Practical Exception Specifications

Donna Malayeri! and Jonathan Aldrich!

Carnegie Mellon University, Pittsburgh, PA 15213, USA,
{donna+, aldrich+}@cs.cmu.edu

Abstract. Exception specifications can aid in the tasks of writing cor-
rect exception handlers and understanding exceptional control flow, but
current exception specification systems are impractical in a number of
ways. In particular, they are too low-level, too heavyweight, and do not
provide adequate support for describing exception policies.

We propose a novel and lightweight exception specification system that
provides integrated support for specifying, understanding, and evolv-
ing exception policies. Our tool, implemented as an Eclipse plugin for
Java, combines user annotations, program analysis, refactorings, and
GUI views that display analysis results. Using our tool, we analyzed six
programs and observed a 50 to 93% reduction in programmer-supplied
annotations.

1 Introduction

Exceptions can be very useful for separating normal code from error handling
code, but they introduce implicit control flow, complicating the task of under-
standing, maintaining, and debugging programs. Additionally, testing is not al-
ways effective for finding bugs in exception handing code, and these bugs can be
particularly problematic (for example, a program that crashes without saving
the user’s data).

For programmers to write correct exception handlers, they need precise infor-
mation about all exceptions that may be raised at a particular program location.
Documentation is inadequate—it is error prone and difficult to maintain. On the
other hand, precise information can be obtained through a whole-program anal-
ysis of exception flow (including analysis of all libraries used), but this is not
a scalable solution. Moreover, this would complicate team development; if one
programmer changes exception-related code, the control flow in apparently un-
related parts of the program may change in surprising ways.

We believe that exception specifications are a useful tool for reasoning about
exceptions (see, for example, [I5 13, 2 [7]). They serve to document and enforce
a contract between abstraction boundaries, such as method calls. This facili-
tates modular software development, and can also provide information about
exception flow in a scalable manner.

However, current exception specification systems are either impractical or
flawed in one or more ways. In these solutions, specifications are either too

low-level, too heavyweight, or do not provide adequate support for describing
a high-level exception policy. We believe that a good exception specification
system should be lightweight while sufficiently expressive, and should facilitate
creating, understanding, and evolving specifications.

We have implemented a tool, ExnJava, which provides practical and inte-
grated support for exception policies. It combines user annotations, program
analysis, refactorings, and GUI views that display analysis results. ExnJava
raises the level of abstraction of exception specifications, making them more
expressive, more lightweight, and easier to modify.

Note that we focus on the problem of specifying various properties of excep-
tion behavior, rather than a proposal for a new exception handling mechanism.
The problem of specifying such properties exists independently of the excep-
tion mechanism, though of course some details of our solution would not apply
directly to languages whose exception handling mechanism is significantly dif-
ferent than that of Java. The goal of our work is to shed light on properties that
are important for an exception specification scheme, regardless of the handler
mechanism.

In the next section, we describe the essential properties of a practical ex-
ception specification system; in Sect. [3] we describe how previous solutions have
failed to meet one or more of these criteria. We describe the details of our system
and how it meets these criteria in Sect. [l

2 Practical Exception Specifications

If an exception specification system is to be practical, we believe that it must
posses several essential properties; we enumerate these here. We use the general
term “exception policy” to refer to programmers’ design intent regarding how
exceptions should be used and handled. An exception policy specifies the types
of exceptions that may be thrown from a particular scope and the properties
that exception handlers must satisfy.

In our view, a good exception specification system, which may include both
language features and tools, should be lightweight while sufficiently expressive,
and should facilitate creating, understanding, and evolving specifications.

Specification Overhead. The specification system must be lightweight. Pro-
grammers are not fond of writing specifications, so the benefits must clearly
outweigh the costs. Additionally, incremental effort should, in general, yield in-
cremental results. If a specification system requires that an entire program be
annotated before producing any benefit, it is unlikely to be adopted.

Expressiveness. The system should allow specifying exception policies at an
appropriate level of abstraction. It should support the common policy of limiting
the exception types that may be thrown from some scope. Such scopes need not
be limited to a method or a class. Rather, they could consist of a set of methods,
a set of classes, or a module.

As a motivating example, suppose some module provides support for man-
aging user preferences. Suppose also that its implementation should hide how
the preferences are actually stored (e.g., files, a database, etc). Accordingly, its
exception policy is that exceptions pertaining to these implementation details
(e.g., FileNotFoundException, SQLException) should not be thrown by any of
its interface methods. Rather, perhaps such exceptions would be wrapped by a
higher-level exception type, such as PreferenceStoreException. If a low-level
exception is erroneously thrown by an interface method, clients cannot write a
meaningful exception handler without knowing the modules’s implementation
details.

Specifications could also include high-level properties of handlers while re-
maining lightweightﬂ Note that these policies need not be exposed to clients, as
they may express implementation details. Such policies (for a particular scope)
could include the following: handlers for exceptions of type E should be non-
empty; thrown exceptions of type E should be logged; exceptions of type E
should always be wrapped as type F before they escape the interface of this
scopeﬂ

Additionally, there should be a way to specify a policy independently of its
implementation, though an implementation may perhaps be generated from a
policy (e.g., code to log exceptions, or wrap some exception and rethrow). So-
lutions that make it easy to implement a policy are useful, but they do not
obviate the need for one. Until it is possible to generate all desired implemen-
tations automatically—which may not ever be fully achievable—we believe that
the distinction between specification and implementation is an important one.

Ease of Creating and Understanding Policies. The solution should provide
tools that aid programmers in creating new exception policies and understanding
existing policies. Without the aid of such tools, reasoning about exceptions is
difficult due to their non-local nature. Such tools may, for example, include
information on exception control flow.

Maintainability. The specification scheme should support evolving specifica-
tions as the code evolves, possibly through tool support. This differs from the
property of being lightweight; a system may be lightweight but inflexible. The
cost involved in changing specifications should generally be proportional to the
magnitude of the code change.

In Java and in other commonly-used languages, exceptions automatically
propagate up the call chain if there is no explicit handler. A specification system
for these languages should take these semantics into account, so that small code
changes do not require widespread specification changes.

1 Supporting these high-level properties is the subject of our future work.
2 A common practice recommended by Bloch [2], among others.

3 Related Work

Previous solutions have failed to meet one or more of the criteria described
above; we describe each of these here.

Specifications. One well-known exception specification scheme is that of Java,
which requires that all methods declare the checked exceptions that they directly
or indirectly throw]

Though we believe it is useful to separate exceptions into the categories of
checked and unchecked (see, for example, [12] 2]), the Java design has a number
of problems that make it impractical. Java throws declarations are too low-level;
they allow specifying only limited exception policies at the method level. This
leads, in part, to high specification overhead. It is notoriously bothersome to
write and maintain throws declarations. Simple code modifications—a method
throwing a new exception type; moving an handler from one method to another—
can result in programmers having to update the declarations of an entire call
chain.

There is anecdotal evidence that this overhead leads to bad programming
behaviors [5 23] [9]. Programmers may avoid annotations by using the declaration
throws Exception or by using unchecked exceptions inappropriately. Worse,
programmers may write code to “swallow” exceptions (i.e., catch and do nothing)
to be spared the nuisance of the declarations [16] [11].

But even if programmers use checked exceptions as the language design-
ers intended, exception declarations quickly become impreciseﬂ as code evolves;
statements that throw or handle exceptions will invariably be modified. In our
study of several open-source Java programs (the subject programs are listed in
Table, we found that between 16% and 81% of exception types within throws
declarations were imprecise (with an average of 46%). Aside from illustrating the
difficulty of maintaining throws declarations, this casts doubt on whether they
are even a good tool for understanding exception flow and exception policies—
though advocates often claim that this is one of their very benefits [8] 22 2] [21].

EclipseE| provides a “Quick Fix” for updating a method’s throws declaration
if it throws an exception that is not in its declaration, but this can only be
applied to a single method at a time. Consequently, programmers would have to

3 In Java, the class Exception is the supertype of all exception types. One of its
subtypes is RuntimeException, which represents unchecked exceptions. Exceptions
that are a subtype of Exception but not a subtype of RuntimeException are checked
exceptions; subtypes of RuntimeException are unchecked exceptions. A method must
declare all checked exceptions that it throws (directly or transitively) in its throws
declaration; unchecked exceptions may be omitted.

For a method m, the declaration throws FE is imprecise if m does not throw the
exception F, though it may throw subtypes of E. The case where m throws neither
E, nor its subtypes is an interesting one, as this is perhaps less likely to be an inten-
tional design decision. However, due to space limitations, here we do not distinguish
between these kinds of imprecision (though our tool does provide this capability).
® Available at www.eclipse.org.

iteratively update declarations until a fixpoint was reached. Eclipse also includes
an optional warning that will list methods whose throws declaration is imprecise,
but this too applies to a single method at a time.

There are several proposals for specifying method post-conditions on excep-
tional exit [6] 13} [I], but these are even more heavyweight than Java throws
declarations. These solutions do, however, provide powerful verification capabil-
ities. Whether such benefits will outweigh the significant cost of annotating an
entire program, however, is unclear.

Other Work. There are several languages and language extensions which ease
the task of implementing a policy, but provide no way to specify the policy.
These include languages with first-class exception handlers 4] and languages
that allow applying handlers to some set of methods or classes [10, [14]. However,
unless new tools are created, these features will further complicate the task of
reasoning about exceptions. It is also unclear how these schemes would work
with programmer-supplied specifications; as far as we are aware, this problem
has not been addressed.

Robillard and Murphy [18] provide a good methodology (though not a tool)
for specifying exceptions at module boundaries; our tool builds on this work. A
number of researchers have developed exception analysis tools [19] 20} [3], but
they all perform a whole-program analysis, which does not scale [I7]. For the
task of understanding exception flow, Sinha et al. propose a set of views that
display the results of their exception analysis, but for these they provide only a
high-level design.

4 Features of ExnJava

We have designed and implemented an exception specification system for Java
1.4 that satisfies the initial criteria outlined in Sect. |2} Our design raises the level
of abstraction of exception specifications, while remaining lightweight.

In developing our system, we found that Java classes and packages are not
always appropriate units of abstraction; accordingly, we have designed a simple
module system to be overlaid on standard Java code. A module consists of a set
of Java classes or interfaces; each Java class or interface belongs to exactly one
module (a default module is included for convenience). We add the following
accessibility rule: methods may be accessed outside their module if and only
if they are visible by standard Java accessibility rules and they are marked as
module-public. Such methods are interface methods, as they effectively comprise
the interface of the module; all other methods are internal methods.

We are in the process of implementing support for modules. Consequently,
our current simplifying assumption is to equate modules with packages; each
package is a separate module. Thus, methods with public or protected visibility
are interface methods; private and package—privateﬂ methods are internal meth-

5 Also known as “default” or “friendly” access.

ods. To emphasize our design goals, in the discussion below we use the term
“module” rather than “package.”

Our system, ExnJava, is implemented as an Eclipse plugin. It contains one
language change: the Java rules for method throws declarations are relaxed
such that only module interface methods require a throws declaration. ExnJava
also includes module-level exception specifications, checked on every compila-
tion. This is implemented as an extra-linguistic feature. Additionally, there is
a Thrown Exceptions view to facilitate creating and understanding exception
policies. Three refactorings help programmers evolve specifications: Propagate
Throws Declarations, Convert to Checked Exception, and Fix Imprecise Declara-
tions. In the subsections below, we describe each of these features, and our initial
empirical results.

4.1 Specifying Exception Policies

In ExnJava, programmers specify exception policy at the module level. We be-
lieve this is a more appropriate level of abstraction than the low-level declarations
of previous solutions, such as method-level declarations in Java. A module has
two kinds of exception policy: one applies to each individual interface method,
the other to the module as a whole.

Interface Method Policies. The exception policy of interface methods is spec-
ified using Java throws declarations. In contrast to Java however, the declara-
tions for internal methods need not be specified—they are inferred by ExnJ avam
Consequently, this design raises the level of abstraction of throws declarations.

To determine the checked exceptions thrown by internal methods, ExnJava
performs an intra-module dataflow analysis. Within a module, the implementa-
tion of our analysis is similar to the whole-program analyses of previous systems
[19, 20]. However, our analysis is scalable, as it depends on the size of each mod-
ule rather than the size of the entire program. The results of this analysis, as
well as additional information about exception control flow, are displayed in the
Thrown Exceptions view, described below in Sect. [1.2]

There are several advantages to this scheme. First, annotations are more
lightweight. As we describe in Sect. [£:4] in our subject programs we found that
inference reduces the number of required declarations by a range of 50% to 93%.
Also, inference gives programmers more precise information. Rather than exam-
ine Java throws declarations, programmers use the Thrown Exceptions view to
determine the checked exceptions thrown by internal methods. And, in contrast
to a pure exception inference tool, programmers can enforce exception policies
by specifying throws declarations on interface methods.

" It may sometimes be useful to include throws declarations on internal methods; this
is supported.

Module Policies. It is also useful to specify and enforce a policy that applies
to all of the interface methods of a module. In ExnJava, for each module, pro-
grammers specify the set of exception types that may be thrown by its interface
methods. This ensures that exceptions that are logically internal to a module
are not leaked to its clients.

Module exception specifications thus ensure that the exception policy of
each interface method (the types of exceptions that they throw) also con-
forms to the general exception policy of the module. Recall the example of
Sect. [2] where the storage details of the user preferences module were to be
hidden from clients. For such a module, its specification would include perhaps
PreferenceStoreException but would not include FileNotFoundException.

4.2 Understanding Exception Policies

The Thrown Exceptions view (Fig.[1)) displays the details of exception control flow,
to help programmers understand the implemented exception policies. Without
the information provided by this view, we believe that it would be difficult to
correctly create and modify exception policies. Based on some anecdotal evi-
dence, as well as our own programming experience, we believe that the general
difficulty of programming with exceptions is partly due to lack of information
on a program’s exceptional control flow.

Mu tline| Package Explorer ‘ =

Thrown exceptions & | = % = <'}==€>

=e

@ getSpecialFoldersitem()

-m getDefaultaccount()
-@ getPopltem()

-@ getSmtpltem()

- @ getSpamitem(y
]
@
-@

getPGPiemi()
getimaphem()
getldentity(}
[€] NumberFormatException
51.[8] IdentityLoadException
i- @ callto Accountitem.getidentity()
= throw new |dentityL oadException (ex);
u handled by SendMessageCommand.execute(WorkerStatus Controller)
i.u catch (IdentityLoadException e)
o handled by SMTPServer SMTPServer(Accountitern)
H i catch (IdentityLoadException &)
[® catch (ParserException ex)

- [-

o

Fig. 1. The Thrown Exceptions view in method level mode.

The Thrown Exceptions view displays information computed by either a
whole-project analysis or a per-module exception analysis; the former will pro-
vide more information, but the latter is more scalable. The view has two modes:
method level and module level. The method level view, inspired by the work of
Sinha et al [20], displays a tree view of the project’s methods, grouped by pack-

age and class. For each method, the checked and unchecked exception&ﬂ thrown
by the method are listed, as well as the lines of code that cause the exception
to be thrown. Using this view, the programmer can jump to method definitions
that throw exceptions, and can also quickly jump to the ultimate sources of a
particular exception (i.e., the original throw statements or library method calls
that caused an exception to flow up to this part of the code.) Additionally, for
each exception that a method throws, the view displays all catch blocks that
may handle that exception. (This is limited, of course, to catch blocks in code
available to the analysis.)

The module level view displays, for each module, the checked exceptions
that are thrown by its interface methods. For each exception type, the methods
that throw the exception are listed, as well as the detailed exception information
described above. The module view can be useful for creating a module’s exception
policy and can also be used to discover possible errors in the exception policy. For
example, if a particular exception type is only thrown by one or two methods, it
is possible that the exception should have been handled internally or wrapped
as a different exception type.

4.3 Evolving Exception Policies

Our system raises the unit of abstraction to which an exception specification
applies; this alone makes it easier to evolve specifications. If the set of excep-
tions thrown by an internal method changes, no throws declarations need to be
updated, unless one or more interface methods throw new exceptions. This often
occurs when an exception handler is moved from one method to another in the
same module. Though this is a conceptually simple modification, a number of
internal methods may now throw a different set of exceptions. In standard Java,
the throws declaration of each of these methods would have to be manually
updated.

Propagating Declarations. Still, if a code change causes an interface method
to throw new exceptions, the same “ripple effect” of Java throws declarations
may result—requiring changes to the declarations of the transitive closure of
method callers. To avoid this problem, ExnJava provides a Propagate Throws
Declarations refactoring (accessible as an Eclipse “Quick Fix”) that will propa-
gate declarations up the call graph (see Fig. . The goal of this refactoring is to
help programmers find the correct location for new exception handlers, rather
than tempting them to carelessly propagate declarations to every method that
requires them. To this end, the refactoring displays a checkbox tree view of the
call graph (which includes only methods whose declarations need to be changed),
which is initially collapsed to show only the original method whose declaration
needs to be updated. The programmer then expands this one level to display

8 Information on unchecked exceptions will not be complete, due to the fact that a
whole-program analysis (including all libraries used) would be required. However,
even partial information on unchecked exceptions can be useful.

the method’s immediate callers (and callers of the methods that it overrides),
and so on for each level in the tree. Checking a particular method in the tree
will add the declaration to both that method and all the overridden superclass
methods (so as not to violate substitutability).

£ Propagage throws declarations x|

Add throws IdentityLoadException’ declaration to:

@ getldentity(} - org.columba.mail.config.Accountitem

[¥] & composeTexiMimePart() - org.columba.mar.composer.MessageComposer

@ compose(WorkerStatusController) - org.columba.mail. composer Message Composer

composeMultipartAlternativeMimePart() - org.columba.mail.composer.MessageComposer
e @ compose(WorkerStatusController} - org.columba.mail.composer. MessageComposer

[+ D @ SMTPServer(Accountitem) - org.columba.mail smip. SMTPServer

-] a initHeader() - org.columba.mail.composer MessageCompaser

#-[= composeHtmiMimePart(- org.columba.mail.composer.Message Composer

@ getldentity(} - org.columba.mail.config. Accountitern

OK | Cancel

Fig. 2. The dialog for propagating throws declarations. Methods that are typeset
in italics are those for which the module specification does not allow throwing
this particular exception type.

The refactoring also incorporates the module exception specification; if up-
dating the throws declaration of a particular method would violate the module
specification, the method is displayed in a different color, with a tooltip describ-
ing the reason for the inconsistency. The declaration for the method can still
be changed, but ExnJava will display an error until the package specification is
modified.

Unchecked Exceptions. Sometimes, unchecked exceptions are used where
checked exceptions are more appropriate. In fact, some programmers prefer
to use unchecked exceptions during the prototyping phase, and then switch
to checked exceptions later. ExnJava includes a Convert to Checked Exception
refactoring which changes an exception’s supertype to Exception and updates
all throws declarations in the program accordingly.

Imprecise Exceptions. As previously noted, throws declarations can become
unintentionally imprecise as code evolves: they may include exception types that
are never thrown or types that are too general. (We realize, of course, that
sometimes imprecise declarations are an intentional design choice, to provide for
future code changes. Our tool allows programmers to retain such declarations.)

When a catch block is moved from one module to another, for example, a
number of interface methods may include an exception type that they will con-
sequently never throw. New callers of these methods will then have to include
handlers for these exceptions—which would be dead code—or must themselves
add superfluous exceptions to their throws declarations. Such problems do occur
in actual code; for example, Robillard and Murphy found a number of unreach-
able catch blocks in their analysis of several Java programs [19].

To solve this problem, ExnJava includes an Fix Imprecise Declarations refac-
toring, which can be run on a module or set of modules. The refactoring first
lists the exception types which appear in imprecise declarations; the program-
mer chooses an exception type from this list. The exception type is chosen first
so that the view can show the propagation of this exception declaration. For
this exception, the view displays all methods where that type appears in an im-
precise declaration. The view displays a call graph tree (similar to that of the
Propagate Throws Declarations refactoring) showing the propagation of imprecise
declarations. This allows the programmer to determine the effect of fixing (or
not fixing) a particular imprecise declaration. Initially all methods are checked,
indicating that their declarations will be updated; the programmer can choose
to not change the declarations for particular methods by unchecking them. (We
chose this design as we hypothesize that most imprecise declarations are out-of-
date rather than intentional design choices.) The view ensures that a consistent
set of methods is chosen; if a method is unchecked, all of its transitive callers
will also be unchecked.

Our tool could be extended to include a “Fix Imprecise” refactoring at the
module specification level, to inform the programmer of specifications that may
no longer be valid. Such a tool would display each module whose specification
lists one or more exceptions that are not actually thrown in the implementation.

4.4 Empirical Results

We analyzed six open-source programs to determine the feasibility of interface
method and module specifications; results are in Table [I| Even with the rough
estimation of each package as its own module, we found that when the declara-
tions of internal methods are inferred there are considerable annotation savings.

We first refactored the visibility modifiers of methods, making them as re-
strictive as possible. This was to simulate a good module design that hides as
many implementation details as possible. (Of course, it is likely that some of the
methods that were not currently used outside their package were intended to be
accessible for future use, but we hope that this inference provides a reasonable
estimate.) We found that after refactoring, the throws inference results in a
50% to 93% reduction in declarations. Also, since many imprecise declarations
appeared on internal methods, inference reduces imprecision by 42% to 78%.
(That is, internal methods contained 42% to 78% of all imprecise declarations.)
Before refactoring, 12% to 56% of declarations were inferable.

Using modules would very likely increase these annotation savings, since we
expect that most modules will consist of several packages. In such a case, there
likely would be more internal methods (and therefore more inferred declarations).

We also computed the average number of exceptions thrown by the interface
methods of packages in our subject programs. In most applications, packages
generally throw few distinct exception types—fewer than 2 exceptions per pack-
age, on average. This strongly suggests that module exception specifications have
a low annotation overhead.

Table 1. The subject programs studied, number of lines of code, percentage of
declarations that could be inferred (i.e., appeared on internal methods) before
and after refactoring to reduce visibility of methods, percent reduction in im-
precise exceptions after refactoring (i.e., percentage of imprecise exceptions that
appear on internal methods), and average number of exceptions types thrown
by the interface methods of packages.

Inferable decls i . Exceptions thrown
LOC Betore refactoring|[After refactoring Imprecise reduction per package
LimeWire| 61k 45% 72% 53% 2.1
Columba | 40k 44% 50% 42% 1.3
Tapestry | 20k 12% 75% 68% 0.45
JFtp 13k 44% 93% 59% 0.88
Lucene 10k 56% 81% 75% 1.9
Metrics 7k 23% 72% 78% 0.5

5 Acknowledgments

We would like to thank David Garlan and James Hendricks for their comments
on an earlier version of this paper, and Bill Scherlis for his suggestions and
discussions.

This work was supported in part by NASA cooperative agreements NCC-
2-1298 and NNAO5CS30A, NSF grant CCR-0204047, and the Army Research
Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Se-
cure Information Systems”.

References

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system. In Cassis International Workshop, Ed. Marieke Huisman, 2004.

[2] Joshua Bloch. Effective Java. Addison-Wesley Professional, 2001.

[3] Byeong-Mo Chang, Jang-Wu Jo, Kwangkeun Yi, and Kwang-Moo Choe. Interpro-
cedural exception analysis for Java. In Proceedings of the 2001 ACM Symposium
on Applied Computing (SAC 01), pages 620-625. ACM Press, 2001.

[4] Christophe Dony. A fully object-oriented exception handling system: rationale
and Smalltalk implementation. In Advances in exception handling techniques,
pages 18-38, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[5]
[6]

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

22]

23]

Bruce Eckel. Thinking in Java, 3rd edition. Prentice-Hall PTR, December 2002.
C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of PLDI 2002, 2002.

Alessandro F. Garcia, Cecilia M. F. Rubira, Alexander B. Romanovsky, and Jie
Xu. A comparative study of exception handling mechanisms for building depend-
able object-oriented software. Journal of Systems and Software, 59(2):197-222,
2001.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java Series). Addison-Wesley Professional, July
2005.

Anson Horton. Why doesn’t C# have exception specifications? Available at
http://msdn.microsoft.com/vesharp/ team/language/ask/exceptionspecs.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In ECOOP ’01: Proceedings of
the 15th European Conference on Object-Oriented Programming, pages 327-353,
London, UK, 2001. Springer-Verlag.

Joseph R. Kiniry. Exceptions in Java and Eiffel: Two extremes in exception design
and application. In Proceedings of the ECOOP 2003 Workshop on FException
Handling in Object-Oriented Systems, 2003.

Jorgen Lindskov Knudsen. Fault tolerance and exception handling in BETA.
In Advances in exception handling techniques, pages 1-17, New York, NY, USA,
2001. Springer-Verlag New York, Inc.

K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. In SEFM,
pages 218-227. IEEE Computer Society, 2004.

Martin Lippert and Cristina Videira Lopes. A study on exception detecton and
handling using aspect-oriented programming. In Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE ’00), pages 418-427. ACM
Press, 2000.

Robert Miller and Anand Tripathi. Issues with exception handling in object-
oriented systems. In ECOOP, pages 85-103, 1997.

Darell Reimer and Harini Srinivasan. Analyzing exception usage in large Java
applications. In Proceedings of the ECOOP 2008 Workshop on Ezception Handling
in Object-Oriented Systems, 2003.

Martin P. Robillard, May 2005. Personal communication.

Martin P. Robillard and Gail C. Murphy. Designing robust Java programs with
exceptions. In Proceedings of the 8th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’00), pages 2-10. ACM Press, 2000.
Martin P. Robillard and Gail C. Murphy. Static analysis to support the evolu-
tion of exception structure in object-oriented systems. ACM Trans. Softw. Eng.
Methodol., 12(2):191-221, 2003.

Saurabh Sinha, Alessandro Orso, and Mary Jean Harrold. Automated support for
development, maintenance, and testing in the presence of implicit control flow. In
Proceedings of the 26th International Conference on Software Engineering (ICSE
’04), pages 336-345. IEEE Computer Society, 2004.

Bill Venners. Interface Design: Best Practices in Object-Oriented API Design in
Java. Available at http://www.artima.com/interfacedesign, 2001.

Bill Venners. Failure and exceptions: a conversation with James Gosling, Part II.
Available at http://www.artima.com/intv/solid.html, September 2003.

Bill Venners and Bruce Eckel. The trouble with checked exceptions: A conversa-
tion with Anders Hejlsberg, Part II.

Available at http://www.artima.com/intv/handcuffs.html, August 2003.

	Practical Exception Specifications
	Donna Malayeri (Carnegie Mellon University), Jonathan Aldrich (Carnegie Mellon University)

