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Abstract. Software architects design systems to achieve quality attributes like
security, reliability, and performance. Key to achieving these quality attributes
are design constraints governing how components of the system are configured,
communicate and access resources. Unfortunately, identifying, specifying, com-
municating and enforcing important design constraints – achieving architectural
control – can be difficult, particularly in large software systems.

We argue for the development of architectural frameworks, built to leverage
language mechanisms that provide for domain-specific syntax, editor services
and explicit control over capabilities, that help increase architectural control. In
particular, we argue for concise, centralized architectural descriptions which are
responsible for specifying constraints and passing a minimal set of capabilities
to downstream system components, or explicitly entrusting them to individuals
playing defined roles within a team. By integrating these architectural descrip-
tions directly into the language, the type system can help enforce technical con-
straints and editor services can help enforce social constraints. We sketch our
approach in the context of distributed systems.

Keywords: software architecture; architectural control; distributed systems; ca-
pabilities; layered architectures; alias control; domain specific languages

1 Motivation: Architecture and System Qualities
The central task of a software architect is designing an architecture that enables the
designed system’s central goals to be achieved [5]. Typically many designs can support
the intended functionality of a system; what distinguishes a good architecture from a
bad one is how well the design achieves quality attributes such as security, reliability,
and performance.

Quality attribute goals can often be satisfied by imposing architectural constraints
on the system. For example, the principle of least privilege is a well-known architectural
constraint; it limits the privileges of each component to the minimum necessary to sup-
port the component’s functionality, thus enhancing the security of a system. Likewise,
constraints concerning the replication and independence of failure-prone components
can aid in achieving reliability concerns. Broadly speaking, a constraint is architectural
in nature if it is essential to achieving critical system-wide quality attributes.

Unfortunately, delivering systems with desired qualities can be challenging in prac-
tice. Two significant sources of the challenge include missed or incorrect constraints,
and inadequate constraint enforcement. If an architect is not an expert in a software sys-
tem’s target domain, the architect may miss constraints that are important to achieving



2 Aldrich, Omar, Potanin, and Li

goals in that domain. For example, many architects who were not familiar with the in-
tricacies of Secure Sockets Layer (SSL) configured their SSL libraries to unnecessarily
use a heartbeat protocol,1 and/or neglected to properly enable SSL certificate checking.
The result was exposure to the Heartbleed2 bug in the first case, and to a man-in-the-
middle attack in the second [8].

Even if the relevant constraints are identified and specified correctly by the architect,
ensuring that they are followed can be quite difficult. A standard defense against SQL
injection attacks, for example, is ensuring that prepared statements are used to construct
SQL queries. Ensuring that this constraint is followed, however, requires scanning all
SQL queries in the entire program; any query that does not use this method could poten-
tially violate the policy. Similar issues apply to common defenses against other attacks,
such as cross-site scripting (XSS).

In this paper, we propose architectural control as a concept that reflects the archi-
tect’s ability to successfully manage the architectural design constraints of a system
(Section 2). After a review of prior work with connections to architectural control (Sec-
tion 3), we sketch an approach to language and framework design that could enhance
architectural control in the context of distributed systems (Section 4).

The paper’s main contribution is the concept of architectural control. In keeping
with the goals of a workshop, the authors seek community feedback on the concept
itself, as well as the solution ideas sketched in Section 4, which we hope to flesh out
and implement in future work.

2 Architectural Control
The problems above suggest that in practice, architects do not have sufficient control
of the architecture of their software systems. Architectural control is the ability of
software architects to ensure that they have identified, specified, communicated and
enforced design constraints that are sufficient for the system’s implementation to meet
its goals. Although tools can aid in achieving architectural control—and in fact, this
paper proposes ways of building better tools for doing so—we define the term in a
broad, sociotechnical sense that encompasses software engineering processes as well as
tools.

Today, architects primarily use informal processes to achieve architectural control.
To learn about the constraints relevant in a domain, they learn from domain experts and
consult the documentation of frameworks that capture domain knowledge. Unfortu-
nately, this process can be error-prone and incomplete, especially if domain experts are
unavailable and framework documentation was not specifically designed for this pur-
pose. To enforce the constraints they do identify and specify, architects rely on informal
communication with the engineers building the system, as well as quality-control prac-
tices such as testing, inspection, and static analysis. Unfortunately, testing is good at
evaluating functionality but is poorly suited to enforcing many quality attributes; in-
spection can work well but is limited by the fallibility of the humans carrying it out;
and static analysis tools are often too low-level to directly enforce the desired qualities.

1 SSL’s heartbeat feature is only needed for long-lasting, possibly idle connections
2 http://heartbleed.com/
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As a result, the degree of architectural control achieved in practice often falls short of
what is needed to produce highly reliable and secure systems.

Architectural Control in Java. To illustrate the challenges with achieving architec-
tural control in the state of the practice, consider the problem of achieving architectural
control for a simple distributed system to be illustrated in Java. We will examine a sim-
ple sub-problem: understanding what messages are sent over the network, and ensuring
the correct protocol is used. Such an understanding is useful for a security analyst to
assess the attack surface of the system; for a reliability analysis of what might occur if
a network link fails; or for a performance analysis assessing where bottlenecks might
lie. In Java, achieving this understanding may be difficult for the following reasons:

– Many parts of the standard Java library that can perform network I/O; we must
examine how the program uses each of them. Furthermore, we must scan all parts
of the program—and all third-party libraries it uses—to find all uses of the network.

– If libraries are loaded at run time, by default they have the same access to the
network as does the program that loaded them; thus we must know which libraries
are to be loaded and scan them too. Restricting dynamically loaded libraries is
possible using Java classloaders and security managers, but the technique used is
complex and makes program construction awkward (the loaded code must execute
in a new thread, for example). Furthermore, it is easy for developers to implement
this technique incorrectly, sacrificing architectural control in the process.

– Once the architect identifies a component that directly accesses the network, she
may want to know how that component shares this ability with other parts of the
system, which involves understanding the component’s interface and implemen-
tation. The combination of aliasing, subtyping, and downcasts supported by Java
makes this difficult, however. If the component returns a value of type Object
to clients, does this give clients the ability to send messages over the network?
The Object interface itself provides no networking methods, but the value may be
downcast to an arbitrary type that may, in general, support network access.

– In practice, systems are built in a layered manner, with high-level communication
libraries built on lower ones. All paths through the network stack must be examined
for the architect to get a full picture of the messages sent over the network and the
protocols used. The aliasing and casting problem in the previous bullet makes this
more difficult.

– A non-expert security analyst might want to ensure that SSL is being used—and
might conclude, upon seeing that Socket objects are obtained from code such as
SSLSocketFactory.getDefault().createSocket(host,port), that all is
secure. Unfortunately, the Java SSL libraries, like many others [8], are insecure by
default; they do not validate the server’s certificate, opening the door to a man-in-
the-middle attack. This insecurity, and the need to configure SSL Socket Factories
to secure them, is not mentioned in the API documentation;3 it can only be found
deep in the JSSE reference guide.4

3 http://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLSocketFactory.html
4 http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
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Achieving Architectural Control. How can architects better control the architecture
of their systems? We believe there are three key elements to achieving architectural
control in practice:

– Integrated Guidance. Because it is difficult for architects to be expert in every
domain and with all component software used, it is essential that architects be able
to leverage guidance concerning (A) what are the important potential constraints
to consider with respect to a domain or a component, and (B) what is the basis for
choosing among and configuring those constraints. It is insufficient to provide this
guidance solely in external documentation; rather, cues that help developers find it
should be integrated into libraries used by developers.

For example, an SSL library or component should make its configuration param-
eters obvious (e.g. used by the main classes in the library), provide documentation
on how to choose them, ensure that the default configuration is secure, and support
reusable configurations (e.g. so an organization can easily standardize a configura-
tion appropriate to its domain). Java’s SSL library provides this documentation, but
not in an integrated way: important security-related parameters are not referenced
from the main SSL class, documentation on how to configure them is not present
in Javadoc linked to the code, the default configuration is insecure (as described
above), and there is poor support for reusable configurations.

– Centralized Architectural Specifications. The reality of team-based development
in the large is that it is not possible for a single person to review and understand
all the project artifacts. For an architect to achieve architectural control, therefore,
requires that the specification of architectural constraints be centralized—and, to fit
modern agile processes, we would like to see this specification manifest in code.
An ideal scenario of centralized specification would place all top-level architec-
tural constraints in a small set of files that is under source control, and where all
revisions are personally reviewed and approved by the architect. In our distributed
system example, we envision that the architect could look at the system’s entry
point, together with the interfaces of the components mentioned there, and imme-
diately determine (A) all of the components that can directly access the network,
(B) which components might dynamically load code, and whether they give that
loaded code network access; (C) component interfaces that are complete in the
sense of showing all methods that can be invoked by clients; (D) where to look
for architecturally-relevant configuration information or higher-level layers of the
architecture; and (E) who is responsible for further delegating control or enforcing
more specific design constraints within particular components. These individuals
would, in turn, hierarchically use the same mechanisms.

– Semi-automated Enforcement. Finally, once the proper architectural constraints
have been identified and specified in a central way, the architect must be con-
fident that they will be followed in the implementation of the software system.
Process-based mechanisms are important, but are also as fallible as the humans
carrying out that process. Fully automated tool-based mechanisms may not be fea-
sible for enforcing many architectural constraints. However, we outline a vision
below in which the type system, the run-time semantics and the editor services of
an architecture-exposing programming language will semi-automatically enforce
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a variety of important architectural constraints, given input from developers in the
form of partial, type-like specifications.

Finally, while architectural control is clearly desirable, in practice any mechanisms
used to achieve it must be cost-effective. We would like to realize the benefits of archi-
tectural control while minimizing sacrificed productivity. In the ideal case, we would
like to explore whether we can build tools that move the productivity-control curve
outward, providing better architectural control while at the same time actually enhanc-
ing the productivity of a development team. Ultimately demonstrating this will require
empirical studies in addition to technology development.

3 Prior Work
Software architecture captures the high-level design of a software system, describing
the systems structure and important constraints that must be followed by its implemen-
tation [18, 17]. The study of architectural conformance has a long history, including
topics such as the theory of conformance [14] and run-time conformance checking [11].
Work on static conformance checking has used a variety of approaches, including own-
ership types [2] and aspect-oriented programming mechanisms [12].

We build most directly on the approach used by ArchJava, which integrated an ar-
chitecture description language into Java and used a custom type system to ensure that
the architecture accurately describes the implementation of the system [3]. We previ-
ously investigated adding custom connectors to ArchJava, supporting an architectural
description of a distributed system within code [4]. However, our prior work on Arch-
Java did not have any way to ensure that an application communicated over the network
only using the connections shown in the architecture.

Mark Miller distinguishes between permission, which gives a subject the ability to
directly access an object, from authority, which is the ability of a subject to access
an object, perhaps through some intermediary [13]. In this paper, we focus mainly on
permission, though as Miller points out, the capability-based mechanisms we leverage
provide some ability to reason about authority as well. On the other hand, monads [19]
and effect systems [10] come closer to reasoning about authority directly. For example,
any Haskell operation that might transitively perform IO must use the IO monad. This
transitive reasoning is valuable, but also costly because a large portion of the program
source might have to be annotated with effects or monads. The syntactic overhead of IO
monads also leads to an escape hatch, unsafePerformIO, which when used subverts
architectural control. For many architectural control purposes, simply describing which
components perform IO might be sufficient, and this is the focus of our investigation
here.

While we are not aware of prior use of the phrase architectural control in scientific
literature on software, IBM Rational uses “architectural control rules” to constrain de-
pendencies in Java applications.5 Our use of the term architectural control is broader,
including control of dependencies but also enforcement of a range of other architectural
constraints.

5 http://publib.boulder.ibm.com/infocenter/rsdvhelp/v6r0m1/index.jsp?
topic=\%2Fcom.ibm.r2a.structanal.doc\%2Ftopics\%2Fcarchcontrols.html
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The phrase “architectural controls” was used in the urban planning literature at least
as early as 1949 to refer to “control over the design and appearance of buildings,” with
the goal of making a community more beautiful or livable [1].

The next section will describe additional prior work that is closely related to the
discussion.

4 Architecture-Exposing Languages and Frameworks
We propose architecture-exposing programming languages and frameworks as a so-
lution to providing better support for architectural control. An architecture-exposing
language is a programming language that provides primitives to facilitate exposing ar-
chitecture and enforcing constraints in a centralized way. In addition to languages, we
leverage software frameworks, because frameworks are already used to capture domain-
specific architectures and to impose architectural constraints on applications that extend
them [9]. A framework is architecture-exposing if it is specifically designed to encapsu-
late and enforce architectural constraints, while making important architectural choices
more visible to architects that design their applications on top of the framework.

To make these ideas concrete, we sketch the design of a distributed system appli-
cation and framework in a future version of Wyvern, a programming language we are
currently designing [15]. We show how five technical characteristics—extensible lan-
guages, capability-based module systems, explicit social delegation, architectural layer-
ing in frameworks, and typed interfaces—may serve to provide a practical initial step to-
wards providing architectural control in this domain. Our concrete goal will be to show
how a specific problem based on the one from the previous section—understanding the
messages and protocols used in a distributed system—can be rendered not just possible
but easy.

4.1 Making Architecture Explicit in an Extensible Language

Figure 1 shows one way of making the architecture of a simple client-server system
explicit, so that it is easy for the architect to observe the messages exchanged and pro-
tocols used over the network. The approach is inspired by ArchJava’s custom connector
support [4], although we envision supporting architecture syntax via Wyvern’s library-
based language extension mechanism [16] rather than making it a core part of the lan-
guage.

The code shows a client-server application for gathering feedback. The architec-
ture is simple: there is a client, a server, and a connection between the client’s out
and server’s in ports that sends SOAP messages over a SSL-encrypted network con-
nection. Here SSLSOAPConnector is a connection library that (unlike the standard
Java library) checks server certificates unless otherwise specified, with a default set
of widely-accepted certificate authorities that has been overridden here to specify only
the VeriSign CA.

Looking at the client code in Figure 2, we can see that the client declares the out
port as an OutChannel object that is parameterized by the high-level interface used for
communication with the server. The FeedbackInterface is not shown, but it consists
of a single provideFeedback method that accepts a string. We envision that a user at
a command line running this program as client might invoke this method by writing:

wyvern feedback client feedback.xyz.com ’my feedback here’
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1 define package feedback
2

3 import resource wyvern.logging.stdlog
4 import resource wyvern.network
5

6 import user role feedback.ServerLead
7 import user role feedback.NetworkLead
8

9 import feedback.FeedbackClient
10 import feedback.FeedbackServer(stdlog) careof ServerLead
11 import feedback.SSLSOAPConnector(network) careof NetworkLead
12 import extension wyvern.distributed.architecture
13

14 architecture feedback
15 component client : FeedbackClient
16 component server : FeedbackServer
17 connect client.out, server.in
18 with SSLSOAPConnector
19 certificateAuthority = <verisigninc.com>

Fig. 1: Client-Server Architecture

1 package feedback
2

3 import FeedbackInterface
4 import wyvern.distributed.OutChannel
5
6 class FeedbackClient
7 val out = OutChannel<FeedbackInterface>()
8 def run(addr : String, feedback : String)
9 val server : FeedbackInterface = out.connect(IPAddress(addr))
10 server.provideFeedback(feedback)

Fig. 2: Client code

The Wyvern virtual machine would load the feedback module, and since it is an
architecture it identifies the client component by the next command-line argument
and invokes its run method. The client program connects the out port, at which
point control passes to the connector, which creates a network connection to the server
and returns an object of type FeedbackInterface. Finally, the client invokes the
provideFeedback method on this object.

Similarly, when the server code in Figure 3 runs, it initializes its in port to listen
for incoming connections, passing a callback to be invoked when a connection is re-
ceived. The callback function returns an object of type FeedbackInterface, and the
implementation responds to client messages by printing feedback to a log.

The implementation details of the approach are beyond the scope of this paper,
but are based on our prior work on architectural connector implementation [4] and
extensible languages [16]. While using metaprogramming and/or reflection techniques
to implement the domain-specific language for architecture may be a challenging task,
they are not necessarily more challenging than the reflective techniques used in existing
framework implementations such as Ruby on Rails. Complex implementations are often
acceptable in frameworks if they provide corresponding simplicity or other advantages
to framework users.
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1 package feedback
2

3 import FeedbackInterface
4 import wyvern.distributed.InChannel
5 import resource wyvern.logging.stdlog
6
7 class FeedbackServer
8 val in = InChannel<FeedbackInterface>()
9 def run() = this.in.listen(this.callback)

10 def callback() : FeedbackInterface
11 new
12 def provideFeedback(feedback:String)
13 stdlog.log(feedback)

Fig. 3: Server code

4.2 Using Capabilities to Control Resources

The integration of architectural specifications into the code supports centralized rea-
soning about architecture. However, a critical question remains: how do we know that
the architecture given is a correct and complete description of what the implementation
does? How, for example, can we be sure that the client or server is not using a network-
ing library to communicate with another entity that is not shown in the architectural
description in Figure 1?

We propose to use capabilities [20] to control the way that various parts of the
program use architecturally significant resources such as the network. In our design, li-
braries such as wyvern.network are identified as resource libraries, and must be im-
ported with an import resource construct rather than a normal import construct.
Each package in our design is defined (define package) in a single top-level file
(Figure 1), and that file must explicitly import all of the resources used in the entire
package. A resource may only be used by other parts of the system—including im-
ported libraries—if a capability to the resource is explicitly passed on when the top-
level file imports the relevant code. For example, on line 5 of Figure 1, the feedback
program passes the wyvern.network resource to the SSLSOAPConnector library, so
that library can be used for network communication.

Now we can clearly see that the FeedbackClient and FeedbackServer cannot
possibly communicate over the network, except via the SSLSOAPConnector as spec-
ified in the architecture—the SSLSOAPConnector is the only component in the entire
program that has access to the network resource.

The concept of a resource generalizes naturally to other forms of I/O, recalling
Haskell’s monads, but without the overhead of distinguishing effectful code from func-
tional code at the expression level. Following Miller [13], our intended design will
require that ordinary modules have no global state; modules that need global state must
be marked as resources. Furthermore, developers who feel that the functionality pro-
vided by a module should be governed architecturally can enforce this by marking the
module as a resource. In our design resource-ness is sticky; for example, although the
FeedbackServer cannot access the network, it does import a resource in order to write
to a log, and therefore might become a resource itself.
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We are not the first to propose a module system in which a module’s parameters
are explicitly bound; notable prior examples include Units [7] and Newspeak [6]. Our
design differs from these in that we do not require all module imports to be explicitly
linked; instead, we require this only of resource modules, with the result that resources
are controlled but “harmless” modules can be imported anywhere with a minimum of
fuss.

4.3 Social Delegation

One architect cannot be an expert in every issue, nor can a single person oversee all
of the architecturally significant code in the system. We propose to provide scalable
architectural control by linking the hierarchical decomposition of the system to dele-
gation of architectural control to assistant architects. In the example, we import named
roles representing the server lead, who is in charge of the server architecture and will
(for example) ensure that the logging resource is used properly; and the network lead,
who ensures that the network is used safely by the SSLSOAPConnector’s implemen-
tation. Code editing services, e.g. provided in the IDE or the source control system,
can ensure that no changes are made to the FeedbackServer and SSLSOAPConnector
sub-architectures without approval by the appropriate assistant architect.

This social delegation mechanism not only provides scalability; it also provides a
mechanism, process-based but tool-assisted, for ensuring that the capabilities passed to
a component are used appropriately. For example, the SSLSOAPConnector is likely
to build on a lower-level SSL library, which will also require network access. The
NetworkLead must approve the code in SSLSOAPConnector which passes on the net-
work capability.

4.4 Architectural Layering

The distributed system above is perhaps overly simplistic in that one connector encap-
sulates the entire protocol stack, including SOAP, SSL, and layers such as TCP and IP
that work below SSL. In a more realistic setting, there may be architecturally relevant
details at each layer of abstraction. For example, in a web application architecture, the
configuration of the HTTP or HTTPS low-level communication protocol is important,
but the particular messages sent to the server (e.g. using the XMLHttpRequest object)
are important to the higher-level architecture. A web application framework might have
separate architectural diagrams showing the details at each level. We expect that de-
signing such a framework in a way that provides architectural control at multiple levels
of abstraction will be an interesting problem.

4.5 Type System Support

Types provide important architectural control benefits in the design sketched above:
an architect who wants to see what messages are sent or received by a component can
simply look at the type of the ports (FeedbackInterface in the example). This would
not be true in systems such as E or Newspeak that, while based on capabilities, are
dynamically or optionally typed [13, 6].

While we have not designed the details of a type system that supports architectural
control, there are an interesting set of open problems. One such problem is managing
the downcast issue described earlier in the paper. Another problem is investigating how
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constructs such as ownership and linear permissions can be leveraged to provide other
forms of architectural control, perhaps with respect to controlling concurrency, for ex-
ample.

5 Discussion and Conclusion
We can now see how our proposed design has the potential to offer better architectural
control than languages such as Java. Using resource capabilities, we can easily identify
what parts of the code may directly access the network; and unlike monads or effects,
which may be pervasive in the codebase, our capabilities impose syntactic overhead
only at the module level. Our example does not include dynamically loaded libraries,
but they fit naturally within the scheme presented here: when a library is loaded, it must
be passed6 capabilities to any resources it needs, and therefore those capabilities must
already be present in the module doing the loading. Finally, the extensible nature of the
language makes it easier to make configurations, e.g. of the SSL library in the example,
a first-class abstraction, helping ensure that architects pay attention to configuration-
related constraints that are important but easy to overlook.

Much work remains to be done. First, we plan to flesh out the mechanisms sug-
gested above into a concrete design. Second, we plan to implement and evaluate that
design by implementing the core of one or more architecture-exposing frameworks in
the language, in order to test the practicality of the ideas and their ability to capture
interesting architectural constraints in practice. Third, we hope to extend the approach
to provide additional forms of architectural control, for example, providing a way to
reason about authority that is stronger than simple capabilities but has lower overhead
than the effect systems proposed in the literature thus far.
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