An Evaluation of Rational PurifyPlus

Jameel Gbajabiamila
Animesh Kejriwal
Yash Patodia

1
2

3

4

5

6

7
8

Table of Contents

INETOTUCTION ...t e e e e s 3
INSTAIALION ... e e e e e e e e e eenae 3
2.1 ON WINAOWS...eeiiieiieiiie ettt eee ettt e e ettt e e e e e e aba e e eeeane 3
2.2 ON LINUXIUNIX .ttt ettt ettt e e e e eeeene 3
RALIONAI PUFITY .. 3
3.1 EXPECLALIONS ...veeeiieiii ettt ettt e et e e eeae 3
3.2 Memory leaks and Other memory bugs..........cooeeiiiiiiii e, 4
3.3 HOW PUIY WOIKS ...t e 4
3.4 EXPEIMENES ...ttt e et e e e eeae 5
3.4.1 Simple EXPeriment.. ..o 6..
3.4.2 CompleX EXPEIIMENToouuiiiieii et
Rational QUANTITYccoiiiiii e e e e 8
4.1 EXPECTALIONS ...uieiiiiii ettt e e ettt e et e et eenaaaas 8
4.2 LeaArNiNg CUIVEottt ettt e et e e e e ea e eeeeees 8
4.3 FRATUIES ... s e 9
4.4 MEBASUIEIMENTS ... ittt re e e e 9
4.5 P0OSSIDle IMPrOVEMENTSuuiiiiiiiii e 10
Rational PUr@COVEIAgEcoiiiiiiii et e e 10
5.1 EXPECIALIONS ...eeunieiiiiiiie ettt 10
5.2 LeArNING CUINVEuuiiiiiieii ettt et e e 11
5.3 AdVANCEA USAQEciiiiiiiieiiiiiii ettt e 11
5.4 EXPEIMENES ...ttt ettt e e e 12
Comparison with other t0O0IS..............ui e 12
6.1 FIUId e 13
6.2 IMAGIC ..o e e 13
(©70] o [0 [T 5] T] T PP UPPRRUPPPPPIN 13
RETEIENCESot ettt e ettt e e e ee e e e eeaea 13

1 Introduction

IBM Rational® PurifyPlus is a runtime analysis solutaesigned to help developers
write reliable code faster. Runtime analysis in this pgekacludes four basic functions:
memory corruption detection, memory leak detection, eajin performance profiling,
and code coverage analysis. In this report we will ev@lRational Purify, Quantify and
PureCoverage from a usability point of view.

2 Installation

2.1 On Windows

The evaluation version of Purify for windows was fowagily on the website. The
installation was in the form of the "installation &id" and was straightforward. However,
Purify comes with a license administrator, which reggian evaluation license for Purify to
work. The Rational website mentioned that a 30 dayuataln license is available for
download. However, we could only find a 15 day license for YRiuf on the website, and
were forced to use that. After importing the licenseiffPgave a cryptic error with a short
message saying that the license was not found. Underggahdicause of the error took a
couple of hours, and a small tweak in License Administrsdlved the problem. The tweak
that had to be made was to ask the license administoaornch PurifyPlus instead of
Purify, since the key was for PurifyPlus. This was sohswnexpected since PurifyPlus
was not installed on the computer. We installed PuifyBfter performing our experiments
on Purify. The installation of PurifyPlus was hassksefr

2.2 On Linux/Unix

We were unable to install PurifyPlus on Linux and UNIXisTwas primarily because of
problems with the software. The IBM Rational web&iel broken links and therefore we
could not download the 30 day version of Rational Purify fauk/Unix. We were

forced to use the PurifyPlus package which is very largeham a shorter license.
Moreover, the Linux version the tool supported was inzatible with the latest version
of Linux available on-campus. Having spent a lot of time @ffort on trying to install

the tool on both Linux and UNIX, we finally decided t@ktto the Windows version.

3 Rational Purify

IBM Rational Purify ensures reliability via two crucfahctions: memory corruption
detection and memory leak detection. Rational Purify pge& support for these two
runtime analysis capabilities in a single product witl@mon install and licensing
system.

3.1 Expectations

Large development projects have multiple versiondécwritten by a large number of
developers, often using a variety of third-party tools. Ugging such complex programs
for memory bugs is a very difficult task. It is expectieat Rational Purify will help
rectify this problem by allowing a user of the tool to quidklyate memory related bugs
which exist in the code. It is hoped this will provide cledormation to aid the
developer in identifying memory related bugs in the code.

3.2 Memory leaks and Other memory bugs

Memory access errors, suchaasay-bounds errors, dangling pointers, uninitialized
memory reads, and memory allocation errors, arengrtite most difficult to detect. The
symptoms of incorrect memory use typically occurfifam the cause of the error and are
unpredictable, so that a program that appears to work dgnreally works only by
accident.

Array boundserrors- Purify inserts guard zones around statically and dynamically
allocated memory to catch this type of access erraifyRaports ararray boundsread
(ABR) or an array bounds write (ABW) message at the tirdetects the error.

Accessing through dangling pointers - Purify tracks freed memory and reports invalid
memory accesses &ee memory read (FMR) or free memory write (FMW) errors at
the time the errors occur.

Uninitialized memory reads - Purify tracks new memory blocks as they are allocated
and reports any attempt to read or use a value from thie Ibédare it's initialized as an
uninitialized memory read (UMR) error.

Memory allocation errors- Purify intercepts all calls to memory allocation API
functions such as malloc, new, new[], calloc, realiad related functions, to warn you
about their incorrect use. For example, when you usecanrect function to free
memory, such as calling free on memory obtained from Reirify generates faeeing
mismatched memory (FM M) message.

3.3 How Purify Works

lllegal to read, wrlte, or
tree red and blue memory

malloc

Legal to write
or free, but
llegal to read

Yellow
memory

allocated but
uninitialized

Legal to read and wrlte
{or free If allocated
by malloc)

Purlty labels memory states by color.

Purify monitors every memory operation in a programeheining whether it is legal. It

keeps track of memory that is not allocated to your pragraemory that is allocated but
uninitialized, memory that is both allocated and initiadi, and memory that has been
freed after use but is still initialized.

Purify uses a table to track the status of each byweeafory used by your program. The
table contains two bits that represent each byte of menbe first bit records whether
the corresponding byte has been allocated and the se¢oaddrds whether the memory
has been initialized. Purify uses these two bits tordes four states of memory: red,
yellow, green, and blue.

Purify checks each memory operation against the calte of the memory block to
determine whether the operation is valid. If the progracesses memory illegally,
Purify reports an error.

* Red: Purify labels heap memory and stack memory red initidlys memory is
unallocated and uninitialized. Either it has never beleeated, or it has been
allocated and subsequently freed. In addition, Purify isggrard zones around
each allocated block and each statically allocatediidatea in order to detect
array bounds errors. Purify colors these guard zonesceteéers to them asd
zones. It is illegal to read, write, or free red memory besgi is not owned by
the program.

* Yellow: Memory returned by malloc or new is yellow. This memoag been
allocated, so the program owns it, but it is uninitiaizéou can write yellow
memory, or free it if it is allocated by malloc, buisiillegal to read it because it
is uninitialized. Purify sets stack frames to yellowfanction entry.

» Green: When you write to yellow memory, Purify labels it gne&his means that
the memory is allocated and initialized. It is legalgad or write green memory,
or free it if it was allocated by malloc or new. Puyiiiitializes thedata and bss
sections of memory to green.

» Blue: When you free memory after it is initialized and udeudk;ify labels it blue.
This means that the memory is initialized, but is no éon@lid for access. It is
illegal to read, write, or free blue memory.

Since Purify keeps track of memory at the byte levehtiches all memory-access errors.
For example, it reports an uninitialized memory read R)M an int or long (4 bytes) is
read from a location previously initialized by storinghert (2 bytes).

3.4 Experiments

Our main goal was to understand the effectiveness of nyelgak detection by Purify.
Purify can be run on programs with or without source cdtiving the source code
helps the tool pinpoint the location of the error. When on programs where the source
code is unavailable, Purify tells the user which libsagefiles have problems. This is

very useful when creating applications that use closatte libraries or third party
applications.

Purify integrated seamlessly with Microsoft Visual StuliO, by providing a toolbar in
the IDE that lets one run Purify directly from Visi&ldio. Our first step was to run
Purify on a simple application and understand how thietodked. Then we tested
Purify on a more complex program, and compared the akentby the tool to find the
bug to the average time taken by our classmates to gémifsame bug.

3.4.1 Simple Experiment

We conducted this test to get familiar with the tool, endetermine the user-friendliness
of the results. We created a simple "Hello World" pamg, where we allocated memory
and did not free it, as shown in the code below.

1. int main(int argc, char* argv[])

2. {

3. char word[] = "Purify";

4, char *x = (char*)mall oc(strlen(word)*sizeof (char));
5. strcpy(x, word);

6. printf("Hello World! % ", Xx);

7. return O;

8. }

Purify successfully recognized two errors:

1. Array bounds read: This error is seen in line 5, sineertemory required in
variable 'x' to store "Purify" is one more than the lergjtthe string to
accommodate for the "\O' character denoting the enlingsin the example
above, variable 'x' has only 6 bytes, but the word needs ¥ toytee stored.
Hence reading the last byte gives an array boundseread

2. Memory leak: Purify also identified the memory leak cdusg not freeing
variable 'x'. Purify pointed to line 4, to indicate tha thalloc at line 4 was not
freed.

The “Error View” window provided a summary of the esréound in the program. This
was in the form a tree, and the error of interestccbe quickly expanded to find the
details of the error. We had absolutely no difficuibderstanding the nature and source
of the error.

3.4.2 Complex Experiment

We conducted a study by comparing the time taken by Purifistauiment the program
and find the error, to the average time taken by a fefloftware Engineering student to
find the same. It was necessary to choose a relasualyle but long program for this
study, because we wanted to avoid having the subjects sperdyimyeto understand
complex code, and at the same time did not want taltest on a trivial program.

For this test, we used a C program from a previous freskewahcourse. This was a
simple 500 line program that allowed operations on a diatip We were fairly
confident that we could find some genuine memory errditsainprogram. We ran Purify
on the program, and discovered that there was indeedrery leak. The nature of the
leak can be seen by looking at the following snippet®déc

struct Node

char *st;
struct Node *next;
} NodeT;

The struct declared above is a data structure for desiinged list, which holds a string
value inside it. When inserting strings into this data stire¢ the “char *st” is allocated
memory by calling “calloc”.

whi | e(t enp! =NULL)
{

curr = tenp->next;
free(tenp);
tenp = curr;

The snippet of code shown above is executed when the pregds. It tries to free all
the memory that is allocated to the program. We camhsge¢hough the loop successfully
frees the memory allocated to the node, it does netfre memory allocated to the string
within the node. This causes a memory leak.

We asked a total of 6 people to participate in this experire@ch having approximately
two to three years of experience with C/C++ programniiing. students were explained
the basic functionality of the program, to ensure thay #pend time analyzing the code
rather than understanding it. Out of these, one stutiémtot find the error, while the
other students took seven minutes on average to find the Bnisrighlights the
usefulness of the tool. In fact, for larger applicati@amalyzing code manually would be
a lot more cumbersome and the increase in time requoed be exponential.

One must note that Purify pointed at the program line evtiex string that was not freed
is allocated memory, while the classmates identifiecktlea where the strisgould be
freed. Thus, identifying the area where the memory lealddme fixed took another 45
seconds for this program.

Time taken to debug using Purify Avg. time taken by subject§MS
Classmate)
12 seconds (Purify overhead) + 45 7 minutes
seconds (to fix error)

Overall, running this program with Purify was extremelgye&ince Purify integrated

with the IDE, running Purify on the program was just &ati€the button. Purify takes a
few seconds to instrument the necessary files andiéisraand then the program executes
normally, but relatively slowly, since Purify runningthe background. Purify tracks the
errors caused by the program as the program is running. Proifies details of the

error such as the line number (if source code is ava)lalie actual program line that
caused the error, the functions in the call stack fdrgi@gram line, and details about the
type of error. Our overall experience with Purify wasagirand we feel it is one of the
most helpful tools available in the industry to find meynexrors effectively.

4 Rational Quantify

Rational Quantify provides information about the perforoeaof code during execution.
It offers functionalities to look at performancetstics in various ways, and makes it
easier to pinpoint areas of the code that are mosy likahcrease performance.

Quantify runs in the background once the program stamtispeovides performance
statistics of the program. It allows the user to custerttie way in which data is
collected — whether it is for a particular portion lod¢ tode or for the entire code
execution. It provides ways for the user to compare hibege in performance before and
after a change is made. This allows user to analyzengect of their changes. The most
useful part of Quantify is that it allows the userdodate areas which have the highest
potential for improving performance. Moreover, the stasgprovided by Quantify do
not include the overhead of running the program with represents the time taken by
the program without Quantify. Quantify instruments all¢bde of a program, whether
the code is available or not. This makes it possible t&Qusatify on programs that use
closed source libraries and applications.

4.1 Expectations

Performance is often a quality attribute of high impaectain many industry applications.
Lots of servers, mission critical software and busragsplications require a guarantee of
performance. For products that require such high perforengoals, it is necessary to
analyze the program and identify areas have the maximtentid to increase
performance. The performance data should be availabkrious different metrics, such
as number of function calls, time spent in functidasctions which have source code
available (and hence can be optimized), etc. This datddshe available in user-friendly
representations such as charts and graphs. The goal obusimg tool is to maximize
productivity by minimizing the time spent in identifying arélaat can be optimized and
maximizing the time spent in making the actual optimizetio

4.2 Learning Curve

The learning curve for using Quantify was very low. Quantifggrated with Microsoft
Visual Studio 6.0 in the form of a toolbar. To run Quigntn a program, we simply had
to click on a button that engages Quantify, and then mipribhgram. Quantify produces

various tables and call graphs that can be used immigdiatenalyze the performance of
the program.

4.3 Features

Quantify offers various ways to check the performarf@ncexecuted program. We
found the following features provided by Quantify particuldmypful:

1. Call graph Quantify provides a call graph of the various functions program.
It connects the vertices of these graphs by edges theatedunction calls. The
edges are of varying degrees of thickness and represemhéhsgent in that area
by the program. Furthermore, Quantify presents some usatukes that help
analyze various properties of the program. For instanbaes a feature that
highlights the top ten functions where the program spemokst of its time or the
functions which have their source available, and stthese are in an
extremely intuitive user interface and the visual repreg®ns are very useful.

2. Function list This view provides a list of all the functions in fm@gram, along
with various performance statistics. The columns wedaspecially useful
were:

- The time spent only in a function

- The time spent in a function and its descendants
- The number of calls made to a function

- The module and source file of a function

Also, this view provides an easy way of sorting the mwmls, changing precision
and restricting the number of functions shown, which makésrmining areas for
optimization very easy.

3. Annotated sourceNe found this view to be extremely user-friendly. \dsean
look at the source code, and see the amount of time apeath line of code.
Quantify provides a summary of each function at theofdpe function. Then it
provides performance data for each line in the code. Ehis la lot to pinpoint
areas of potential optimization. Moreover, it makes gamnson of performance
after and before optimizations very easy.

Quantify also allows one to see the difference in perémce once an optimization is
made. It calculates how much faster a program becdoe$o a particular optimization.

4.4 Measurements

Our test program was the same dictionary program teats&d in our Rational Purify
experiment. We used Quantify to identify areas for ogiion and included
modifications that made the program perform about 20%rféisan the original program
(optimizations were turned off). The optimizations mweluded were binary arithmetic,
loop unrolling, increasing cache hits and inlining functiomad there called very

frequently. The features mentioned above were thethaeselped us in determining
areas where optimization would be most effective.

45 Possible Improvements
We thought of some possible improvements that could be foatee tool:

1. Optimization suggestion3 he tool should provide suggestions on types of
optimizations that would be possible in particular ar€as instance, the tool can
identify a loop which is called very frequently, and couwldgest that one should
consider loop unrolling, and maybe even provide an estiofdatee performance
increase expected by the modification. This is probadtd o integrate into the
tool, but would certainly make the tool indispensable feritidustry.

2. Cache hits and misseBhe tool should provide information about the number of
cache hits and misses in a program, especially in loog® sianaging the cache
effective can result in significant performance imgnments. It should flag the
user to think about modifying the loop construct to make chithenore
frequent.

5 Rational PureCoverage

The Rational PureCoverage application is packaged witRuh&/Plus software and
provides an automatic way for a user to identify testeduatested code throughout an
application which is in development. It works with apgicas that are developed using
Visual C/C++, Java, and Visual Basic. The general perpbshis feature is to allow a
tester to pinpoint exactly which sections of code havgawe not been tested in the
application. It is hoped to be use along side of a tést, suhich test sections of code that
have been executed, and provide a means to highlightingopamnes code that may
have been unintentionally overlooked by the test suite.

Its key features are that it (1) allows a quick analgsisxecutables without requiring
recompilation, (2) performs an analysis of an erpplication including components,
with or without source code, (3) presents coveragesttatfor each run of the
executable, (4) provides features such as diff and mergelknatPureCoverage to
compare coverage data from multiple runs of the sameugable, (5) integrates with
Microsoft Visual Studio 6.0, (6) allows one to control iéxeel of code coverage data
collected per module.

51 Expectations

In the industry development happens at a rapid speed, anddenaglgpers are work on
the same application at the same time. In such chasty, programming is often
committed and can cause a developer to forget to tesbtieethoroughly. It is expected
that Rational PureCoverage will help rectify this probkgnallowing a user of the tool to
quickly locate sections of an application which havesiidg gone untested during test
runs and execution. It is hoped this will provide clear infatiom to aid the developer in
locating regions of code that need further examinatiaitesting. It is hoped that
PureCoverage will identify weak spots inside an applioatiod allow developers to

10

conduct further testing in these regions to provide isg@@uality to the end user, while
decreasing overhead and lowering cost.

5.2 Learning Curve

The tool was tested using Microsoft Visual Studio 6.0 aaccdtmmand line interface in
Cygwin. The PureCoverage system integrates seamlegblyh®iMVS 6.0 GUI and is
extremely user friendly in helping new users locatasand preference information
associated with the tool. Following the manual step-bgsstllows a user to have
PureCoverage running and delivering coverage information iiHasss minutes. The
tool is sufficiently robust and allows other featuresheftool to be turned on and off.
The Windows GUI is extremely clean and there is naweged under MVS 6.0 to result
to using the command line, because the GUI is well bodtgrovides an articulate
interface to gain easy access to all the featurdsedbl. However, personally, the
command line has the advantage of creating scripts ttucoautomatic testing of
certain applications and other functions in which strgphas an advantage.

The command line interface, too, is relatively sintpl®ecome acquainted with,
especially with the manual at your side. The manusilbheomplete listing of all the
argument types and configuration parameters associatetheitbol and how to use
each of the features. More information and examplakidmave been provided in the
manual. But overall, we were impressed by the documentptavided. Using the
command line is a bit more tedious in that it incredisesiwumber of steps necessary to
complete a coverage run, compared to the GUI whiclvaltbe tool to be run by a single
click.

Overall, while the PureCoverage functionality is simgte limited and not much is
needed to utilize the features of the tools, we woullchstve to say that IBM made a
strong effort to allow the learning curve of the tool éogainless and as quick as
possible. The learning curve is small and worth the taimee the benefits of the tool far
overshadow the time necessary to start providing results

This tool can overall save a developer days and weekstofgeode, because the tool
specifically pinpoints areas which have most likely beesrlooked and not covered
during testing of the application. Before this would regjairdeveloper to pay very close
attention in making sure that all of the code was testeughout. Moreover, even if a
developer does pay close attention, they could stilusoally guarantee that they
covered all of the code in the application, or repow hauch they covered.

5.3 Advanced Usage

The tool was further tested in order to gain the complieteire of its advantages and
disadvantages. The tool has a beautiful GUI for disptagesult information to the user.
The tool provides precise information, providing statisticilrmation regarding the
extent of the application that was covered by the ctieneth previous test runs. It
provides a clear line by line process of indicating whiclspairthe code was possibly
tested during the current run as well as the lifetimd@fpplication. It displays the lines
of code that were altered and identifies from theses lihe ones that were tested or not.

11

Advance usage of the tool allows a user to compare agpwvelata of an application
during different runs. This can be extremely useful ieideining how changes affected
the testing of the application and when and where ogpiaces of code were covered.
Another feature allows PureCoverage to produce an aedatatirce text file indicating
unused code, untested code, altered code, etc. The toa canfigured to report when
the coverage is below a certain threshold. This carsed as a warning mechanism to
inform a tester that the application is possibly re@ng tested thoroughly. Features
provided by the tool include ways to:

- Annotate the output of a diff for a modified source code

- List files for which coverage has changed

- Mail a report to the last person who modified insuffitig covered files

- ldentify the subset of tests required to exercise nextigource code

- Produce a summary in a spreadsheet format or tabletforma

Each of these options is extremely easily configuredlenGUI and on the command
line. A tester could actually become extremely comfoetabth this tool after a few runs
of the tool and our team was actually able to stargusia advance functionality within
20-30mins of launching the tool.

54 Experiments

The tool on average offered an overhead of about 5 secondach run of the program.
The time added appeared insignificant and ran along sid@ptiestion at runtime,
taking note of what areas of the code where viewed andewed. This test was
conducted on a version of the simple “Hello World” exde that was used for the Purify
test above.

The most time consuming task associated with this tcad, the feature that allowed a
user to generate an annotated source text file indicatinged and uncovered portions of
code that may have been untested code or newly attedsd For the “Hello World”
example it took approximately 10secs to generate this ou@pud larger application this
time would surely increase, increasing overall overheaataded with using this
feature. However, this time associated with obtainiegatmotated text file is worth the
benefit associated with the results. During a simgfeaf the program it took a user
approximately one minute to determine what sections of woddd be covered in a
specific run, the tool was able to do it and provide resuithin 10-15secs. This is a
relatively large difference on a very simple progr@iearly, as programs get larger and
more complicated, the benefits will be more appat@fien, large applications make it
almost impossible to manually determine which sectiorodé are covered during
execution and testing.

6 Comparison with other tools

When comparing Rational PurifyPlus with other tools usetarctass, one must keep in
mind that PurifyPlus is an industrial tool, whereas thesaused in class — Magic and
Fluid are research tools. When comparing the toolspaasfon the usability aspect,
since the functionality of the tools differs tremendgusl

12

6.1 Fluid

“The Fluid Project is focused on creating practicable tools for programmeeassure

and evolve real programs. We focus on "mechanical” prograperties that tend to defy
traditional testing and inspection regimes. These are gregp&ith a non-local
character, in that there may be no single plackarcode where they are manifest, and
they may involve non-determinism.”

The Fluid Project is similar to Rational PurifyPlugiat both can be used as a plug-in
for an IDE. The learning curves however, differ drasyc&ational PurifyPlus is very
easy to use and has a very low overhead in terms efd@nt on using the tool.
However, Fluid requires a significant amount of effard time to understand the
functionalities and the output and to setup the environment

6.2 Magic

The aim of Magic is to analyze and reason about softw@mponents written in the C
programming language. The overall goal of MAGIC is to cleariormance between
componenspecifications and theinmplementations. One of the most important
restrictions of Magic is the fact that it can be usety on C implementations. Rational
PurifyPlus on the other hand, can be used on Java, yd>8+&+ implementations,
which covers most of the popular languages used in the igdadhy.

Moreover, the output provided by Magic is very diffictd understand and use for a
developer. The counterexamples tend to be convoluted dinailtlifo read and therefore
do not provide much utility to the user. On the other hdrerror messages provided
by Rational PurifyPlus are very clear, simple and gasitlerstandable by a developer.
This improves the utility of the tool tremendously.

The learning curve associated with Magic is extremely.t&giting up the tool, and
getting a fairly basic, Hello World example, can bediotes task. On the other hand,
Rational PurifyPlus is fairly easy to use and does ne¢ hahigh learning curve
associated with it.

7 Conclusions

We found the Rational PurifyPlus suite to be a vesfulgool with a lot of potential.
However, we were surprised at the difficulty in seftip the tool on the various
platforms, given that it is an industrial application.

Having seen the results that PurifyPlus produces, couplédte/fficiency and user-
friendly interface, we feel that it could become agsed for any compatible software
development project. Each of us strongly feels thatlimdustry application, running
Purify on the source code during development would be allertidea. We believe it
would significantly improve developer productivity and helpueagjuality of a product.

8 References
PurifyPlus Manual http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf

13

Rational Quantify Support http://www-
306.ibm.com/software/awdtools/quantify/support/

14

