F-Bounded Polymorphism
for Object-Oriented Programming

Peter Canning, William Cook, Walter Hill, Walter Olthoff
Hewlett-Packard Laboratories
P.O. Box 10490, Palo Alto, CA 94303-0971

John C. Mitchell
Department of Computer Science

Stanford University, Stanford, CA 94309

Abstract

Bounded quantification was introduced by Cardelli and
Wegner as a means of typing functions that operate uni-
formly over all subtypes of a given type. They defined
a simple “object” model and used bounded quantifica-
tion to type-check functions that make sense on all ob-
jects having a specified set of “attributes.” A more re-
alistic presentation of object-oriented languages would
allow objects that are elements of recursively-defined
types. In this context, bounded quantification no longer
serves its intended purpose. It is easy to find func-

" tions that makes sense on all objects having a spect-
fied set of methods, but which cannot be typed in the
Cardelli-Wegner system. To provide a basis for typed
polymorphic functions in object-oriented languages, we
introduce F-bounded quantification. Some applications
of F~-bounded quantification are presented and seman-
tic issues are discussed. Although our original moti-
vation was to type polymorphic functions over objects,
F-bounded quantification is a general form of polymor-
phism that seems useful whenever recursive type defini-
tions and subtyping are used.

1 Introduction

Although object-oriented programming has attracted
increasing interest in recent years, the development
of polymorphic type systems for object-oriented lan-
guages has progressed slowly. One reason is that object-
oriented languages are often described using terminol-
ogy that sets them apart from functional languages. In
addition, there has been a lack of formal models for

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and / or specific permission.

© 1989 ACM 0-89791-328-0/89/0009/0273 $1.50

object-oriented languages. As a result, it has been dif-
ficult to see how practical polymorphic type systems
should be adapted for typing object-oriented constructs.
In Cardelli’s seminal paper [Car84], record subtyping
was identified as an important form of polymorphism
in object-oriented programs. This lead to the devel-
opment of “bounded quantification” in [CW85]. If we
view objects as elements of non-recursive record types,
then bounded quantification provides a useful form of
polymorphism over objects. However, a more sophisti-
cated presentation of object-oriented constructs (as in
[CCHO89, Coo89a, CDJ+89]) would allow objects that
are elements of recursively-defined types. With recur-
sive types, the Cardelli-Wegner form of bounded quanti-
fication is not sufficiently expressive to meet its original

goal.

F-bounded quantification is a natural extension of
bounded quantification that seems particularly useful
in connection with recursive types. The essential idea
may be illustrated by comparison with Cardelli-Wegner
bounded quantification. Using “C” for the subtype re-
lation, a simple example of a bounded-quantified type
is the type Vt C 7. t — t. This is the type of func-
tions which map ¢t to ¢, for every subtype t of 7. In
a setting where all structurally similar objects belong
to subtypes of a given type, many useful polymorphic
functions will have bounded quantified types. For ex-
ample, if we type an object by listing its methods and
their types, an object with a print method may have
type {..., print:void — string, ...}, indicating that the
method print produces a print representation of the ob-
ject. In the view of subtyping presented in [Car84],
every type of this form will be a subtype of the type
{print:void — string} of objects having only a print
method. For example,

{A:int — void, print: void — string)
C {print:void — string}.

273



A function taking a list of printable objects, a string and
returning an object whose print representation matches
the given string will have the bounded-quantified type
Vt C {print:string}. list[t] — string — t.

The flexibility of bounded quantification is dramati-
cally reduced when objects belong to recursively-defined
types. For example, consider the type

PartialOrder = { lesseq: PartialOrder — Bool }.

Each object of this type has a method lesseq which may
be applied to another object of the same type. We in-
tend the result of x.lesseq(y) to be true if x does not
exceed y in some ordering, and false otherwise. Using
lesseq, it should be possible to sort lists of PartialOrder
elements, for example. We may easily write a sort-
ing function with type Vt C PartialOrder. list[t] — list[t].
However, as we shall see later in the paper, object-
oriented versions of the usual partially-ordered types
such as integers are not subtypes of PartialOrder. There-
fore, our generic sorting function cannot be used in the
way we might expect. To solve this problem and related
difficulties with other forms of recursive types we intro-
duce a generalization of bounded quantification which
we call F-bounded gquantification, for want of better ter-
minology. For the example at hand, consider the func-
tion F from types to types given by

F[t] = { lesseq: t — bool }.

We may write a polymorphic sorting function of type
Vt C F[t].list[t] — list[t], where this function is defined on
any type t such that t C F[t]. Since integer C Flinteger],
as explained in Section 3.3, we may apply such a sorting
function to lists of integers or lists of any other type of
objects having lesseq methods.

One practical application of F-bounded quantification
is for understanding some problems in the type system
of the Eiffel programming language [Mey88]. Eiffel in-
troduces a special type expression, like Current, to repre-
sent recursion at the type level. Like Current always rep-
resents the ‘current class’: in a class P it simply stands
for P, but when this class is inherited by a subclass C,
like Current in an inherited attribute is reinterpreted to
stand for the subclass C'. The subclasses of such a class
are usefully understood as having interfaces that satisfy
an F-bound. However, as mentioned above, there is no
necessary subtype relation among types satisfying an F-
bound. This analysis explains some insecurities in the
Eiffel type-system, which always allows subclasses to act
as if they are subtypes of their parents. Further details
are given in [Coo89b], along with some suggestions for
correcting Eiffel’s problems using the results in this pa-
per. The error in the Eiffel type system illustrates the
subtlety involved in designing flexible and sound type
systems for object-oriented languages.

274

Another type system with a generalized form of
bounded quantification is presented by Curtis [Cur87).
In this system, arbitrary collections of subtype con-
straints may be imposed on the quantified type vari-
able. Thus Curtis’ system subsumes our more modest
proposal. However, we believe that our form of quantifi-
cation is both sufficient to type-check practically useful
object-oriented programs, and more tractable. Some ev-
idence for the naturality of F-bounded quantification is
the intriguing connection with F-coalgebras, the dual of
a standard construction in the category-theoretic char-
acterization of type recursion [SG82].

The next section surveys relevant background on
strongly-typed object-oriented programming. Section 3
illustrates in detail problems with previous techniques
for dealing with recursive object types. Section 4 intro-
duces F-bounded quantification and demonstrates that
it solves the typing problems presented in the previous
section. some speculative observations on the semantic
aspects of F-bounded quantification. Section 6 summa-
rizes our contribution and indicates directions for future
research.

2 Background

2.1 Objects, Records and Recursive
Types

A fundamental premise underlying most models of
object-oriented programming is that objects may be
regarded as record whose components are functions
representing methods [Car84, CW85, Wan88, Coo89a,
CCHOS89]. In this model, “message sending” is imple-
mented by simple component selection.

Record types are used to describe the protocols
[GR83] or interfaces of objects. A record type is a map-
ping of labels to types. A record consisting of labels
l,...,l; with associated values in types oy,..., g; has
type {li:01,...,1;:0;}. The fields of the record type
describe messages together with the types of their ar-
guments and return values. This view is adopted in
the programming languages Amber [Car86], Modula-3
[CDJ*89], and TS [JGZ88].

Even the very simplest “textbook” examples
from object-oriented programming produce recursively-
defined record types [Rey75, BI82, Car86, JGS88,
CDJ*89]. For example, the type of a planar point with
four methods is defined recursively as follows.

Point = {
x : void - Real,
y : void — Real,
move . Real x Real — Point,
equal : Point — Boolean

}



The body of the recursive type is a record type indi-
cated by braces {...}. The use of Point in the return
type of move indicates that the move method returns
an object that has the same type as the original point.
Its use as the argument type of equal indicates that the
equal method takes an argument with the same type.
In other words, equal is a ‘binary’ operation on points,
viz. for two points p and q, the expression p.equal(q) is
meaningful.

A useful notation for recursively defined types is the
form Rec £.A . Intuitively, the type Rec t.A is the type
t defined by ¢t = A, where A generally contains the type
variable ¢. Using this notation, we may define Point as
follows.

Point = Rec pnt. {
x : void — Real,
y : void — Real,
move : Real x Real — pnt,
equal : pnt — Boolean

}

Since the type variable pnt is bound by Rec, we may
rename pnt without changing the meaning of this dec-
laration.

2.2 Record Subtyping

Cardelli [Car84] identified record subtyping as an im-
portant form of polymorphism in object-oriented pro-
gramming. One basic axiom of record subtyping may
be written in the form

{zy:01,...,2:0%,...,20:0¢} C {z1:01,...,z8: 01}

The main idea is that if a record r has fields
Z1:01,...,2E: 0% and also Tg41:0k41,...,%¢:0¢, then
in particular r has fields #,:0,,...,25: 0. Therefore,
any operation that makes sense on records of type
{z1:01,...,z;: 01} also makes sense on records of type
{z1:01,...,2k:0,...,24:0¢}. A generalization of this
axiom is the inference rule

o1 C p1,-..,06 C pi,
{z1:01,...,20:0%,...,ze:0¢} C {z1:p1,-.-,Zk: Pk}

which takes into account subtyping within the fields.
A standard rule is the function subtyping rule [Mit84,
Car88):
o Co TCr
c— 7Co — 7

Noting that the hypothesis ¢’ C o is opposite to the oth-
ers, one says that the arrow constructor is contravari-
antin its first argument. One subtype rule for recursive
types is the following [Car86):

'sCtrFoCr
I'k Recs.oc C Rect. 7

s free only in o.
t free only in 7.

This means, informally, that if assuming s is a sub-
type of ¢ allows one to prove that o is a subtype of 7,
then the recursive type Rec s. o is a subtype of Rec ¢. 7.
For example, the following type is a supertype of Point:

Movable = Rec mv. { move : Real x Real — mv }

because the body of Point is a subtype of the body of
Movable, given the assumption pnt C mv:

pnt C mv F {move: RealxReal — pnt,...}
C {move: RealxReal — mv}
Rec pnt.{move: RealxReal — pnt, ...}
C Rec mv.{move: RealxReal — mv}

2.3 Bounded Quantification

Cardelli and Wegner’s language FUN [CW85] uses
bounded quantification to type polymorphic functions
over simple “objects” represented by records. Exten-
sions to the language removed its reliance upon record
field assignment, so that record operations may be ex-
pressed functionally [Wan87, JM88, Rem89]. The use of
bounded quantification may be illustrated with a simple
type of cartesian point objects:

SimplePoint = { x: int, y: int }

Note that simple points do not have any methods which
take simple points as arguments or return simple points
as results. Consequently, the type SimplePoint does not
require a recursive type declaration.

A function that ‘moves’ simple points may be defined
using bounded quantification. Move is a function of
type YVt C SimplePoint. t — Real x Real — t and
is defined by the expression following the equals sign.

move : YVt C SimplePoint. t — Real x Real —t

= Funft C SimplePoint] fun(p:t) fun(dx,dy:Real)
pwith {x=px+dx,y=py+dy}

" The notation Funft C SimplePoint] indicates that the

first argument of move is required to be a subtype of
SimplePoint. The second argument must be a value in
this subtype. Its third argument is a pair of numbers
representing the distance to be moved. The result of
the function is computed by building a new record hav-
ing the fields in the original subtype value, but with
updated x and y components. This new record has the
same type as the original argument to move.

Every subtype of SimplePoint is a legal argument to
move. For example, values of type SimpleColoredPoint,



SimpleColoredPoint = { x: int, y: int, color: int }

are valid arguments to move, and the result of the ap-
plication is also a SimpleColoredPoint.

3 Recursive Types and Bounded
Quantification

3.1 Introduction

In this section we investigate the use of bounded quanti-
fication in polymorphic functions over objects with re-
cursive types. We show that bounded quantification
does not provide the same degree of flexibility in the
presence of recursion as it does for non-recursive types.

Two kinds of problems are identified, depending upon
the location of the recursion variable within the recur-
sive type. In describing the two possibilities, it is useful
to adopt the standard notion of “polarity” from logic.
In a type expression ¢ — 7, the subexpression 7 occurs
positively and the subexpression o negatively. If o oc-
curs with positive or negative polarity in ¢, then this
occurrence will have the opposite polarity inoe — 7. A
subexpression of 7 will have the same polarity in 0 — 1.
For example, t is positive in (t — o) — 7 but negative
int — (p — 7). Polarity is preserved in record type
expressions, so that ¢ is positive and s is negative in
{put:t — void, get:void — s}.

3.2 Subtyping and Positive Recursion

When the recursion variable of a recursive type appears
positively, subtyping does not ensure the intuitively ex-
pected typing behavior. Consider the recursive type
Movable introduced above. The recursion variable mv
in Movable only occurs positively.

Movable = Rec mv. { move: Real x Real — mv }

It is reasonable to define a function, transiate, that
moves a movable value one unit 1n both directions:

translate = fun{x:Movable) x.move(1.0, 1.0)

Although this function works for any value whose type
is a subtype of Movable, the result of the function ap-
plication is always of type Movable, according to the
typing rules of [CW85]. It would be preferable to have
a polymorphic translate which, for any subtype of t of
Movable, takes argument of type t and return a value
of the same type. However, an easy semantic argument
shows that translate as defined above does not have the

type

translate : Vr C Movable. r — r

276

To see this, consider the type
R = { move: Real x Real — Movable, other: A }

It is easy to see that R is a proper subtype of Movable.
However, if we apply translate to an object of type R,
we obtain an object of type Movable, not R. Thus the
best we can say with bounded quantification 1s

translate : Vr C Movable. r — Movable

which is no more general than the ordinary function
type Movable — Movable.

The careful reader may notice that translate can in
fact be typed without using bounded quantification, giv-

ing
translate : Vt. { move: Real X Real — t} — t

However, this should not be regarded as a defect in our
presentation; this works only because translate is an un-
usually simple example. An essential aspect of translate
is that the parameter x only occurs once in the body of
the function, where we access the move field. In a more
complicated function like

choose = fun(b:bool) fun(x:Movable)
if b then x.move(1.0, 1.0) else x

in which the method is called and the object returned,
the simple typing without bounded quantification is not
possible.

3.3 Subtyping and Negative Recursion

For a recursive type with a negative recursion-variable,
the intuitive concept of ‘adding fields’ to produce sub-
types does not work: the resulting types are not sub-
types of the original recursive type. Consequently,
bounded quantification cannot be used to quantify over
these types. To illustrate, assume we want to define a
polymorphic minimum function on a PartialOrder type
that describes values with a comparison method:

PartialOrder = Rec po. { lesseq: po — bool }

minimum : YVt C PartialOrder. t — t — t

The minimum function should return the lesser of its two
arguments, determined by asking the first argument to
compare itself with the second. Intuitively, values of
type Number or String should be admissible arguments
for the polymorphic minimum, since they both have a
lesseq operation as required. The type Number, in our
view of object-oriented languages, is a recursively de-
fined record type:

Number = Rec num. { ..., lesseq: num — bool,



However, the polymorphic application minimum
[Number] is type-incorrect, because Number is not a sub-
type of PartialOrder. If we try to derive Number C
PartialOrder by unrolling the two types we obtain

{ ..., lesseq: Number — bool,...}
C { lesseq: PartialOrder — bool }

which requires PartialQOrder C Number. This is con-
trary to what we wanted to show, indicating that Num-
ber C PartialOrder is not derivable unless Number =
PartialOrder.

One type that is a subtype of PartialOrder is

Rect. { ..., lesseq: PartialOrder — bool, ...}

An object of this type could be compared (using lesseq)
with any other value of type PartialOrder, but since Par-
tialOrder does not provide any fields on which to base
this comparison, objects of this type have little practi-
cal value. In situations where more fields are present
such types may be useful, but the problem remains that
subtyping cannot capture the intuitive polymorphism
desired for minimum.

4 F-bounded Quantification

4.1 Introduction

F-bounded quantification allows the practical examples
given above to be type-checked with intuitively desirable
types. We say that a universally quantified type is F-
bounded if it has the form

Vt C Flt].o

where F[t] is an expression, generally containing the
type variable ¢t. The semantics of F-bounded quantifi-
cation are discussed briefly in Section 5.

F-bounded polymorphic types differ from ordinary
bounded types by binding the type variable in both the
result-type o and the type bound F[t]. If F[t] is a type of
the form F[t] = {a;: o;[t]}, then the condition A C F[A4]
says, in effect, that A must have the methods a; and
these methods must have arguments as specified by
ai[A], which are defined in terms of A. Thus A will often
be arecursive type, suggesting that F-bounded quantifi-
cation is closely related to type recursion. But bounded
quantification ¥Vt C (Rec r.F{r]).o(t) over a recursive
type is very different from the F-bounded quantification
Vt C Ft].o(t) over the type-function F that defines the
recursive type, as shown in the following sections.

277

4.2 Positive Recursion

As we saw in Section 3.2, the polymorphic application
translate[Point] produces a function of type Point —
Movable, rather than Point — Point as desired. A sim-
ple type derivation will both motivate the definition of
F-bounded quantification, and show how it can be used
to achieve the desired typing of translate.

In the this example we ‘work backwards’ to derive the
F-bounded constraint from the typing problem posed
by translate. The problem is to derive a condition on a
type t so that for any variable x of type t, x.move(1.0,
1.0) has type t. In the following discussion we use the
subtype rules of [Car88] or [Mit84]. We are looking
for the minimal condition on t such that the following
typing can be derived: '

x:t b xmove(1.0,1.0): t

By the application (APP) and selection (SEL) rules,
this reduces to

x:t Fx: {move: Real x Real — t}

Using the subtyping rule we then derive

T C {move: Realx Real — t}
x:t b x:r

Since the type T does not occur in any other assumption,
we may simplify to the requirement

t C { move : Real x Real — t},

which cannot be proved without additional assump-
tions. Expressing this condition as t C F-Movable[t],
where

F-Movable[t] = { move : Real x Real — t}

it is clear that this condition fits the format of F-
bounded quantification. Motivated by the preceding
discussion, we define the F-bounded polymorphic func-
tion:

translate = Fun[t C F-Movable[t] ]
fun(x:t) x.move(1.0, 1.0)

with F-bounded polymorphic type
translate : Vt C F-Movableft] . t — t

Since Point C F-Movable[Point], the application trans-
late[Point] is type-correct, and has result of type Point
— Point. Of course translate will also work for other
types that satisfy the constraintt C F-Movable[t], such
as ColoredPoint, defined as follows.



ColoredPoint = Rec pnt. {
x : void — Real,
y : void — Real,
c: void — Color,
move : Real x Real — pnt,

}

It is interesting to note that the type function F-
Movable is related to the recursive type

Movable = Rec mv. { move: Real x Real — mv }

that failed to provide the desired typing in Section 3.3.
F-Movable is constructed syntactically by regarding the
body of the recursive type expression as a type function.

4.3 Negative Recursion

In Section 3.3, we saw that Number is not a subtype of
PartialOrder. Nevertheless, the types Number and String,
as well as the type PartialOrder all have binary opera-
tions lesseq. As a consequence, the expression x.lesseq(y)
is well-typed if x and y both have one of these types, but
not if x and y have different types. However, using ordi-
nary bounded quantification, it does not seem possible
to define a polymorphic minimum function that works
correctly for the types PartialOrder, Number or String.
In this section, we will see that F-bounded quantifica-
tion allows us to define such a polymorphic minimum
function. This is an important advance, since current
typed object-oriented languages are notoriously restric-
tive when it comes to binary operations.

The common structure among PartialOrder, Number
and String may be described using a type function de-
rived from the recursive definition of PartialOrder:

F-PartialOrder[t] = { lesseq: t — bool }.

Applying F-PartialOrder to Number we see that
F-PartialOrder[Number] = { lesseq: Number — bool }
and hence

Number C F-PartialOrder[Number]

Although Number is not a subtype of PartialOrder, it is a
subtype of F-PartialOrder[Number], which is all we need
to compute minimum. Forming the F-bounded polymor-
phic function

minimum = Fun[t C F-PartialOrder|t]]
fun(x:t) fun(y:t) if x.lesseq(y) then x else y

with type

minimum : Vt C F-PartialOrder[t] . t — t — ¢t

278

we capture a form of polymorphism which does not seem
possible with ordinary bounded quantification.

Although we have discussed negative and positive re-
cursion separately, F-bounded quantification also works
when both occur in the same recursive type. While the
following statement is technically imprecise, it seems in-
tuitively helpful to say that F-bounded quantification
characterizes the types that have “recursive structure”
similar to the type Rec t. F[t]. Intuitively, a type F[A]
describes a set of meaningful operations, possibly ac-
cepting values of type A as arguments or returning such
values as results. Elements of type A have these oper-
ations if we may view each element of A as an element
of F[A], i.e., A C F[A].

One type that always satisfies A C F[A] is the re-
cursive type A = Rec . F[t]. More generally, if G[t]
is a type expression and G[t] C F[t] for all ¢, then the
recursive type A = Rec t.G[t] also satisfies A C F[A].
This follows from the observation that if G[t] C F[t] for
all ¢, then A = G[A] C F[A]. However, it is worth not-
ing that (depending on F') there may be other types
satisfying ¢t C F[t] which do not have this form.

5 Semantics

There several ways of developing semantics for F-
bounded quantification. We have not explored any of
these in detail. Here we will simply sketch some ap-
proaches to semantics and an intriguing connection to
F-algebras.

For a direct semantics, it is useful to have a way to
denote the family of all types that satisfy the bound
t C Ft] for each F. This collection of types would con-
stitute a kind, in the sense of [BL88, BMM89)], analogous
to the POWER kind of [Car88]. This may be achieved
by defining a kind constructor FBOUND : (TYPE —
TYPE) — KIND with intuitive interpretation

FBOUNDIF] = {t | t C F[t]}

Given this constructor, the type Vt C F[t].o
may be interpreted using kinded quantification as
Vi:FBOUND[F].c. We see no problem in incorporat-
ing this into the model definition of [BMM89]. Another
view may be derived from constrained quantification of
Curtis [Cur87], since F-bounded quantification is sub-
sumed by his system.

An alternative approach is to use the semantics-by-
translation of Breazu-Tannen et.al. [BCGS89]. In
their semantics, bounded type-derivations in the lan-
guage with bounded quantification are translated into
type-derivations in a simpler calculus with explicit coer-
cions. In particular, the type ¥t C 7. ¢ is translated to
Vt.(t — 7) — o, in which# — 7 is the explicit coercion.



Since 7 is in the scope of the universal quantification of
t, there is no problem with allowing 7 to have the form
F[t] in the translated language. One technical point
in [BCGS89] is a coherence condition requiring, intu-
itively, that any two type-derivations for an F-bounded
term must translate into provably equivalent terms in
the calculus with explicit coercions. Coherence is a dif-
ficult technical property, and we have not verified it for
our calculus.

Regardless of how we interpret a subtyping asser-
tion A C B, it is clear that this assertion implies
some kind of map from A to B. This simple obser-
vation leads us to some interesting connections between
F-bounded quantification and the standard category-
theoretic machinery associated with recursive type def-
initions [SG82]. To begin with, in most semantics of
recursive types, it is possible to extend type functions
defined by type expressions to functors (maps on types
and functions) over some category (perhaps with a more
limited choice of functions than we actually define in
programming). If we have a functor F and wish to
find a type t satisfying t = F[t], where = means iso-
morphism, then it suffices to find an initial F-algebra,
where an F-algebra is a pair (¢, f) with f: F[t] — ¢. It
is an easy exercise to prove that if (¢, f) is an initial F-
algebra, then f has a two-sided inverse f~1. The dual
of an F-algebra is an F-coalgebra, which is a pair (¢, f)
with f:t — F[t]. The argument showing that an initial
F-algebra is a solution to t = F[t] also shows that the
final F-coalgebra satisfies t = F[t].

In F-bounded polymorphism, we quantify over all
types ¢ with ¢ C F[t]. Taking into account that ¢t C Ft]
implies some kind of map from t to F[t], this means
we' are essentially quantifying over pairs (¢, f) with
f:t — F[t], or some family of F-coalgebras. (The
quantification over some family of maps t — FJt] is
made explicit in the [BCGS89] translation.) Since the
recursive type Rec t. F[t] may be regarded as a par-
ticular F-coalgebra, this suggests that F-bounded poly-
morphism involves quantification over a category whose
objects are properly regarded as “generalizations” of the
recursive type Rec t. F[t].

One way of seeing why this provides useful poly-
morphism in object-oriented languages is to consider
the typing rules associated with recursive types. If
t = Rec t. F[t], then we have an “introduction” rule
saying that if an expression e: F[t] then e:t. The “elimi-
nation” rule gives the converse: if e: ¢ then e: F[t]. These
rules are based on the two directions of the isomor-
phism t = F[t]. If A satisfies the F-bounded condition
A C F[A], then A is a type which has the “climination”
typing rule associated with Rec ¢. F[t], but not neces-
sarily the associated “introduction” rule. This is a pre-
cise way of saying that at type A satisfying A C F[A]

279

shares “structural similarity” with the recursive type
Rec t. F[t]. In general, for recursive types of the form

Rec t.{method;:0,...,method;: 0%}

it seems that only the “elimination” is needed to make
meaningful use of object with this type. Hence F-
bounded quantification seems to be “exactly what we
need” in order to type polymorphic functions over ob-
jects with recursive types.

6 Conclusion

We have identified a generalization of bounded quanti-
fication, called F-bounded quantification, in which the
bound type variable may occur within the bound. We
argue that F-bounded quantification is useful for typing
programs involving recursive types: it allows quantifi-
cation over types that are “structurally similar” to the
recursive type Rec t. F[t].

As directions for future work, we note that F-bounded
quantification is closely related to inclusion for single-
sorted algebraic signatures. F-bounded quantification
captures the notion of adding more operations to a re-
cursive type while preserving the recursive structure of
the type.

F-bounded quantification also has an impact on the
relation between inheritance and subtyping in object-
oriented programs. As noted in Section 4.3, two types
t; and t, may satisfy an F-bound (t, C F[t;] and
t, C F[t3]) but not be in a subtype relation (neither
ty €ty orty C £;1). This means that a F-bounded func-
tion may be applied to (or “inherited” by) objects with
incomparable types, demonstrating that the inheritance
hierarchy is distinct from the subtype hierarchy [Sny86].
In the Abel project at HP Labs, we are exploring the
consequences of this separation on programming lan-

guage design.

References

[BCGS89] Val Breazu-Tannen, Thierry Coquand, Carl
Gunter, and A. Scedrov. Inheritance and
explicit coercion. In Proc. IEEE Symposium

on Logic in Computer Science, pages 112—
133, 1989.

[BI82] Alan H. Borning and Dan H. Ingalls. A
type declaration and inference system for
Smalltalk. In Proc. of Conf. on Principles
of Programming Languages, pages 133-141,
1982.

[BL88] Kim Bruce and G. Longo. A modest model

of records, inheritance and bounded quanti-



[BMMS89]

[Car84]

[Car86]}

[Car88]

[CCHO89]

[CDJI*89)

[Coo89a]

[Coo89b]

[Cur87]

[CW8S5]

[GR83]

[3G88)

fication. In Proc. IEEE Symposium on Logic
in Compuler Science, pages 38-50, 1988.

Kim B. Bruce, Albert R. Meyer, and
John C. Michell. The semantics of second-
order lambda calculus. Information and
Compulatiion, (to appear).

Luca Cardelli. A semantics of multiple in-
heritance. In Semantics of Data Types,
LNCS 173, pages 51-68. Springer-Verlag,
1984.

Luca Cardelli. Amber. In Combinators and
Functional Programming Languages, LNCS
242, pages 21-47, 1986.

Luca Cardelli. Structural subtyping and the
notion of power type. In Conf. Rec. ACM
Symp. on Pinciples of Programming Lan-
guages, pages 70-79, 1988.

Peter Canning, William Cook, Walt Hill,
and Walter Olthoff. Interfaces for strongly-
typed object-oriented programming. In
Proc. ACM Conf. on Object-Oriented Pro-
gramming: Systems, Languages and Apph-
cations, 1989 (to appear).

Luca Cardelli, Jim Donahue, Mick Jordan,
Bill Kaslow, and Greg Nelson. The Modula-
3 type system. In Conf. Rec. ACM Symp. on
Pinciples of Programming Languages, pages
202-212, 1989.

William Cook. A Denotational Semantics of
Inheritance. PhD thesis, Brown University,
March 1989.

William Cook. A proposal for making Eif-
fel type-safe. In Furopean Conf. on Object-
Oriented Programming, 1989 (to appear).

Pavel Curtis. Constreined Quantification in
Polymorphic Type Analysis (Draft). PhD
thesis, Cornell, 1987.

Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471-
522, 1985.

Adele Goldberg and Dave Robson.
Smalltalk-80: the Language and Iis Imple-
mentation. Addison-Wesley, 1983.

Ralph Johnson and Justin Graver. A user’s
guide to Typed Smalltalk. Technical Report
UIUCDCS-R-88-1457, University of Illinois,
1988.

280

[1GZ88]

[IM88]

[Mey88]

[Mit84]

[Rem89)

[Rey75]

[SG82]

[Sny86)

[Wan87]

[Wan88]

Ralph Johnson, Justin Graver, and L. Zu-
rawski. TS: An optimizing compiler for
Smalltalk. In Proc. ACM Conf. on Object-
Oriented Programming: Systems, Lan-
guages and Applications, 1988.

L. Jategaonkar and John C. Mitchell. ML
with extended pattern matching and sub-
types. In Proc. ACM conf. on Lisp and
Functional Programming, 1988.

Bertrand Meyer. Object-Oriented Software
Construction. Prentice-Hall, 1988.

John C. Mitchell. Coercion and type in-
ference (summary). In Conf. Rec. ACM
Symp. on Pinciples of Programming Lan-
guages, 1984.

Dedier Remy. Typechecking records and
variants in a natural extension of ML. In
Conf. Rec. ACM Symp. on Pinciples of Pro-
gramming Languages, pages 77-88, 1989.

John Reynolds. User-defined data types and
procedural data structures as complimen-
tary appraches to data abstraction. In New
Advances in Algorithmic Languages. IRIA,
1975.

M. B. Smyth and G. D. Gordon. The
category-theoretic solutions of recursive do-
main equations. SIAM Journal of Comput-
ing, 11(4):761-783, 1982.

Alan Snyder. Encapsulation and inheritance
in object-oriented programming languages.
In Proc. ACM Conf. on Object-Oriented
Programming: Systems, Languages and Ap-
plications, pages 3845, 1986.

Mitchell Wand. Complete type inference for
simple objects. In Proc. IEEE Symposium
on Logic in Compuler Science, pages 3744,
1987.

Mitchell Wand. Type inference for ob-
jects with instance variables and inheri-
tance, 1988. manuscript.



