Software Inspection

Jonathan Aldrich
Assistant Professor
Institute for Software Research
School of Computer Science
Carnegie Mellon University
jonathan.aldrich@cs.cmu.edu
+1 412 268 7278

The Computer’s Perspective on Inspection

http://www.xkcd.com/371/
used by permission
Inspection – The Big Questions

1. What is inspection?
 - And what are the benefits?

2. When are inspections better than testing?
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
 - What are the relative benefits of each?

4. Who are the stakeholders in inspection?
 - What value is provided by each

5. How is the inspection process accomplished?
 - What are summary guidelines for the meetings?

6. What gets inspected?
 - And when to do inspections?

Software Inspections

1. What are software inspections (reviews)?
 - Meetings (real or virtual) during which designs and code are reviewed by people other than the original developer.

- What are the benefits of inspections?
 - New perspective
 - Finding defects may be easier for people who haven’t seen the artifact before and don’t have preconceived ideas about its correctness

- Knowledge sharing
 - Regarding designs and specific software artifacts
 - Regarding defect detection practices

- Find flaws early
 - Can dramatically reduce cost of fixing them
 - During detail design – even before code is written
 - Or code that does not yet have a test harness
 - Or code in which testing has found flaws but root causes are not understood

- Reduce rework and testing effort
 - Can reduce overall development effort

Source material
Peer Reviews in Software: A Practical Guide.
Karl E. Wiegers.
Additional material from William Scherlis.
Inspections vs. Testing

2. What attributes are well-handled by inspections but not testing?
 • “Fuzzy” non-functional properties
 - Maintainability, evolvability, reusability
 • Other properties tough to test
 - Scalability, efficiency
 - Security, integrity
 - Robustness, reliability, exception handling
 • Requirements, architecture, design documents
 - Cannot “execute” these as a test

Experience with inspection

- **Raytheon**
 - Reduced "rework" from 41% of cost to 20% of cost
 - Reduced effort to fix integration problems by 80%
- **Paulk et al.: cost to fix a defect in space shuttle software**
 - $1 if found in inspection
 - $13 during system test
 - $92 after delivery
- **IBM**
 - 1 hour of inspection saved 20 hours of testing
 - Saved 82 hours of rework if defects in released product
- **IBM Santa Teresa Lab**
 - 3.5 hours to find bug with inspection, 15-25 through testing
- **C. Jones**
 - Design/code inspections remove 50-70% of defects
 - Testing removes 35%
- **R. Grady, efficiency data from HP**
 - System use: 0.21 defects/hour
 - Black box: 0.28 defects/hour
 - White box: 0.32 defects/hour
 - Reading/inspect: 1.06 defects/hour

- **Your mileage may vary**
 - Studies give different answers
 - These results show what is possible
Kinds of Inspections

3. Are there different kinds of inspections?

Inspections / Formal Technical Reviews
- Participation defined by policy
 - Developers
 - Designated key individuals – peers, QA team, Review Board, etc.
- Advance preparation by participants
 - Typically based on checklists
- Formal meeting to discuss artifact
 - Led by moderator, not author
 - Documented process followed
 - May be virtual or conferenced
- Formal follow-up process
 - Written deliverable from review
 - Appraise product

Other review approaches
- Pass-around – preparation part of an inspection
- Peer desk check – examination by a single reviewer (like pair programming)
- Ad-hoc – informal feedback from a team member

Walkthroughs
- No advance preparation
- Author leads discussion in meeting
- No formal follow-up
- Low cost, valuable for education

Inspection – The Big Questions

1. What is inspection?
 - And what are the benefits?

2. When are inspections better than testing?
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
 - What are the relative benefits of each?

4. Who are the stakeholders in inspection?
 - What value is provided by each

5. How is the inspection process accomplished?
 - What are summary guidelines for the meetings?

6. What gets inspected?
 - And when to do inspections?
Review Roles: **Moderator** and **Recorder**

4. Who are the stakeholders in inspection?

Moderator

- Organizes review
 - Keeps discussion on track
 - Ensures follow-up happens

- Key characteristics
 - Good facilitator
 - Knowledgeable
 - Impartial and respected
 - Can hold participants accountable and correct inappropriate behavior

- Separate role from **Recorder**
 - Who captures a log of the inspection process

Reader

- Presents material
 - Describes interpretation of each point
 - Discuss different interpretations by other team members

- Why should the Reader be different from the Author?
 - Reveals ambiguities
 - If author were to present, others might not mention that their interpretation was different

- Why not just ask for comments section by section?
 - Can be faster
 - Downside: does not capture differing perspectives as effectively
Review Roles: **Author**

Author

- Describes rationale for work
- Not moderator or reader
 - Conflict between objectivity required of moderator/reader and advocacy for the author’s own work
 - Others raise issues more comfortably
- Not recorder
 - Temptation to not write down issues the author disagrees with
- Why should the Author attend? Are there downsides?
 - Gain insight from others’ perspectives
 - Can answer questions
 - Can contribute to discussion based on knowledge of artifact
 - Potential downside: meeting may be confrontational

Inspection – The Big Questions

1. **What is inspection?**
 - And what are the benefits?
2. **When are inspections better than testing?**
 - What kind of attributes?
 - What is the typical experience of firms with inspection?
3. **Are there different kinds of inspections?**
 - What are the relative benefits of each?
4. **Who are the stakeholders in inspection?**
 - What value is provided by each
5. **How is the inspection process accomplished?**
 - What are summary guidelines for the meetings?
6. **What gets inspected?**
 - And when to do inspections?
Process: Planning

5. How is the inspection process accomplished?

Planning
- Determine objectives
- Choose moderator
- Identify inspectors
 - Good to involve people with connection to artifact
 - e.g. depends on, interfaces with
- Schedule meeting(s)
 - General guideline: 150-200 SLOC/hour, or 3-4 pages/hour
- Prepare and distribute inspection package
 - Deliverable, supporting docs, checklists
 - Cross-reference specs, standards

Process

Overview meeting
- Informal meeting
- Goal: go over features, assumptions, background, context
- Optional stage
 - May be able to use paper overview or shared context

Preparation (Why?)
- Inspectors examine deliverable
 - Defects: cause an error in the product
 - Non-defects: improvements, clarification, style, questions
 - May want to list typos/spelling/format/style separately and not discuss during the meeting
 - Conformance to standards & specification
 - Often use checklist
- General guideline
 - prep time ~ meeting time
Process: Meeting

The Meeting
- **Reader** describes one segment at a time
 - Inspectors respond: defects, questions, suggestions
- **Recorder** writes down each defect, suggestion, issue
 - This is the primary deliverable
- **Moderator**
 - Avoid problem solving (*why?*), inappropriate behavior, lack of participation
 - At conclusion: prepares report with appraisal and data
- **Outcomes: Appraisal of product**
 - Accepted (minor changes, no follow up)
 - Accepted conditionally (minor changes, verification)
 - Reinspect following rework (major changes)
 - Inspection not completed
- **Outcomes: Input on improving inspection process**
- **Variant**: reviewers make comments on electronic bulletin board
 - Cost is lower
 - Lose benefits of direct meeting (face to face, telephone)
 - Synergy - new bugs found (4%? 25%?)
 - Learning by participants
 - Communication about product

Process: Rework and Follow-up

Follow-up by author
- **Author** addresses each item
 - Ensure understanding of issue
 - Is it a defect or not? Is it a feature request or requirement change?
 - Fixes defects and makes improvements
 - Uncorrected/unverified defects go into defect tracking system
- **Deliverables**
 - Corrected work product
 - Response to each issue and rationale for action
- **Moderator (or verifier) meets with author**
 - Check resolution of issues
 - Examine corrected deliverable
- **Author checks in code**
Process: Analysis

Analysis

- Causal analysis
 - Analyze root causes of defects
- Make improvements to development and QA processes
 - Add issue to checklist
 - Change testing approach
 - Develop or purchase new static analysis

Measuring effectiveness

- Percentage of bugs found during inspection
 - vs. found by other means or afterwards (test, customer)

Measuring efficiency

- “Defects per hour”
- Will decrease as your process improves

Meetings: Review Guidelines

- Build reviews into your schedule
 - Otherwise unexpected and viewed as intrusion
 - Recognize that reviews can accelerate schedule by reducing other V&V activities
- Keep review team small
 - General guidelines: 3-7 participants
 - 3 is minimum for formal process to work
 - Below 3, too few perspectives besides author
 - Above 7, work may be slowed by process, scheduling
 - Smaller groups for code, larger groups for other documents
 - Knowledge is spread around more, more stakeholders
 - Particular for requirements
- Find problems, but don’t try to solve them
 - Typically less expensive to address 1-on-1
 - Guideline: halt solution discussion after 1-3 minutes
- Limit meetings to 2 hours maximum
 - Attention span gets lost beyond this
- Require advance preparation
 - Provides much of the value of a (formal) review
Checklist Items from the Web

- **Specification**
 - Are the javadocs complete, including DBC or Error checking specs as appropriate?

- **Design**
 - Can better data structures or more efficient algorithms be used?
 - Are error messages comprehensive and provide guidance as to how to correct the problem?
 - Is there duplicate code that could be replaced by a call to a function that provides the behavior of the duplicate code?
 - Do any derived classes have common members that should be in the base class?

- **Coding**
 - Have all array (or other collection) indexes been prevented from going out-of-bounds?
 - Is integer arithmetic, especially division, used appropriately to avoid causing unexpected truncation/rounding?
 - Are all files closed properly, even in the case of an error?
 - Are all object references initialized before use?
 - In a switch statement, are all cases by break or return?
 - Are all objects (including Strings) compared with "equals" and not "=="?

- **Style**
 - Are descriptive variable and constant names used in accord with naming conventions?
 - Are there literal constants that should be named constants?

- **I think the above are good examples (but not comprehensive). Sources:**
 - http://users.csc.calpoly.edu/~jdalbey/205/Resources/InspectChecklist.html

Customizing Checklists

- **What should be included in a checklist for a:**
 - Operating system?
 - Online store?
 - Word processor?
 - Aircraft flight control system?
 - Real-time system?
 - Concurrent system?
Meetings: Checklists

- **Benefits of checklists**
 - Focus on likely sources of error
 - Form quality standard that aids preparers
 - Can bring up issues specific to a product

- **Should be short**
 - About seven items
 - If more, group and do multiple passes

- **Focus**
 - Priority issues
 - Issues unlikely to be found other ways
 - Historical problems
 - Issues specific to the document

- **Start with checklist from well-known source**
 - Refine based on experience

- **Pitfall: overemphasis on style issues**
 - It's good to find style issues in inspections, but other issues are higher priority – specification, design, correctness, security, ...

People: Social Aspects of Reviews

- **Reviews are challenging**
 - Authors invest self-worth in product
 - Encourages you to avoid letting others find errors

- **For Authors**
 - Recognize value of feedback
 - Place value in making code easy to understand
 - Don’t take criticism of code personally

- **For reviewers**
 - Don’t show off how much better/smarter you are
 - Be sensitive to colleagues
 - Bad: “you didn't initialize this variable”
 - Good: “I didn’t see where this variable was initialized”
Review Pitfalls

- Letting reviewers lead the quality process
 - Attitude: "why fix this, the reviewers will find it"
 - Responsibility for quality is with author, not reviewers
 - Reviewers help

- Insisting on perfection/completion before review
 - Makes harder to accept suggestions for change

- Using review statistics for HR evaluation
 - Real world example:
 - Manager decides "finding more than 5 bugs during an inspection would count against the author" [Weigers '02]
 - Negative effects
 - Avoid submitting for inspection
 - Submit small pieces at a time
 - Avoid pointing out defects in reviews (thus missing them)
 - Holding "pre-reviews" that waste time and skew metrics

Inspection – The Big Questions

1. What is inspection?
 - And what are the benefits?

2. When are inspections better than testing?
 - What kind of attributes?
 - What is the typical experience of firms with inspection?

3. Are there different kinds of inspections?
 - What are the relative benefits of each?

4. Who are the stakeholders in inspection?
 - What value is provided by each

5. How is the inspection process accomplished?
 - What are summary guidelines for the meetings?

6. What gets inspected?
 - And when to do inspections?
What to Inspect

6. What do inspectors inspect?

- **Requirements, design documents**
 - Difficult to validate in other ways
 - May have high associated risk
 - Especially important to get right
 - Cheaper to fix earlier on in process
 - Many different perspectives are helpful
 - Need involvement of multiple stakeholders

- **Critical or uncertain pieces of code**
 - Security-critical code
 - Safety-critical code

- **Start inspections at the earliest stages of process**
 - Catch mistakes early, when easy to fix
 - Allow rest of system to be built with knowledge gained

- **Sample segments when there is a large body of work**
 - Consider what are good “coverage” criteria