

Evaluation of FindBugs

The static analysis tool that finds bugs

Square Root

4/8/2009

Square Root
Analysis: A10

2

Overview of FindBugs

FindBugs is an open source program which employs static analysis to indentify a multitude of
potential errors in Java programs. The unique nature of this tool is that performs its analysis on
byte code, rather than source code. Its installation and use will be explored in subsequent
sections of this paper.

FindBugs can detect the bug patterns shown in the following table.

Description

AM: Creates an empty jar file entry

AM: Creates an empty zip file entry

BC: Equals method should not assume anything about the type of its argument

BC: Random object created and used only once

BIT: Check for sign of bitwise operation

CN: Class implements Cloneable but does not define or use clone method

CN: clone method does not call super.clone()

CN: Class defines clone() but doesn't implement Cloneable

Co: Abstract class defines covariant compareTo() method

Co: Covariant compareTo() method defined

DE: Method might drop exception

DE: Method might ignore exception

DP: Classloaders should only be created inside doPrivileged block

DP: Method invoked that should be only be invoked inside a doPrivileged block

Dm: Method invokes System.exit(...)

Application of FindBugs

FindBugs is a tool that is available for utilization in two flavors:

• Standalone application

• Eclipse plug-in

Since anything but the simplest projects can quickly overwhelm developers of an organization,
and because Eclipse was also being utilized for the development of our Studio project, it was
quite apparent that our proclivity would be towards exploration of the Eclipse plug-in rather than
use of the tool as a standalone application.

Following is an exposition of the steps required for the installation of the tool:

• The plug-in was available from the site: http://findbugs.cs.umd.edu/eclipse. Installation
of the tool requires the following sequential operations:

o Select the Help menu
o Click on Software Updates

Square Root
Analysis: A10

3

o Click on the tab labeled ‘Available Software’
o Upload the link for the aforementioned site
o Click Install, the process of which will necessitate a restart of the application

Following is an exposition of the steps that were necessitated for the execution of the tool:

• Commencement of static analysis by the tool can be achieved by right clicking on either
the:

o The Java project
o The Java package
o The Java class

• Once the tool is executed the results can be viewed. A prerequisite for observing the
results is the enabling of label decorations for the project/package/file. To carry out this
operation:

o Go to Window->Preferences->General-Appearance->Label Decorations
o Enable the following Check Boxes

• The results can be viewed by opening the FindBugs perspective. To do this select
Window->Open Perspective->FindBugs

Square Root
Analysis: A10

4

• Following is an example of the results that were obtained for a specific project:

By default, the tool performs a large variety of analyses before yielding results. Consequently, it
isn’t uncommon for the tool to throw up a large number of potential bugs, the magnitude of
which can quickly impede the analysis of the results. To overcome these problems, users of the
tool are faced with two options:

• Filter the results of the tool in order to analyze specific bug patterns

• Configure the tool so that it is restricted to finding only certain bugs that are of interest to
the user.

To filter the results to view certain bug patterns:

• Select the FindBugs perspective.

• Select the bug pattern that isn't of relevance

• Right click on it to show the "Toggle Filter" menu.

• Select one of two toggle actions:
o "This Specific Bug Pattern" action will toggle on/off only one, specific bug

pattern
o "Bug Pattern Type" action will toggle the whole group of patterns on/off

Square Root
Analysis: A10

5

To modify the configuration of the tool, view the project’s properties, and select FindBugs:

FindBugs preference page has three tabs which control different aspects of FindBugs plug-in
behavior. The point of interest for us has been customization of the filters in the first tab.

Given the large number of projects at our disposal, we were faced with a quandary about the
selection of the projects that would yield maximum exposure of the tool’s capabilities. After
much deliberation, we chose three projects (our Studio project, the Connect Four game, and an
Architecture project which required a database connection) that we hoped would yield a diverse
array of results.

Square Root
Analysis: A10

6

Customization

• We used the FindBugs eclipse plug-in instead of the FindBugs standalone tool. We did
this because we wanted to find out if we could use this in an ongoing basis as part of our
studio development environment. We also wanted easy traceability into the source code.

• We analyzed the project source files instead of the class files using FindBugs. This was
done to easily trace to the buggy source code.

• We opted to use one of our own projects (from Architecture) instead of an open source
project. Since we knew the project objectives and source code already, we could easily
understand what kinds of errors FindBugs would detect for us. If we had chosen an open-
source project, the intent of the source code would not be immediately clear to us.

• We saw the following FindBugs categories in FindBugs:

Category Description Example

Bad Practice Practices that violate
recommended coding practices.
For example using operator
“==” equals instead of object
equals, serializability problems,
and missing finally clause for
closing connections

Using “==” to
compare string
objects.

Dodgy Code that is confusing,
anomalous, and error-prone.
For example null-dereference,
and catch-all exceptions.

Dereferencing null
without a prior null-
check.

Performance Inefficient memory
usage/buffer allocation, usage
of non-static classes.

Creating a new
String(String)
constructor.

Internationalization Use of non-localized methods Use of non-localized
String.toUpperCase

Malicious code
vulnerability

Variables or fields exposed to
classes that should not be using
them.

Returning a reference
to mutable object may
expose internal
representation.

Bogus random
noise

Bug data mining related. Not
useful in bug-finding.

--

Correctness Apparent coding mistakes. --

Multithreaded
correctness

Thread synchronization issues. --

Security Similar to malicious code
vulnerability.

Passing a dynamically
created string to a
SQL statement.

Square Root
Analysis: A10

7

• We excluded “Malicious code vulnerability” as a bug category. The bugs we found from
this category were not useful to us. Security was important to this architecture project and
to our studio project, but most high-priority security bugs were caught in the “security”
category.

• We also excluded “Bogus random noise”. It was strictly data-mining related.

• Internationalization was not relevant to A2.

• We decided to exclude the “low-priority” bugs. They did not provide us helpful
information about bugs (more false-positives). Example low-priority bugs were:
1) Field names should start with lower-case
2) Method may fail to close stream on exception (redundant).

Applicability

Finding Bugs

FindBugs can be applied very easily to java projects. It integrates well with Eclipse, and
therefore can be applied on any java project being developed in Eclipse. Its high usability makes
it appropriate for developers to check for common errors.

Evaluating libraries

It can be used to evaluate library or framework code correctness. Nowadays, a lot of open source
projects are in use. Running find bugs on them can provide a quick evaluation of how buggy the
particular library or framework is. We found 8000 bugs after running it on the Google Web
Toolkit, which was surprising, considering Google’s legendary code quality measures.

FindBugs vs. Inspection vs. Dynamic Testing

We ran FindBugs against our analysis assignment 2 code to compare it with inspection and
dynamic testing. In analysis assignment 2, we conducted an inspection and 3 kinds of dynamic
tests: black box, coverage, and random.

Since both inspection and FindBugs check the static code, we expected the tool to find the same
bugs as inspection. Unfortunately, it only found 9 bugs on the Assignment 2 code. None of these
overlapped with the 26 bugs we found in inspection.

• In code inspection, we found a lot of bugs related to the method contracts. FindBugs was
not able to find these because it does not check method contracts.

• Code inspection also located errors with the game rules implementation. Those were not
found with FindBugs.

• FindBugs on the other hand, found bad practices such as invoking System.exit(), and
null-dereference related issues. These were not found in inspection.

• Coverage testing found some of the null pointer related issues that FindBugs located.
However, coverage tests were also based on game rules and domain knowledge that
FindBugs could not use. Therefore FindBugs could not find those errors.

Square Root
Analysis: A10

8

• Black box test is wholly dependent upon interface contracts, and therefore the 13 bugs
found in Black box were completely different from what FindBugs located. The same is
true for Random tests.

These were the number of bugs found and time spent on each type of tests:

Strategy Person Hours

Spent

Bug

Count

Yield

(Defects/hour)

Black Box Test 20 13 0.65

Code Inspection 19 26 1.37

Coverage Test 8 6 0.75

Random Test 22 12 0.55

FindBugs ~ 9 9

From the above analysis, we conclude:

• FindBugs is the cheapest method of testing in terms of raw bug numbers.

• It cannot find a lot of bugs that the other kinds of tests find. Therefore it cannot substitute
any of these.

• It finds bugs that other kinds of tests may not find. Therefore it can complement the other
testing activities.

• The bugs found by FindBugs are tedious to detect manually, but easy to detect
mechanically. FindBugs can be used before starting other kinds of tests or along with
other kinds of tests (perhaps by adding it to a continuous integration tool).

Analyzed Projects

We ran FindBugs on four projects. The overall strategy was to use different types of projects to
try to cover a broader scope regarding defect categories, so that we can see the accuracy of the
tool.

• Project A - Connect 4 game UI: The size is 1959 Lines of Code. This is the
implementation is a web based application based g the Google Web Toolkit.

• Project B - House and Health Insurance System (Architecture A2): The size is 2609
Lines of Code. We created this project in the Architecture course. This is a three layer
system that uses JDBC and RMI classes. The rational was to assess the tool over database
constructs and RMI constructs.

• Project C- Hnefatafl (Version with 5 seeded bugs): The size is 1192 Lines of Code.
The rational for selecting this project was to compare the results of the inspections and
testing techniques on project at the beginning of the semester against FindBugs results.

• Project D – GWT Libraries – The size of this project was approximately 16,000
classes. The rational is to proof that the tool works only with the byte codes, the other

Square Root
Analysis: A10

9

thing we wanted to verify is whether the GWT libraries are reliable according to
FindBugs. Since we are using them as a core asset for our studio. Note: Due to the large
amount of classes of this project approximately 16,000 we are not going to analyze the
false positives and true positives. However, we would like to see an overview of the type
of bugs found in the library.

Project Decryption Bugs

Size

LCO

A
Connect 4
Game 32 1959

B House & Health 64 2609

C Hnefatafl 5 1192

D GWT Library 4304 263,346

Project A – Connect 4 Game UI

Bug Category Amount

BAD_PRACTICE 3

CORRECTNESS 2

MALICIOUS_CODE 4

PERFORMANCE 1

STYLE 22

Total 32

As can be seen in the chart the majority of the bugs found in the Connect 4 UI project were in the
category of DODGY, which is related to coding styles issues according to the FindBugs
categories. This might be related to the fact that the majority of the team members are new to
Java and lack of coding style and good practice.

10%

13%

13%

3%

61%

Connect4 UI Bugs Type

BAD_PRACTICE

CORRECTNESS

MALICIOUS_CODE

PERFORMANCE

DODGY

Square Root
Analysis: A10

10

Project B – House and Health Insurance System - (Architecture Project A2)

Bug Category Amount

BAD_PRACTICE 19

EXPERIMENTAL 8

MALICIOUS_CODE 5

PERFORMANCE 5

SECURITY 4

DODGY 23

Total 64

In the chart shown above we can see that still one of the main problems with our team code are
the DODGY and BAD_PRACTICE types. Another important thing to highlight is that the
SECURITY bug category that was not presents in Project A appeared here. This showed us how
important is to try different types of projects in order to properly evaluate a tool.

This is a snippet of the code with security issues:

Pattern id: SQL_NONCONSTANT_STRING_PASSED_TO_EXECUTE,
Type: SQL,
Category: SECURITY

30%

12%

8%8%

6%

36%

House and Health Insurance

System

BAD_PRACTICE

EXPERIMENTAL

MALICIOUS_CODE

PERFORMANCE

SECURITY

DODGY

 Statement sta = con.createStatement();
 // execute query

String query = "SELECT * FROM " + TABLE +" WHERE
CUSTOMER_ID = '" + customerID +"';";

 ResultSet table = sta.executeQuery(query);

Square Root
Analysis: A10

11

The method invokes the execute method on an SQL statement with a String that seems to be
dynamically generated. Consider using a prepared statement instead. It is more efficient and less
vulnerable to SQL injection attacks.

Project C – Hnetafel Game with seeded bugs

Bug Category Amount

BAD_PRACTICE 2

PERFORMANCE 1

DODGY 2

Total 5

One of the most interesting things we found out here is that none of the seeded bugs were found
by the tool which is and indicator that static tools might need to be complemented with other
quality assurance techniques. Also, we can see that thing the proportion of our team bug
categories holds across Project A, B and C.

Project D – Google Web Toolkit libraries

Bug Category

High

Priority

?ormal

Priority Total

BAD_PRACTICE 160 615 775

CORRECTNESS 92 166 258

EXPERIMENTAL 21 21

MALICIOUS_CODE 167 1942 2109

MT_CORRECTNESS 92 161 253

PERFORMANCE 4 376 380

SECURITY 4 4

40%

20%

40%

Hnetafel Game with seeded bugs

BAD_PRACTICE

PERFORMANCE

DODGY

Square Root
Analysis: A10

12

DODGY 53 451 504

Total 568 3736 4304

It is interesting how a well know company such as Google has so many bugs according to
FindBugs in the famous GWT library.

To have a better idea of this we will analyze the high priority bugs with most occurrences
according to FindBugs, which in this case are MALICIOUS_CODE bug category.

Google Web Toolkit – Malicious code category drill down.

Bug Type Amount

MS_MUTABLE_ARRAY 27

MS_SHOULD_BE_FINAL 140

Total 167

0 500 1000 1500 2000 2500

BAD_PRACTICE

CORRECTNESS

EXPERIMENTAL

MALICIOUS_CODE

MT_CORRECTNESS

PERFORMANCE

SECURITY

DODGY

Amount of Bugs

B
u

g
 C

a
te

g
o

ry

Google Web Toolkit Library

Normal

High

Square Root
Analysis: A10

13

We found the bug types in the Malicious_Code category, were only from two types.
MS_MUTABLE_ARRAY and MS_SHOULD_BE_FINAL. The description for this type of bugs
where similar to this: A mutable static field could be changed by malicious code or by accident
from another package. The field could be made final to avoid this vulnerability.
Due to the nature of the GWT libraries that could be extended and also modified by injecting
JavaScript, this is something that might be consider not relevant for this project. Also, since this
an open source code, these bugs are not relevant for Google in this context.

16%

84%

High Priority MALICIOUS_CODE

Drill Down

MS_MUTABLE_ARRAY

MS_SHOULD_BE_FINAL

0

2

4

6

8

10

12

Bugs/KLOC

connect 4

Hneftafel

House and Health

GWT

Square Root
Analysis: A10

14

This chart show a picture of all projects with data normalized. We did this because the amount of
lines of code varies a lot per project. We can conclude that Dodgy and Bad practices are the
categories with most bugs across connect4, Hnetafel and House and Health Insurance projects.

True and False Positive Analysis

Project #Bugs

True Positive

and Relevant Ratio

True

Positive

and ?ot

Relevant Ratio2 False Positive Ratio3

A2 64 29 45% 33 52% 2 3%

Hnefatafl 5 3 60% 0 0% 2 40%

Connect4 32 25 78% 6 19% 1 3%

True Positives and Relevant

1. Pattern Type: Comparison of String objects using == or !=
Priority: High
Category: Bad Practice
Location: Architecture_A2/insurance.businesslayer/InsuranceLogic.java

This code compares java.lang.String objects for reference equality using the == or !=
operators. The FindBugs suggest that instead of using == or !=, using equals(Object) method
is a better practice. The reason is that the same string value may be represented by two
different String objects.

We consider this bug is true positive and relevant to the project. The reason is that if this
string comparison is not executed correctly, the following code will not execute. This will
cause the program generate unexpected result. Therefore, it is relevant to the correctness of
the project.

2. Pattern Type: Non constant string passed to execute method on an SQL statement
Priority: High
Category: Security

Square Root
Analysis: A10

15

Location: Architecture_A2/insurance.datalayer/QueryHIDB.java

The method invokes the execute method on an SQL statement with a String that is
dynamically generated. The FindBugs suggest using a prepared statement instead. By doing
so, it will be more efficient and less vulnerable to SQL injection attacks.
We consider this bug is true positive and relevant to the project. The reason is that security is
one of the requirements of this project, and this part of code will make the system vulnerable.
Therefore, it is a bug fails to achieve the security properties of the project.

True Positives and ?ot Relevant

1. Pattern Type: Method name should start with a lower case letter
Priority: Normal
Category: Bad Practice
Location: Architecture_A2/insurance.datalayer/QueryHIDB.java

The FindBugs suggest that methods should be verbs, in mixed case with the first letter
lowercase, with the first letter of each internal word capitalized.

We consider this bug is true positive, but not relevant to the project. This bug does affect the
readability or maintainability of the project. However, it will not affect the correctness of
program execution. Therefore, it a bug that programmer does not follow a good coding
standard.

2. Pattern Type: Method invokes inefficient number constructor
Priority: Normal
Category: Performance
Location: Architecture_A2/insurance.datalayer/Termio.java

Square Root
Analysis: A10

16

The code use Integer(int) to create instances of integer. Using new Integer(int) is guaranteed
to always result in a new object whereas Integer.valueOf(int) allows caching of values to be
done by the compiler, class library, or JVM. However, using of cached values avoids object
allocation and the code will be faster. The FindBugs suggest that using valueOf is
approximately 3.5 times faster than using constructor.

We consider this bug is true positive, but not relevant to the project. The bug does affect the
performance of the project. However, it’s a technique that can promote the performance of a
program in general. Therefore, this part of code should be revised and this technique is
applicable to all the projects.

False Positives

1. The warning is the following:
Project Bug: Class com.mycompany.project.server.Connect4ServiceImpl defines non-
transient non-serializable instance field adapter
category: BAD_PRACTICE - This Objects of this class will not be deserialized correctly

This is a snippet of illustrates were the bug was identified:

The reason why we do not think this is real bug is because, the adapter object is not part of the
service interface which is Connect4Service, this adapter object is meant to be a private fields.
That is the Connect4ServiceAdapter should never be passed through the wire. Moreover, the
adapter.move returns a serialiazable type, which is the important part. Additionally, the code

public class Connect4ServiceImpl extends RemoteServiceServlet
 implements Connect4Service {

 private static final long serialVersionUID = 1L;
 Connect4ServiceAdapter adapter;

 public Connect4ServiceImpl() {
 adapter =new Connect4ServiceAdapter();
 }

 public MoveCommandResult move(int colum, int turn) {
 return adapter.move(colum, turn);
 }

Square Root
Analysis: A10

17

works just fine, we do not have problem with serialization. That is why we consider this bug as
false positive.

2. The warning is the following:
Bug: RSPolicy$HouseInsurance is serializable and an inner class
Pattern id: SE_INNER_CLASS, type: Se, category: BAD_PRACTICE
This Serializable class is an inner class. Any attempt to serialize it will also serialize the
associated outer instance. The outer instance is serializable, so this won't fail, but it might
serialize a lot more data than intended. If possible, making the inner class a static inner
class (also known as a nested class) should solve the problem.

This is a snippet shows the serialization warning:

In this case the purpose of the HouseInsurance class is to be always serialized with the outer
class which is the RSPolicy. This approach worked fine at runtime. However, when we removed
implements Serializable in the inner class, a runtime serialization exception popped up at runtime
indicating that the inner class should be serializable. That is why we believe this is a false
positive, because it depends in the objective of the implementation.

3. The warning is the following
Bug: edu.cmu.isri.analysis654.hnefatafl.rules.MoveImplementation defines equals and
uses Object.hashCode()
Pattern id: HE_EQUALS_USE_HASHCODE, type: HE, category: BAD_PRACTICE
This class overrides equals(Object), but does not override hashCode(), and inherits the
implementation of hashCode() from java.lang.Object (which returns the identity hash
code, an arbitrary value assigned to the object by the VM). Therefore, the class is very
likely to violate the invariant that equal objects must have equal hash codes.

public boolean equals(Object obj) {
 if (!(obj instanceof MoveImplementation)) {
 return false;
 }

MoveImplementation m = (MoveImplementation)obj;
 if (this.source.equals(m.getSource())

&& this.destination.equals(m.getDestination())) {

return true;
 }
 return false;

public class RSPolicy implements Serializable{

 class HouseInsurance implements Serializable{
 private boolean hasValues;
 private String billingAddress = "";

Square Root
Analysis: A10

18

In this case we think this is false positive because, the actual equals(Object obj) work as
expected and we do not plan to store this type of objects in a hast table. We think it is a good
practice not to violate the invariant that equal objects must have equal hash codes, however, this
should be agreed as a team before considering it high priority bug.

FindBugs Recommendations

Don’t bother with the “preferred” user interface; Eclipse plug-in is amazing. The FindBugs
documentation recommends using a Swing-based user interface over an Eclipse-based plug-in.
In our testing we found the Swing UI to awkward in that it broke flow to build a FindBugs
project and required context switching to repair found errors. The Eclipse plug-in, on the other
hand, integrated smoothly with the development environment, creating warnings on builds.
Additionally, the provided FindBugs view makes it easy to navigate the results of the analysis
side-by-side with code and detailed descriptions of bug patterns.

FindBugs catches a lot of bugs but not everything; inspections are still required. During our
testing there were a few instances where a bug pattern would be caught, and then a few lines
later not caught. Here’s one such example.

306 if(value == "y")
 307 obj.getHealthInsurance().setDeathCoverage(true);
 308 else
 309 obj.getHealthInsurance().setDeathCoverage(false);
 310
 311 //set incapacity coverage
 312 oneLine = lnReader.readLine();
 313 words = oneLine.split(":");
 314 value =words[1].trim();
 315 //System.out.println(value);
 316 if(value == "y")
 317 obj.getHealthInsurance().setIncapacityCoverage(true);
 318 else
 319 obj.getHealthInsurance().setIncapacityCoverage(false);

In this code snippet, the first if check on line 306 was caught by FindBugs as a “string
comparison using ==” bug but the second, identical if check on line 316 was not. Inspections, or
at the least peer reviews, are still needed to identify these sorts of errors before testing.

Further, FindBugs does not detect logical defects such as infinite loops or algorithm correctness.

Bug priorities seem random; you still have to use your head. “Dead store to” signifies when
a variable has been assigned that isn’t used. For some reason this bug pattern shows up under
both the high and normal priority lists for different variables in the code base. While it is useful
to have some bug patterns marked at varying priorities, the seemingly random assignments make
it difficult to trust the results.

Square Root
Analysis: A10

19

Agree on quality definitions before using the tool. Given the wide variety of bug patterns
recognized it is important to reach a common consensus on which bug types the team will take
seriously and which bug types it won’t. Doing this ahead of time reduced effort analyzing bugs
detected so the team can quickly discard uninteresting things and resolve important things. With
this in mind, FindBugs makes it easy to categorize and prioritize found defects.

FindBugs is great for finding potential performance, security, and style errors. FindBugs
provides suggestions of good coding practices. For example, one should name a method with

camel casing and use “.equals()” instead of “==”. These kinds of defects can affect the
readability and maintainability of the software. Additionally, FindBugs captures performance
and security defects from the static code, such as invoking constructors inefficiently or passing
user input as a SQL executable method. This kind of detection could solve performance and
security issues before running dynamic tests.

It is difficult to decrypt FindBugs errors if you have a functional programming

background. For a function programmer, some defects reported by FindBugs are hard to
determine whether they are defects or not. However, if a programmer has profound domain
knowledge of the object oriented programming, the defect reports would be very helpful to
investigate those defects.

Use FindBugs to evaluate third-party libraries and components. Since FindBugs works on
the bytecode, access to source code is not required to run it on third-party libraries. Running
FindBugs over a library can help evaluate the library to determine if it is worth using. For
example, if there are too many security bugs found, the library may not be the right choice.

