Static Analysis

15-654:
Analysis of Software Artifacts

Jonathan Aldrich

Analysis of Software Artifacts -
Spring 2006

. Source: Engler et al., Checking System Rules
F I n d th e B u g ' Using System-Specific, Programmer-Written

Compiler Extensions, OSDI '00.

/* From Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head #*
get_free_buffer(struct stripe_head *sh,
int b_size) {
struct buffer_head *bh;
unsigned long flags;

save_flags(£lags) ; disable interrupts
cli();

if ((bh = sh->buffer_pool) == NULL)

return NULL; <«—
sh->buffer_pool = bh->b_next;
bh->b_size = b_size;
restore_flags(flags);
return bh;

ERROR: returning
with interrupts disabled

re-enable interrupts

Analysis of Software Artifacts - 2
Spring 2006

M etal I nte rru pt An alyS i S Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

{ #include "linux-includes.h" } Compiler Extensions, OSDI '00.
sm check_interrupts {
// Variables enable =>

// used in patterns err(double enable)

decl { unsigned } flags; A

// Patterns \

// to specify enable/disable functioms. ‘ is enabled |
is_disabled

| { restore_flags(flags); } ;

) : enable
pat disable = { c1i(); };

disable

// States

pat enable = { sti(); }
X . L end path =>
// The first state is the initial state.

is_enabled: disable ==> is_disabled err(gnq path
| enable ==> { err("double enable"); } V.VIth/IntI'
disabled)

2 H —
is_disabled: enable ==> is_enabled disable ,_>
| disable ==> { err("double disable"); } err(double disable)
// Special pattern that matches when the SM
// hits the end of any path in this state.
| end_of_path ==
{ err("exiting w/intr disabled!"); }

Source: Engler et al., Checking System Rules

Ap p I yi n g th e A n a | yS i S Using System-Specific, Programmer-Written

Compiler Extensions, OSDI '00.

/* From Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head #*
get_free_buffer(struct stripe_head *sh, . jnijtial state is enabled
int b_size) { -
struct buffer_head *bh;
unsigned long flags;

save_flags(flags);
cli(); transition to is_disabled
if ((bh = sh->buffer_pool) == NULL)
return NULL; final state is_disabled: ERROR!
sh->buffer_pool = bh->b_next;
bh->b_size = b_size;
restore_flags(flags); transition to is_enabled
return bh; final state is_enabled is OK

Analysis of Software Artifacts - 4
Spring 2006

Outline

« Why static analysis?

The limits of testing and inspection

« What is static analysis?
 Introduction to Dataflow Analysis
« Dataflow Analysis Frameworks

Lattices

Abstraction functions
Control flow graphs
Flow functions
Worklist algorithm

Analysis of Software Artifacts - 5
Spring 2006

and windows has been shut down to prevent damage

d by the

7 base at FBFES000, DatesStamp 3

Static Analysis Finds “Mechanical” Errors g

» Defects that result from inconsistently following simple,
mechanical design rules

* Security vulnerabilities
Buffer overruns, unvalidated input...

* Memory errors
* Null dereference, uninitialized data...

* Resource leaks
Memory, OS resources...

* Violations of API or framework rules
e.g. Windows device drivers; real time libraries; GUI frameworks

* Exceptions
Arithmetic/library/user-defined

* Encapsulation violations
Accessing internal data, calling private functions...

* Race conditions
Two threads access the same data without synchronization

Analysis of Software Artifacts - 7
Spring 2006

Difficult to Find with Testing, Inspection %

* Non-local, uncommon paths
« Security vulnerabilities
* Memory errors
* Resource leaks
* Violations of API or framework rules
« Exceptions
« Encapsulation violations

* Non-deterministic
* Race conditions

Analysis of Software Artifacts - 8
Spring 2006

Quality Assurance at Microsoft (Part 1) %

* Original process: manual code inspection
« Effective when system and team are small
* Too many paths to consider as system grew

« Early 1990s: add massive system and unit testing
* Tests took weeks to run
» Diversity of platforms and configurations
» Sheer volume of tests
+ Inefficient detection of common patterns, security holes
* Non-local, intermittent, uncommon path bugs
* Was treading water in Windows Vista development

« Early 2000s: add static analysis
* More on this later

Analysis of Software Artifacts - 9
Spring 2006

Process’ COSt’ and Quallty SIide:WiIIiamScherlisg

" Process intervention,
testing, and inspection
yield first-order
software quality

and tools are needed

Additional technology
to close the gap

improvement
______ Perfection
(unattainable)
Critical Systems
_______ = Acceptability
Software
Quality
i i i i i Process
cMM: 1 2 3 4 5 Rigor, Cost
S&S, Agile, RUP, etc: less rigorous ... more rigorous
Analysis of Software Artifacts - 10

Spring 2006

Outline %

« Why static analysis?

« What is static analysis?
» Abstract state space exploration

 Introduction to Dataflow Analysis

« Dataflow Analysis Frameworks
- Lattices
« Abstraction functions
« Control flow graphs
* Flow functions
* Worklist algorithm

Static Analysis Definition %

« Static program analysis is the systematic
examination of an abstraction of a program’s
state space

* Metal interrupt analysis

* Abstraction
2 states: enabled and disabled
All program information—variable values, heap contents—is
abstracted by these two states, plus the program counter
+ Systematic
Examines all paths through a function
What about loops? More later...
Each path explored for each reachable state
Assume interrupts initially enabled (Linux practice)
Since the two states abstract all program information, the
exploration is exhaustive

Analysis of Software Artifacts - 12
Spring 2006

Outline g

« Why static analysis?
« What is static analysis?
 Introduction to Dataflow Analysis

« Dataflow Analysis Frameworks
« Lattices
« Abstraction functions
« Control flow graphs
* Flow functions
* Worklist algorithm

Analysis of Software Artifacts - 13
Spring 2006

An Analysis We've Seen g

* Hoare logic
« Useful for proving correctness
« Requires a lot of work (even for ESC/Java)

« Automated tool is unsound
So is manual proof, without a proof checker

Analysis of Software Artifacts - 14
Spring 2006

Motivation: Dataflow Analysis %

« Catch interesting errors
* Non-local: x is null, x is written to y, y is
dereferenced

* Optimize code
* Reduce run time, memory usage...

* Soundness required
« Safety-critical domain
» Assure lack of certain errors
« Cannot optimize unless it is proven safe
» Correctness comes before performance

* Automation required
* Dramatically decreases cost

* Makes cost/benefit worthwhile for far more
purposes

Analysis of Software Artifacts - 15
Spring 2006

Dataflow analysis %

» Tracks value flow through program
+ Can distinguish order of operations
» Did you read the file after you closed it?
» Does this null value flow to that dereference?
» Differs from AST walker
» Walker simply collects information or checks patterns
« Tracking flow allows more interesting properties

» Abstracts values

« Chooses abstraction particular to property
* s avariable null?
* |s afile open or closed?
* Could a variable be 0?
* Where did this value come from?

* More specialized than Hoare logic
* Hoare logic allows any property to be expressed
» Specialization allows automation and soundness

Analysis of Software Artifacts - 16
Spring 2006

Zero Analysis %

« Could variable x be 07?
* Useful to know if you have an expression y/x
* In C, useful for null pointer analysis

* Program semantics
* nmaps every variable to an integer

« Semantic abstraction
* o maps every variable to non zero (NZ), zero(Z2),
or maybe zero (M2)

. Abstr(at):tion function for integers «; :
a,(0)=2
cg(n)=NZ foralln=0 _

* We may not know if a value is zero or not
Analysis is always an approximation
Need MZ option, too

Analysis of Software Artifacts - 17
Spring 2006

Zero Analysis Example %
o=[]
x :=10; o =[x~ (10)]
y =X
z:=0;
while y > -1 do
X:=x/y;
y =y-1;

z:=5;

Analysis of Software Artifacts - 18
Spring 2006

Zero Analysis Example

i

o =[]

x :=10; o =[x~NZ]
y =X o =[x>NZ,y~o(x)]
z:=0;
while y > -1 do

X:=x/y;

y =y-1;

z:=5;

Analysis of Software Artifacts -
Spring 2006

19

Zero Analysis Example

i

o =[]

x := 10; o =x-Nz]
Y= X o =[x»NZ,y~NZ]
2= 0: o =[x>NZ,y»NZ,z-a,(0)]
while y > -1 do

X:=x/y;

y:=vy-1;

z:=5;

Analysis of Software Artifacts -
Spring 2006

20

10

Zero Analysis Example %

o =[]

x :=10; o =[x~>NZ]
y =X o =[x»NZ,y~NZ]
z:=0; o =[x~»NZ,y»NZ,z~Z]
while y > -1 do o =[x»NZ,y»NZ,z~Z]
x:=xly; o =[x~»NZ,y~»NZ,z~Z]
y :=y-1; o =[x»NZ,y-»MZ,z~Z]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]
Zero Analysis Example %
o =[]
x :=10; o =[x~>NZ]
y =X o =[x»NZ,y~NZ]
z:=0; o =[x»NZ,y»NZ,z~Z]
while y > -1 do o =[x»NZ,y-MZ,z~MZ]
x:=xly; o =[x»NZ,y»NZ,z~Z]
y :=y-1; o =[x»NZ,y-»MZ,z~Z]

z:=5; o =[x~»NZ,y-»MZ,z~NZ]

Analysis of Software Artifacts - 22
Spring 2006

11

Zero Analysis Example %

o =[]

x :=10; o =[x~>NZ]

y =X o =[x»NZ,y~NZ]

z:=0; o =[x~»NZ,y»NZ,z~Z]

while y > -1 do o =[x»NZ,y-MZ,z~MZ]
x:=xly; o =[x»NZ,y-MZ,z~MZ]
y :=y-1; o =[x»NZ,y-»MZ,z~Z]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]

Zero Analysis Example %

o=[]

x :=10; o =[x~>NZ]

y =X o =[x»NZ,y~NZ]

z:=0; o =[x»NZ,y»NZ,z~Z]

while y > -1 do o =[x»NZ,y-~MZ,z~MZ]
x:=xly; o =[x»NZ,y-~MZ,z~MZ]
y :=y-1; o =[x»NZ,y-~MZ,z~MZ]
z:=5; o =[x~»NZ,y-»MZ,z~NZ]

Nothing more happens!

Analysis of Software Artifacts - 24
Spring 2006

12

Zero Analysis Termination

i

* The analysis values will not change, no matter how

many times we execute the loop
Proof: our analysis is deterministic

* We run through the loop with the current analysis values,
none of them change

* Therefore, no matter how many times we run the loop, the
results will remain the same

* Therefore, we have computed the dataflow analysis results

for any number of loop iterations

. Why does this work
If we simulate the loop, the data values could (in principle)
keep changing indefinitely
* There are an infinite number of data values possible

* Not true for 32-bit integers, but might as well be true
» Counting to 232 is slow, even on today’s processors
» Dataflow analysis only tracks 2 possibilities!
« So once we've explored them all, nothing more will change
« This is the secret of abstraction

* We will make this argument more precise later

Analysis of Software Artifacts -
Spring 2006

25

Using Zero Analysis

i

» Visit each division in the program

* Get the results of zero analysis for the divisor

* If the results are definitely zero, report an error
* If the results are possibly zero, report a warning

Analysis of Software Artifacts -
Spring 2006

26

13

Quick Quiz

i

* Fillin the table to show how what information zero
analysis will compute for the function given.

Program Statement Analysis Info after that statement

0: <beginning of program>

1:x:=0

2:y:=1

3:if (z == 0)

4: X =X+y

b:elsey:=y—-1

6:w:=y

Analysis of Software Artifacts -
Spring 2006

27

Outline

Why static analysis?
What is static analysis?
Introduction to Dataflow Analysis

Dataflow Analysis Frameworks
« Lattices

« Abstraction functions

« Control flow graphs

* Flow functions

* Worklist algorithm

Analysis of Software Artifacts -
Spring 2006

28

14

Defining Dataflow Analyses

i

« Lattice
* Describes program data abstractly
* Abstract equivalent of environment

* Abstraction function
* Maps concrete environment to lattice element

* Flow functions
* Describes how abstract data changes
* Abstract equivalent of expression semantics

« Control flow graph
* Determines how abstract data propagates from
statement to statement
* Abstract equivalent of statement semantics

Analysis of Software Artifacts -
Spring 2006

29

Lattice

i

. A lattice is a tuple (L, &, U, 1, T) T=MZ
L is a set of abstract elements /
* Cis a partial orderon L
* Means at least as precise as
* U is the least upper bound of two \ /
elements il
Must exist for every two elements in L
Used to merge two abstract values
* 1 (bottom) is the least element of L
Means we haven'’t yet analyzed this yet
Will become clear later

* T (top) is the greatest element of L
* Means we don’t know anything

* L may be infinite
. Typlcally should have finite height

All paths from 1 to T should be finite
* We'll see why later

less
precise

more
precise

Analysis of Software Artifacts -
Spring 2006

30

15

Zero Analysis Lattice

* Integer zero lattice

« Ly,={1,Z NZ MZ} T=MZ
- 1CZ 1CENZ NZEMZ ZEMZ RN
1 E MZ holds by transitivity Z NZ
* U defined as join for E
« xuy=ziff \J_/

z is an upper bound of x and y
z is the least such bound
Obeyslaws: t1UX=X, TUX=T, XUX=X

Also ZUNZ =MZ
e 1=
.« VX.1CX
e T=MZ
e VX.XCT

Analysis of Software Artifacts -
Spring 2006

31

Zero Analysis Lattice

* Integer zero lattice

e Ly,={1,Z NZ MZ} T=MZ
LEZ 1ENZ NZCMZ, ZEMZ RN
U defined as join for £ 4 NZ

* Program lattice is a tuple lattice

L, is the set of all maps from Var to L,

o, E; o, iff VxeVar . oy(X) E5 oy(X)

oy Uz 0, = { X~ 04(X) Uz 05(X) | xeVar }

1={xm~ Ly | xeVar}

T={x~ Tyz|xeVar}={x~ MZ| xeVar}

Can produce a tuple lattice from any base lattice
Just define as above

Analysis of Software Artifacts -
Spring 2006

32

T =z N

16

Tuple Lattices Visually %

ForVar ={x,y}

_ MZ\\
{x~Z, yoMZ} {x>NZ, yoMZ} {x-MZ, y»2Z} {x~MZ, y->NZ}

TN T T T

x-MZ, y»1,} {x~Z,y~Z} {x~Z, y>NZ}

{x=Z,y>1zy {XoNZ,yoiz} {Xo1y, y=Z} {X-1z, yoNZ}

L={X>1z, yoiz}

Analysis of Software Artifacts - 33
Spring 2006

One Path in a Tuple Lattice %

T={w-MZ, x-MZ, y-MZ, z-MZ}

T={w~2Z, XHM%, y~MZ, z-MZ}

T={w~2Z, x~MZ, y»NZ, z-MZ} .

1={wZ, x>NZ, y1,, 15}

>(| X:“

LWLz, XoNZ, Yol 7, 2017}

L={wo 1z, Xodz), Yol gy, 2017}

Analysis of Software Artifacts - 34
Spring 2006

17

Outline g

« Why static analysis?
« What is static analysis?
 Introduction to Dataflow Analysis

» Dataflow Analysis Frameworks
» Lattices
« Abstraction functions
« Control flow graphs
* Flow functions
* Worklist algorithm

Analysis of Software Artifacts - 35
Spring 2006

Abstraction Function g

* Maps each concrete program state to a
lattice element
» For tuple lattices, the function can be
defined for values and lifted to tuples

* Integer Zero abstraction function «,:
© oz(0)=2
* ay(n)=NZ foralln=0

« Zero Analysis abstraction function o, :

* aza(n) = {X > az(n(x)) | xeVar }
« This is just the tuple form of o (n)
« Can be done for any tuple lattice

Analysis of Software Artifacts - 36
Spring 2006

18

Quick Quiz g

« Consider the following two tuple lattice
values: [x—Z, y—>MZ] and

[x—>MZ, y>NZ]

* How do the two compare in the lattice
ordering for zero analysis?

* What is the join of these two tuple lattice
values?

Analysis of Software Artifacts - 37
Spring 2006

Outline g

« Why static analysis?
« What is static analysis?
 Introduction to Dataflow Analysis

» Dataflow Analysis Frameworks
» Lattices
» Abstraction functions
« Control flow graphs
* Flow functions
* Worklist algorithm

Analysis of Software Artifacts - 38
Spring 2006

19

Control Flow Graph (CFG) %

* Shows order of statement execution
 Determines where data flows

« Decomposes expressions into primitive

operations
« Typically one CFG node per “useful” AST
node

« constants, variables, binary operations,
assignments, if, while...
* Loops are written out
 Form aloop in the CFG
« Benefit: analysis is defined one operation at

a tlme Analysis of Software Artifacts - 39
Spring 2006

Intuition for Building a CFG b

« Connect nodes in order of operation
« Defined by language

« Java order of operation

« Expressions, assignment, sequence
» Evaluate subexpressions left to right
+ Evaluate node after children (posifix)
* While, If
« Evaluate condition first, then if/while
+ if branches to else and then
* while branches to loop body and exit

Analysis of Software Artifacts - 40
Spring 2006

20

Control Flow Graph Example g

while i*2 < 10 do
if X <i+2

thenx :=x+5

elsei:=i+1

Analysis of Software Artifacts - 41
Spring 2006

Quick Quiz g

Draw a CFG for the following program:

1:x:=0
2:y:=1
3:if(z==0)

4: X:=X+y
S5:elsey:=y-1
6:w:=y

Analysis of Software Artifacts - 42
Spring 2006

21

Outline g

« Why static analysis?
« What is static analysis?
 Introduction to Dataflow Analysis

» Dataflow Analysis Frameworks
» Lattices
» Abstraction functions
» Control flow graphs
* Flow functions
* Worklist algorithm

Analysis of Software Artifacts - 43
Spring 2006

Flow Functions g

* Compute dataflow information after a
statement from dataflow information before
the statement

* Formally, map a lattice element and a CFG node
to a new lattice element

* Analysis performed on 3-address code
* inspired by 3 addresses in assembly language:
add x,y,z
» Convert complex expressions to 3-address
code
* Each subexpression represented by a temporary

variable
o x+3%y 2> 1,:=3; t,1= 1Yy, =X+,

Analysis of Software Artifacts - 44
Spring 2006

While3Addr b

* Ccopy X=Yy

* binary op X=yopz (opef{+-*/..})

* literal X=n

* unary op X=0py (op € {-,!,++,...})
* label label lab

* jump jump lab

* branch btrue x lab

Zero Analysis Flow Functions %

* falo x=y))=lxroly)] o
* fzalo, [x:=n])=ifn==0

then [x»Z]o

else [x»NZ]o
* falox=.1])=Kk»MZ] o

» Could be more precise, e.g.
foalo xi=y+2z])=
if oly]=Z && ofz]=Z
then [x»Z]o else [x»MZ]o

* fza(o, /* any non-assignment */) = o

Analysis of Software Artifacts - 46
Spring 2006

23

Zero Analysis Example

X:=0;
while x > 3 do
X 1= X+1

Analysis of Software Artifacts -
Spring 2006

47

Zero Analysis Example

Initial dataflow
o ={x»MZ|xeVar}

Intuition:

We know nothing about
initial variable values. We
could use a precondition if
we had one.

Analysis of Software Artifacts -
Spring 2006

48

24

Zero Analysis Example

o ={x»MZ|xeVar}

oy = fzalo, [t :=0])
= [ty~2] o

fzalo, [x = n]) =
if n==
then [x »Z]o
else [x»NZ]o

Analysis of Software Artifacts -
Spring 2006

49

Zero Analysis Example

o ={x~MZ | xeVar } BEGIN|
o =[tZ] g

03 = fzalon, [X 1= t,])
=[x oy(t)] oy

= [x»2] o

= [x=Z, t,»Z] o,

fzalo, [x =y]) =[x »oy)] o

Analysis of Software Artifacts -
Spring 2006

50

25

Zero Analysis Example

o ={x~MZ | xeVar }|BEGIN
o3 = [x-Z, t,»Z] o

Input to [3]; comes from
=], and [:=],,
Input should be o3z U oy,
What is oy,?
Solution: assume L
Benefit: oz UL = o3
Same result as ignoring
back edge first time

Analysis of Software Artifacts -
Spring 2006

51

Zero Analysis Example

o ={x»MZ]|xeVar}

oy =[xeZ t»Z] o
O =1L

05 = fzalozU oy, [t 1= 3))
= fzalos U L, [ts == 3])
= fzalos, [t :=3])

- [t;-NZ] o

Jzalo, [x = n]) =
if n==
then [x~Z]o
else [x»NZ]o

Analysis of Software Artifacts -
Spring 2006

52

26

Zero Analysis Example g

o ={x»MZ|xeVar}
oy =[xeZ t»Z] o
O =L

o5 =[ts~NZ] oy

0 = fzal0s, [ts = x<t5])
= [ts~NZ] o3

fza(o, /* any other */) = o

Analysis of Software Artifacts - 53
Spring 2006

Zero Analysis Example g

o ={x»MZ]|xeVar}
oy =[xeZ t»Z] o
O =L

o5 = [ts~NZ] o3

Skipping similar nodes...

Analysis of Software Artifacts - 54
Spring 2006

27

Zero Analysis Example

o ={x~»MZ|xeVar}
oy =[xmZ t»Z] o
O =L

oy = [t~ NZ,...] o5

011 = 20105 [thq 1= X+ 1))
= [t;~MZ] oy,

fza(o, [x =y op 2]) = [x»MZ] &

Analysis of Software Artifacts -
Spring 2006

55

Zero Analysis Example

o ={x~»MZ|xeVar}
oy =[xeZ t»Z] o
O =1L

O14 = [t1OHNZ,t11HMZ, .. .]O':3

o1y = fzalon, [X:=ty4])
= [x~034(ty4)] o34
= [x-MZ] o34
=[x~MZ,...] o3

fzn(o e :=)]) =[x mo(y)] o

Analysis of Software Artifacts -
Spring 2006

56

28

Zero Analysis Example

o ={x~»MZ|xeVar}

oy =[xeZ t»Z] o
oy =[x-MZ, ...] oy

05 = fzalozU oy, [t5 := 3])
= Fon([x-MZ]oy, Ity := 3])
= [ty NZ] [x~MZ, ...]o,
= [t;~NZ, x>MZ, ...] o

Fznalo, k) = [t o(x)] o

Analysis of Software Artifacts -
Spring 2006

57

Zero Analysis Example

o ={x~»MZ|xeVar}

oy =[xeZ t»Z] o
oy = [x-MZ,...] oy

Propagation of x~MZ continues

oy, does not change, so no need to x4
iterate again

Analysis of Software Artifacts -
Spring 2006

58

29

Quick Quiz g

Explain in detail how the dataflow lattice value for after the
statement w := y is computed, using the CFG below as your point
of reference.

X =Xty
begin —x :=0—y:=1—7==0 W=y
y :=y-1
* Answer:
Analysis of Software Artifacts - 59

Spring 2006

Outline g

Why static analysis?
What is static analysis?
Introduction to Dataflow Analysis

Dataflow Analysis Frameworks
» Lattices

» Abstraction functions

« Control flow graphs

* Flow functions

« Worklist algorithm

Analysis of Software Artifacts - 60
Spring 2006

30

Worklist Dataflow Analysis Algorithm

i

worklist = new Set();

for all node indexes i do
resultsfi] = L,;

results[entry] = t,;

worklist.add(all nodes); /

while ('worklist.isEmpty()) d

i = worklist.pop();

0o

before = ukepred(i) results[k];
after = f,(before, node(i));

if (!(after C results[i]))
results[i] = after;
for all kesucc(i) do

worklist.add(k);

Ok to just add entry node
if flow functions cannot
return L, (examples will

assume this)

Pop removes the most
recently added element
from the set (performance
optimization)

Analysis of Software Artifacts -
Spring 2006

61

Example of Worklist

[a := 0],

[b:=0],

while [a < 2], do
[b :=al,;
[a:=a+1]s

[a:= 0

Control Flow Graph

1—2—3——6

4——5

Position

OO, LOCOAOPRWN-O

Worklist a b
1 MZ MZ
2 Z MZ
3 V4 V4
4.6 V4 V4
5,6 V4 V4
3,6 MZ V4
4.6 MZ V4
5,6 MZ MZ
3,6 MZ MZ
4,6 MZ MZ
6 MZ MZ
z MZ

Analysis of Software Artifacts -
Spring 2006

62

31

Quick Quiz g

Show how the worklist algorithm given in class operates
on the program given, by filling in the table below.

1:x:= Position | Worklist X y w
2:y:= 0
3:if (z==0)
4: X=Xty
S5:elsey =y—1
6:w:=y
Analysis of Software Artifacts - 63
Spring 2006

Worklist Algorithm Performance %

» Performance
* Visits node whenever input gets less precise
* up to h = height of lattice
* Propagates data along control flow edges
* up to e = max outbound edges per node
* Assume lattice operation cost is 0
* Overall, O(h*e*0)
* Typically h,0,e bounded by n = number of statements in
program
¢ O(n3) for many data flow analyses
* 0O(n?) if you assume a number of edges per node is small
* Good enough to run on a function

* Usually not run on an entire program at once, because n
is too big

Analysis of Software Artifacts - 64
Spring 2006

32

