that uses non-ownership annotationscases. But a flat object graph will not scale to an entire sys-
to extract non-hierarchical object graphs [20] (LR does not tem. Although $HoLIA sacrifices some precision to gain

analyze conformance). LR supports a fixed set of statically scalability of the analysis, it conveys architectural edost
declared global tokens, and the result of the analysis is ation primarily through hierarchy.

graph showing which objects appear in which tokens. Using
token parameters, the same code element can be mappeqd1  cConclusion
to different design elements depending on context. Unlike ] ] ] )
ownership domains, LR has a statically fixed number of SC.HOLIA is the fII’SF approach to extract sta}tlcally a hierar-
tokens, all at the top level, so LR cannot show hierarchy. For chical runtime architecture from a program in a widely used
Aphyds, LR would produce an object graph with even more objegt-orlented_ language, using annotations. If an mie_ind
top-level objects than Fig. 21, which would make it even less &rchitecture exists, GHoLIA can also analyze, at compile-
suitable for conformance analysis. time, communlcanon mtegnty between the pode arjd the
Our previous work. We previously presented an earlier target arch!tecture. In pl’aCtICECS.OI'_IA found mterestmg
definition of the extraction static analysis, using an ate structural differences between existing systems and tdeir
formalization based on rewriting rules [4]. This paper's-ve get architecture. Our _evaluatlon_ confirms what othe_rs have
sion is different in several respects. Here, we use abstract©Ported [28, 8], that informal diagrams often omit impor-
interpretation, which makes the analysis more comparabletam communication. Thus, analyzing conformance after the

to previous points-to analyses. The soundness proof now in-fact is practically relevant during software evolution.

cludes edges. This more principled formalization sideste  Finally, SCHOLIA can establish traceability between an

determining a depth at which to cutoff the recursion and the ImPlementation and an intended runtime architecture. To

potential unsoundness of selecting an incorrect depth. The@ur knowledge, SHoLIA is the first approach that allows a

earlier system proved partial soundness on an intermediate?€VelOper to trace from an element such as a component or a

cyclic representation, which is then projected or unfolded POrtinaruntime architecture, extracted entirely staiiceo -

into a graph that the user sees. thg corresponding I!nes of code'ln a ggneral purpose object-
Points-to analysis.All previous points-to analysis pro- oriented language like Java. This facility was availabll on

duce non-hierarchical graphs [36, 27]. Our static analgsis When tracing from UML class diagrams to Java code.
similar to a flow-insensitive Andersen-style points-to lana Until now, developers evolving an object-oriented system
ysis. The state-of-the-art is considered asject-sensitive had to contend with high-level views of the code architeztur

analysis [27]. Our analysis is object-insensitive but can b " partial views of the runtime architecture obtained using

considerediomain-sensitivesince it distinguishes between ~dynamic analysis. &H0LIA now completes the picture.
objects in different domains. Since domains are coarser- Acknowledgments. This work was supported in part by
grained than objects, our analysis is more scalable thanAldrich’s NSF CAREER award CCF-0546550, DARPA
an object-sensitive one. However, our analysis suffermfro contract HR00110710019, and Army Research Office grant
some of the imprecisions that object-sensitivity addresse number DAAD19-02-1-0389 entitled “Perpetually Available
such as field assignment through a superclass [27]. and Secure Information Systems.”

Code generation. Some approaches assume that developers
always refine an architectural model into code to ensure
conformance by design.CHoLIA is designed to analyze the
conformance of an arbitrary system after the fact, reqgirin
only annotations.
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