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Abstract
An object diagram makes explicit the object structures that
are only implicit in a class diagram. An object diagram may
be missing and must extracted from the code. Alternatively,
an existing diagram may be inconsistent with the code, and
must be analyzed for conformance with the implementation.
One can generalize theglobal object diagram of a system
into a runtime architecture which abstracts objects into com-
ponents, represents how those components interact, and can
decompose a component into a nested sub-architecture.

A static object diagram represents all objects and inter-
object relations possibly created, and is recovered by static
analysis of a program. Existing analyses extract static object
diagrams that are non-hierarchical, do not scale, and do not
provide meaningful architectural abstraction. Indeed, archi-
tectural hierarchy is not readily observable in arbitrary code.
Previous approaches used breaking language extensions to
specify hierarchy and instances in code, or used dynamic
analyses to extract dynamic object diagrams that show ob-
jects and relations for a few program runs.

Typecheckable ownership domain annotations use exist-
ing language support for annotations and specify in code
object encapsulation, logical containment and architectural
tiers. These annotations enable a points-to static analysis to
extract a sound global object graph that provides architec-
tural abstraction by ownership hierarchy and by types, where
architecturally significant objects appear near the top of the
hierarchy and data structures are further down.

Another analysis can abstract an object graph into a built
runtime architecture. Then, a third analysis can compare
the built architecture to a target, analyze and measure their
structural conformance, establish traceability between the
two and identify interesting differences.
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1. Introduction
During software evolution, the most reliable and accurate de-
scription of a software system is its source code. In addition,
high-level architectural diagrams of the system’s organiza-
tion can be useful. For instance, a diagram can help locate
the components that must be modified, or indicate the mag-
nitude of the impact of a change based on the dependencies
among entities. Often, such a diagram is missing, hence the
need to extract one from the code. Alternatively, the diagram
may exist but may be inconsistent with the code, hence the
need to analyze its conformance with the implementation.

Reverse engineering or architectural extraction can ex-
tract various complementary high-level views. For example,
aclass diagramis an important and widely used description
of an object-oriented system that shows the staticcode ar-
chitecturein terms of classes and inheritance relationships.
Today, many tools can recover class diagrams from code.

Another important view is anobject diagramor object
graph, where nodes represent objects, i.e., instances of the
classes in a class diagram, and edges correspond to relations
between objects. An object diagram makes explicit the struc-
ture of the objects instantiated by the program and their rela-
tions, facts that are only implicit in a class diagram. While in
the class diagram a single node represents a class and sum-
marizes the properties of all of its instances, an object di-
agram represents different instances as distinct nodes, with
their own properties [36]. For example, Gamma et al. used a
class diagram and an object diagram to explain each standard
design pattern [14]. Recent empirical evidence confirms the
importance of “how objects connect to each other at runtime
when I want to understand code that is unknown: an object
diagram is more interesting than a class diagram, as it ex-
presses more how [the system] functions” [21].

A static object diagramshows all possible objects and
relations between objects, across all program runs, and is
recovered by static analysis over the code. Adynamic ob-
ject diagramshows the objects and the relationships that are

1



Net

Net

java.lang.String

Name

java.util.Vector

DestinationsSources

Circuit

circuit

FloorplanDisplayer

Floorplan

floorplan

FloorplanDisplayer

java.lang.Object[]

java.lang.Object[]

java.lang.Object[]

Node

Name

Type

java.util.Vector

OutputsInputs

circuit

Node

int[][][]

int[][]

*baseType*

int[][][]

int[]

*baseType*[]

NetGlobalRouting[][][][][]

java.awt.Color

PartitionTranscript

PlaceRouteDialog

shortest

longestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

com.symantec.itools.javax.swing.borders.EmptyBorder

emptyBorder1CircuitDisplayer

displayer

javax.swing.JScrollPane

JScrollPane1FeedbackScrollPane

Randomizer

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

javax.swing.JTable

FeedbackTable

CachedDistribution

circuit

JChartSized

PieChart

PlaceRouteDialog

shortest
longestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1
FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

JChartSized

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longest
mediumshort

mediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longest
mediumshort

medium

mediumlong

CircuitGlobalRouting
CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longestmediumshort

mediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

emptyBorder1

displayer

JScrollPane1

FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

PlaceRouteDialog

PlaceRouteDialog
shortest

longest

mediumshort
medium

mediumlong

GlobalRouter

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1

FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortest

longestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart
PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

NetDialog

DisplayedNet

displayer

DestsScrollpane

SourcesScrollpane

com.symantec.itools.javax.swing.models.StringListModel

stringListModel1
stringListModel2

NetDialog

DisplayedNet

CircuitDisplayer

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

NetDialog
DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

NetDialog

DisplayedNet

CircuitDisplayer

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1stringListModel2

NetDialog

DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1stringListModel2
NetDialog

DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

boolean[]

GlobalRouter

Placement

NetGlobalRouting[]

NetRoutes

int[][][][][][]

Distance

NetGlobalRouting[][][][][][]

NGRnodeAt

java.awt.Dimension

ChipBounds

row_width
col_width

circuit

NGRnodeAt[]

Placement

NetGlobalRouting

NetRoutes[]

ChipBounds

row_width
col_width

int[][][][][]

Distance[]

circuit

PlacerPlacement

NetGlobalRouting[]

NetRoutes

int[][][][][][]

Distance
NGRnodeAt

ChipBounds

col_width

row_width

circuit

java.util.Hashtable

java.awt.Point[]

internal::eltsIOs::elts

PRDialog

java.awt.Point

NodePlacement[]

PlacementDim

CachedSemiperimeter

circuit

Node[]

PlacementRegion[]

PRDialog

NodePlacementjava.util.Vector

IOsinternal

PlacementDim

CachedSemiperimeter

Node[][]

PlacementRegion

circuit

java.lang.String[]

java.awt.Insets

ChannelRouteDialog

displayer

ChannelDisplayer

channelDisplayer1

Channel

channels::elts

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

circuit

ChannelRouteDialog

displayer

ChannelDisplayer

channelDisplayer1

channelDisplayerScrollPane

ChannelPickerScrollPane

stringListModel1

channels

circuit

ChannelRouteDialog

CircuitDisplayer

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

ChannelRouteDialog

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

Floorplanner

ChannelRouteDialog

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

Floorplanner

Floorplan

bestFloorplan

SlicingTree

TreeRoot

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

javax.swing.JButton[]

node_button

FloorplanDialog

floordialog1

PartDialog

partdialog1

java.util.Vector

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

Partitioner

partitions

CircuitDisplayer

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_rownode_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

Partitioner

partitions
CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button
FloorplanDialog

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

netlistener

node_button

floordialog1

partdialog1

NodeArray

NodeDialog

nodedialog1

buttonlistener

node_row

node_col

nodelistener

circuit

viewer
partitions

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

FloorplanDialog

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener
buttonlistener

node_rownode_col

CircuitDisplayer$NodeListener

nodelistener
circuit

CircuitViewer

viewer

Partitioner

partitions

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

FloorplanDialogfloordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

netlistener

node_button

floordialog1

PartDialog

partdialog1

NodeArray

nodedialog1

buttonlistener

node_rownode_col

nodelistener

circuit

viewer

partitions

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

FloorplanDialog

floordialog1

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

boolean[][][][]

Floorplan

Floorplan

Floorplan

FirstChildSecondChild

SlicingTree

Tree

Size

FirstChildSecondChild

SlicingTree

Tree

Size

Floorplan

FirstChildSecondChild

SlicingTree

Tree

Size

FirstChildSecondChild

Tree

Size

Main

CircuitViewer

circuitViewer

PartTransDisplayer
transcript

POLY_COLORCONTACT_COLORSELECTION_COLORMETAL2_COLORM1POLY_COLORM2POLY_COLORMETAL1_COLORM1M2_COLOR

Channel

channel

boolean[][][]

metal1[]contact[]
poly[]

via[]
metal2[]

bottom_labels[]top_labels[]

int[][][][]

selected

labels

VCGHCG

track_assignmenttop_connectionsbottom_connectionssorted_netspredecessors

this$0

this$0

this$0

this$0

this$0

this$0

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

CutGraph

CutGraphScrollPane

PartDialog

PartDialog

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

java.util.concurrent.atomic.AtomicLong

seed

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane

com.symantec.itools.javax.swing.borders.EtchedBorder

FPIconEtchedBorder

FloorplanIcon

FPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane
FPIconEtchedBorder

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane FPIconEtchedBorder

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane
FPIconEtchedBorder

FloorplanIcon
FPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane FPIconEtchedBorder

java.util.Vector

delegate

SlicingTree

NodeColor

SlicingTree
FirstChild

SlicingTree

SecondChild

Name

java.util.Vector

Floorplans

javax.swing.ImageIcon

Icon

NodeColor
SlicingTree

FirstChild

SecondChild

Name

java.util.Vector

Floorplans

Icon

NodeColor

SlicingTree

FirstChild

SlicingTree

SecondChild

Name

Floorplans

Icon

NodeColor

FirstChildSecondChild

Name

Floorplans

Icon

NodeColor

FirstChildSecondChild

Name

Floorplans

Icon

NodeColor

Floorplans::elts

FirstChildSecondChild

Name

Icon

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorder
ResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

PlacerDialog

PlacementGraph

PlacerDialog

PlacementGraph

elementData

elementData

elementData

elementData

MyDialog

CircuitGlobalRouter

CircuitPlacer

Displayer

node_button

circuit

MyDialog

CircuitGlobalRouter

CircuitPlacer

Displayer

node_button

circuit

int[][][][]

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpane
OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpane

OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1

stringListModel2

DisplayedNode

displayerInputsScrollpane

OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

javax.swing.table.DefaultTableModel

javax.swing.JFileChooser

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

NodesNets

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuitPartitioner

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

Partitioner

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

*baseType*

graphBorder

title

model

netStatus[]
nodeLock

nodeGainnodePartition

circuit

nodeLock

netStatus

nodeGainnodePartition

circuit

netStatus[]

nodeLock

nodeGain
nodePartition

circuit

nodeLock

netStatus

nodeGainnodePartition

circuit

Figure 1. Aphyds object graph by WOMBLE [17]. To read
the labels, zoom in by 1000%.

created during a specific system execution, and is recovered
using a dynamic analysis [36]. Static and dynamic object
diagrams provide complementary information. A static ob-
ject diagram lacks precision on the actual multiplicity of the
objects that the program may create, or the actual relations
between objects. In contrast, a dynamic object diagram, e.g.,
[13], can show the exact number of instances and the actual
relations in a given program run. But a dynamic object dia-
gram may not reflect important objects or relations that show
up only in other executions. For example, using a design di-
agram, a security review could enumerate all possible com-
munication between trusted and untrusted parts of a system.
But if the diagram under study omits communication that is
present in the implementation, the analysis may be incorrect.

Scaling a flat object graph to an entire system, even a
relatively small one, produces an unreadable diagram. For
example, Fig. 1 is for Aphyds, an 8,000-line system. Such a
diagram mixes low-level objects such asSlicingTree with
architecturally-relevant objects from the application domain
such asGlobalRouter, and a developer has no easy way to
distinguish them.

To mitigate a diagram’s complexity, hierarchy is often
used to allow both high-level and detailed understanding, by
expanding or collapsing selected elements [35].

Hierarchy was effective in dynamic object diagrams [16].
However, all previous static analyses extract flat static object
diagrams [17, 29, 20]. Imposing hierarchy on a static ob-
ject diagram is harder because architectural hierarchy is not
readily observable in arbitrary code. Some language-based
solutions, e.g., ArchJava [8], specify architectural hierarchy
and instances directly in code. But ArchJava’s breaking ex-
tensions restrict how a program uses objects and requires
re-engineering an existing Java system to ArchJava [8, 5].

The proposed approach achieves hierarchy in a static ob-
ject diagram by having a developer pick a top-level object
as a starting point, then use local modular ownership anno-
tations in the code [7] to impose a conceptual hierarchy on
objects. Thus, architecturally significant objects appearnear
the top of the hierarchy and data structures further down.
Similarly to ArchJava, the source code encodes the archi-
tectural intent, but instead of radically extending Java, the
approach uses existing language support for annotations.

1

2

Component
HierarchyConnector

Object 
relation

Object

Figure 2. Architectural abstraction.

Then, a static analysis extracts from the annotated pro-
gram aglobalobject graph that uses object hierarchy to con-
vey architectural abstraction. Moreover, the extracted object
graph issound in two respects. First, each runtime object
has exactly one representative in the object graph. Second,
the object graph has edges that correspond to all possible
runtime points-to relations between those objects.

One can generalize the global object diagram of a sys-
tem into aruntime architecturewhich abstracts one or more
objects into conceptualcomponents, represents how those
components interact asconnectors, and decomposes a com-
ponent into a nested sub-architecture [11] (Fig. 2).

This paper proposes the SCHOLIA1technique to stati-
cally extract a hierarchical runtime architecture from object-
oriented code, using annotations, and to analyze the confor-
mance of an existing architecture with the code.

When the diagram ismissing, SCHOLIA can extract an
object graph that captures all potential executions of a pro-
gram. An object graph often contains implementation de-
tails, so SCHOLIA canabstractit into a runtime architecture.

Alternatively, an existing diagram may be inconsistent
with the code. SCHOLIA then follows theextract-abstract-
check strategy [28], to compare andanalyze the confor-
mance between an extracted architecture and the intended
architecture. Thecommunication integrityproperty defines
SCHOLIA ’s notion of conformance as:each component in
the implementation may only communicate directly with the
components to which it is connected in the architecture[22].

To our knowledge, SCHOLIA is the first approach to an-
alyze, at compile-time, communication integrity between
code in a widely-used object-oriented language and a rich,
hierarchical description of the intended runtime architecture.
SCHOLIA weaves several technical pieces together into an
overall conformance approach.

In Section 2, we discuss the differences between the code
and the runtime architecture. In Section 3, we summarize
the earlier ownership type system [7]. In Section 4, we dis-
cuss the object graph extraction algorithm. In prior work
[4], we described an algorithm toextract hierarchical ob-
ject graphs from source code with ownership annotations,

1 SCHOLIA stands for static conformance checking of object-based
structuralviews of architecture. Scholia are annotations in a manuscript.
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and provedunique object and domain representatives. This
paper describes the extraction analysis using a clearer for-
malization, which allows us to prove, in addition to unique
object and domain representatives,edge soundness. Edge
soundness means that the built architecture shows all pos-
sible communication, which is a prerequisite for enforcing
communication integrity.

An object graph, however, is often not isomorphic to
a target architecture. The primary contribution of this pa-
per is an integratedextract-abstract-checkapproach that
abstractsan object graph to a standard Component-and-
Connector (C&C) runtime architecture, thenanalyzescom-
munication integrity against a target architecture. In Sec-
tion 5, we discuss how SCHOLIA abstracts an object graph.
In Section 6, we map an abstracted object graph into a stan-
dard component-and-connector architecture.

Also, SCHOLIA leverages our prior structural comparison
algorithm [6] for the architectural comparisons in Section7.
SCHOLIA computes conformance metrics to help managers
track architectural conformance over time, and derives trace-
ability information that allows the architect to effectively
trace architectural violations to code. In Section 8, we evalu-
ate SCHOLIA and demonstrate that it can be applied to exist-
ing systems while changing only annotations in the code,
that SCHOLIA can find interesting architectural violations
that can be traced to code, and that SCHOLIA computes sen-
sible conformance metrics in practice. We conclude with a
discussion (Section 9) and related work in Section 10.

2. Code vs. Runtime Architecture
As a running example, we use Aphyds, a system of 8,000
source lines of Java code. A partial class diagram for Aphyds
shows oneVector class, and Node and Net classesthat
have a dependency onVector (Fig. 3). The class diagram
suggests that aNode object and aNet object might share the
sameVector object, but an object diagram may show this is
not the case (Fig. 4(a)).

In a hierarchical object diagram, an object can contain
other objects. As a result, one can collapse several nodes
into one. This is a classic approach to shrink a graph. How-
ever, SCHOLIA collapses object nodes based on contain-
ment, ownership and type structures, not according to where
objects are declared in the program, a naming convention or
a graph clustering algorithm, as we discuss below.

Instead of objects being directly inside other objects, we
use an extra level of hierarchy and group related objects
inside adomain. A domain is similar to an architectural
runtimetier, aconceptual partitioning of functionality[11].

The visualization uses box nesting to indicate contain-
ment (Fig. 4(a)). E.g.,DB is inside circ. Dashed-border
white-filled boxes represent domains. Sold-filled boxes rep-
resent objects. Solid edges represent field references. An
object labeledobj:T indicates an object referenceobj of

Vector
Circuit

NodeNode

Net
Terminal

- circuit

- circuit

- circuit

«instantiate»

«instantiate»

- tnet

- tnode

Class

Figure 3. Code architecture ofCircuit, Node andNet.

typeT, which we then refer to either as “objectobj” or as
“T object”, meaning for brevity, “an instance of theT class”.

An object can have apublic domain to define a concep-
tual group of contained objects. For instance, inside object
circ, a public domainDB contains objectnet. This makes
net part of circ. Part of means conceptual or logical con-
tainment, indicated by a thin border. Namely, nested objects
are still accessible to the outside. For instance, an objectthat
can reference the objectcirc can also reference the inner
objectnet inside theDB domain.

Each object can have domains. In turn,net has apri-
vate domainOWNED and objectterms insideOWNED. A pri-
vate domain defines strict instanceencapsulationor object
ownership. In other words,terms cannot be leaked to, nor
accessed from, outside thenet object. A thick border indi-
cates strict encapsulation.

Unlike the class diagram which shows oneVector class,
the object diagram shows distinctVector objects. In turn,
those twoVector objects refer to the sameterm object in
DB. Finally, hierarchy allows varying the abstraction level,
by collapsing or expanding the sub-structure of objects such
node and net. In Fig. 4(b), the (+) symbol on an object
indicates that it has a collapsed sub-structure.

In addition, several object references that a program de-
clares may alias, i.e., refer to the same object at runtime. An
object graph such as Fig. 4(a) must conservatively show as
one two objects that may alias due to subtyping, a fact that
may be implicit when looking at the code. Otherwise, an ar-
chitecture would be deceptive if it mapped potentially the
same runtime object into two architectural components. For
example, classStack is a subtype ofVector. If there were
a Stack object in theOWNED domain insideNet, theStack
and theVector objects would be displayed as one.

3. Annotations
A static object diagram is extracted by a static analysis over
the code. To achieve hierarchy in the object diagram, SCHO-
LIA relies onlocal, modular (one class at a time) annota-
tions in the code that clarify the design intent. The type-
checkable annotations specify object encapsulation, logical
containment and architectural tiers, which are not explicit
constructs in a general purpose programming language.

3



DB

OWNEDOWNED

...

terms:
Vector<Terminal>

term:
Terminal

node:
Node

terms:
Vector<Terminal>

net:
Net

circ:
Circuit

X
(E8)

(E6)

(O0)

(D1)

(O1)(O2)

(E1)
(E2)

(O3)

(D4)
(D3)

(E5)

(E7)

(E3)

(O5)(O6)

(a) Showing the structure of thecirc, net andnode objects.

DB
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term:
Terminal

node (+):
Node
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Net

circ:
Circuit

(b) Collapsing the substructures ofnet andnode.

Figure 4. Runtime architecture ofCircuit, Node andNet.

1 class Circuit {

2 public domain DB; // Public domain
3 domain OWNED; // Private domain
4 DB Node node;

5 DB Net net;

6 DB Terminal terminal;

7 OWNED Map<String,DB Node> nodes;

8 }

9 class Node<OWNER> { // Implicit parameter
10 domain OWNED; // Private domain
11 OWNED Vector<OWNER Terminal> terms;

12 }

13 class Net<OWNER> {// Implicit parameter
14 domain OWNED; // Private domain
15 OWNED Vector<OWNER Terminal> terms;

16 }

17 class ViewerUI<M> { // Domain parameter
18 M Circuit circuit;

19 }

20 class Main { // Root class
21 domain MODEL, UI; // Top−level domains
22 MODEL Circuit circuit;

23 UI ViewerUI<MODEL> viewerUI;

24 }

Figure 5. Refined annotations.

The annotations assign each object to a singleownership
domainthat does not change at runtime. An ownership do-
main is a conceptual group of objects with an explicit name

1 @DomainParams({"M"}) // Domain parameter
2 class ViewerUI {

3 @Domain("M") Circuit circuit;

4 }

5 @Domains({"MODEL","UI"}) // Actual domains
6 class Main {

7 @Domain("MODEL") Circuit circuit;

8 @Domain("UI<MODEL>") ViewerUI viewerUI;

9 }

Figure 6. Using the concrete Java 1.5 annotations.

and explicit policies that govern how it can reference objects
in other domains [7]. Fig. 5 shows the annotations that a de-
veloper might add to some Aphyds classes. Our tools use
existing language support for annotations [2], which tends
to be verbose (Fig. 6), but this paper uses a more readable
syntax similar to the formal system (Fig. 9). A developer in-
dicates the domain of an object by annotating each reference
to that object in the program (lines 4–6). A developer typi-
cally chooses domain names to convey architectural intent.
By convention, capital letters for domain names help distin-
guish them from other program identifiers.

Each class can declare one or morepublic or privatedo-
mains to hold its internal objects (lines 2–3), thus support-
ing hierarchy. Although a domain is declared at the level of
a class in a program, each instance of that class has its own
runtime domain. Thus, the domains within an object express
a substructure within the object, one that consists of other
domains and objects that represent its parts. In particular, an
annotation can refer to the public domainD of an object
obj, as if it were a field, using theobj.D syntax. Whenever
our analysis distinguishes two objectsobj1 andobj2, it also
distinguishes the domains that these objects contain in turn,
such asobj1.D andobj2.D.

An instance of theViewerUI class accesses other objects
in theMODEL domain, by declaring a formaldomain param-
eterM on theViewerUI class (line 17), andbinding that pa-
rameter to domainMODEL (line 23). A typechecker validates
the annotations and identifies where the annotations are in-
consistent with each other or with the code. For instance, a
public method cannot return an alias to an object inside a
private domain. Thus, instance encapsulation is stronger than
making a field beprivate to restrict its module visibility.

4. Architectural Extraction
A Runtime Object Graph (ROG)represents the runtime
structure of an object-oriented program. Nodes correspond
to runtime objects. Edges correspond to relations between
objects such aspoints-tofield reference relations. The goal
of the static analysis is to extract from an annotated program
a sound hierarchical approximation of any Runtime Object
Graph, the Ownership Object Graph (OOG).
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1 Circuit c = new Circuit();

2 OObject(c, Circuit<null>) (O0)

3 analyze(c, [])

4

5 this 7→ c, []

6 class Circuit {

7 ODomain(c.DB, Circuit::DB) (D1)

8 public domain DB;

9 ODomain(c.OWNED, Circuit::OWNED) (D2)

10 domain OWNED;

11 OObject(c.DB.nd, Node<c.DB>) (O1)

12 OEdge(c, c.DB.nd) (E1)

13 Node<DB> nd = new Node<DB>();

14 analyze(c.DB.nd, [Node::OWNER 7→ c.DB])

15 OObject(c.DB.net, Net<c.DB>) (O2)

16 analyze(c.DB.net, Net::OWNER 7→ c.DB)

17 OEdge(c, c.DB.net) (E2)

18 Net<DB> net = new Net<DB>();

19 OObject(c.DB.term, Terminal<c.DB>) (O3)

20 analyze(c.DB.term, Terminal::OWNER 7→ c.DB)

21 Terminal<DB> term = new Terminal<DB>();

22 OEdge(c, c.DB.term) (E3)

23 ...

24 }

25 this 7→ c.DB.nd, [OWNER 7→ c.DB]

26 class Node<OWNER> {

27 ODomain(c.DB.nd.OWNED, Node::OWNED) (D3)

28 domain OWNED;

29 OObject(c.DB.nd.OWNED.terms,Vector<c.DB.nd.OWNED>) (O5)

30 OWNED Vector<OWNER Terminal> terms = new Vector<...>();

31 analyze(c.DB.nd.OWNED.terms, Vector::ELTS 7→ c.DB)

32 OEdge(c.DB.nd, c.DB.nd.OWNED.terms) (E5)

33 }

34 this 7→ c.DB.nd.OWNED.terms, [ELTS 7→ c.DB]

35 class Vector<ELTS T> { T 7→ Terminal

36 lookup OObject(c.DB.term, Terminal<c.DB>)

37 OEdge(c.DB.nd.OWNED.terms, c.DB.term) (E6)

38 ELTS T obj;

39 }

Figure 7. Abstract interpretation of theCircuit class.

At a high level, the analysis distinguishes between ob-
jects in different domains, and abstracts objects to pairs of
domains and types. The analysis also substitutes formal do-
main parameters with actual domains. Finally, the analysis
adds edges between objects.

Object merging. Different executions may generate a
different number of objects, for instance ofNode objects.
But a static object graph must represent all possible execu-
tions. To address this, an object graph summarizes multiple

1 this 7→ c.DB.net, [OWNER 7→ c.DB]

2 class Net<OWNER> {

3 ODomain(c.DB.net.OWNED, Net::OWNED) (D4)

4 domain OWNED;

5 OObject(c.DB.net.OWNED.terms,Vector<c.DB.net.OWNED>) (O6)

6 OWNED Vector<OWNER Terminal> terms = new Vector<...>();

7 analyze(c.DB.net.OWNED.terms, Vector::ELTS 7→ c.DB)

8 OEdge(c.DB.net, c.DB.net.OWNED.terms) (E7)

9 }

10 this 7→ c.DB.net.OWNED.terms, [ELTS 7→ c.DB]

11 class Vector<ELTS T> { T 7→ Terminal

12 OEdge(c.DB.net.OWNED.terms, c.DB.term) (E8)

13 ELTS T obj;

14 }

Figure 8. Abstract interpretation of theCircuit class.

runtime objects with one canonical object in a domain, e.g.,
oneNode object in theDB domain

Object aliasing. The object graph maintains an aliasing
invariant, i.e., no one runtime object appears as two different
canonical objects in the graph. The ownership domains type
system give some precision about aliasing, without requir-
ing an alias analysis. The type system guarantees that two
objects in different domains cannot alias. But two objects
in the same domain may alias. So, the analysis merges two
objects declaredin the same domainwith the same types.

4.1 Example

The analysis takes as input a user-selected root type, in
this case,Circuit (Fig. 7). First, the analysis creates an
OObject (O0) for an object allocation of the root type. Then,
it analyzes the classCircuit, after binding the receiver
this to c.

InsideCircuit, the analysis creates anODomain for the
domainDB (D1) and another forOWNED declared in class
Circuit (D2). In turn, for the object allocations inside
Circuit, it createsOObjects nd (O1),net (O2) andterm
(O3) insideDB, and anOObject nodes inside OWNED

(O4). Then, the analysis addsOEdges from O0 to O1 (E1),
O0 to O2 (E2) and O0 to O3 (E3).

The analysis then processes classNode by binding the re-
ceiver toc.DB.nd. In Node, the analysis creates anODomain

for OWNED (D3), and anOObject for terms (O5). In addi-
tion, the analysis adds anOEdge (E5) from O1 to O5.

Next, the analysis processesterms by binding the re-
ceiver to c.DB.OWNED.terms, and interpreting the vir-
tual field declarationobj inside Vector. After substitut-
ing formals to actuals, the analysis finds allOObjects in
the ODomain c.DB, the types of which are subtypes of
Terminal. For instance, the analysis finds theOObject O3.
So, it creates anOEdge (E6) from theOObject correspond-
ing to theterms (O5), to thatOObject (O3). Similarly, the
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cdef ::= class C<α, β> extends C′<α>

{ dom T f md }
dom ::= [public] domain d;

md ::= TR m(T x) Tthis { return eR; }
e ::= x | new C<p>() | e.f | e.m(e) | ` | ` . e

n ::= d | v

p ::= α | n.d | shared

T ::= C<p>

v, ` ∈ locations

S ::= ` 7→ C<p>(v)
Σ ::= ` 7→ T

Γ ::= x 7→ T

Figure 9. Simplified FDJ abstract syntax [7].

G ∈ OGraph ::= 〈Objs = PtO, Doms= PtD, Edgs= PtE〉

::= 〈PtO, P tD, P tE〉

D ∈ ODomain ::= 〈 Id = Did, Domain = C::d 〉

::= 〈 Did, C::d 〉

O ∈ OObject ::= 〈 Id = Oid, Type = C<D> 〉

::= 〈 Oid, C<D> 〉

E ∈ OEdge ::= 〈 From = Osrc, Field = f, To = Odst 〉

::= 〈 Osrc, f, Odst 〉

PtO ::= ∅ | PtO ∪ { O } Object map

PtD ::= ∅ | PtD ∪ { (O, d) 7→ D } Domain map

PtE ::= ∅ | PtE ∪ { E } Edge map

Υ ::= ∅ | Υ ∪ { C<D> } Visited objects

H ::= ` 7→ O Runtime object map

K ::= `.d 7→ D Runtime domain map

Dshared ::= 〈 Ds, ::shared 〉 Shared domain

Oworld ::= 〈 Oworld, Object<> 〉 Root context

Figure 10. Data type declarations for theOGraph.

analysis processesnet andterms insideNet (Fig. 8). Note
how the “domain sensitivity” of the analysis allows it to
map the same virtual field declaration (lines 35, 50) to two
differentOEdges in theOGraph, E6 and E8, respectively.

4.2 Formalization

Syntax.We formalize the analysis following ownership do-
mains and Featherweight Domain Java (FDJ) [7]. We simpli-
fied the FDJ abstract syntax (Fig. 9) to exclude generic types,
casts, etc. In FDJ, a typeC<d> consists of the class of an
object and actual ownership domain parameters. An over-
bar represents a sequence. The first actual domain,d1, is the
owner (Aux-Owner[7]). In FDJ, locations represent object
identity. A storeS maps a locatioǹ to its contents, the type
of the object, and the values stored in its fields.S[`] denotes
the store entry for̀ . Each`.d refers to a domain namedd

that is part of the runtime object`. S[`, i] denotes the value
in theith field ofS[`]. The store typeΣ gives a type to each
location inS, one that is consistent with the classes and ac-
tual ownership domain parameters inS. dom() returns the
mathematical domain of a mapping,rng() its range.

Data Types.In Fig. 10, anOGraph G is the tripletG =
〈PtO, P tD, P tE〉. PtO is a set ofOObjects. PtD maps
a pair consisting of anOObject O and a local domain or a
domain parameterd in the abstract syntax, i.e.,(O, d), to an
ODomain D. Effectively, PtD maintains a mapping from
formal domain parameters to actual domains.PtE is a set
of OEdges.

The analysis distinguishes between different instances of
the same classC that are in different domains, even if created
at the samenew expression. In addition, the analysis treats an
instance of classC with actual parametersp differently from
another instance that has actual parametersp′. Hence, the
datatype of anOObject usesC<D> instead of just a type
and an owningODomain. As in FDJ, anOObject’s owning
ODomain is the first elementD1 of D.

A domain d is declared at the level of a classC in a
program, but each instance of classC gets its own run-
time domain`.d. Whenever the analysis distinguishes two
runtime objects̀ and `′, it also distinguishes the domains
that these objects contain in turn, such as`.d and`′.d. Be-
cause each runtime domain`.d has anODomain representa-
tive, a domain declarationd in the code can create multiple
ODomainsDi.

To deal with recursive types, as we discuss later, an
ODomain can have multiple parentOObjects, rather than
a single one, so anODomain does not have an owningOOb-

ject in its representation.
EachOEdge E is a directed edge from a sourceOObject

to a targetOObject, and indicates the field namedf.
Abstract Interpretation. The analysis is an abstract in-

terpretation of the program that maps concrete domain and
field declarations in the program to abstract values in an
OGraph, namelyOObjects,ODomains, andOEdges.

We use a constraint-based specification (Fig. 11) instead
of transfer functions, which makes it easier to prove sound-
ness. The judgement form is as follows:

Γ,Υ, P tO, P tD, P tE `O, H e

Γ is the typing context (Fig. 9).Υ is needed for handling
recursion (Fig. 10), as we discuss later. TheO subscript on
the turnstile captures the context-sensitivity.H is part of the
instrumentation that maps locations toOObjects (Fig. 10).
We omitH for most of the rules that do not need it.

The interpretation starts with a programP consisting of a
class tableCT and a root expressione, which gets analyzed
in the context ofOworld. We require anOObject, Oworld,
which has a singleODomain, Dshared, which corresponds
to the global domainshared. For clarity, we quality a do-
main d by the class that declares it, asC::d. We qualify
shared as::shared.
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∀i ∈ 1..|p| Di = PtD[(O, pi)] params(C) = α

OC = 〈 Oid, C<D> 〉 {OC} ⊆ PtO {(OC , αi) 7→ Di} ⊆ PtD

PtO, P tD, P tE `O ptdomains(C<p>, OC)
PtO, P tD, P tE `O ptfields(C<p>, OC)

∀m. mbody(m, C<p>) = (x : T , eR)

C<D> 6∈ Υ =⇒ {x : T , this : C<p>}, Υ ∪ {C<D>}, P tO, P tD, P tE `OC
eR

Γ, Υ, P tO, P tD, P tE `O new C<p>()e
[PT-NEW]

∀(domain dj) ∈ domains(C<p>) Dj = 〈Didj
, dj 〉 {(OC , dj) 7→ Dj} ⊆ PtD

PtO, P tD, P tE `O ptdomains(C<p>, OC)
[PT-DOM]

∀(Tk fk) ∈ fields(C<p>) owner(Tk) = p
′

k Dk = PtD[(O, p
′

k)]
∀Ok PtO, P tD, P tE `O ptlookup(Dk, Tk) = Ok {〈OC , fk, Ok 〉} ⊆ PtE

PtO, P tD, P tE `O ptfields(C<p>, OC)
[PT-FIELDS]

Ok = 〈 Oid, C<D> 〉 ∈ PtO D1 = D T
′ = C

′

<p′> C <: C
′

∀i ∈ 1..|p′| D
′

i = PtD[(O, p
′

i)] D
′

i = Di

PtO, P tD, P tE `O ptlookup(D, T
′) = Ok

[PT-LOOKUP]
Γ, Υ, P tO, P tD, P tE `O x

[PT-VAR]

Γ, Υ, P tO, P tD, P tE `O `
[PT-LOC]

Γ, Υ, P tO, P tD, P tE `O e0

Γ, Υ, P tO, P tD, P tE `O e0.fk

[PT-READ]

Γ, Υ, P tO, P tD, P tE `O e0 Γ, Υ, P tO, P tD, P tE `O e

Γ, Υ, P tO, P tD, P tE `O e0.m(e)
[PT-INVK ]

OC = H[`] Γ, Υ, P tO, P tD, P tE `OC
e

Γ, Υ, P tO, P tD, P tE `O, H ` . e
[PT-CONTEXT]

∀` ∈ dom(S), Σ[`] = C<p> H[`] = O = 〈Oid, C<D>〉 ∈ PtO

∀m. mbody(m, C<p>) = (x : T , eR) {x : T , this : C<p>}, ∅, P tO, P tD, P tE `O, H eR

PtO, P tD, P tE `CT,H Σ
[PT-SIGMA ]

Figure 11. Constraint-based specification of the object graph extraction analysis.

In PT-NEW, the analysis interprets anew object allocation
in the context of anOObject O as follows. First, PT-NEW

checks thatPtO has anOObject OC for the newly allocated
object. SincePtD maintains the binding from each formal
domain parameter to someODomain, PT-NEW ensures that
the representatives of the actual domainsp bound to the
parameters of classC are inPtD.

PT-NEW then uses the auxiliary judgement PT-DOM to
ensure thatPtD has anODomain corresponding to each
domain that the classC locally declares. In PT-DOM, the
domains auxiliary judgement from FDJ returns the owner-
ship domains that a class declares, after substituting formal
domain parameters with actual domains.domains also in-
cludes inherited domains, including the private domains. In
FDJ,privatedomains are misnamed, and really have apro-
tectedsemantics [7, RuleAux-Domains(Fig. 14)].

PT-NEW then relies on the auxiliary judgement PT-
FIELDS to ensure thatPtE has anOEdge from OC to each
object in the target domain that is type compatible with the

target type, using PT-LOOKUP. In PT-FIELDS, the fields

auxiliary judgement from FDJ returns the fields that a type
declares, after substituting formal domain parameters with
actual domains, and includes inherited fields.

Finally, PT-NEW obtains each expressione′ in each
methodm in C, and processese′ in the context of theOOb-

ject OC . Before PT-NEW checks these expressions recur-
sively, it adds the current combination of a type and actual
domain parameters toΥ. If PT-NEW discovers by looking at
Υ that it previously analyzed that same combination, it does
not recurse into the sameOObject, thus avoiding infinite
recursion.

Although the case for new expressions is the most inter-
esting, the analysis requires rules for all the expression types
to make the induction work. The rules for PT-VAR, PT-LOC,
PT-READ, and PT-INVK are self explanatory.

PT-CONTEXT analyzes method calls in progress` . e,
where` is the receiver, by moving into the context of the
receiver objectOC . Finally, the induction requires an aug-
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mented store typing rule, PT-SIGMA , to ensure that method
bodies have been analyzed for all objects in the store.

Recursion. The analysis must handle recursive types,
which can lead anOGraph to grow arbitrarily deep. To en-
sure termination, theOGraph is finite, and can contain cy-
cles. The analysis creates a cycle in theOGraph when it
reaches a “similar” context. We chose to unify domains. For
instance, in Fig. 12, theOWNED domain insidenwQT is the
same as theOWNED domain insideaQT. Because the same
ODomain can now appear as the child of twoOObjects, an
ODomain cannot have an owningOObject. The visualiza-
tion, however, expands theOGraph to a limited depth—the
user sees the graph above the thick dashed line Fig. 12.

4.3 Soundness

The soundness proof relies on an instrumentation of the FDJ
runtime semantics, an approximation relation, and standard
Progress and Preservation theorems. We summarize below
the key results. In addition to the FDJ storeS, the instru-
mentation maintains the mapsH andK (Fig. 10).

The instrumented evaluation has the judgement form:
e;S;H;K  G e′;S′;H ′;K ′ whereG = 〈PtO, P tD, P tE〉
is the statically computed object graph.

This instrumentation is safe since discarding it produces
exactly the previous semantics. In IR-NEW (Fig. 13), the
actual domainspi passed to the classC being allocated
are runtime domains, whichK maps to staticODomains in
PtD. We useH to lookup theOObject Ok for each valuevk

passed to initialize thekth field of the object being allocated,
and ensure that theOEdge is in PtE.

We define the approximation relation∼ as follows:

∀ Σ ` S, (S, H, K) ∼ (PtO, P tD, P tE)

iff ∀` ∈ dom(S), Σ[`] = C<`′.d>

implies

H[`] = OC = 〈Oid, C<D>〉 ∈ PtO

and∀`
′

j .dj ∈ `′.d K[`′j .dj ] = Dj = 〈Didj
, dj〉 ∈ rng(PtD)

and∀di ∈ domains(C<`′.d>)

K[`.di] = Di = 〈Didi
, di 〉 ∈ rng(PtD)

and{(OC , di) 7→ Di} ∈ PtD

andfields(Σ[`]) = T f and∀k, ∀`
′

S[`, k] = `
′ =⇒

Ek = 〈H[`], fk, H[`′]〉 ∈ PtE

Theorem: Object Graph Soundness.

∀G = 〈PtO, P tD, P tE〉 ` P = (CT, e) CT, e well-typed

∀e; ∅; ∅; ∅ ∗

G e; S; H; K

∀Σ ` S

PtO, P tD, P tE `CT,H Σ

(S, H, K) ∼ (PtO, P tD, P tE)

The theorem states that, given any Runtime Object Graph
(ROG) represented by a well-typed storeS, and anOGraph

aQT

OWNED

nwQT

OWNED

Domain Object

OWNED

main

Main main = new Main();

OObject(main, Main<null>)

analyze(main, [])

this 7→ main

class Main {

domain D;

ODomain(main.D, Main::D)

OObject(main.D.aQT, QT<main.D>)

QT<D> aQT = new QT<D>();

analyze(main.D.aQT, [QT::M 7→ main.D])

OEdge(main, main.D.aQT)

}

this 7→ main.D.aQT, [M 7→ main.D]

class QT<M> {

domain D;

ODomain(main.D.aQT.D, QT::D)

OObject(main.D.aQT.D.nwQT, QT<main.D.aQT.D>)

QT<M> nwQT = new QT<M>();

analyze(main.D.aQT.D.nwQT, [QT::M 7→ main.D])

OEdge(main.D.aQT, main.D.aQT.D.nwQT)

}

this 7→ main.D.aQT.D.nwQT, [M 7→ main.D]

class QT<M> {

domain D;

ODomain(main.D.aQT.D, QT::D)

OObject(main.D.aQT.D.nwQT, QT<main.D.aQT.D>)

QT<M> nwQT = new QT<M>();

OEdge(main.D.aQT.D.nwQ, main.D.aQT.D.nwQT)

}

Figure 12. Example with recursive types.

produced from the same programP , there exists a mapH
that maps each locatioǹin the store to a uniqueOObject,
and a mapK that maps each runtime domain in the store
to a uniqueODomain, and this mapping is consistent with
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IR-NEW
` 6∈ dom(S) S

′ = S[` 7→ C<p>(v)]

p = `′.d Di = K[`′i.di]

OC = 〈Oid, C<D>〉 OC ∈ PtO H
′ = H[` 7→ OC ]

∀dj ∈ domains(C<p>)
Dj = PtD[(OC , dj)] K

′ = K[`.dj 7→ Dj ]
∀(Tk fk) ∈ fields(C<p>) Ok = H[vk]

Ek = 〈OC , fk, Ok〉 Ek ∈ PtE

new C<p>()v; S; H; K  G `; S′; H ′; K′

Figure 13. Instrumented runtime semantics.

respect to the ownership relation. In addition, theOEdges
in the OGraph soundly abstract all field points-to relations
between any two objects in an ROG. More details and the
proof are in [1, Chap. 3].

5. Architectural Abstraction
An extracted object graph provides architectural abstraction
by ownership hierarchy and by types. But an object graph
may not be isomorphic to an architect’s intended architec-
ture, and may require further abstraction.

1. Elide and summarize private domains.Object graphs
tend to expose the implementation of data structures [29,
p. 252]. In SCHOLIA, when internal state is placed in pri-
vate domains, the OOG abstraction step can leverage the
semantic distinction between private and public domains.

For instance, the Aphyds designed architecture (Fig. 20)
shows acircuit object, as well asnode andnet objects in-
sidecircuit. In the Aphyds object graph, the private domain
OWNED on Circuit storesMaps of Node and Net objects
(Fig. 15), and these objects are not architecturally signifi-
cant. So the analysis, based on user input, can elide private
domains and the objects they contain. To preserve sound-
ness, however, the analysis may addsummaryedges to ac-
count for communication through elided objects. For exam-
ple, if there is an edge from objectsa to b andb to c, eliding
b produces asummary edgebetweena andc (Fig. 14).

2. Skip single domains.In an OOG, each object is in
a domain, so a systematic conversion would create each
Component in aGroup. Architects typically define tiers only
at the top level, and those map to the top-level domains.

For example, requiring the Aphyds designed architecture
to have a singleDB tier insidecircuit would be counterin-
tuitive. Unless the developer requests otherwise, the conver-
sion does not create a single tier inside aComponent. Unlike
eliding private domains, skipping single domains still creates
the substructure for those unmapped domains. For example,
after eliding the private domainOWNED insideCircuit, the
conversion skips the single public domainDB and creates
node andnet and the connections between them, directly in-
sidecircuit (Fig. 23).

Even though domains play a central role in the annota-
tions, they often disappear after they serve their purpose,

 DOM1

a:
A

b:
B

c:
C

(a) Showing objectsa,b,c.

 DOM1

a:
A

c:
C

(b) Eliding objectb.

Figure 14. Example of asummary edge.

which is to distinguish between internal and public state. Re-
call how in ownership domains, the owner of an object is
a domain instead of another object, unlike other ownership
type systems [10]. Indeed, both public and private domains
produce hierarchy in an object graph. But we often elide pri-
vate domains, end up with a single public domain in a given
object, then skip that domain. Some type systems embody
this idea and hard-code in each class, one private and one
publicboundarydomain [31].

3. Skip objects beyond a certain depth.The analy-
sis converts an OOG object hierarchy up to a user-selected
depth, typically the depth of the hierarchical decomposition
in the designed view. Reducing the size of the built archi-
tecture in this manner speeds up the comparison, but does
not affect conformance, because lifted edges account for the
elided substructures.

6. Architectural Description
SCHOLIA can represent the information that it reverse engi-
neers from the code using different graphical (or non graph-
ical) notations. Documenting an architecture in an architec-
ture description language (ADL) enables performing various
architectural-level analyses.

We use the Acme general purpose ADL [15], partly be-
cause of its available tool support. Acme represents archi-
tectural structure as a hierarchical graph with types and at-
tributes on nodes and edges and has no execution semantics.

Most ADLs also support the following elements [25]. A
Component is a unit of computation and state. APort is
a point of interaction on aComponent. A Connector rep-
resents an interaction betweenComponents. A System is
a configuration ofComponents andConnectors. A Com-

ponent can optionally be decomposed into a nested sub-
architecture. AProperty is a name and value pair associated
with an element. AGroup is a named set of elements, such
as a tier.

To improve the precision of the structural comparison, the
base architectural model has types and properties [6]. APort

that provides services has typeProvideT, and aPort that
uses services has typeUseT. The structural comparison uses
the type information, when available, to avoid matching a
ProvideT Port to aUseT Port, for example.

Components and Sub-Components.SCHOLIA assumes
that an OOG has a single root. So the root object maps to a
System. The top-level domains declared by the class of the
root object map to the top-level tiers in theSystem. Each
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Figure 15. Aphyds OOG after defining public domains.

 DOM2

 DOM1

 OWNED

other:
Other

inner:
Inner

outer:
Outer

(a) Edge source showing.

 DOM2 DOM1

other:
Other

outer(+):
Outer

(b) Edge source lifted.

 DOM2

 CBS DOM1

inner:
Inner

outer:
Outer

other:
Other

(c) Edge target showing.

 DOM2 DOM1

outer(+):
Outer

other:
Other

(d) Edge target lifted.

Figure 16. Examples oflifted edges.

Figure 17. C&C view lifts edge to outer component.

object in the OOG maps to aComponent. The OOG hier-
archy creates architectural decomposition. If an OOG object
declares domains and descendent objects, the corresponding
Component has a sub-architecture.

Ports. References between objects createPorts as fol-
lows. If objectA has a field reference of typeT to object
B, the correspondingComponent A has aPort of typeUseT

and nameB. TheComponent corresponding toB has aPort

of typeProvideT and nameT. And aConnector connectsA
to B. By default, the analysis does not represent the uninter-
esting self-edges in an OOG.

Edge Lifting. The representation of an OOG as a C&C
view also lifts edges. Consider an OOG with an edge
from other to inner inside outer’s public domainCBS
(Fig. 16(c)). A C&C view lifts that edge to componentouter,
shows a connector fromother to outer, and a connection
from outer to inner (Fig. 17).

Domains and Tiers.An ownership domaind in the OOG
maps to aGroup g. If an objecto in a domaind, the corre-
spondingComponent is in Group g. To be structurally com-
parable, both the built and the designed architectures fol-
low similar topological constraints. For instance, in Acme,
a Component can be included in more than oneGroup. But
in ownership domains, each object is in exactly one domain
and that domain never changes. So a predicate enforces that
a Component or Connector is in exactly oneGroup. More-
over, if Connector c connects twoComponents that are in
the sameGroup g, c must be also ing.

7. Architectural Conformance
SCHOLIA can just extract the up-to-date built runtime archi-
tecture from the code and document it an in ADL. If a doc-
umented target architecture exists, SCHOLIA can analyze its
conformance with the code.

A designed architecture is often more abstract than the
built architecture, but it must still represent all communica-
tion that could exist in the implementation. A conformance
analysis can enforce the communication integrity principle
and ensure that the designed architecture is a conservative
abstraction of all the objects in the implemented system and
the relations between those objects at runtime. A static anal-
ysis can of course suffer from false positives, and indicate
potential object relations that can never exist at runtime.But
here, the goal is to have no false negatives in the designed
architecture, and show the worst case of possible communi-
cation between objects at runtime.
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7.1 Analyzing and Displaying Conformance

In the terminology of Murphy et al. [28], the conformance
analysis identifies:

• Convergence:a node or an edge thatis in boththe built
and the designed architectures;

• Divergence:a node or an edge that is in the built archi-
tecture, butnot in the designedarchitecture;

• Absence:a node or an edge that is in the designed archi-
tecture, butnot in the builtarchitecture.

The analysis produces aconformance viewas a copy of the
designed architecture. The conformance view shows conver-
gences and absences graphically, and represents divergences
by showing additional connectors that are present in the im-
plementation but are missing from the designed architecture.
The analysis also sets various properties on the conformance
view elements. Some of these properties decorate the graph-
ical representation of an element. For instance, all elements
have afinding property, set toconvergent (shown as ), di-

vergent (shown as ) or absent (shown as ).
As a positive side effect of the conformance analysis,

SCHOLIA also establishes traceability between an intended
architecture and the underlying source files, for the benefit
of other code quality tools. The various steps thread through
the traceability information as follows. The abstraction of an
OOG into a C&C view copies the traceability of each OOG
element into thetraceability property of the corresponding
C&C element, as a set of filename and line number pairs.
Similarly, the conformance view derives its traceability in-
formation from the built C&C view. A tool can use this in-
formation in the conformance view to trace to the pertinent
lines of code, and save a developer the effort of having to
potentially review the entire code base to investigate a sus-
pected architectural violation. Of course, the conformance
analysis sets the traceability on onlyconvergent anddiver-

gent elements, and not onabsent ones.
The components an architect includes in the designed

view may be more relevant than those she omits. And she
often chooses names to convey her architectural intent. So,
when analyzing conformance, SCHOLIA considers the de-
signed view to be more authoritative than the built one, and
works as follows:

1. Match components, but use the names from the de-
signed view.Elements in the designed and the built views
may not have exactly matching names. The structural com-
parison, however, can detect renames. Unlike view synchro-
nization, the conformance analysis does not propagate the
built names to the designed view.

For Aphyds, the analysis correctly matches built compo-
nentsViewerUI andFloorPlanUI to designed component
viewerUI andfloorplanUI, respectively, but does not rename
them (Fig. 18).

2. Highlight differing connections. The analysis shows
differing connections as divergences or absences. In Aphyds,
the built view has only a connector betweenFloorPlanUI

(a) As-designed view. (b) As-built view.

(c) Conformance view.

Figure 18. Displaying aconvergence and adivergence.

(a) As-designed view. (b) As-built view.

(c) Conformance view.

Figure 19. Showing adivergence as asummary connector.

and ViewerUI, and the latter match the designed compo-
nentsfloorplanUI andviewerUI. So the analysis shows adi-

vergent connector fromfloorplanUI to viewerUI (Fig. 18).
This requires the following stylized use of ports, which may
also make ports easier to understand [8].

An AcmePort has no built-in directionality. Its type spec-
ifies whether it provides services (ProvideT) or uses services
(UseT). In some cases, the designed view may have a con-
nector between two components, but the connection in the
built view may be in the reverse direction. The conformance
analysis could make theConnector bi-directional, by assign-
ing to the connection’s endpoints both theProvideT and
UseT types. But this does not fit with showing divergences
and absences. Instead, we adopt unidirectional ports, i.e., the
type can beProvideT or UseT, and never both. So the anal-
ysis shows adivergent connector, as well asProvideT and
UseT Ports, for the communication in the opposite direction.

3. Summarize divergent components.If there are com-
ponents in the built architecture that are not in the designed
architecture, the analysis works differently from view syn-
chronization. Adding these components directly to the de-
signed architecture would clutter it with implementation de-
tails. Instead, the analysis accounts for communication in
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the built architecture that is not in the designed architecture,
and may addsummaryconnectors to abstract these divergent
components and enforce communication integrity.

In the built view, Node connects toTerminal and
Terminal to Net (Fig. 19(b)). The designed view hasnode

and net, but has no component that matchesTerminal
(Fig. 19(a)). The analysis matchesnode to Node, andnet

to Net, respectively. It then shows adivergent connector
from node to net, since the designed view does not already
have one (Fig. 19(c)). If the designed view does have such
a connector, the analysis marks it asconvergent. Since a
summary connector can be eitherdivergent or convergent,
the analysis sets a propertyisSummary on a connector sep-
arately from itsfinding. A decorator overlays the symbol
on a connector whenisSummary is set totrue.

Viewed differently, the analysis represents using a sum-
mary connector any objects in the built view that do not have
counterparts in the designed view. This allows a designed
view to have a coarser granularity of components, and ab-
stract multiple interacting objects with a connector. Indeed,
the JavaDoc for Aphyds states that “Terminal is aconnec-
tion between aNode and aNet”.

To help a developer update an incomplete designed ar-
chitecture, the analysis can optionally show in the confor-
mance view thedivergent components, but without showing
any connections to these components. A developer can add
some of thedivergent components to the designed view and
re-run the conformance analysis.

4. Analyze matching substructures recursively.De-
signed architectures are often hierarchical, but do not typi-
cally have deep hierarchies. An OOG provides architectural
abstraction primarily through ownership hierarchy. When an
OOG is abstracted into a C&C view — whether restricting
the depth of the hierarchy or not, more components in the
built C&C view will have substructures than their designed
counterparts. To avoid generating many false positives, the
analysis ignores the substructures that are in the built view
but not in the designed one. Skipping unmatched substruc-
tures does not compromise soundness, because both an OOG
(Figs. 16(b), 16(d)) and a built C&C view (Fig. 17) lift edges
to represent any communication through their substructures.

For instance,viewerUI in the designed view does not
define a substructure. So the analysis matchesviewer to
ViewerUI in the built view, and ignores the substructure
of the latter. But the designedcircuit has substructure and
matches the builtCircuit. In that case, the analysis recur-
sively analyzes the substructures ofcircuit and Circuit.
Had the OOG abstraction step not excluded private domains,
the conformance analysis would have processed the corre-
spondingOWNED tier in the built C&C view, and generated
several undesired divergences, since both domainsOWNED

andDB are inCircuit’s substructure, and its designed coun-
terpart also has substructure.

7.2 Measuring Conformance

SCHOLIA counts convergent edges (CE), divergent edges
(DE), absent edges (AE), and summary edges (SE). In ad-
dition, SCHOLIA counts convergent nodes (CN), divergent
nodes (DN), and absent nodes (AN). In SCHOLIA, a high
AN or DN often indicate that the designed view is missing
components compared to the built view, or uses a different
system decomposition (Table 1).

SCHOLIA combines edge divergences and edge absences
into one number. In terms of face validity, this metric is simi-
lar to agraph edit distance, which models inconsistencies by
transforming one graph into another [12]. Typical edit oper-
ations include the deletion, insertion and relabeling of nodes
and edges. Each edit operation is assigned an application-
dependent cost. SCHOLIA assigns renames a zero cost and
counts insertions (divergences) and deletions (absences).

The Core Conformance Metric (CCM) counts divergent
edges (DE) and absent edges (AE) that would make the
designed architecture account for all communication in the
implementation. To get a percentage, we divide by the total
number of edges and subtract from 100%. Of course, fewer
absences and divergences are better and mean the system
is closer to the target architecture. So, a higher CCM value
indicates a higher structural conformance.

CCM = 1 −
AE + DE

CE + AE + DE

SCHOLIA qualifies the conformance metrics by measur-
ing the percentage of the program that lacks annotations.
For simplicity, SCHOLIA uses a derived measure,WARN,
namely the number of annotation warnings that the annota-
tion typechecker generates. Except for some defaults, every
field, variable declaration, or method return, that is a refer-
ence to an object and has a missing or incorrect annotation,
generates a warning (we mostly avoid multiple warnings due
to one missing annotation). To get a percentage, the metric
WARN% normalizesWARN by the number of declared ob-
ject references in the program. Thus,WARN% is an indica-
tor of how many annotations are missing to make an OOG
soundly represent the built architecture. A lowerWARN%

is better. For a program without annotations,WARN% will
be high. As valid annotations are added, or warnings are ad-
dressed,WARN% decreases.

For Aphyds,WARN% is 5%. The remaining warnings are
due to expressiveness challenges in the type system, which
we discuss elsewhere [2]. We believe however these warn-
ings do not contribute to missed architectural violations.

8. Evaluation
Our evaluation demonstrates thefeasibilityof SCHOLIA and
that hierarchical object graphs provide architectural abstrac-
tion, something that had been missing in previous static anal-
yses of the runtime structure. In future work, we plan to eval-
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uate SCHOLIA ’s usefulness, i.e., if it can provide actual as-
sistance to a developer in fulfilling a code modification task
based on an object diagram, as well as theusabilityor ease
of learning and applying the approach.

Research question.The evaluation aimed to answer the re-
search question:Can SCHOLIA identify interesting struc-
tural differences between built and designed architectures in
real systems?A finding is interesting if it identifies undocu-
mented information, contradicts available documentation, or
highlights a potential design or implementation defect. We
refine the research question into the following hypotheses:

• A developer can control the annotations to extract a
built architecture that expresses his architectural intent and
conveys architectural abstraction.The measurable criteria
are to minimize annotation warnings, reduce the number of
top-level objects compared to a flat object graph, and not
display low-level objects.

• The conformance analysis can match the built and
the designed architectures, display a readable conformance
view, enable tracing a finding to the code, and compute sen-
sible conformance metrics.The measurable criteria are to
minimize false positives and to be able to trace to the right
code locations.

Methodology. A developer documents the designed archi-
tecture in an ADL. She then adds annotations to the code,
invokes a typechecker and addresses annotation warnings.

Just as there are multiple architectural views of a system,
there is no single right way to annotate a program. Good
annotations minimize the number of top-level objects, by
pushing low-level objects underneath more architecturally-
relevant ones. For a meaningful comparison, the designed
and the built architectures must have similar tiers, similar hi-
erarchical decomposition, and similar components and tiers
at each hierarchy level.

Using a tool, she extracts a hierarchical object graph, and
refines the annotations until the number of top-level objects
is roughly comparable to that in the designed architecture.
She then invokes a tool to abstract the extracted object graph
into a built architecture. She then uses another tool to com-
pare the built and the designed architectures. She typically
only confirms the results of the comparison. But if the com-
parison mismatches some elements, she can manually force
or prevent matches between those elements, and rerun the
comparison. Finally, she examines the results of the confor-
mance analysis, studies unexpected findings and traces sus-
picious ones to the code.

The developer can iteratively: (a) refine the annotations;
(b) manually guide the comparison if it fails to perform the
proper match; (c) correct the code, if she decides that the de-
signed architecture is correct, and the implementation vio-
lates the architecture; or (d) update the designed architecture
if she considers that the implementation highlights an error
or omission in the target architecture.

Tools. To support the methodology, SCHOLIA uses several
Eclipse plugins to relate C&C views, OOGs and source files:

• AcmeStudio is an Acme modeling environment [15], to
document the designed architecture and display the con-
formance view. AcmeStudio is an Eclipse perspective,
so a developer can trace seamlessly from a conformance
view to the Java code in Eclipse;

• ArchDomJ typechecks the annotations added to the code
as Java 1.5 annotations and displays warnings in the
Eclipse problem window. A developer can go from a
warning to the offending line of code;

• ArchRecJ extracts an OOG from annotated code;
• ArchCog abstracts an OOG into a C&C view (Section 5).

A developer can elide private domains or restrict the
projection depth;

• ArchConf analyzes conformance between two C&C
views, generates aconformance viewand computes the
metrics (Section 7). ArchConf allows a developer to con-
firm the results of the structural comparison, or to manu-
ally force or prevent matches and rerun the comparison;

• CodeTraceJ loads the traceability of an element in the
conformance view, opens the corresponding source files
and highlights the appropriate lines;

• ArchMod modifies the original designed architecture, by
taking adivergent element from the conformance view
and adding it to the designed view, or deleting anabsent

element from the designed view.

Aphyds case study.We now describe analyzing the confor-
mance of the Aphyds system using the above methodology
and tools. The experimenter (one of us, hereafter “we”) de-
veloped several of the tools, but none of the subject sys-
tems. The process was iterative as a whole, and involved
both macro- and micro-iterations. A macro-iteration consists
of documenting the designed architecture, adding the anno-
tations, extracting an OOG, abstracting it into a built C&C
view, and analyzing its conformance. A micro-iteration can
consist of iterating the annotations and the OOG extraction
before converting the OOG into a C&C view, until the OOG
has a reasonable abstraction level, e.g., by abstracting away
low-level objects such asVectors from the top-level do-
mains. Retrospectively, we present our evaluation as two
macro-iterations, and show the evolution of the conformance
metrics across the two macro-iterations (Table 1).

Designed architecture.We formalized the Aphyds de-
signed architecture based on the informal diagram (Fig. 20),
but iterated it a few times while formalizing it. When con-
necting two components in a group, we initially forgot to put
the connector into that group, which resulted in the confor-
mance analysis badly matching those connectors.

In an early iteration, we set the analysis to add thedi-

vergent components to the conformance view, and noticed a
partitionUI component. For consistency, sincefloorPlanUI

and placeRouteUI interact with floorplanner and placeR-

outer, respectively, we added to the designed architecture
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user interface

viewerUI

floorplanUI placeRouteUI

channelRouteUI

partitioner

floorplanner placer

globalRouter

channelRouter

computational code 

circuit

circuit database

node net

Figure 20. Aphyds designed architecture, redrawn from the
original developer’s diagram. User interface components
such asviewerUI are in the upper half. Acircuit and com-
putational components are the lower half. Here, edges repre-
sent points-to relations.

apartitionUI that interacts withpartitioner, even though the
informal drawing omittedpartitionUI.

Iteration 1. We initially organized the Aphyds objects into
two top-level domains,UI andMODEL. UI holds aViewerUI
object and several subsidiary user interface objects.MODEL

holds aCircuit object and computational objects that act
on it, such asFloorplanner. We also defined several pri-
vate domains to hold objects encapsulated by their parent,
such asMap objects inside aCircuit object, as the (+) sign
indicates in Fig. 21. These annotations produce a hierarchi-
cal OOG that has many objects in the top-level domains.

Conformance metrics.The conformance analysis does
not produce good conformance metrics (Table 1). For exam-
ple, Node andNet are peers ofCircuit instead of being
in its substructure (Fig. 22). So the conformance analysis
marks asabsent thenode andnet components insidecircuit,
hence the 2 node absences.

The built view has many more components in the top-
level tiers than the designed view, which explains the high
node divergence. Moreover, the conformance analysis gener-
ates many summary connectors to account for possible tran-
sitive communication, which leads to a high number of edge
divergences and an unreadable conformance view.

For example,Displayer communicates withTerminal,
and Terminal with Placer. In reality, Terminal is part
of Circuit, and Circuit already communicates with
Placer. Ideally, the analysis should just mark as conver-
gences the connection betweenDisplayer andCircuit,
and the one betweenCircuit andPlacer. Since the anal-
ysis lacks information about logical containment, it shows
instead a divergent summary connector fromDisplayer to
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Figure 21. Aphyds OOG using private domains and many
peer objects, e.g.,Node, Net, Terminal andCircuit.

1 class Circuit<OWNER> { // Implicit parameter
2 domain OWNED; // Private domain
3 OWNER Node node; // Make peer to self
4 OWNER Net net;

5 OWNER Terminal terminal;

6 // The outer OWNED annotation is for the Map object
7 // The inner OWNER annotation is for the map elements
8 // String objects have manifest ownership
9 OWNED Map<String, OWNER Node> nodes;

10 }

11 // Everything else is exactly the same as Fig. 5

Figure 22. Initial annotations.

Placer, and many others. This turns the conformance view
into an unreadable fully-connected graph. The low CCM
and the many summary edges (SE) — 97 in total, may not
mean that the designed view is only 21% accurate, but that
the built architecture is not yet meaningfully comparable to
the designed one.

In SCHOLIA, a developer controls the architectural ab-
straction using annotations. So in the second iteration, were-
fined the annotations to get a better match, without changing
the code. The reader can visually compare the annotations
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Figure 23. Aphyds conformance results.

in Fig. 22 which we used in Iteration 1, to those in Fig. 5,
which we adopted in Iteration 2.

Iteration 2. Using the designed architecture as a guide
(Fig. 20), we defined several public domains to logically
contain objects that should not be in the top-level domains.
For example,Viewer has aDISPLAY public domain to hold
aDisplayer object.Displayer is not in the developer’s di-
agram (Fig. 20), but is not encapsulated either.Displayer

is only logically contained insideViewerUI, and many other
UI objects such asFloorPlanUI reference it directly.

Other public domains abstract low-level objects into more
architecturally relevant ones. For example,Circuit holds
objects such asNode andNet inside itsDB public domain, to
reflect the designed architecture (Fig. 20).

In most cases, defining public domains required mostly
local and incremental changes to the annotations. With the
refined annotations, many objects that were in theMODEL

top-level domain, such asNode, Net andTerminal, moved
into public domains of other objects, such asCircuit
(Fig. 15). As a result, both the extracted OOG and the ab-
stracted built view now have a system decomposition that is
closer to the desired architecture (Fig. 20).

Conformance metrics.Iteration 2 matched the compo-
nents better, with 0 node absences and 1 node divergence,
which corresponds toTerminal. The analysis now marks
asconvergent, bothnode andnet insidecircuit, as well as
the connectors between them (Fig. 23). In the built system,
node andnet do not communicate directly, but only do so
throughTerminal. So the twoconvergent connectors in-
sidecircuit have the summary decoration. As an aside, the
edges fromNode to Terminal and fromNet to Terminal

Table 1. Aphyds conformance metrics.
Iteration CN DN AN CE DE AE SE CCM
1 11 11 2 23 89 0 97 21%
2 13 1 0 16 11 1 2 57%

are in fact lifted edges. This example justifies the different
kinds of edge summarization, such as edge lifting in a C&C
view, then adding summary connectors in the C&C view.

Overall findings. As one would expect from an informal
diagram, the designed architecture (Fig. 20) is only about
60% accurate, based on the CCM metric. Indeed, SCHOLIA

identified a divergent componentpartitionUI, several diver-
gences betweenviewerUI and otherUI components, between
UI andMODEL components, and betweenMODEL compo-
nents. Many connections which the developer thought to be
uni-directional were bi-directional in reality.

One divergence that crosses tiers, fromplacer in MODEL

to placeRouteUI in UI, was a red flag (this is the connec-
tor we manually set to be darker in color in Fig. 23). A
multi-threaded application must respect certain framework-
specific conventions to call back from a worker thread ex-
ecuting a long-running operation into the user interface
thread. We used CodeTraceJ to trace this divergence to a
PlaceRouteUI field inside classPlacer, and checked that
the Aphyds code handled this callback correctly.

Tool performance. The tools are sufficiently interactive
to allow iteration. On an Intel ® Core™ 2 Quad Processor
(2.4 GHz) with 4GB of RAM running Windows XP, the
OOG extraction takes around 10 seconds, and the structural
comparison takes between 57 seconds (Iteration 1) and 33
seconds (Iteration 2).

9. Discussion
Internal threatsto validity may indicate that factors other
than the technique determined the results.External threats
limit the extent to which the results can be generalized.

Internal validity. One threat to internal validity is that, even
though we did not author Aphyds, we previously studied it in
various ways [6, 8]. We believe the results of this case study
are due to using SCHOLIA and not to any previous knowl-
edge of the code. The code base is non-trivial enough for
anyone to memorize. Moreover, we previously represented
the desired architecture differently [6, Fig. 19]: we did not
consider tiers, had onemodel component withplanner, par-

titioner and others as sub-components, and ignoredcircuit’s
substructure. Although the experimenter also designed sev-
eral of the tools, a typechecker kept him honest. He could
not insert an arbitrary annotation without getting a warning,
or otherwise manipulate the extracted architectures.

Another threat is that an electrical engineering professor,
not a professional architect, drew the Aphyds intended ar-
chitecture. However, we only mined the diagram for the ar-
chitecturally significant objects and tiers it shows, and for
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the hierarchical system decomposition it uses forcircuit, all
general concepts in modeling architectures [11].

Another confound is whether the built and the designed
architectures represent the same information. For instance,
when we redrew the original developer’s diagram (Fig. 20),
we reversed the direction of some arrows [8, p.192] and
excluded data flow edges. For a meaningful conformance
analysis, the designed and the built architectures must have
the same kind of connectors, here, points-to relations.

CanSCHOLIA identify at least as many violations as the
state-of-the-art in the staticenforcement of runtimearchi-
tectures?The state-of-the-art would be library-based [24]
or language-based [8, 32] solutions. For instance, the C2
ADL mandates a specific architectural framework [24], but
requires developers to follow strict guidelines to avoid intro-
ducing architectural violations. There are no tools to check
that an implementation obeys those rules (N. Medvidovic,
personal communication, 2008). Language-based solutions,
first exemplified by ArchJava, radically extend the language
to incorporate architectural components and ports, and en-
force communication integrity using a type system [8, 32].

Aldrich et al. previously studied Aphyds and identi-
fied similar architectural violations, but only after they re-
engineered it to ArchJava [8]. ArchJava specifies in code
architectural hierarchy and instances. In ArchJava, an ob-
ject is architecturally significant if its declared type is a
component class. However, in ArchJava, a method can
neither take as an argument, nor return a reference to
an instance of acomponent class. Because real object-
oriented code passes around object references liberally,
using ArchJava in an existing Java code base is harder
than simply converting each Javaclass into an ArchJava
component class [5]. Adopting ArchJava often requires
a non-trivial re-engineering that changes how objects are
passed around. When using ArchJava, one may define ad-
ditional component classes to capture the intended sys-
tem decomposition. For Aphyds, Aldrich et al. specified
20 ArchJavacomponent classes and over 80ports, re-
engineered the program to obey ArchJava’s restrictions, and
inadvertently injected defects [8].

SCHOLIA achieves hierarchy using annotations and with-
out additional classes. In SCHOLIA, all objects are instances
of regular Java classes, and there are no restrictions on pass-
ing object references. The more architectural objects are
higher in the ownership hierarchy. In particular, logical con-
tainment can impose an arbitrary hierarchy on an object
graph, and allows SCHOLIA to support arbitrary object-
oriented code better. Of course, specifying strict encapsu-
lation to avoid the representation exposure may require a
change to the code, e.g., to return a copy of an internal list
instead of an alias [7]. During our Aphyds evaluation, we
only added annotations.

Could any other staticapproach find the violations that
SCHOLIA found?It is a genuine threat to validity to compare

a designed runtime architecture to a built code architecture,
or vice versa. All previousstatic conformance approaches,
e.g., [28], address thecode architecture. The closest to astat-
ically extractedruntime architecturefor an object-oriented
system would be an object graph extracted by a static anal-
ysis, whether it uses annotations [20] or not [17, 29]. All
previous graphs — with the exception of our own previous
work [4] — are flat, and would not convey enough architec-
tural abstraction to enable conformance analysis. Of course,
we could compare SCHOLIA ’s results to those obtained by
a dynamicanalysis [34, 33]. But a dynamic analysis cannot
claim to represent all possible executions.

Could a conformance analysis of the code architecture
detect all the violations in a runtime architecture? For ex-
ample,could Reflexion Models (RM) [28] find all the vio-
lations thatSCHOLIA found? In fact, we modeled SCHO-
LIA closely after RM, which is a standard bearer in analyz-
ing the conformance of code architectures. In RM, a third-
party tool extracts asource modelfrom the implementation.
A developer posits an as-designedhigh-level modeland a
mapbetween the source and high-level models. RM pushes
each interaction described in the source model through the
map to infer edges between high-level model entities. RM
then compares the inferred edges with the edges stated in
the high-level model.

There are similarities between SCHOLIA and RM. For
example,WARN is similar to how RM tracks unmapped
entries in the source model. A major difference is that RM
is designed for the code architecture. There are also several
minor differences. For example, RM has no divergent or
absent nodes. In RM, if the map generates a node that is
not the designed view, RM automatically adds that node to
the designed view. In other words, RM has no divergent or
absent nodes, nor does it compute summary edges. To our
knowledge, other static conformance checking techniques of
the code architecture are not more expressive than RM.

In Aphyds, many important classes are instantiated once,
so for those classes, the object graph is somewhat similar
to a class diagram with associations. Of course, there are
still non-trivial differences related to the different instan-
tiations of the various container classes such asVector.
Out of curiosity, we ran jRM [18] on Aphyds. jRM sup-
ports neither tiers nor hierarchical target architectures, so we
used a simplified high-level model without tiers and ignored
Circuit’s substructure. Indeed, RM found the divergence
from placer to placeRouteUI, because it corresponds to a di-
rect field reference declared in classPlacer. However, RM
showedabsencesbetweenviewerUI andfloorPlanUI instead
of the correct divergences and convergences (See RM’s out-
put for Aphyds in [1, Chap. 7]).

In the OOG, aViewerUI object does not directly point
to a FloorPlanUI object. Instead, aViewerUI points to
a Displayer, andDisplayer references aFloorPlanUI.
Moreover,Displayer is in a public domain ofViewerUI.
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When ViewerUI’s substructure is elided, the OOGlifts
that relation toViewerUI, and shows alifted edgefrom
ViewerUI to FloorPlanUI, shown as a dotted edge in the
OOG (Figs. 21, 15).

Similarly, RM would not correctly handlecircuit’s sub-
structure, such as the communication betweennode and
net. Unlike RM, SCHOLIA distinguishes theVector of
Terminals insideNet from the one insideNode, and this
distinction produces the communication betweenNode, Net
andTerminal. Then, SCHOLIA represents the communica-
tion betweennode andnet through edge lifting and summary
connectors. Thus, in general, a tool for the code architecture
cannot handle the runtime architecture.

DoesSCHOLIA generate many false positives?False pos-
itives are possible in general, but SCHOLIA attempts to re-
duce them. For example, the edges in an OOG are more
precise than super-imposing associations from a class dia-
gram. Also, SCHOLIA analyzes only matching substructures,
and not the entire object hierarchy. There are several sources
of false positives in SCHOLIA. The OOG extraction uses a
whole-program and not a reachability analysis that excludes
infeasible paths. Also, the conformance analysis may add
summary edges that are false positives, as in the first itera-
tion which had 97 summary edges. But if the built and the
designed architectures have a similar hierarchical decom-
position and a similar number of components at each hi-
erarchy level, the analysis adds fewer summary edges. In-
deed, the second iteration had only 2 summary edges, and
neither one was a false positive. In our Aphyds evaluation,
we used CodeTraceJ to trace each finding to the code, and
confirmed that it does not correspond to an obvious false
positive. Aphyds was written by a professor for one of his
classes. So this may explain the absence of infeasible paths.

External validity. Can SCHOLIA find architectural viola-
tions in other systems?Yes. We have applied SCHOLIA to
two other systems. Due to space limits, we highlighted here
the Aphyds evaluation. The others are available in the first
author’s dissertation [1, Chap. 7]. JHotDraw (15 KLOC) is
designed by experts in object-oriented analysis and design.
HillClimber (15 KLOC) is designed by undergraduates, and
was previously re-engineered to ArchJava to specify its ar-
chitecture [5]. We also added annotations to, and extracted
OOGs from LbGrid, a 30-KLOC module that is part of a
250-KLOC commercial system [3]. The architects did not
provide us, however, with a designed runtime architecture,
so we could not analyze it.

In all the architectures we analyzed, SCHOLIA found
many omitted components or connections. For example, the
JHotDraw architecture omitted components that were added
later to support undoing commands.

Can SCHOLIA analyze architectures that specify fine-
grained object structures or multiplicities?An OOG and
its abstracted C&C view provide architectural abstraction
by merging equivalent instances in a domain or tier. So

SCHOLIA cannot express very fine-grained object structures.
Similarly, as with most static object diagrams, SCHOLIA

does not provide any precision regarding multiplicities.
Would an outside developer understand theSCHOLIA

technique?Until there are better tools for adding annota-
tions, our approach does not have the characteristic of Re-
flexion Models that third-party users can easily run on large
code bases [28]. As a result, a study with an outside de-
veloper would be difficult given the nature of the approach.
We did, however, conduct a field study and confirmed that,
indeed, an outside professional programmer understood ab-
straction by ownership hierarchy and by types [3].

Admittedly, the need to iteratively improve the annota-
tions, fine-tune how an OOG is abstracted into a C&C view,
and follow all the steps in the tool chain may be a chal-
lenge to the average developer. However, this situation is not
unique to SCHOLIA. For example, previous work on code ar-
chitectures using semi-automated clustering algorithms,re-
quired that developers spend significant effort fine-tuningthe
clustering parameters to derive a good match [9]. In SCHO-
LIA , a developer uses annotations to control the abstraction
and does not rely on a tool’s hard-coded heuristics.

Is SCHOLIA more lightweightthan other static con-
formance approaches?For example,is adding ownership
annotations to an existing system less invasive than re-
engineering it to ArchJava to expose its architecture?Our
preliminary evidence showed that to be the case [5]. The
annotations, unlike ArchJava, do not change the system’s
runtime semantics, and support common object-oriented id-
ioms, such as passing references to objects. For example,
an ArchJavacomponent class cannot havepublic fields.
When using ownership annotations, such legal Java fields
can be placed in public domains. Aldrich et al. added own-
ership types to the model part of Aphyds (3.5 KLOC) in 4
hours, a quarter of the time they spent re-engineering that
same part to ArchJava [8].

To more reliably estimate the annotation effort, we con-
ducted a week long on-site field study. The first author spent
35 hours adding annotations and extracting OOGs from the
30-KLOC LbGrid module (WARN is still high). Based on
our previous experience with ArchJava [5], we could not
have re-engineered LbGrid to ArchJava in the same few days
that it took us to add the annotations, even after accounting
for possible tool and language familiarity. Thus, adding an-
notations to an existing system seems more lightweight than
re-engineering it to use an extended language like ArchJava.

Would SCHOLIA work with an ownership type system
other than ownership domains?In principle, SCHOLIA

could use a type system that assumes a singlecontextper
object [10]. There is, however, a crucial expressiveness ad-
vantage in ownership domains that can reduce the number of
objects in the top-level domains. In anowner-as-dominator
type system, any access to a child object must go through
its owning object [10]. In contrast, ownership domains sup-
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port pushing almost any object underneath any other object
in the ownership hierarchy. A child object may or may not
be encapsulated by its parent object: a child object can still
be referenced from outside its owner if it is part of a public
domain of its parent, or if a domain parameter is linked to a
private domain [7]. SCHOLIA can readily use an ownership
type system such as Simple Loose Ownership Domains [31],
which enforces aboundary-as-dominatorproperty.

For arbitrary object-oriented implementation code, it is
easier to use logical containment with public domains, rather
than the strict encapsulation of private domains — and both
can reduce the number of objects in the top-level domains.

Why structural comparison? SCHOLIA compares the de-
signed and the built architectures using a structural com-
parison that works with hierarchical views, does not as-
sume unique identifiers, detects renames and allows forc-
ing or preventing matches between selected view elements.
These assumptions closely match the problem of analyz-
ing conformance after the fact. SCHOLIA does not assume
that the architectural components have unique identifiers,
which would simplify the graph comparison considerably
[12]. Using structural comparison enables SCHOLIA to de-
tect renames between the built and the designed architec-
tures, which can partly occur due to the OOG extraction.

The OOG extraction nondeterministically selects a label
for a given objecto based on the name or the type of one of
the references in the program that points too. Thus, detecting
renames ensures a developer can still rename fields or local
variables or types without impacting conformance. Avoiding
the rename problem would require additional annotations to
specify in code the displayed labels.

Assumptions. SCHOLIA makes the following assumptions:
• Sources available:The program’s whole source code

and portions of external libraries that are in use have anno-
tations that typecheck;

• Single entry point: The program operates by creating
a main object. The class of that object declares domains, but
has no domain parameters;

• Summarized external entities: Reflection, dynamic
code loading or native calls may introduce unknown objects
and edges into the system. Such external entities can be
summarized using “virtual field” annotations [2].

Limitations. SCHOLIA has the following limitations:
Annotations. The manual annotation effort is a poten-

tial obstacle for practical adoption, but ownership annota-
tions are amenable to automated ownership inference, which
could alleviate this problem, at least partially [23]. Withpre-
cise and scalable ownership inference, SCHOLIA can scale
to large systems.

Architectural extraction. SCHOLIA applies to applica-
tions that run in a single virtual machine, so it handles nei-
ther heterogeneous nor distributed systems, nor does it ad-
dress dynamic architectural reconfiguration.

Structural comparison. If the views are very different,
an automated structural comparison may fail to match the
built and the designed views. In that case, the comparison
will not be useful since all components will be absences.
One can then manually match some view elements at the
cost of additional effort. Finally, the algorithm is quadratic
in the view sizes. So, while it scales to up to a few thousand
nodes [6], very large architectures may be intractable.

10. Related Work
View synchronization. Our conformance analysis special-
izes our view synchronization work [6]. The key changes
include: (a) processing the view differences more selectively
(Section 7), such as skipping unmatched hierarchical de-
compositions, instead of making the two views identical; (b)
computing summary connectors; and (c) including tiers in
the hierarchical data used by the structural comparison, i.e.,
aComponent or aConnector is a child of its owningGroup.
We observed empirically that this extra level of hierarchy
improves the precision of the structural comparison, and en-
ables it to distinguish better the connectors within a given
tier (which would belong to the sameGroup) from the ones
that cross tiers (which would not be inside aGroup).

Code architecture. Several approaches analyze the confor-
mance of code architectures, e.g., [28]. Generally, an ap-
proach designed for the code architectures, e.g., [28], can-
not handle correctly the runtime architecture. However, sev-
eral techniques we used, namely hierarchy, lifted edges and
summary edges, have previously been applied to code ar-
chitectures. We showed how the above techniques translate
naturally to runtime architectures.

Hierarchy. Reflexion Models (RM) uses non-hierarchical
high-level models and maps. Koschke et al. extended RM
with hierarchical models [19]. In SCHOLIA, all the repre-
sentations are hierarchical.

Lifted edges.Approaches that handle code architectures
also lift edges [19, 37], for example, from a function call
to a module. We use edge lifting in several places: an OOG
lifts object relations from child objects to their parents;and a
C&C view also lifts edges from inner components (Fig. 17).

Summary edges.Ommering et al. create a second mod-
ule view that displays the transitive closure of a relation in
one module view [37]. Our summary edges (Fig. 14) or sum-
mary connectors (Fig. 19) show transitive communication.

Dynamic analyses. Several approaches uses dynamic analy-
sis to extract the built architecture [33, 13] or monitor con-
formance [22, 34]. For example, DISCOTECT [33] recov-
ers from a running system a built C&C view that has ar-
chitectural types. In place of annotations, DISCOTECT re-
quires rules that map entries in a runtime trace to architec-
tural events, e.g., a method invocation leads to the creation of
a port. In DISCOTECT, it may be possible to reuse a mapping
across several similar systems, which is not the case with our
annotations. Because DISCOTECT is a dynamic analysis, the
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results reflect only the particular inputs and exercised use
cases. Also, DISCOTECT generates non-hierarchical C&C
views that show one component for each instance created at
runtime. Finally, DISCOTECT only extracts built views and
does not analyze conformance.

Several dynamic analyses infer hierarchical object graphs
without using annotations, e.g. [16], but their results de-
scribe only the structure for those program runs. They also
adopt restrictive notions of ownership which cannot express
many design idioms. The expressiveness in ownership do-
main avoids a built architecture with many components in
the top-level tiers. Our evaluation showed how crucial that
can be for a meaningful conformance analysis.

Code generation. Some approaches assume that developers
always refine an architectural model into code to ensure
conformance by design. SCHOLIA is designed to analyze the
conformance of an arbitrary system after the fact, requiring
only annotations.

Static analysis. Lam and Rinard proposed a type system and
a static analysis (LR) that uses non-ownership annotations
to extract non-hierarchical object graphs [20] (LR does not
analyze conformance). LR supports a fixed set of statically
declared global tokens, and the result of the analysis is a
graph showing which objects appear in which tokens. Using
token parameters, the same code element can be mapped
to different design elements depending on context. Unlike
ownership domains, LR has a statically fixed number of
tokens, all at the top level, so LR cannot show hierarchy. For
Aphyds, LR would produce an object graph with even more
top-level objects than Fig. 21, which would make it even less
suitable for conformance analysis.

Our previous work. We previously presented an earlier
definition of the extraction static analysis, using an alternate
formalization based on rewriting rules [4]. This paper’s ver-
sion is different in several respects. Here, we use abstract
interpretation, which makes the analysis more comparable
to previous points-to analyses. The soundness proof now in-
cludes edges. This more principled formalization side-steps
determining a depth at which to cutoff the recursion and the
potential unsoundness of selecting an incorrect depth. The
earlier system proved partial soundness on an intermediate
cyclic representation, which is then projected or unfolded
into a graph that the user sees.

Points-to analysis.All previous points-to analysis pro-
duce non-hierarchical graphs [36, 27]. Our static analysisis
similar to a flow-insensitive Andersen-style points-to anal-
ysis. The state-of-the-art is considered anobject-sensitive
analysis [27]. Our analysis is object-insensitive but can be
considereddomain-sensitive, since it distinguishes between
objects in different domains. Since domains are coarser-
grained than objects, our analysis is more scalable than
an object-sensitive one. However, our analysis suffers from
some of the imprecisions that object-sensitivity addresses
such as field assignment through a superclass [27].

Although points-to analysis is often used for compiler
optimization, its value for program understanding has been
recognized [36]. In the same vein as SCHOLIA, Milanova
[26] uses the results of a points-to analysis to construct an
Object Relation Diagram, which is a class diagram where
the type of the pointed-to object is potentially more precise
than the declared type. To our knowledge, SCHOLIA is the
first approach to abstract the output of a static points-to
analysis into a hierarchical runtime architecture represented
as a standard Component-and-Connector (C&C) view, then
using that to analyze conformance of runtime architectures.

Shape analysis.Shape analysis, e.g., [30] produces very
precise shape graphs consisting of nodes to represent a set of
objects, and edges to represent points-to relations. However,
a shape graph is non-hierarchical: all the nodes are at the
same level, and objects are not collapsed underneath other
objects. This works well in an intra-procedural case to show
that a method preserves the list-ness of a data structure it
takes as a parameter. Moreover, a heavyweight shape analy-
sis may also achieve more precision than SCHOLIA in many
cases. But a flat object graph will not scale to an entire sys-
tem. Although SCHOLIA sacrifices some precision to gain
scalability of the analysis, it conveys architectural abstrac-
tion primarily through hierarchy.

11. Conclusion
SCHOLIA is the first approach to extract statically a hierar-
chical runtime architecture from a program in a widely used
object-oriented language, using annotations. If an intended
architecture exists, SCHOLIA can also analyze, at compile-
time, communication integrity between the code and the
target architecture. In practice, SCHOLIA found interesting
structural differences between existing systems and theirtar-
get architecture. Our evaluation confirms what others have
reported [28, 8], that informal diagrams often omit impor-
tant communication. Thus, analyzing conformance after the
fact is practically relevant during software evolution.

Finally, SCHOLIA can establish traceability between an
implementation and an intended runtime architecture. To
our knowledge, SCHOLIA is the first approach that allows a
developer to trace from an element such as a component or a
port in a runtime architecture, extracted entirely statically, to
the corresponding lines of code in a general purpose object-
oriented language like Java. This facility was available only
when tracing from UML class diagrams to Java code.

Until now, developers evolving an object-oriented system
had to contend with high-level views of the code architecture
or partial views of the runtime architecture obtained using
dynamic analysis. SCHOLIA now completes the picture.
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